
Quadratic Unitary Coupled-Cluster Singles and

Doubles Scheme: Efficient Implementation,

Benchmark Study, and Formulation of an

Extended Version

Junzi Liu,∗,† Devin Matthews,∗,‡ and Lan Cheng∗,¶

†School of Chemistry and Biological Engineering, University of Science and Technology

Beijing, Beijing, 100083, China

‡Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, USA

¶Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA

E-mail: jliu413@ustb.edu.cn; damatthews@mail.smu.edu; lcheng24@jhu.edu

Abstract

An efficient implementation of the quadratic unitary coupled-cluster singles and

doubles (qUCCSD) scheme for calculations of electronic ground and excited states using

an unrestricted molecular spin-orbital formulation and an efficient tensor contraction

library is reported. The accuracy of the qUCCSD scheme and the efficiency of the

present implementation is demonstrated using extensive benchmark calculations of

excitation energies and an application to S0 → S1 vertical excitation energies for cis-

and trans-4a,4b-dihydrotriphenylene. The qUCCSD scheme has been shown to provide

improved excitation energies compared with the UCC3 scheme formulated based on

perturbation theory. A UCC truncation scheme that can provide excitation energies
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correct through fourth order is also presented to further improve the accuracy of the

qUCCSD scheme.

1 Introduction

The coupled-cluster (CC)1–9 and equation-of-motion CC (EOM-CC)10–22 methods are being

widely used in calculations of electronic ground and excited states for atoms and molecules

aiming at high accuracy. CC theory can provide size-extensive treatments of dynamical

correlation effects that are rapidly convergent with respect to the rank of excitations in

the cluster operator; CC singles and doubles (CCSD) and EOM-CCSD methods have been

amply demonstrated to provide accurate results.8,9,22 The success of CC methods lies in the

ability to accurately treat not only simple molecules around equilibrium structures, but also

molecules exhibiting strong orbital relaxation effects23 or in moderately stretched geometries.

The applicability of CC and EOM-CC methods is being extended to large molecules using

pair natural orbital and reduced scaling techniques,24–53 to solids using periodic boundary

conditions,54–63 and to heavy-atom-containing molecules in combination with relativistic

Hamiltonians.64–83

CC and EOM-CC feature a non-Hermitian similarity-transformed Hamiltonian that nat-

urally terminates at the fourth power of cluster operators. These methods benefit tremen-

dously from this compactness. On the other hand, the non-Hermiticity of CC theory intro-

duces non-trivial fundamental problems. CCSD calculations in combination with complex-

valued Hamiltonians, e.g., Hamiltonians in the presence of a finite external magnetic field84–87

or with spin-orbit coupling,71,74,76,83 produce complex ground-state energies in general.88

While real parts of CCSD energies in these calculations may practically serve as good approx-

imations to corresponding full configuration interaction energies, the emergence of complex

energies is still a non-trivial formal problem of CC theory. Further, the non-Hermiticity of the

CC transformed Hamiltonian gives rise to incorrect crossing conditions in EOM-CCSD cal-
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culations of intersections between electronic states of the same symmetry (‘same-symmetry

conical intersections’).88–91 Calculations of same-symmetry conical intersections with CC ac-

curacy is of significant interest to study of molecular spectroscopy and photochemistry. One

promising route towards achieving this is to modify EOM-CCSD to rectify the crossing con-

ditions. Köhn and Tajti90 have developed a simple correction scheme to obtain meaningful

potential energy surfaces in the vicinity of intersection points. More recently, Koch and

collaborators have developed a similarity constrained CCSD method to maintain the orthog-

onality of computed excited states and hence correct crossing conditions.91–93 An alternative

route is to develop CC approaches that are explicitly Hermitian, e.g., the unitary version of

CC (UCC) theory.

UCC is a natural solution to these fundamental problems of CC theory due to non-

Hermiticity. UCC94–109 uses an anti-Hermitian form for the cluster operator and thus ensures

the unitarity of the wave operator and the Hermiticity of the transformed Hamiltonian. A

UCC method with a truncation of the cluster operator to a given excitation rank has the po-

tential to provide the same accuracy as the corresponding CC method, e.g., UCCSD has been

shown to recover a similar percentage of dynamic correlation energies as CCSD. 101 While the

present work is focused on UCC in classical computations, we should mention that recent

years have seen a surge of interest in using UCC in the field of quantum computing.105,110–122

A major challenge in UCC theory for classical computations is the non-terminating expansion

of the UCC transformed Hamiltonian. Most practical UCC truncation schemes are based on

Møller-Plesset (MP) perturbation theory.96,97,104 These elegant approaches perform well for

simple molecules around equilibrium structures, while the performance decays for complex

molecules in the absence of smooth convergence of the low-order MP series. An alterna-

tive route is to use commutator-rank truncation schemes, i.e., to truncate the commutator

expansion to given ranks of commutators.109,122–124 This forms a promising framework for

developing non-perturbative UCC methods.

