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Abstract

The greedy spanner in a low dimensional Euclidean space is a fundamental geometric construction that has
been extensively studied over three decades as it possesses the two most basic properties of a good spanner:
constant maximum degree and constant lightness. Recently, Eppstein and Khodabandeh [EK21] showed that
the greedy spanner in R? admits a sublinear separator in a strong sense: any subgraph of k vertices of the
greedy spanner in R? has a separator of size O(v/k). Their technique is inherently planar and is not extensible

to higher dimensions. They left showing the existence of a small separator for the greedy spanner in R¢ for
any constant d > 3 as an open problem.
In this paper, we resolve the problem of Eppstein and Khodabandeh [EK21] by showing that any subgraph

of k vertices of the greedy spanner in R? has a separator of size O(kl_l/ 4). We introduce a new technique
that gives a simple criterion for any geometric graph to have a sublinear separator that we dub 7-lanky: a
geometric graph is 7-lanky if any ball of radius r cuts at most 7 edges of length at least r in the graph. We

show that any 7-lanky geometric graph of n vertices in R has a separator of size O(Tnlfl/d). ‘We then derive
our main result by showing that the greedy spanner is O(1)-lanky. We indeed obtain a more general result

that applies to unit ball graphs and point sets of low fractal dimensions in R
Our technique naturally extends to doubling metrics. We use the 7-lanky criterion to show that there
exists a (1 + €)-spanner for doubling metrics of dimension d with a constant maximum degree and a separator

of size O(nl_% ); this result resolves an open problem posed by Abam and Har-Peled [AHP10] a decade ago.
We then introduce another simple criterion for a graph in doubling metrics of dimension d to have a sublinear
separator. We use the new criterion to show that the greedy spanner of an n-point metric space of doubling

dimension d has a separator of size O((nlf%) +log A) where A is the spread of the metric; the factor log(A)

is tightly connected to the fact that, unlike its Euclidean counterpart, the greedy spanner in doubling metrics
has unbounded mazimum degree. Finally, we discuss algorithmic implications of our results.
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1 Introduction

A t-spanner of an edge-weighted graph G = (V,E,w) is a spanning edge-weighted subgraph H such that
O (u,v) < t-dg(u,v) for every pair of vertices u,v € V; ¢ is called the stretch of the spanner. This definition
naturally extends to a t-spanner of a point set P in a metric space (X,dx ) where the graph G = (P, (123), dx) in
this context is the complete graph representing the metric induced by P. The study of spanners dated back to
the work of Chew [Che86] in 1986 who constructed a V/10-spanner for a point set on the Euclidean plane, though
the term spanner had not yet appeared until the work of Peleg and Schéiffer [PSS9].

Over more than 30 years, research on spanners has evolved into an independent field of study, and has
found numerous applications, such as to VLSI circuit design |[CKR*91, ICKR*92, [SCRS01], to distributed
computing [Awe85, [ABP92, [Pel00], to approximation algorithms [RS98] [Kle05l [KIe06, [Got15, BLW17, [CFKL20],
to wireless and sensor networks [vRWO04, [BDS04, [SS10], to machine learning [GKKIT], and to computational
biology [RGO5]. Spanners enjoy wide applicability since they possess many desirable properties such as low
sparsity, implying, e.g., low storage cost; small lightness, implying, e.g., low construction cost; low maximum
degree, implying, e.g., small routing tables in routing applications. Here, the sparsity of a spanner is the ratio of
its number of edges to the number of edges of the minimum spanning tree (MST), which is n—1, and the lightness
of a spanner is the ratio of its total edge weight to the weight of the MST. Some spanners only have one property
among three properties while others possess all of them and even more [ADM*95, [EST5].

The path greedy algorithm, or greedy algorithm for short, is perhaps the simplest and one of the most well-
studied algorithms for constructing a t-spanner: consider edges of G in the non-decreasing order of the weights,
and add to the spanner an edge e if the distance between its endpoints in the current spanner is larger than
t-w(u,v). The output spanner is called the greedy spanner. The greedy algorithm was introduced by Althofer et
al. |ADD793|] and independently discovered by Bernlﬂ In addition to its great simplicity, the greedy algorithm
has shown to be one-algorithm-fits-all. The greedy (1 + €)-spanner has constant sparsity and constant lightness
for point sets in Euclidean spacesE| [CDNS92, [DHN93| RS98|, [LS19], doubling metrics [Smi09} [Got15, BLW19],
and minor-free graphs [BLW19]. For edge-weighted general graphs of n vertices, the greedy spanner with stretch
(2k - 1) has O(n'/*) sparsity and with stretch (2k —1)(1 + €) has O(n'/*) lightness for a constant e, which are
(nearly) optimal bounds assuming the Erdés’ girth conjecture [Erd64]. Filtser and Solmon [FS16] showed that
greedy spanners are existentially optimal for both the size and the lightness for several graph families, which
include general graphs and minor-free graphs. Roughly speaking, existential optimality for a graph family G
means that the worst-case sparsity and lightness of the greedy spanner over all graphs in G are as good as the
sparsity and lightness of an optimal spanner over all graphs in G. In summary, understanding the greedy spanner
is an important problem, and there have been many papers dedicated to this task.

