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Abstract—A (1+ ϵ)-approximate distance oracle of an edge-
weighted graph is a data structure that returns an approximate
shortest path distance between any two query vertices up to
a (1 + ϵ) factor. Thorup (FOCS 2001, JACM 2004) and Klein
(SODA 2002) independently constructed a (1+ ϵ)-approximate
distance oracle with O(n logn) space, measured in number of
words, and O(1) query time when G is an undirected planar
graph with n vertices and ϵ is a fixed constant. Many follow-up
works gave (1 + ϵ)-approximate distance oracles with various
trade-offs between space and query time. However, improving
O(n logn) space bound without sacrificing query time remains
an open problem for almost two decades. In this work, we
resolve this problem affirmatively by constructing a (1 + ϵ)-
approximate distance oracle with optimal O(n) space and O(1)
query time for undirected planar graphs and fixed ϵ.

We also make substantial progress for planar digraphs
with non-negative edge weights. For fixed ϵ > 0, we give a
(1 + ϵ)-approximate distance oracle with space o(n log(Nn))
and O(log log(Nn) query time; here N is the ratio between
the largest and smallest positive edge weight. This improves
Thorup’s (FOCS 2001, JACM 2004) O(n log(Nn) logn) space
bound by more than a logarithmic factor while matching the
query time of his structure. This is the first improvement for
planar digraphs in two decades, both in the weighted and
unweighted setting.
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I. INTRODUCTION

Computing shortest path distances in edge-weighted pla-
nar graphs1 is a fundamental problem with lots of prac-
tical applications, such as planning, logistics, and traffic
simulation [51]. The celebrated algorithm of Henzinger et
al. [33] can compute the shortest path distance in a planar
graph between any given pair of vertices in linear time.
However, when we are given a large number of distance
queries and the network is huge, a linear time algorithm
for answering each distance query becomes unsatisfactory.
This motivates the development of (exact or approximate)
distance oracles: a data structure that can quickly answer
any (exact or approximate) distance query.

Trees are simplest planar graphs that admit exact distance
oracles with linear space and constant query time; the
construction is by a simple reduction to constructing a lowest
common ancestor (LCA) data structure. This basic fact leads

1Graphs considered in this paper are edge-weighted unless specified
otherwise.

to the following fundamental question that has been driving
the field:

Question 1. Is it possible to construct a distance oracle,
exact or approximate, for edge-weighted planar graphs,
directed or undirected, with guarantees matching those for
trees: linear space and constant query time?

Despite significant research efforts spanning more than
two decades [38], [52], [47], [54], [36], [28], [16], [37],
[1], [46], [27], [19], [17], [43], Question 1 remains largely
open in all four basic settings: exact/approximate oracles for
directed/undirected planar graphs.

Cohen-Addad, Dahlgaard and Wulff-Nilsen [19] con-
structed the first exact distance oracle with truly subquadratic
space and O(log(n))2 query time for directed planar graphs;
previous exact oracles with truly subquadratic space had
polynomial query time. Several follow-up works [27], [17],
[43] improved the oracle of Cohen-Addad, Dahlgaard and
Wulff-Nilsen [19] in several ways, getting either space Õ(n)
and no(1) query time or space n1+o(1) and Õ(1) query
time [43]. (Õ notation hides a polylogarithmic factor of n.)
However, no exact distance oracle with constant query time
and truly subquadratic space is known, even for undirected
weighted or unweighted directed planar graphs. For a special
case of unweighted, undirected planar graphs, Fredslund-
Hansen, Mozes and Wulff-Nilsen [25] recently constructed
an exact distance oracle with O(n

5
3+ϵ) space and O(log 1

ϵ )
query time for any choice of parameter ϵ > 0. If we only
want to query exact distances of value at most a constant
k in an unweighted, directed planar graph, Kowalik and
Kurowski [41] showed that an oracle with linear space and
constant query time exists. For a more thorough review of
exact distance oracles in planar graphs, see Section I-B.

Given the remote prospect of answering Question 1 for
exact distance oracles, we focus on (1 + ϵ)-approximate
distance oracles where the query output is never smaller
than the true shortest path distance and not larger by more
than a factor of (1 + ϵ), for any given ϵ > 0. Note that
Question 1 is only relevant when ϵ is a fixed constant, and
this is the most basic regime that we are interested in.

Over the past 20 years, significant progress has been made

2In this paper, n is the number of vertices of the graph.



in constructing (1+ϵ)-approximate distance oracle for undi-
rected planar graphs. In their seminal papers, Thorup [52]
and Klein [38] indpendently constructed distance oracles
with O(n(log n)ϵ−1) space3 and O(ϵ−1) query time. When
ϵ = Θ(1), their oracles have O(n log n) space and O(1)
query time. (Henceforth, we do not spell out the dependency
on ϵ unless it is important to do so.) Kawarabayashi, Klein
and Sommer [36] reduced the space to O(n) at the cost
of increasing the query time to O(log2 n). Kawarabayashi,
Sommer and Thorup [37] designed a distance oracle with
O(n) space and O(1) query time when every edge has
weight at most logO(1)(n) (and at least 1); O(.) notation
hides a log logn factor. Wullf-Nilsen [54] was the first to
break the Ω(n log n) bound on the trade-off between space
and query time by giving an oracle with O(n(log log n)2)
space and O((log logn)3) query time4. While the oracle of
Wulff-Nilsen implies that the O(n log n) space-time tradeoff
is not the best possible, it is suboptimal in both space and
query time. In this paper, for the first time, we provide an
affirmative answer to 1 in one of the four basic settings:
approximate distance oracles for undirected planar graphs.

Theorem 1. Given an edge-weighted n-vertex planar undi-
rected graph G and a fixed parameter ϵ < 1, there is a
(1 + ϵ)-approximate distance oracle with O(n) space and
O(1) query time. Furthermore, the oracle can be constructed
in worst-case time O(npolylog(n)) time.

The precise dependencies of the space, query time,
and construction time on ϵ are O(nϵ−2), O(ϵ−2) and
O(nϵ−3 log6(n)), respectively. For the simplicity of the
presentation, we do not try to optimize the dependency on
ϵ as well as the logarithmic factor in the construction time.