We have recently developed a third-order UCC (UCC3) scheme104 and a quadratic
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UCCSD (qUCCSD) scheme109 aiming at balanced truncation schemes for UCC ground-state

and excited-state equations. The strict version of UCC3 is found to be equivalent to the

strict version of the third-order algebraic diagrammatic construction [ADC(3)] 125–127 method,

revealing the close relation between UCC and ADC methods.104 The qUCCSD scheme

based on commutator-rank truncation schemes has been shown to provide significantly im-

proved performance for molecules exhibiting strong orbital relaxation and/or electron corre-

lation compared with the UCC3 method.109 Our previous implementations of UCC3104 and

qUCCSD109 have used the infrastructure of the spin-orbit CC code of the CFOUR program

package.81,128,129 It thus can in principle handle calculations including spin-orbit coupling

but is not efficient for non-relativistic and scalar-relativistic calculations. Hodecker et al.

have reported a non-relativistic/scalar-relativistic spin-orbital based implementation for the

UCC3 scheme.130,131 While both UCC3 implementations have the correct N6 scaling, a de-

tailed analysis of the computational cost of UCC3 has not been reported. Here we report

an efficient implementation of qUCCSD (and UCC3) using the (spin-integrated) spin-orbital

formalism and a recently developed tensor contraction library TBLIS132 together with an

analysis of the computational costs for these methods. The theory and details about the

implementation are presented in Sect 2.1 and 2.2. To demonstrate the usefulness of the new

implementation, we report benchmark calculations for excitation energies in the “QUEST

#1” benchmark set developed by Loos et al.133,134 as well as calculations of S0 → S1 vertical

transition energies for cis- and trans-4a,4b-dihydrotriphenylene (C18H14) of interest to study

of photocyclization of ortho-terphenyl.135 The computational details are presented in Sect.

2.3 with the accuracy and limitation of the qUCCSD scheme discussed in Sect. 3.1 and 3.2.

Finally, in Sect. 3.3 we discuss the formulation for an extended version of the qUCCSD

(e-qUCCSD) scheme and a non-iterative triples correction aiming to develop a UCC scheme

with excitation energies correct up to fourth order, before closing the paper with a summary

and an outlook in Sect. 4.
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2 Theory and computational details

2.1 Commutator truncation schemes for unitary coupled-cluster

theory

The unitary coupled-cluster (UCC) wave function is obtained by applying a unitary wave

operator eσ parametrized as an exponential of an anti-Hermitian cluster operator σ on the

ground-state Hartree-Fock wavefunction Φ0

|Ψgr〉 = eσ|Φ0〉 , σ = T − T †, (1)

with T being a linear combination of excitation operators. For example, in the UCC singles

and doubles (UCCSD) method T can be written as

T = T1 + T2, (2)

T1 =
∑
ai

σai {a†aai} , T2 =
1

4

∑
abij

σabij {a†aa
†
bajai}, (3)

in which {i, j, . . . } and {a, b, . . . } denote occupied orbitals and virtual orbitals, respectively,

and σai and σabij represent cluster amplitudes. The UCCSD ground-state energy and ampli-

tude equations are given by

〈Φ0|H̄|Φ0〉 = Egr , 〈Φl|H̄|Φ0〉 = 0, (4)

with Φl’s denoting singly and doubly excited determinants and H̄ the transformed Hamilto-

nian e−σHeσ that is now Hermitian. The excited-state wave functions are written as a linear

combination of excited-state basis functions obtained by acting a manifold of transformed
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excitation operators136,137 {eσ τ̂ †I e−σ} on Φgr

|Φext
r 〉 =

∑
I

CIre
σ τ̂ †I |Φ0〉, (5)

in which τ̂ †I is an original excitation operator, i.e., {τ̂ †I } = {a†aai} ∪ {a†aa
†
bajai} in UCCSD.

This leads to the eigenvalue equations

∑
I

H̄JICIr = ErCJr , H̄JI = 〈Φ0|τ̂JH̄τ̂ †I |Φ0〉, (6)

to determine excited-state energies Er’s and excited-state wavefunction parameters CIr’s.

The structures of UCCSD ground-state and excited-state equations are the same as those

of CCSD and EOM-CCSD, except that H̄ is Hermitian and involves a non-terminating

commutator expansion. We adopt a Bernoulli-number expansion for H̄ 104

H̄ = H̄0 + H̄1 + H̄2 + · · · · · · , (7)

H̄0 = F + V, (8)

H̄1 = [F, σ] +
1

2
[V, σ] +

1

2
[VR, σ], (9)

H̄2 =
1

12
[[VN , σ], σ] +

1

4
[[V, σ]R, σ] +

1

4
[[VR, σ]R, σ], (10)

in which F and V represent the Fock operator and the fluctuation potential, respectively.

“N” represents excitation and de-excitation operators and “R” refers to the rest. This

expansion scheme eliminates higher than linear commutators between F and σ and offers

a compact framework for developing UCC methods. The central task is then to develop

balanced truncation schemes for H̄ that is both accurate and computationally efficient.