In this work, we investigate greedy spanners for point sets from a different perspective: the existence of
sublinear balanced separatorsﬂ For brevity, we simply refer to a balanced separator as a separator. While our
work covers several settings, understanding the greedy spanner for point sets in Euclidean spaces is of special
interest. This fundamental setting has been studied extensively; the chapter Geometric Analysis: The Leapfrog
Property of the book by Narasimhan and Smid [NS07] is dedicated solely to Euclidean spanners. Many algorithmic
ideas developed in the context of Euclidean spanners could be carried over different settings, such as doubling
metrics and unit ball graphs (UBGs), which are intersection graphs of unit balls in R%. On the other hand, having
a small separator is algorithmically significant. In their seminal work, Lipton and Tarjan [LT80] demonstrated the
algorithmic power of sublinear separators in designing divide-and-conquer algorithms for solving many algorithmic
tasks. (Though their results were stated for planar graphs, their techniques are applicable to any graph class that
is closed under taking subgraphs and has sublinear separators.) Over four decades since the work of Lipton and
Tarjan [LT80], sublinear separators have played a central role in the development of many algorithmic paradigms,
such as subexponential time parameterized algorithms [MP17, [DEHTO05, [DHO5, [FLM*16], analyzing local search
heuristics [CG15, [HPQ17], designing polynomial time approximation schemes (PTASes) for problems definable
in first-order logic [Bak94l [Dvol8], to name a few.

There have been some prior works that focus on (non-greedy) spanners with sublinear separators. Smith

TAlthofer et al. |JADD*93] attributed the independent discovery of the greedy algorithm to an unpublished work of Marshall Bern.

2In this work, we assume that € and d are fixed constants, unless specified otherwise.

3We say that a separator S of an n-vertex graph G = (V, E) is balanced if every connected component of G[V \ S] has at most
c-n vertices for some constant c.
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and Wormald [SW9§| sketched a proof showing that the spanner of Arya et al. [ADMT95] has a separator
of size O(n'~Y?); their proof relies on the (k,\)-thick pmpert Abam and Har-Peled [AHP10] constructed
a (1 + ¢€)-spanner with a separator of size O(n'~"?) for point sets in R? with maximum degree O(log®n) and
constant sparsity using a semi-separated pair decomposition (SSPD), a concept introduced in the same paper.
They left as an open problem of constructing a spanner with a sublinear separator and a constant maximum
degree in metrics of constant doubling dimensions. Fiirer and Kasiviswanathan [FK12] constructed a spanner
of constant sparsity with a separator of size O(n'~'/?%) + log(I")) for ball graphs, which are intersection graphs
of balls of arbitrary radii in R% here I is the ratio of the maximum radius to minimum radius over the balls,
which could be exponentially large. However, for the important special case of UBGs (I" = 1), the result of Fiirer
and Kasiviswanathan [FK12] implies a separator of size O(n'~'/%)). Sidiropoulos and Sridhar [SSI7] devised a
construction of a spanner with a separator of size O(n'~/%) for point sets in R with a fractal dimension d 5
(see Definition [4] for a formal definition). Both results of Fiirer and Kasiviswanathan [FK12] and Sidiropoulos
and Sridhar [SS17] imply (1 + ¢)-spanners with sublinear separators for point sets in R? as their settings are more
generaﬂ However, both constructions are fairly complicated and based on the (x, A)-thick property of Smith and
Wormald [SW9§|. Furthermore, their spanners are not known to have desirable properties of spanners such as
maximum degree and constant lightness; Abam and Har-Peled [AHP10] showed that the max degree of spanner
of Fiirer and Kasiviswanathan [FK12] could be ©(n). These results motivate the following question:

Question 1. Does the greedy (1 +¢)-spanner for any point set in R? have a separator of size O(nl’l/d) for fixed
constants d > 2,e <12 More generally, do greedy (1+ €)-spanners for more general settings, such as ball graphs in
R? and point sets in Fuclidean spaces of small fractal dimension, have sublinear separators?

We remark that the upper bound O(nl’l/d) of the separator size is optimal; the greedy (1 + €)-spanner of
point sets in the d-dimensional grid has size Q(n'~'/¢) [SSIT].