Our result is optimal in the sense that any (1 + ϵ)-
approximate distance oracle for n-vertex weighted undi-
rected planar graphs must use Ω(n) space. This lower
bound holds regardless of query time and holds even for
n-vertex simple paths with unique integer edge weights in
{20, 21, . . . , 2n−1} and with ϵ < 1: the number of such paths
is n! and since 1 + ϵ < 2, a (1 + ϵ)-approximate distance
oracle for any such path P can be queried to derive the
weight of each edge of P . Hence, any (1 + ϵ)-approximate
oracle needs Ω(n lg n) bits of space. Although an integer
edge weight like 2n−1 cannot be stored in a Θ(lg n) bit word
using the standard binary representation of an integer, it can
be stored in 1 (or possibly O(1)) words when represented
as a floating point since the exponent can be represented
using O(lg n) bits. Also note that for unweighted undirected
planar graphs, a (1+ ϵ)-approximate oracle with o(n) space
would not allow the user to freely assign unique labels to
the vertices since there are n! such assignments.

3Unless otherwise stated, each space bound in this paper is in the number
of words that the oracle uses.

4The dependency on ϵ of the oracles in [36], [54], [37] is polynomial in
1
ϵ

.

For planar digraphs5, Thorup [52] designed the first
(1+ϵ)-approximate distance oracle with O(n log n log(nN))
space and O(log log(nN)) query time where edge weights
are non-negative and N is the ratio between the largest and
smallest positive edge weight.6 (The precise dependency on
ϵ of Thorup’s oracle is O(n log n log(nN)/ϵ) for space and
O(log log(nN)+1/ϵ) for query time.) Since its introduction
two decades ago, Thorup’s oracle has not been improved.
An added challenge in the directed setting is that portals
– an important concept in approximate distance oracles
– in digraphs are less well-behaved than their undirected
counterparts. Specifically, for a given vertex v and a shortest
path P , the number of vertices on P , called portals, through
which we need to re-route the shortest paths from v to all
vertices on P (with 1+ϵ multiplicative error) is O( 1ϵ ) in the
undirected case, while the number of such portals could be
up to Θ(|P |) in the directed case. Even for the special case
of unweighted digraphs, the bounds of Thorup’s oracle (by
taking N = 1) has remained state-of-the-art: O(n log2 n)
space and O(log log n) query time for constant ϵ.

In this paper, we give the first improvement over the space
bound Thorup’s oracle by more than a logarithmic factor,
while keeping the same query time for a constant ϵ. For x >
0, define log(1) x = log x and for integer k > 1, log(k) x =
log(log(k−1) x). We show the following.

Theorem 2. Given a planar n-vertex digraph G
with non-negative edge weights and given ϵ > 0
and any integer k = Θ(1), there is a (1 + ϵ)-
approximate distance oracle for G with space
O(n log(Nn) log(k)(n)/(ϵ log log log(Nn))) and query
time O(log log(Nn) + 1/ϵ5.01) where N is the ratio
between the largest and smallest positive edge weight.

Note that for k ≥ 4, the space bound is o(n log(Nn)/ϵ)
in Theorem 2.

By setting N = 1, we obtain the first approximate distance
oracle for unweighted planar digraphs with o(n log2 n) space
and O(log log n) query time (Corollary 1 below). In fact,
we get a space bound of only o(n log n). Our result might
suggest that it is possible to construct an oracle with O(n)
space and O(1) query time for unweighted planar digraphs.
We believe that constructing such an oracle is an important
step towards resolving Question 1 for approximate distance
oracles in edge-weighted planar digraphs.

Corollary 1. Given an unweighted planar n-vertex di-
graph G and given ϵ > 0 and any integer k =
Θ(1), there is a (1 + ϵ)-approximate distance oracle for
G with O(n log(n) log(k)(n)/(ϵ log log log n)) space and
O(log log n+ 1/ϵ5.01) query time.

5Digraphs is a shorthand for directed graphs.
6Thorup in fact assumes that edge weights are integers in {0, 1, . . . , N}

but this is only needed to get a small preprocessing time since it allows
the use of fast priority queues. Since we do not focus on preprocessing for
planar digraphs, we avoid the integer weight assumption.



For unweighted planar digraphs, there is a space lower
bound of Ω(n lg n) bits, i.e., Ω(n) words with word size
Θ(lg n), and this lower bound holds even for a data struc-
ture that answers reachability queries regardless of query
time [34]. Thus the space bound in Corollary 1 is only a
factor of o(log(n)/ϵ) away from optimal.

We have not focused on preprocessing time of our oracle
for planar digraphs but it is easy to see from the description
of this oracle that preprocessing time is bounded by a
polynomial in n times logN .

Model of computation: The model of computation
considered in our paper is the standard WORD RAM with
word size ω = Ω(log n). In this model, arithmetic operations
(+,−, ∗, /,%), comparisons (<,>,=,≤,≥), and bitwise
operations (AND, OR, XOR, SHIFT) on words take constant
time each.

A. Techniques

Approximate distance oracles for undirected planar
graphs: Our technique for undirected planar graphs is in-
spired by that of Kawarabayashi, Sommer, and Thorup [37]
who constructed a distance oracle with O(n log n) space and
O(1/ϵ) query time. Their idea is to construct an oracle with
multiplicative stretch (1+ ϵ) from (a collection of) distance
oracles with additive stretch via a clever use of sparse
covers7. Specifically, sparse covers are used to construct a set
of subgraphs of G, called clusters, and then a distance oracle
with additive stretch ϵD is constructed for each cluster; here
D is the diameter of the cluster. However, the space bound
of the oracle by Kawarabayashi, Sommer, and Thorup is
superlinear for two reasons: (1) the additive distance oracle
has space that is superlinear in the number of vertices of
each cluster and (2) the total size (the number of vertices)
of all clusters is Ω(n log n). Nevertheless, the technique
of Kawarabayashi, Sommer, and Thorup [37] suggests an
interesting connection to geometry since sparse covers have
a very natural geometric interpretation8.

In doubling metrics, it was shown how to construct a
distance oracle with O(n) space and O(1) query time [30],
[31], [8] for constant values of ϵ and constant dimensions.
Thus, it is natural to ask: Can we exploit techniques devel-
oped for doubling metrics to construct a (1+ϵ)-approximate
distance oracle for planar graphs with O(n) space and O(1)
query time? To be able to answer this question positively,
there are several technical barriers that we need to overcome.
The most fundamental one is that space bounds of all known
oracles for doubling spaces have an exponential dependency
on the dimension 9, while very simple planar graphs, such
as star graphs, have doubling dimension Ω(log n). Thus, it
is somewhat counter-intuitive that we are able to exploit the

7See Section II for a formal definition of a sparse cover.
8A sparse cover of a Euclidean space is simply a tiling of the space by

overlapping hypercubes.
9Interestingly, the query time can be made independent of ϵ and d [8]

geometric techniques in the construction of our apporixmate
oracle for planar graphs.