We adopt simple truncation schemes based on the powers of the UCCSD cluster am-

plitudes, or equivalently, on the order of commutators in H̄. The ground-state amplitude
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equations can be equivalently written as

H̄ai = 0 , H̄ab,ij = 0. (11)

The UCC ground-state energy corresponds to the constant part of H̄ and involves contrac-

tions between H and σ. Therefore, we retain the commutators in the energy expression one

order higher than in the amplitude equations. The UCCSD excited-state secular equations

can be rewritten in a block form asH̄SS H̄SD

H̄DS H̄DD


CS

CD

 = E

CS

CD

 . (12)

Here H̄SS refers to the singles-singles block, H̄SD and H̄DS represent the singles-doubles block

and doubles-singles block, and H̄DD is the doubles-doubles block. Applying partitioning

technique138,139 to Eq. (12) to fold the contributions from double excitations into the space

of singles, the eigenvalue equations can be rewritten as

[H̄SS + H̄SD(E − H̄DD)−1H̄DS]CS = ECS. (13)

Since V and σ represent a similar measure for the magnitude of electron correlation, the

sum of the powers of V and σ serves as a metric for determining the importance of a term.

Since H̄SD and H̄DS are at least linear in the combined power of V and σ, a balanced scheme

should truncate H̄SS to commutators of V and σ one order higher than H̄SD/H̄DS and two

orders higher than H̄DD.

Since linearized amplitude equations are in general inaccurate, the lowest truncation

scheme we consider is a quadratic unitary coupled-cluster singles and double (qUCCSD)

scheme,109 in which both the ground-state amplitude equations and H̄SS in the excited-state

equations are truncated to up to double commutators between V and σ. We mention that,

for a perturbative formulation, a truncation scheme having H̄SS correct to third order in MP
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Table 1: Commutator truncation schemes for UCC methods.

UCC3 qUCCSD e-qUCCSD cUCCSD

H̄ai, H̄abij 3rd [[V ,σ],σ] [[V ,σ],σ] [[[V ,σ],σ], σ]
Egr 4th [[[V ,σ],σ], σ] [[[V ,σ],σ],σ] [[[[V ,σ],σ], σ],σ]
H̄SS 3rd [[V ,σ],σ] [[[V ,σ],σ],σ] [[[V ,σ],σ], σ]

H̄SD/DS 2nd [V ,σ] [[V ,σ],σ] [[V ,σ],σ]
H̄DD 1st V [V ,σ] [V ,σ]

perturbation theory, H̄SD and H̄DS to second order, and H̄DD to first order ensures excitation

energies to be correct through third order. This corresponds to a “UCC3” method. 104 The

commutator truncation schemes for qUCCSD and UCC3 are summarized in Table 1. We

also include in Table 1 schemes to improve over qUCCSD, including the extended qUCCSD

(e-qUCCSD) scheme and the cubic UCCSD (cUCCSD) scheme, and will discuss them in

Sect. 3.3 after discussing qUCCSD results in Sect. 3.1 and 3.2.

2.2 Efficient implementation of the qUCCSD scheme

In order to enable comprehensive assessment and extensive applications of the qUCCSD

scheme, we have implemented the qUCCSD scheme in the NCC module of the CFOUR

program package128,129 using the spin-orbital formulation and an efficient tensor contraction

library. This library, TBLIS, implements dense tensor contraction using high-performance

matrix multiplication primitives while avoiding explicit tensor transposition which can be-

come a performance bottleneck, especially on parallel architectures.132 Additionally, TBLIS

natively handles Abelian point group symmetry and incorporates the efficient Direct Product

Decomposition140 procedure within the tensor contraction operation.141

We refer the readers to Ref. 109 for a complete account of working equations for the

qUCCSD scheme and focus the present discussion on terms in qUCCSD working equations

that make significant contributions to the computational cost of qUCCSD calculations. Sim-

ilar to CCSD, the floating-point operation (FLOP) count for the qUCCSD ground-state am-

plitude equations is dominated by terms with N4
vN

2
o scaling or N3

vN
3
o scaling, in which Nv
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and No refer to the number of α virtual and occupied orbitals, respectively. To simplify

the discussion, we assume that the numbers of β virtual and occupied orbitals are identical

to the α ones, i.e., Nv = Nv,α ≈ Nv,β and No = No,α ≈ No,β, which is an approximation

with negligible errors in FLOP counts. Recall that each iteration in the iterative solution

of CCSD amplitude equations evaluates one “particle-particle ladder” contribution to the

residue of double excitations (∆R)abij with a FLOP count of 5/4N4
vN

2
o

1

2

∑
cd

〈ab||cd〉τ cdij → (∆R)abij , (14)

in which τ is an intermediate quantity τabij = σabij + σai σ
b
j − σbiσaj , and two “ring contractions”

each with a FLOP count of 10N3
vN

3
o

∑
me

σaeimWmbej → (∆R)abij , (15)

−
∑
nf

(
1

2
σfbjn + σfj σ

b
n)〈mn||ef〉 → Wmbej . (16)

The total FLOP count of these terms in CCSD thus amounts to 5/4N4
vN

2
o + 20N3

vN
3
o .140

The qUCCSD amplitude equations have two contributions involving 〈ab||cd〉-type molec-

ular integrals

∑
cd

1

2
〈ab||cd〉τ cdij → (∆R)abij , (17)

∑
jbcd

1

4
(σcj)

∗〈ac||bd〉σbdij → (∆R)ai . (18)

In the calculations presented here, we have chosen to perform two particle-particle ladder

contractions
∑

cd〈ab||cd〉τ cdij and
∑

cd〈ab||cd〉σcdij for evaluation of these two terms. This gives

a FLOP count of 5/2N4
vN

2
o . An alternative approach that has a smaller FLOP is to first

perform the contraction
∑

c(σ
c
j)
∗〈ac||bd〉 and then contract the resulting intermediate with

σbdij in the evaluation of the second term. However, the contraction
∑

c(σ
c
j)
∗〈ac||bd〉 involves
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the expansion of packed indices in the large 〈ac||bd〉 integral matrix. Consequently, this

approach is more time-consuming for calculations of small- and medium-sized molecules

than performing a particle-particle ladder contraction. The qUCCSD amplitude equations

also consist of the following terms involving ring contractions

−
∑
jklbc

(σbcjk)
∗〈bl||ji〉σcakl +

∑
jkbcd

(σbcjk)
∗〈ab||dj〉σcdki → (∆R)ai , (19)

P (ij)P (ab)
∑
kc

〈ak||ic〉σbcjk → (∆R)abij , (20)

P (ij)P (ab)
∑
klcd

1

3
〈kl||cd〉σacikσbdjl + P (ij)P (ab)

∑
klcd

1

3
(σcdkl )

∗〈ad||il〉σbcjk → (∆R)abij , (21)

−P (ij)P (ab)
∑
lcd

(σcl )
∗〈ac||dj〉σbdil + P (ij)P (ab)

∑
klc

(σcl )
∗〈bk||li〉σcajk → (∆R)abij , (22)

−P (ij)P (ab)
∑
klc

〈kl||cj〉σbl σacik + P (ij)P (ab)
∑
kcd

〈kb||cd〉σdjσacik → (∆R)abij . (23)

Efficient calculations of these terms include the evaluation of intermediates

(I1)ajib =
∑
kc

(σbcjk)
∗σcaki , (24)

(I2)akic =
1

2
〈ak||ic〉+

1

3

∑
ld

σadil 〈lk||dc〉+
∑
f

〈ak||fc〉σfi −
∑
l

〈lk||ic〉σal , (25)

and calculations of Eq. (19) as

−
∑
lbj

(I1)ajlb 〈bl||ji〉+
∑
dbj

(I1)djib〈ab||dj〉 → (∆R)ai , (26)

and Eqs. (20), (21), (22), and (23) as

P (ij)P (ab)
∑
kc

[(I2)akic + (I2)ci∗ka ]σbcjk → (∆R)abij . (27)

These computations involve three ring contractions and have a FLOP count of around
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30N3
vN

3
o . In addition, each of the following two contributions

−P (ab)
1

2

∑
kcd

〈ka||cd〉σbkσdcij → (∆R)abij (28)

−
∑
lcd

(σcl )
∗〈ab||dl〉σdcij → (∆R)abij (29)

involves a N3
vN

3
o step with a FLOP count of 5/2N3

vN
3
o . Altogether, the FLOP count for

these significant terms in one iteration of solving qUCCSD amplitude equations amounts to

5/2N4
vN

2
o + 35N3

vN
3
o . The computational cost of a ground-state qUCCSD calculation thus is

roughly twice that of CCSD. We mention that we have used a more complete factorization

for the terms involving ring contractions than in Ref. 109 and hence the lower FLOP count

for those terms presented here.

The qUCCSD excited-state eigenvalue equations share the same particle-particle ladder

and ring contractions as EOM-CCSD and thus have essentially identical computational cost

per iteration as EOM-CCSD. On the other hand, the construction of H̄ab and H̄ia,bj involves

several computationally demanding contributions

−1

8

∑
ijcdf

(σfdij )∗〈df ||cb〉σacij = −1

8

∑
ijc

σacij [
∑
df

(σfdij )∗〈df ||cb〉] → H̄ab, (30)

1

4

∑
kcde

(σceik)∗〈ce||bd〉σadjk =
1

4

∑
kd

σadjk [
∑
ce

(σceik)∗〈ce||bd〉] → H̄ia,bj , (31)∑
kcde

(σdeik )∗〈ad||cb〉σcejk =
∑
cd

〈ad||cb〉[
∑
ke

(σdeik )∗σcejk] → H̄ia,bj , (32)∑
klcd

(σcbkl)
∗〈ic||dj〉σadkl =

∑
cd

〈ic||dj〉[
∑
kl

(σcbkl)
∗σadkl ] → H̄ia,bj . (33)

The calculations of Eqs. (30) and Eq. (31) share one particle-particle ladder contraction

(the expressions in the brackets in Eqs. (30) and Eq. (31)). Eq. (31) also involves one

ring contraction. The contributions in Eqs. (32) and (33) are the most expensive terms in

the construction of the qUCCSD transformed Hamiltonian; Eq. (32) and Eq. (33) have a

FLOP count of 10N4
vN

2
o + 10N3

vN
3
o and 45/4N4

vN
2
o , respectively, the derivation of which is
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documented in detail in the Appendix. Altogether these three terms have a FLOP count of

45/2N4
vN

2
o + 20N3

vN
3
o and constitute the main overhead in the construction of the qUCCSD

H̄ compared with that of EOM-CCSD. The construction of H̄ for qUCCSD thus is typically

several times more expensive than that for EOM-CCSD. The effect of this non-iterative step

on the total computing time varies with respect to the size of the molecule and the number

of iterations required to converge the EOM-CCSD excited-state eigenvalue equations. The

qUCCSD calculations presented here are in total, including the computational time for

ground- and excited-state calculations, around a few times as expensive as the corresponding

CCSD and EOM-CCSD calculations together.