We overcome all the technical barriers, as detailed
below, to resolve two obstacles in the construction of
Kawarabayashi, Sommer, and Thorup [37] by capitalizing
on the techniques developed in the geometric context. Like
the previous distance oracle constructions in doubling met-
rics [31], [30], [8], we start with a net tree in which each
level i of the net tree is a 2i-net10 of the shortest path
metric of G(V,E). (There are O(log∆) levels where ∆ is
the spread11 of the metric.) In doubling metrics, for each
level-i of the net tree, we could store all distances from
a net point p to other net points in the same level within
radius O( 2

i

ϵ ) from p; there are only O(ϵ−d) = O(1) such
points when the dimension is a constant. However, in planar
graphs, for each net point12 p, there could be Ω(n) net points
at the same level i within radius O( 2

i

ϵ ) from p. We cannot
afford to store all such distances. An important observation
that we rely on in our construction is that we only need to
(approximately) preserve distances from p to net points at
level i within in radius Θ( 2

i

ϵ ) (rather than O( 2
i

ϵ )) from p.
Note that there could still be Ω(n) such net points.

Our first contribution is a technique to construct a
(d, α, S)-restricted distance oracle with O(|S|) space and
O(1) query time for every parameter d and a constant α.
The oracle guarantees that, for every pair (u, v) ∈ S × S
such that dG(u, v) ∈ [d, αd], the returned distance is within
[dG(u, v), (1 + ϵ)dG(u, v)]. An important property of a
(d, α, S)-restricted distance oracle, beside having O(|S|)
space, is that its space does not depend on n, the number
of vertices of the graph. Essentially, we overcome the first
obstacle in the construction of Kawarabayashi, Sommer,
and Thorup [37]. We use (d, α, S)-restricted oracles in the
following way: for each level i of the net tree, we construct
a (d, α, S)-restricted distance oracle with d = 2i

ϵ , α = O(1)
and S = Ni where Ni is the set of net points at level i.
This oracle will guarantee multiplicative stretch (1 + ϵ) for
every pair of net points at level i whose distance from each
other is Θ( 2

i

ϵ ) – for other pairs, the distance error could be
arbitrarily large. The idea behind this construction is that the
space incurred per net point on average is O(1). We remark
that the construction of restricted oracles heavily relies on
planarity.

However, the net tree has its own problem: the number
of vertices of T could be Ω(n log∆) where ∆ could be
exponential in n. A simple idea to reduce the number of
vertices of T is to compress degree-2 vertices. But the com-
pression of degree-2 vertices introduces two new problems.

10An r-net of a metric (V, dG) is a subset of points N such that
dG(x, y) > r for every x ̸= y ∈ N and for every z ̸∈ N , there exists
x ∈ N such that dG(x, z) ≤ r.

11Spread of a metric is the ratio of the maximum pairwise distance to
the minimum pairwise distance.

12We use points and vertices interchangeably.



First, each point still “participates” in the construction of
the restricted distance oracles of up to O(log∆) different
levels, and hence, the compression of degree-2 vertices does
not really help. Second, compressing the net-tree makes
it harder to navigate. That is, given a leaf point p, we
want to find an ancestor of p at a given level i in O(1)
time. In doubling metrics, to efficiently navigate the net-
tree, previous constructions heavily rely on the fact that each
vertex of the net tree has O(1) children, which is not the
case in our setting. Resolving both problems can be seen
as overcoming the second obstacle in the construction of
Kawarabayashi, Sommer, and Thorup [37].

We resolve the first problem by distinguishing two types
of degree-2 vertces in T : those that are required in the
construction of restricted oracles and those that are not.
For the later type, it is safe to compress. For the former
type, we are able to show that there are only O(n log( 1ϵ ))
such degree-2 vertices; this linear bound is crucial to our
construction. We resolve the second problem – navigating
the net tree – by designing a new weighted level ances-
tor (WLA) data structure. The WLA problem, introduced
by Farach and Muthukrishnan [22], is a generalization of
the predecessor problem [40] where various super-constant
lower bounds in query time when the space usage is re-
stricted to O(n) have been established [3], [44], [45], [9],
[50], [49]. Here we need a data structure with linear space
and constant query time. Our key insight is that for trees with
polylogarithmic depth, we can design such a data structure13.
Observe that when log(∆) = polylog(n), the net tree has a
polylogarithmic depth. Hence, for planar graphs with quasi-
polynomial spread, we can design a distance oracle with
O(n) space and O(1) query time with all the ideas we
have discussed. This turns out to be the hardest case: we
adapt the contraction trick of Kawarabayashi, Sommer, and
Thorup [37] and devise the bit packing technique to reduce
the general problem to the case where the spread is quasi-
polynomial.

The final tool we need is a data structure that allows us to
quickly determine the level of the ancestors of u and v in the
net tree for each query pair (u, v). Once the ancestors and
their level are found, we can perform a distance query from
the restricted oracle at that level. We observe that the level of
the ancestors can be approximated within a constant additive
error if we can determine the distance between u and v
within any constant factor. To that end, we design an oracle
with O(1) multiplicative stretch, linear space, and constant
query time. Our technique is simple and based on r-division,
a basic tool to design algorithms for planar graphs, and
our construction can be implemented in nearly linear time.
Furthermore, our results apply to any graph in a hereditary

13Alstrup and Holm[5] mentioned the construction of a data structure
than can handle WLA in trees of polylogarithmic weights, which could be
applicable in our work. However, the details were not given. On the other
hand, our data structure instead exploits the polylogarithmic depth.

class with sublinear separators. A similar distance oracle
for minor-free graphs can be obtained from the tree cover
with O(1) trees and O(1) distortion by Bartal, Fandina, and
Neiman [7]. However, it is unclear that the tree cover can
be constructed in nearly linear time.

To obtain a nearly linear time preprocessing time, the
major obstacle in our construction is to compute the net tree.
Indeed, to the best of our knowledge, it is not known how to
construct an r-net of the shortest path metric of planar graphs
in sub-quadratic time14. Instead, we show that a weaker
version of r-nets (see Section II for a precise definition) can
be computed in O(n) time, and that we can use weak r-nets
in place of r-nets in the net tree. A corollary of our weak
net construction is a linear time algorithm to find a sparse
cover, which improves upon the O(n log n) time algorithm
of Busch, LaFortune, and Tirthapura [11].