The UCC3 scheme consists of a subset of terms in the qUCCSD scheme. We thus have also

obtained an efficient implementation for UCC3. Following the same analysis as above and

excluding terms originating from [[V, σ2], σ1], we obtain the FLOP count for the significant

terms in each iteration of UCC3 amplitude equations as 5/4N4
vN

2
o +30N3

vN
3
o , to be compared

with the qUCCSD value of 5/2N4
vN

2
o +35N3

vN
3
o and the CCSD value of 5/4N4

vN
2
o +20N3

vN
3
o .

The construction of UCC3 H̄ involves the expensive terms in Eqs. (31), (32), and (33) and

is essentially as expensive as in the qUCCSD scheme.

2.3 Computational details

For benchmark calculations we have used 107 excitation energies in the “QUEST #1” bench-

mark set dominated by single excitations, for which the “theoretical best estimate” (TBE)

values have been obtained from high-level coupled-cluster or full configuration interaction

calculations133,134 and serve as excellent reference values for benchmarking the accuracy of

the qUCCSD scheme. In other words, we have used all excitation energies in the “QUEST

#1” set except the 31Ag state of ethylene, the 31A1 state of formaldehyde, and the 31A′ set

of nitrosomethane, which are double excitations, as well as transitions to three 1A1 states

in formamide, for which the TBE values have not been determined to high accuracy. Our

calculations have used the same structures and basis sets as in Ref. 134. We have reproduced
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EOM-CCSD and ADC(3) results in Ref. 134 to ensure the correctness of the computational

setup. UCC3 calculations have also been performed for these excitation energies for com-

parison. To facilitate the discussion, in Sect. 3.1 we will present statistical error analyses

for these calculations including standard deviations, mean absolute deviations, mean devi-

ations, and maximum absolute deviations with respect to the TBE values, while we have

documented all computed excitation energies in the Supplementary Material.

Figure 1: cis-4a,4b-dihydrotriphenylene (on the left) and trans-4a,4b-dihydrotriphenylene (on the
right).

As an example for calculations of larger molecules, we have performed qUCCSD calcula-

tions for the S0→ S1 vertical transition energies of the cis- and trans-4a,4b-dihydrotriphenylene

(C18H14, see Fig. 1) using 6-31G∗ and 6-31+G∗ basis sets142–144 as well as the aug-cc-pVDZ

basis set for C and the cc-pVDZ basis set for H,145,146 deonted as the “aVDZ” basis in

the following discussions. These two excitation energies have been measured and used in

recent experimental study that identifies these two molecules as products of 6π photocy-

clization of ortho-terphenyl through two distinct photochemical reaction pathways.135 We

have also carried out EOM-CCSD16 and EOM-CCSD(T)(a)∗ 147 calculations for comparison.

The ground-state structures obtained from density-functional theory calculations in Ref. 135

have been used in these calculations.
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3 Results and Discussions

3.1 Benchmark calculations of excitation energies in the “QUEST

#1” set

Table 2: Statistical error analyses for EOM-CCSD, ADC(3), UCC3, and
qUCCSD results of 107 excitation energies in the QUEST #1 set. “SD”,
“MaxAD”, “MAD”, and “MD” refer to standard deviation, maximum absolute
deviation, mean absolute deviation, and mean deviation (eV) with respect to the
theoretical best estimate values in Ref. 134.

SD MaxAD MAD MD

EOM-CCSD 0.11 0.40 0.08 0.05

ADC(3) 0.28 0.79 0.23 -0.15

UCC3 0.28 0.63 0.23 -0.16

qUCCSD 0.24 0.63 0.20 -0.16

The qUCCSD, UCC3, and ADC(3) methods are all Hermitian excited-state methods that

provide excitation energies correct up to third order. As shown in Table 2, the standard devi-

ation of qUCCSD excitation energies with respect to theoretical best estimate values amounts

to 0.24 eV for 107 excitation energies in the “QUEST #1” set, a little lower than the UCC3

and ADC(3) values of 0.28 eV. This is in line with the expectation that the qUCCSD results

should be qualitatively similar to those of UCC3 and ADC(3) for these simple molecules

around equilibrium structures, but nevertheless should feature an improvement over these

perturbation theory based methods.

The value of -0.16 eV for the mean deviation indicates that the qUCCSD scheme tends

to underestimate excitation energies. A close inspection reveals that indeed most of the

qUCCSD excitation energies are smaller than the corresponding theoretical best estimate

values. This is in interesting contrast with EOM-CCSD, which has a mean deviation of 0.05

eV and tends to overestimate excitation energies. Note that the other Hermitian excited-state

methods providing excitation energies correct up to third order, ADC(3) and UCC3, also tend
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to underestimate excitation energies. It is logical to expect the fourth-order contributions in

Hermitian excited-state methods to increase the values of computed excitation energies.

The qUCCSD excitation energies for the “QUEST #1” set are in general less accurate

than the corresponding EOM-CCSD ones; EOM-CCSD results exhibit a smaller standard

deviation of 0.11 eV from theoretical best estimate values. The maximum absolute deviation

of qUCCSD excitation energies occurs as 0.63 eV for the emission energy of the 1A′′ state of

diazomethane. The other third-order Hermitian excited-state methods also exhibit difficul-

ties in obtaining accurate emission energies, for example, the maximum absolute deviation

of ADC(3) excitation energies occurs as 0.79 eV for the emission energy of the 1Au state

of acetylene. This might indicate that the excited-state structures of these methods would

substantially deviate from the CC317 structures used for these calculations. These observa-

tions show that, while qUCCSD is an improvement compared with UCC3 and ADC(3), it is

necessary to include higher commutators in the UCC excited-state eigenvalue equations to

further improve the accuracy of qUCCSD, in order to approach the accuracy and robustness

of the EOM-CCSD method.

3.2 S0 → S1 vertical excitation energies for cis- and trans-4a,4b-

dihydrotriphenylene
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Table 3: The S0 → S1 vertical excitation energies (eV) for cis- and trans-4a,4b-
dihydrotriphenylene (cis- and trans-DHT).

Basis set Method cis-DHT trans-DHT Relative shift

6-31G∗ EOM-CCSD 2.60 2.71 0.11

EOM-CCSD(T)(a)∗ 2.50 2.60 0.10

qUCCSD 2.16 2.34 0.18

6-31+G∗ EOM-CCSD 2.42 2.61 0.19

EOM-CCSD(T)(a)∗ 2.33 2.50 0.17

qUCCSD 1.99 2.19 0.20

aVDZ EOM-CCSD 2.33 2.51 0.18

qUCCSD 1.88 2.08 0.20

Experiment135 1.99 2.18 0.19

Calculations of cis-4a,4b-dihydrotriphenylene (DHT) using the 6-31+G∗ basis sets involve

the correlation of 43 occupied valence orbitals (86 valence electrons) and 291 virtual orbitals.

Each iteration in the iterative solution of qUCCSD ground-state amplitude equations took

around 790 seconds using 12 cores on an Intel@ Xeon@ Gold 6248R Processor, roughly

twice the CCSD value of around 400 seconds per iteration. The computational time for

one iteration of a qUCCSD/aVDZ calculation involving 423 virtual orbitals amounts to

around 2600 seconds and is around twice the corresponding value of 1300 seconds in a

CCSD calculation. These timings are consistent with the analysis in Sect. 2.2 that the

floating-point operation count for a qUCCSD ground-state iteration is around twice that

of CCSD. The construction of qUCCSD transformed Hamiltonian took 4900 seconds when

using the 6-31+G∗ basis and 21700 seconds when using the aVDZ basis. These qUCCSD

computing times are around 5 times those of EOM-CCSD, which amount to around 1100

seconds when using the 6-31+G∗ basis and 4500 seconds when using the aVDZ basis. Each

iteration in the solution of excited-state eigenvalue equations took around 280 seconds when

using the 6-31+G∗ basis and 830 seconds when using the aVDZ basis in both qUCCSD and
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EOM-CCSD calculations. The total computational time for a qUCCSD calculation of cis-

or trans-DHT is around twice that of a CCSD and EOM-CCSD calculation. This example

demonstrates that the new implementation enables applications of the qUCCSD scheme to

sizable molecules and forms the basis for further developments of more accurate truncation

schemes.

The EOM-CCSD, EOM-CCSD(T)(a)∗, and qUCCSD excitation energies have been sum-

marized in Table 3 and compared with experimental peak positions. The qUCCSD/6-31+G∗

S0 → S1 vertical transition energy for cis-DHT amounts to 1.99 eV and exhibits a red shift

of 0.20 eV compared with the corresponding value of 2.19 eV for trans-DHT. This agrees

fairly well with the experimentally measured shift of 0.19 eV between these two transitions.

Comparison of qUCCSD and EOM-CCSD values with the EOM-CCSD(T)(a)∗ values shows

that the qUCCSD scheme underestimates the absolute values of these excitation energies,

while EOM-CCSD calculations exhibit an overestimation. This is consistent with the ob-

servation for the excitation energies in the “QUEST #1” set in the previous subsection.