Approximate distance oracles for planar digraphs:
The techniques for our (1 + ϵ)-approximate distance oracle
for planar digraphs build to some extent on those of Tho-
rup [52]. Recall that N is the ratio between the largest and
smallest edge weight. After normalizing, the shortest path
distances can thus be partitioned into O(log(Nn)) distance
scales of the form [α, 2α) where α is a power of 2. For
each distance scale, Thorup uses an oracle with an additive
error of at most ϵα. A query is answered by applying binary
search on the distance scales, querying one of the oracles in
each step, and the final oracle queried then gives the desired
multiplicative (1+ ϵ)-approximation. Thus, O(log log(Nn))
queries to oracles are needed. Thorup shows how each oracle
can answer a query in constant time (for fixed ϵ).

Our first idea for improving space is to not have every
oracle answer a query in constant time. In fact, it suffices
for every Θ(log log(Nn)) distance scale to have an oracle
with O(1) query time since binary search on these oracles
brings us down to only Θ(log log(Nn)) distance scales;
since the total query time should be O(log log(Nn)), we can
thus afford slower but more space-efficient oracles for the
remaining O(log log log(Nn)) steps of the binary search.
Hence, only a 1/Θ(log log(Nn)) fraction of our oracles
have O(1) query time.

To improve space further, we make use of a recursive
decomposition of the input digraph G into more and more
refined r-divisions. Now, instead of storing portals for each
vertex of each oracle (as in Thorup’s paper), we instead store
portals only for boundary vertices of pieces of r-divisions at
each level of the recursive decomposition. Furthermore, each
such boundary vertex stores only local portals belonging to
the same parent piece, allowing us to use labels of length
much smaller than lg n for each such local portal.

A query for a vertex pair (u, v) is then answered by
starting at the lowest level of the recursive decomposition

14In doubling metrics, it is possible to construct a net tree in nearly linear
time [30], [31]. The construction relies heavily on the fact that the metric
has a constant doubling dimension.



and obtaining local portals for u and v. For each combination
of a local portal p(u) of u and local portal p(v) of v, a
query for an approximate distance from p(u) to p(v) is then
answered recursively by going one level up in the recursive
decomposition. To avoid an exponential explosion in the
number of local portals during the recursion, the recursive
decomposition is set to have only k = Θ(1) height where k
is the parameter in Theorem 2.

Since our final space bound is o(n log(Nn)), we are
only allowed space sublinear in n on each distance scale.
This creates some additional obstacles not addressed by
the above techniques. A main obstacle is to answer LCA-
queries in O(1) time using o(n) space. There are static tree
data structures that can do this using only O(n/ lg n) space
(i.e., O(n) bits of space). Unfortunately, these structures
require labels of query vertices to be of a special form; for
instance, the data structure in [35] that we rely on requires
them to be preorder numbers in the tree. We give a new
data structure that can convert in O(1) time vertex labels
in the input graph G to preorder numbers in such a tree
using o(n) space plus O(n) additional space independent
of the current distance scale. Here, we again make use of
our recursive decomposition and show how it allows for a
compact representation of preorder numbers for each tree.

In this extended abstract, we sketch the proof of Theo-
rem 1. See the full version of our paper https://arxiv.org/
abs/2111.03560 for a full proof and other results.

B. Related Work

Optimizing the dependency on ϵ for planar undirected
graphs: A closely related and somewhat orthogonal line of
work initiated by Kawarabayashi, Sommer and Thorup [37]
is to treat ϵ as a part of the input and optimize for the
dependency on ϵ in the trade-off between space and query
time. They showed that it is possible to achieve a nearly
linear dependency on ϵ in the space and query time trade-
off. Specifically, they constructed an oracle of O(n log n)
space and O(1/ϵ) query time where O(.) notation hides
poly(log log(n)) and polylog( 1ϵ ) factors. The dependency
of space and query time product on ϵ in previous work [38],
[52], [36] is at least quadratic. Other recent develop-
ments [28], [16] focus on improving the dependency on ϵ in
the query time: Gu and Xu [28] constructed a distance oracle
with O(1) query time and O(n log n(log n/ϵ + 2O( 1

ϵ )))
space; Chan and Skerpetos constructed an oracle with
O(log 1

ϵ ) query time and O(npoly( 1ϵ )polylog(n)) space.
Exact distance oracles for directed planar graphs:

Arikati et al. [6] constructed the first distance oracle for di-
rected planar graphs with O(S) space and O(n

2

S ) query time
for S ∈ [n3/2, n2]. Independently from the work of Arikati
et al. [6], Djidiev [20] constructed two oracles with different
space-query time trade-offs: (1) an oracle with O(S) space
and O(n

2

S ) query time for S ∈ [n, n2] and (2) an oracle with
O(S) space and Õ( n√

S
) query time for S ∈ [n4/3, n3/2]. (Õ

notation hides a polylog(n) factor.) Subsequent works aimed
to widen the range of S in the space-query time tradeoff
in the second oracle of Djidiev [20]. Specifically, Chen and
Xu [18] pushed the range of S to [n4/3, n2]; Fakcharoenphol
and Rao [21] constructed an oracle with S = n log n; Mozes
and Sommer [46] widened the range of S to [n log log n, n2].

The work of Cabello [13] focused on improve the pre-
processing time; specifically, Cabello [13] constructed an
oracle with O(S) space, Õ( n√

S
) query time and O(S)

construction time for any S ∈ [n4/3 log1/3(n), n2]. Wulff-
Nilsen [53] designed an oracle with constant query time
and o(n2) space; this space bound has not been improved
for oracles with constant query time. The first linear space
oracle with O(n

1
2+ϵ) query time for any constant ϵ > 0

was obtained independently by Mozes and Sommer [46] and
Nussbaum [48]; the result remains the state-of-the-art if we
insist on having an oracle with linear space.

All exact distance oracles mentioned so far were con-
structed based on (variants) of r-division, a technique intro-
duced by Frederickson [23]. None of them achieves truly
subquaratic space and polylogarithmic query time. In a
breakthrough work, Cohen-Addad, Dahlgaard, and Wulff-
Nilsen [19] broke this barrier by constructing an exact
distance oracle with O(n

5
3 ) space and O(log n) query

time. Indeed, they obtained a more general trade-off: O(S)

space and Õ(n
5/3

S3/2 ) query time. Their construction is based
on planar Voronoi diagrams introduced by Cabello [14].
Gawrychowski et al. [27] improved the result Cohen-Addad,
Dahlgaard, and Wulff-Nilsen [19] to obtain an oracle with
O(S) space and Õ(max{1, n3/2

S }) query time. Recently,
Charalampopoulos et al. [17] obtained three exact distance
oracles with almost optimal space-query time trade-offs
(ignoring low order terms): (1) Õ(n1+ϵ) space and Õ(1)
query time for any constant ϵ > 0, (2) Õ(n) space and
O(nϵ) query time, and (3) n1+o(1) space and no(1) query
time. Their trade-offs were furthered improved by Long and
Pettie [43] in two regimes: n1+o(1) space with Õ(1) query
time and Õ(n) space with no(1) query time.