The excellent agreement between qUCCSD/6-31+G∗ vertical excitation energies and the ex-

perimental peak positions appears to be fortuitous. Enlargement of basis sets is expected

to reduce computed excitation energies, e.g., the qUCCSD/aVDZ vertical excitation ener-

gies are lower than experimental peak positions by 0.1 eV. Furthermore, a Franck-Condon

simulation is perhaps required to enable direct comparison between computations and ex-

perimental peak positions. A close inspection of excited-state wave functions shows that the

qUCCSD scheme tends to overestimate contributions from double excitations in the case

of trans-DHT. These observations together with the benchmark calculations presented in

the previous subsection indicates that it is necessary to further improve the accuracy of the

qUCCSD truncation scheme.
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3.3 Formulating a UCC scheme with excitation energies correct

to fourth order: an extended qUCCSD scheme and a non-

iterative triples correction

While the qUCCSD ground-state energy includes all fourth-order contributions within UCCSD,

the qUCCSD excitation energies are complete only to third order. It is a natural extension

to further include all fourth-order contributions to excitation energies within the UCCSD

excited-state equations. This leads to an extended qUCCSD (e-qUCCSD) scheme in Ta-

ble 1. The e-qUCCSD scheme augments qUCCSD with triple commutators in H̄SS, double

commutators in H̄SD and H̄SD, and single commutators in H̄DD. The e-qUCCSD scheme is

expected to provide better performance than the qUCCSD scheme in calculations of excita-

tion energies and to approach the accuracy of the EOM-CCSD method.

A further augmentation of the e-qUCCSD scheme with a non-iterative triples correction

to excitation energies will provide excitation energies correct through fourth order, which is

a very attractive feature. The Hermiticity of UCCSD allows a simple formulation of a non-

iterative triples correction to excitation energies. Applying the partitioning technique to

fold triples (T) space into the singles doubles (SD) space, the UCC excited-state eigenvalue

equations can be written as

[H̄PP + H̄PQ(E − H̄QQ)−1H̄QP]CP = ECP. (34)

Here Q and P represent the T space and the SD space, respectively. The triples correction

to excitation energies can thus be written as C†PH̄PQ(E− H̄QQ)−1H̄QPCP. Importantly, since

H̄ab,ij = H̄ij,ab = 0 because of the UCCSD amplitude equations, H̄ST has to involve three-

body terms and is at least of second order. The leading contributions to H̄DT are of first

order, those to CS are of zeroth order, and those to CD are of first order. Therefore, a simple
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non-iterative triples obtained as

E(T) = (C†S, UCCSDH̄
[2]
ST + C†D, UCCSDH̄

[1]
DT){(E − H̄TT)−1}[0]

(H̄
[2]
TSCS, UCCSD + H̄

[1]
TDCD, UCCSD), (35)

in which the superscripts [n] refer to terms correct to the “n-th” order of the MP series,

includes all fourth-order contributions to excitation energies in the triples contributions.

Let us refer to augmenting e-qUCCSD with this triples correction as an “e-qUCCSD(T)”

scheme. This scheme can provide excitation energies correct through fourth order while

involving only iterative N6 steps in the e-qUCCSD equations and a non-iterative N7 step

as given in Eq. (35). The e-qUCCSD(T) scheme thus has the potential to enable highly

accurate calculations of excitation energies for small- and medium-sized molecules. Note

that the implementation for the non-iterative triples correction in the e-qUCCSD(T) scheme

can straightforwardly use the available implementation for non-iterative tiples corrections

for EOM-CCSD,147–151 which include Eq. (35) as one of the contributions.

For systems with larger σ amplitudes in ground-state calculations, it is important to in-

clude cubic commutators in the ground-state amplitude equations and quartic commutators

in the energy expression. For example, the qUCCSD results for ground-state properties of

ozone were found to be less accurate than CCSD ones, although qUCCSD exhibits a dra-

matic improvement compared with perturbation theory based schemes for this molecule.109

Therefore, it will be valuable to explore the cubic UCCSD (cUCCSD) scheme in Table 1 to

further improve the accuracy for calculations of ground-state properties.

4 Summary and Outlook

We report an efficient implementation of the quadratic unitary coupled-cluster singles and

doubles (qUCCSD) scheme using the spin-orbital formulation and a recently developed ef-

ficient tensor contraction library. An efficient factorization for computationally significant
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terms is presented and the computational cost of qUCCSD is shown to be around twice that

of CCSD. We also present benchmark calculations for excitation energies. The qUCCSD

scheme is demonstrated to be an improvement compared with the UCC3 method. An ex-

tended qUCCSD scheme augmented with a non-iterative triples correction for further im-

provement of accuracy is also formulated, aiming at a Hermitian excited-state method correct

through fourth order for excitation energies.

Future work will be focused on the derivation and implementation of the extended

qUCCSD scheme and the non-iterative triples correction to excitation energies introduced

here. Calculations of metal-containing molecules will also be of significant interest to under-

standing the performance of UCC-based methods for complex molecular systems.

5 Acknowledgement

The work at Southern Methodist University has been supported by the National Science

Foundation (grant OAC-2003931). The work at Johns Hopkins University has been sup-

ported by the Department of Energy, Office of Science, Office of Basic Energy Sciences under

Award Number DE-SC0020317. Computations at Johns Hopkins University were carried out

at Advanced Research Computing at Hopkins (ARCH) core facility (rockfish.jhu.edu), which

is supported by the National Science Foundation (NSF) under grant number OAC-1920103.

A Appendix: Floating-Point Operation Counts for Eqs.