Distance oracles for low dimensional metrics: The idea
of using net-tree in the construction of (1 + ϵ)-approximate
distance oracles, which we also use in this paper, was
introduced by Har-Peled and Mendel [31] in metrics of con-
stant doubling dimension. Their oracle has O(n log n) space,
O(1) query time, and O(n log n) construction time with ϵ
and d being fixed constants. Their result improved an earlier
result by Gudmundsson et al. [29] who constructed a (1+ϵ)-
approximate distance oracle for t−spanners of point sets in
Rd. In the same paper, Har-Peled and Mendel [31] presented
a (1 + ϵ)-approximate distance oracle for doubling metrics
of dimension d with ϵ−O(d)n space, O(d) query time and
poly(n) construction time. That is, the query time depends
linearly, instead of exponentially, on the dimension. Bartal
et al. [8] improved the result of Hard-Peled and Mendel by

https://arxiv.org/abs/2111.03560
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designing an oracle with (ϵ−O(d)+2O(d log d))n space, O(1)
query time and nearly linear expected construction time.

II. PRELIMINARIES

Let G be a graph. We denote by V (G) the vertex set
of G and by E(G) the edge set of G. We sometimes
write G(V,E) to explicitly indicate that V (G) = V and
E(G) = E, and write G(V,E,w) to indicate that w is the
weight function on the edges of G. We denote by SPG(x, y)
a shortest path between two vertices x, y ∈ V .

In this paper, we sometimes view G as a metric (V, dG)
with the shortest path distance. The spread, denoted by ∆,
of G is defined to be the spread of (V, dG), which is:

∆ =
maxu,v dG(u, v)

minu̸=v dG(u, v)
(1)

Let C be a simple closed curve on the plane R2. Remov-
ing C from R2 divides the plane into two parts, called the
interior and exterior of C, denoted by Int(C) and Ext(C),
respectively.

Let T be a tree and x, y be two vertices of T . We denote
by T [x, y] the (unique) path between x and y in T .

Shortest path separators of planar graphs: Let G be
given as a planar embedded graph and G∆ be a triangulation
of G. We call edges in E(G∆) \ E(G) pseudo-edges. Let
T be a shortest path tree of G; T is also a spanning tree of
G∆. A path P of T is monotone if one endpoint of P is an
ancestor of all vertices in P ; this endpoint is called the root
of P .

A shortest path separator C of G is a fundamental cycle
of G∆ w.r.t T . Since edges of G∆ may not be in G,
C consists of two monotone paths P1, P2 of G rooted at
the same endpoint and a (possibly imaginary) edge (u, v)
between two other endpoints of P1 and P2. Thorup [52] and
Klein [38] observed that the following lemma is implicit
the proof of the planar separator theorem by Lipton and
Tarjan [42].

Lemma 1 (Lipton and Tarjan [42]). Let T be a shortest path
tree rooted at a vertex r of an edge-weighted planar graph
G. Let ω : V → R+ be a weight function on vertices of
G, and W =

∑︁
u∈V (G) ω(u). There is a shortest path sepa-

rator C of G such that max(ω(V (G) ∩ Int(C)), ω(V (G) ∩
Ext(C))) ≤ 2W

3 . Furthermore, C can be found in O(n)
time.

r-division: Given an integer r ≥ 1 and a planar
graph G, an r-division of G with n vertices is a partition
of the edge set of G into subsets inducing subgraphs
{R1, R2, . . . , Rk} of G, called pieces, such that:

1) k = O(nr ) and |V (Ri)| ≤ r for all i ∈ [1, k],
2) |∂Ri| = O(

√
r) where ∂Ri is the set of vertices in Ri,

called boundary vertices, such that each has at least
one neighbor outside Ri.

Frederickson [23] introduced the notion of r-division and
devised an algorithm to compute an r-division for any
given r in time O(n log r + n√

r
log n). Klein, Mozes, and

Sommer [39] recently improved the running time of finding
an r-division to linear.

Approximate labeling schemes: Thorup [52] and
Klein [38] independently came up with similar constructions
of a (1 + ϵ)-approximate distance oracle for an edge-
weighted, undirected planar graph G(V,E) of n vertices
with O(n log nϵ−1) space and O(ϵ−1) query time. Tho-
rup [52] showed that the oracle can be constructed in nearly
linear time. Furthermore, Thorup [52] observed that the
distance oracle could be distributed as a labeling scheme:
each vertex u is assigned a label ℓ(u) of O(ϵ−1 log n) words
and there is a decoding function D that, given two vertices
u and v, returns a (1 + ϵ)-approximate distance between u
and v in O(ϵ−1) time by looking at their labels only.

Theorem 3 (Theorem 3.19 [52], Lemma 4.1 [38]). Given an
edge-weighted undirected planar graph G, we can construct
in O(nϵ−2 log3 n) time a labeling scheme for (1 + ϵ)-
approximate distances with maximum label size O(log nϵ−1)
and decoding time O(ϵ−1).

Sparse cover: A (β, s,∆)-sparse cover of a graph
G(V,E), denoted by C = {C1, . . . , Ck}, is a collection of
subgraphs, called clusters, of G such that: noitemsep

(1) The diameter of Ci is at most ∆ for any i ∈ [1, k].
(2) For every v ∈ G, BG(v,∆/β) ⊆ Ci for some i ∈ [1, k].
(3) Every vertex v ∈ V is contained in at most s clusters.

We say that G admits a (β, s)-sparse covering scheme if
there exists a (β, s,∆)-sparse cover of G for any given ∆ ∈
R+. ∆ is called the diameter of the sparse cover.

Busch, LaFortune, and Tirthapura [11] constructed an
(O(1), O(1))-sparse covering scheme for planar graphs; they
slightly improved the constants in the journal version [12].
Abraham, Gavoille, Malkhi, and Wieder [2] constructed an
(O(r2), 2r(r + 1)!)-sparse covering scheme for Kr-minor-
free graphs.

Theorem 4 (Theorem 5.2 [11]). Edge-weighted planar
graphs admits an (O(1), O(1))-sparse covering scheme.

Weak nets: Given an edge-weighted graph G(V,E) and
a set of terminals K ⊆ V . A weak (r, γ)-net of K, for γ ≥ 1,
is a subset of vertices N ⊆ K such that: (a) dG(p, q) ≥ r
for every p ̸= q ∈ N and (b) for every x ∈ K, there
exists a p ∈ N such that dG(p, x) ≤ γr. An assignment A
associated with a weak (r, γ)-net N is a family of subsets of
K such that for each x ∈ N , there exists a set, denoted by
A[x] ⊆ K, in A that contains x and satisfies dG(x, y) ≤ γr
for every y ∈ A[x]. We say that an assignment A covers K
if ∪A∈A = K.



III. AN APPROXIMATE DISTANCE ORACLE WITH
CONSTANT STRETCH

In this section, we prove the following theorem:

Theorem 5. Given an edge-weighted n-vertex planar graph
G, there is an 8-approximate distance oracle with space
O(n) and query time O(1) that can be constructed in worst-
case time O(n log3 n).

Thorup [52] and Klein [38] independently gave a (1+ ϵ)-
approximate distance oracle for undirected planar graphs
with O( 1ϵn log n) space and O( 1ϵ ) query time, and Tho-
rup showed how to obtain worst-case construction time
O(n log3 n/ϵ2). We will make use of the special case where
ϵ = 1 and we exploit that the distance oracle of Thorup is a
labeling scheme, meaning that a query for vertex pair (u, v)
can be answered using only the O(log n) words associated
with u and v, respectively (Theorem 3):

Lemma 1 (Thourup [52]). Given an undirected planar
graph G with n vertices and given a subset S of the vertices
of G, there is a 2-approximate distance oracle for G with
O(|S| log n) space and O(1) query time which can answer
queries for any vertex pair in S × S. The oracle can be
constructed in O(n log3 n) worst-case time.

In the following, we shall refer to the data structure
of Lemma 1 as an S-restricted oracle of G. We now present
our approximate distance oracle for planar graph G, ignoring
its efficient construction as well as some space-saving tricks
for later.

The oracle keeps a 3-level recursive decomposition of
G. This decomposition has an associated tree T where at
level 0, the root is G having r0 = n vertices. Letting
r1 = (log r0)

2 = (log n)2, the children of G in T are
the pieces of an r1-division of G and these are the level
1-nodes of T . Finally, each piece P at level 1 of T
has as children the pieces of an r2-division of P where
r2 = (log r1)

2 = O((log logn)2).
Each vertex u ∈ V is associated with a leaf piece P2(u)

containing u as well as the two ancestor pieces P0(u) and
P1(u) of P2(u) at levels 0 and 1, respectively.

For each non-leaf piece P of T , let i ∈ {0, 1} be its level.
Associated with P is a BP -restricted oracle of P where BP

is the set of boundary vertices in the ri+1-division of P .
For i = 1, 2, each vertex u is associated with a nearest

boundary vertex bi(u) of Pi(u). We also associate the
distance dPi(u)(u, bi(u)) with u.

For each leaf piece P of T , we essentially store a lookup
table containing 2-approximations of distances dP (u, v) for
each pair of vertices u and v in P . However, we need some
space-saving tricks to ensure that these tables require only
linear space in total; for now, we delay the details on how
to do this and just assume black box lookup tables with
constant query time.

Answering a query: A query for a vertex pair (u, v) is
answered as follows. For i = 0, 1, the query algorithm first
computes

di =

⎧⎨⎩ dPi+1(u)(u, bi+1(u)) + d̃Pi(u)(bi+1(u), bi+1(v))+
dPi+1(v)(v, bi+1(v)) if Pi(u) = Pi(v)
∞ otherwise,

where d̃Pi(u)(bi+1(u), bi+1(v)) is the output of the or-
acle for Pi(u) = Pi(v) when queried with the pair
(bi+1(u), bi+1(v)) of vertices from BPi(u) = BPi(v).

If P2(u) = P2(v), let d2 be the 2-approximation of
dP2(u)(u, v) that is output using the lookup table associated
with P2(u) = P2(v). Otherwise, let d2 = ∞. The query
algorithm computes d2 and then outputs min{d0, d1, d2}.

IV. AN APPROXIMATE ORACLE WITH (1 + ϵ) STRETCH
FOR UNDIRECTED PLANAR GRAPHS

In this section, we construct a (1+ϵ)-approximate distance
oracle with linear space and constant query time for edge-
weighted planar graphs; graphs in this section are undirected.
The construction is divided into four major steps:

1) In Section IV-A, we construct a distance oracle re-
stricted to any given subset of vertices S with a small
additive stretch. The oracle has space O(|S|) and
constant query time.

2) In Section IV-B, we use the additive oracle to construct
an oracle restricted to any given subset of vertices S
with multiplicative (1+ϵ) stretch. The oracle has space
O(|S|) and constant query time. The caveat is that
the stretch guarantee only applies to pairs of vertices
whose distances are in [d, αd] for a given parameter d
and a constant α.

3) In Section IV-C, we show that planar graphs with
quasi-polynomial edge length have (1+ϵ)-approximate
distance oracle with linear space and constant query
time. The construction combines three different tools:
a net-tree, a weighted level ancestor data structure, and
the restricted oracles in the second step.

4) Finally, in Section IV-D, we remove the assumption
on the edge length of the graph.

We use Space(X ) to denote the total space (in words) of
a data structure X .

A. Additive Restricted Distance Oracles

An S-restricted distance oracle D for a planar graph G
with additive stretch t is a data structure that given any two
vertices u, v ∈ S, the estimated distance returned by the
oracle, denoted by dD(u, v), satisfies:

dG(u, v) ≤ dD(u, v) ≤ dG(u, v) + t (2)

This section is devoted to proving the following theorem.

Theorem 6. Given an edge-weighted n-vertex planar graph
G(V,E) with diameter D, an error parameter ϵ < 1, and



a subset of vertices S, there is an S-restricted distance
oracle D with O(|S|ϵ−2) space, O(ϵ−2) query time, and
additive stretch ϵD. Furthermore, D can be constructed in
O(ϵ−3n log3 n) time.