(32) and (33)

Eqs. (32) and (33) represent two terms in the construction of H̄ in the qUCCSD scheme

that are the most time-consuming. We present detailed floating-point operation (FLOP)

counts for these two terms. The calculation of Eq. (32) consists of the construction of an

20



intermediate

(I3)icdj =
∑
ke

(σdeik )∗σcejk (36)

that has the same FLOP count as a ring contraction, i.e., N3
v,αN

3
o,α+N3

v,βN
3
o,β+3N2

v,αN
2
o,αNv,βNo,β+

3Nv,αNo,αN
2
v,βN

2
o,β +N2

v,αNo,αNv,βN
2
o,β +Nv,αN

2
o,αN

2
v,βNo,β ≈ 10N3

vN
3
o , and a subsequent con-

traction

∑
cd

〈ad||cb〉(I3)icdj → H̄ia,bj . (37)

Eq. (37) requires calculations of the contributions to six spin cases for H̄ia,bj

∑
cd

〈ad||cb〉(I3)icdj +
∑
c̄d̄

〈ad̄||c̄b〉(I3)ic̄d̄j → H̄ia,bj , (38)∑
c̄d̄

〈ād̄||c̄b̄〉(I3)īc̄d̄j̄ +
∑
cd

〈ād||cb̄〉(I3)īcdj̄ → H̄īā,b̄j̄, (39)∑
cd

〈ād||c̄b〉(I3)ic̄dj̄ → H̄iā,bj̄, (40)∑
cd

〈ād||cb̄〉(I3)icdj +
∑
c̄d̄

〈ād̄||c̄b̄〉(I3)ic̄d̄j → H̄iā,b̄j, (41)∑
cd

〈ad||cb〉(I3)īcdj̄ +
∑
c̄d̄

〈ad̄||c̄b〉(I3)īc̄d̄j̄ → H̄īa,bj̄, (42)∑
cd̄

〈ad̄||cb̄〉(I3)īcd̄j → H̄īa,b̄j, (43)

in which {p} and {p̄} represent α and β orbitals, respectively, and involves 10 contractions

with a total FLOP count of N4
v,αN

2
o,α + N4

v,βN
2
o,β + N4

v,αN
2
o,β + N4

v,βN
2
o,α + 2N2

v,αN
2
o,αN

2
v,β +

2N2
v,αN

2
o,βN

2
v,β + 2N2

v,αNo,αN
2
v,βNo,β ≈ 10N4

vN
2
o . Altogether the FLOP count for calculation

of Eq. (32) amounts to 10N3
vN

3
o + 10N4

vN
2
o .

The evaluation of Eq. (33) involves the construction of an intermediate

(I4)adcb =
∑
kl

(σcbkl)
∗σadkl , (44)
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which has the same FLOP count of 1/8N4
v,αN

2
o,α+1/8N4

v,βN
2
o,β+N2

v,αNo,αN
2
v,βNo,β ≈ 5/4N4

vN
2
o

as a particle-particle ladder contraction, and a subsequent contraction

∑
cd

〈ic||dj〉(I4)adcb → H̄ia,bj . (45)

Eq. (45) has the same spin factorization as Eq. (37) and hence the same FLOP count of

10N4
vN

2
o . The total FLOP count for calculation of Eqs. (32) and (33) thus is 10N3

vN
3
o +

85/4N4
vN

2
o .
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version, see http://www.cfour.de.

(130) Hodecker, M.; Thielen, S. M.; Liu, J.; Rehn, D. R.; Dreuw, A. Third-Order Unitary

Coupled Cluster (UCC3) for Excited Electronic States: Efficient Implementation and

Benchmarking. J. Chem. Theory Comput. 2020, 16, 3654–3663.

36



(131) Hodecker, M.; Dreuw, A. Unitary coupled cluster ground- and excited-state molecular

properties. J. Chem. Phys. 2020, 153, 84112.

(132) Matthews, D. A. High-Performance Tensor Contraction without Transposition. SIAM

J. Sci. Comput. 2018, 40, C1–C24.

(133) Loos, P.-F.; Scemama, A.; Blondel, A.; Garniron, Y.; Caffarel, M.; Jacquemin, D. A

Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and

Benchmarks. J. Chem. Theory Comput. 2018, 14, 4360–4379.

(134) Véril, M.; Scemama, A.; Caffarel, M.; Lipparini, F.; Boggio-Pasqua, M.;

Jacquemin, D.; Loos, P.-F. QUESTDB: A database of highly accurate excitation en-

ergies for the electronic structure community. WIREs Comput. Mol. Sci. 2021, 11,

e1517.

(135) Brady, R. P.; Zhang, C.; DeFrancisco, J. R.; Barrett, B. J.; Cheng, L.; Bragg, A. E.

Multiphoton Control of 6π Photocyclization via State-Dependent ReactantProduct

Correlations. J. Phys. Chem. Lett. 2021, 12, 9493–9500.

(136) Prasad, M. D.; Pal, S.; Mukherjee, D. Some aspects of self-consistent propagator

theories. Phys. Rev. A 1985, 31, 1287–1298.

(137) Mukherjee, D.; Kutzelnigg, W. An Effective Liouvillean Formalism for Propagators in

Fock Space: Connection with Effective Hamiltonian Approach for Energy Differences.

Many-Body Methods in Quantum Chemistry. Berlin, Heidelberg, 1989; pp 257–274.
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