Proof sketch: We base our construction on the idea
of Kawarabayashi, Sommer, and Thorup [37], called KST
construction, that relies on recursive decompositions of G
using shortest path separators. However, our construction is
different from KTS in two respects. First, we restrict the
distance query to be between vertices in a given subset of
vertices S, and the space bound must be linear in S, which
could be much smaller than n; the space bound in KTS
oracle is Ω(n). As a result, our recursive decompositions
must be tailored specifically to S, and there are several
properties that the decomposition must satisfy altogether.
Second, our construction only has three levels, instead of
log∗(n) levels as in the KTS construction. Specifically, the
top level is the vertex set S and a recursive decomposition
for S; the second level contains subsets of S corresponding
to leaves of the recursive decomposition for S; the third level
contains subsets of those in the second level. Subsets of S
in the third level are small enough that we can afford to
have a table lookup that contains encodings of approximate
distances (instead of these distances themselves). With these
ideas, we are able to achieve space and query time bounds
independent of n, while KTS has a query time bound of
O(log∗ n) and a space bound of Ω(n) when ϵ is a constant.

B. Multiplicative Restricted Distance Oracles
In this subsection, we prove Theorem 7 that we restate

below. The main tool we use in this section is sparse covers.

Theorem 7. Given parameters d, ϵ > 0, α > 1 and a
subset of vertices S of an edge-weighted n-vertex planar
graph G, there exists an approximate distance oracle D with
O(|S|α2ϵ−2) space and O(α2ϵ−2) query time such that the
distance returned by D for a given query pair (u, v) ∈ S×S,
denoted by dD(u, v), is always at least dG(u, v), and:

dD(u, v) ≤ (1 + ϵ)dG(u, v) if dG(u, v) ∈ [d, αd].

Furthermore, D can be constructed in time
O(ϵ−3α3n log3 n).

Proof sketch: Let C = {C1, . . . , Ck} be a (β, s, βαd)-
sparse cover of G with β, s = O(1). We remove from C
every cluster Ci such that Ci∩S = ∅. Let CS be the resulting
set of clusters.

Let D = βαd = O(αd). For each cluster C ∈ CS , let
SC = S ∩ C. We apply Theorem 6 to construct a distance
oracle DC for SC in (planar) graph C with additive stretch
ϵ0D with ϵ0 = ϵ

βα = O( ϵ
α ). Our data structure D consists

of all oracles {DC}C∈CS
, and additionally, for each vertex

v ∈ S, we will store (the id of) DC such that C contains
BG(v, αd); C exists by property (2) of sparse covers.

Given a query pair (u, v) ∈ S × S, we first identify in
O(1) time the oracle DC such that C contains BG(v, αd).
If dG(u, v) < αd, u may not belong to C, and if this is the
case, the oracle returns +∞. Otherwise, u ∈ BG(v, αd) and
hence, u ∈ C. We then query DC in O(ϵ−2

0 ) = O(α2ϵ−2)
time to get the approximate distance dDC

(u, v). We return
this distance as an approximate distance by D.

C. Oracles for Planar Graphs with Quasi-polynomial
Spread

In this section, we construct a (1 + ϵ)-approximate dis-
tance oracle for planar graphs with quasi-polynomial edge
weights. The oracle has linear space and constant query time.

Theorem 8. Given an n-vertex planar graph G(V,E,w)
with spread ∆ = 2O(logc n) for some constant c ≥ 1, there is
a (1+ϵ)-approximate distance oracle D with O(nϵ−2 log 1

ϵ )
space and query time O(ϵ−2). Furthermore, D can be
constructed in time O(ϵ−3n logc+3 n log 1

ϵ ).

Before proving Theorem 8, we introduce the toolbox used
in this section.

Weak net tree: Let η ≥ 1 be a constant. We view
G(V,E,w) as a metric space (V, dG) with shortest path
distances. (We use points and vertices interchangeably.) The
spread of (V, dG) is ∆. Let H be a hierarchy of nets
V = N0 ⊇ N1 ⊇ . . . ⊇ N⌈log∆⌉ where Ni+1 is a weak
(2i+1, η)-net of Ni for each i ∈ [1, ⌈log∆⌉].

The hierarchy of nets naturally induces a η-weak net tree
T where i-th level of T is Ni, and the children of each point
p ∈ Ni+1 are points in Ai+1(p) ⊆ Ni.

Since a point p can appear in many levels of a net tree
T , to avoid confusion, we sometimes use (p, i) to refer to
the copy of p at level i.

One operation that will be very useful in our construction
is querying an ancestor of a given leaf at a given level. Such
queries can be done in O(1) time using a level ancestor data
structure with space O(|V (T )|). However, it could be that
the number of nodes in T is superlinear in n; note that T
only has n leaves. Thus, it is more space-efficient to work
with a compressed version of T that compresses nodes of
degree 2 in T . For a technical reason that will be apparent
later, we will not compress all degree-2 nodes but a subset
of them.

X-compressed net tree: Given a weak net tree T and a
subset of degree 2 nodes X in T , an X-compressed net tree,
denoted by Tcpr(X), is an edge-weighted tree obtained by
sequentially contracting, in an arbitrary order, each vertex of
X to one of its neighbors. That is, we replace any monotone
maximal path of T , whose internal vertices are in X only,
with an edge between its endpoints. The weight of each new
edge (x, y) of Tcpr(X) is the distance between its endpoints
in T . Observe that the weight of every edge in Tcpr(X) is
at most ⌈log∆⌉. Note that we still label each vertex p ∈
Tcpr(X) with its level in T .



Since the compressed net tree has weights on its edges,
we need a data structure to query the weighted level an-
cestor (WLA). In general, querying level ancestors in a
weighted tree is a generalization of the predecessor search
problem [40] that we cannot hope to have a data structure
with linear space and constant query time. On the other
hand, we show that it is possible to construct such a WLA
data structure if the hop depth (defined below) of the tree is
polylogarithmic.

Weighted level ancestor data structures: Let T be an
edge-weighted tree with n vertices rooted at r where every
edge e ∈ T is assigned an integral weight ω(e). The depth
of a node u ∈ T is the distance dT (u, r). The depth of T is
the maximum depth over all vertices of T . The hop depth of
u is the number of edges on the path from u to r, and the
hop depth of T is the maximum hop depth over all vertices
in T . A WLA data structure is a data structure that, given
a query of the form (u, d) where u ∈ V (T ) and d ∈ Z+,
returns the lowest ancestor of u at depth at most d. (It could
be possible that there is no ancestor of u at depth exactly
d.)

Lemma 2. Given a rooted, edge-weighted tree T with n
vertices and hop depth polylog(n), there is an algorithm
that runs in O(n) time and constructs a level ancestor data
structure with O(n) space and O(1) query time.

We now have all necessary tools to prove Theorem 8. Let
(V, dG) be the shortest path metric of the input planar graph
G. Let T be a η-weak net tree of (V, dG) with η = O(1).
We define a parameter τ as follows:

τ = (
8

ϵ
+ 12)η (3)

For technical convenience, we extend the net tree T to
include negative levels:

N−⌊log(τ)⌋−1 = N−⌊log(τ)⌋ = . . . = N−1 = N0 = V (4)

where we can still interpret each Ni as a (2i, η)-net of Ni−1

when −⌊log(τ)⌋ ≤ i ≤ 0. Note that the minimum pairwise
distance is 1.

Let Ni be the weak (2i, η)-net associated with i-the level
of T for some i ∈ [−⌊log(τ)⌋ − 1, ⌈log∆⌉]. Let:

Nτ
i = {v|v ∈ Ni ∧ (∃u ̸= v ∈ Ni, dG(u, v) ≤ τ2i)} (5)

That is, Nτ
i is the set of net points in Ni that have at least

one other net point within distance τ2i. While the set Nτ
i

has several interesting properties that can be exploited to
construct our distance oracle, it is unclear how to compute
Nτ

i efficiently without considering distances between all
pairs of points in Ni, which could costs Ω(n2) time. We
instead consider a bigger set Nτ,+

i defined below that
can be computed in O(n) time. (Using Nτ,+

i instead of
Nτ

i makes the argument for space bound somewhat more

complicated, but the bound we get remains the same.) When
i = −⌊log(τ)⌋ − 1, Nτ

i = ∅.
Construct Nτ,+

i : Let Ci be a (β, s, βτ2i)-sparse
cover of G with β = s = O(1). For each set
C ∈ Ci, if |C ∩ Ni| ≤ 1, we remove C from
Ci. Let C−

i be the resulting cover. We then define
Nτ,+

i to be the set of all points v ∈ Ni such that
there exists C ∈ C−

i containing v.
Distance oracle construction: Let T2 be the set of all

degree-2 vertices in T . The oracle D consists of:
noitemsep
1) Oracles {Di}⌈log∆⌉

i=−⌊log(τ)⌋−1 where Di is the distance
oracle for Nτ,+

i constructed by applying Theorem 7
with d = (τ/2− 2η)2i and α = 2τ

τ−4η .
2) A constant stretch oracle Dc for G(V,E,w) con-

structed by applying Theorem 5; Space(Dc) = O(n).
3) An X-compressed net tree Tcpr(X) with

X = T2

⋂︂
(V (T ) \ (∪⌈log∆⌉

i=−⌊log(τ)⌋−1N
τ,+
i ) (6)

We store at each node of Tcpr(X) its depth in the tree.
4) A weighted level ancestor data structure W for Tcpr(X)

by Lemma 2.
Oracle query: Given a query pair (u, v), Dc returns

dDc(u, v) such that dG(u, v) ≤ dDc(u, v) ≤ 5 · dG(u, v)
by Theorem 5. We define:

ī = ⌈log2
2(1 + ϵ)dDc(u, v)

τ − 4η
⌉ (7)

Since log(∆) = polylog(n), the hop depth of Tcpr(X) is
polylog(n). Thus, each level ancestor query in W can be
answered in O(1) time by Lemma 2 if we assume that ī can
be obtained from dDc

(u, v) in O(1) time. This assumption
requires justification since we are not assuming that the
logarithm nor the ceiling function can be computed in O(1)
time. However, we omit the details here since we will focus
on essentially the same problem in Section IV-D.

For each j ∈ [ī− 5, ī], in O(1) time, we query the ances-
tors pj(u) and pj(v) in Tcpr(X) at level j, or equivalently, at
depth ⌈log∆⌉+ ⌊log(τ)⌋+ 1− j, of u and v, respectively,
using W . We then query the distance between pj(u) and
pj(v) using oracle Dj in O(α2ϵ−2) = O(ϵ−2) time. Here
we use the fact that:

α =
2τ

τ − 4η

Eq. 3
=

2(8/ϵ+ 12)

8/ϵ+ 8
=

3ϵ+ 2

ϵ+ 1
≤ 3. (8)

Finally, we return:

dD(u, v)
def
= min

j∈[ī−5,ī]
(dDj

(pj(u), pj(v)) + η2j+2) (9)

Using a lookup table to precompute powers of 2, we
then get a total query time of O(ϵ−2). We note that there
could be possible that the ancestors returned by W are not



pj(u) and/or pj(v) because they may be compressed in
(Tcpr(X), φcpr(X)); we can easily check if this is the case
by comparing the depth of the returned ancestors and the
desired depth in T , which is ⌈log∆⌉+ ⌊log(τ)⌋+1− j. In
this case, we will exclude j in computing the approximate
distance in Equation (9).

D. Removing the Spread Assumption

In this subsection, we remove the assumption on the
spread using the contraction technique of Kawarabayashi,
Sommer, and Thorup [37]. The same technique was used in
previous results [28], [16]. The idea is to have for each scale
r ∈ {20, 21, . . . , 2⌈log∆⌉}, a graph Gr obtained from G by
removing every edge of weight more than r and contracting
every edge of weight less than r

n2 . Then, a distance oracle is
constructed for each Gr and the total space bound (typically
of Ω(n log n)) follows from the observation that each edge
e ∈ G belongs to at most O(log n) different graphs Gr (for
different values of r).

To show a linear space bound, we need the scale r
to be bigger, so that each edge e ∈ G belongs to at
most O(1) graphs Gr; we naturally choose the scale to be
{n0, n4, . . . , n4i, . . . , n⌈logn4 ∆⌉}. To construct each Gr, we
apply the same idea: delete every edge of weight more than
n4r and contract every edge of weight at most r

n2 . It follows
directly from the construction that each edge e belongs to at
most 2 graphs Gr. The issue now is that, while the spread
of Gr is polynomial in n, it could be exponential in the
number of vertices of Gr. In this case, we use the bit-packing
technique that we formalize in the following lemma.

Lemma 3. Let G(V,E,w) be an undirected and edge-
weighted planar graph with n vertices. If the machine word
size is ω = Ω(log n3), then in O(ϵ−2n log3 n) time, we
can construct a (1 + ϵ)-approximate distance oracle for
G(V,E,w) with O(nϵ−1) space and O(ϵ−1) query time.
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