Recently, Eppstein and Khodabandeh [EK21] showed that the greedy spanner for point sets in R? admits a
separator of size O(y/n), thereby resolving Question [1| for the case of Euclidean graphs and d = 2. They derived
their result by studying the crossing patterns of the straight-line drawing of the greedy spanner on the Euclidean
plane. Since edge crossings are not useful in dimensions at least 3—the edges of the greedy spanners for point sets
in a general position generally have no crossing—their technique cannot be applied to higher dimensions. They
left Question [1| for dimension d > 3 as an open problem.

Nevertheless, the technique based on edge crossings of Eppstein and Khodabandeh [EK21] gives a sublinear
separator in a strong sense: any subgraph of k vertices of the greedy spanner in R? has a separator of size
O(\/E) That is, having a square-root separator is a monotone property: it is closed under taking subgraphs.
Being a monotone property is not a mere generalization; all aforementioned algorithmic applications of sublinear
separators require monotonicity. Fiirer and Kasiviswanathan [FK12] showed that their spanner has a monotone
sublinear separator, and this is crucial for the algorithmic applications in their paper. It is not clear whether other
non-greedy spanners mentioned above have the same property. On the other hand, all spanners in our paper have
monotone sublinear separators.

While resolving Question [I] is an important goal, it is probably more important and challenging to have a
simple tool to resolve it, as asked in the following question:

Question 2. Is there a simple criterion of graphs with sublinear separators in Euclidean and doubling metrics of
constant dimensions that could be easily applied to (greedy or non-greedy) spanners?

A simple criterion asked in Question [2] would be particularly significant, as there are numerous spanner
constructions in the literature that are faster than the greedy algorithm and give spanners with different properties
than those guaranteed by greedy spanners. A prime example is greedy spanners for doubling metrics of constant
dimensions. Smid [Smi09] constructed a doubling metric (X, dx ) of dimension 1 such that the greedy spanner for
(X, dx) has maximum degree n—1. However, there are other constructions [CGMZ16, I(GR08] that give a spanner
with constant maximum degree for doubling metrics. Does any of the spanners given by these algorithms have
a sublinear separator? A positive answer to this question would resolve the open problem by Abam and Har-
Peled [AHP10]. And in this work, we provide a positive answer (Theorem , by showing that the construction

TA set of objects (e.g., balls) in R% is (K, A)-thick if every point in the space belongs to at most « objects and the maximum size

(linear dimension, e.g., diameter) of an object is at most A times the minimum size.
5The fractal dimension of any point set in R¢ is dy <d.
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of [CGMZ16|] gives a spanner with a sublinear separator (and constant maximum degree); we obtain our result
based on a simple criterion that we develop.

There have been several criteria of geometric graphs with sublinear separators: (k, A)-thick property [SW9S],
k-ply property of the intersection graphs of balls [MTTV97], k-th nearest neighbor graphs [MTTV97], intersection
graphs of convex shapes that are tame [DMN21]; we refer readers to the cited papers for precise definitions of these
concepts. While these criteria are fairly simple and generally applicable, it is not clear how to use them, except for
the (k, A)-thick property [SW98], in the context of spanners where distances between points play a central role.
(Sidiropoulos and Sridhar [SS17] and Firer and Kasiviswanathan [FKI12] used the (x, A)-thick property [SW98]
in their constructions, but the algorithms become complicated.) Furthermore, except k-th nearest neighbor
graphs [ZT09], these criteria have been used for Euclidean spaces only it is unclear how they could be useful to
find sublinear separators of spanners in the more general setting of doubling metrics.

1.1 Our Contributions Our first contribution is a simple criterion of graphs with sublinear separators in
Euclidean and doubling metrics, that we call 7-lanky. Roughly speaking, a graph is 7-lanky if for every ball of
radius r, there are at most 7 edges of length at least r is cut by the ball. Here, an edge is cut by a ball if exactly
one endpoint of the edge is contained in the ball.

Definition 1 (7-Lanky). We say that a graph G = (V, E,w) in a metric (X,dx) is T-lanky if for any non-negative
r, and for any ball Bx (x,r) of radius r centered at a vertex x € V, there are at most T edges of length at least r
that are cut by Bx (xz,7).

We note that in Definition [I} we only count edges of length at least r. There could be Q(n) edges of length
less than r that are cut by a ball of radius r. We show in Section that lankiness implies the existence of a
balanced sublinear separator.

Theorem 1. Let (X,0x) be the Euclidean or a doubling metrics of dimension of constant dimension d > 2, and
G = (V,E,w) be an n-vertex graph in (X,dx) such that G is T-lanky. Then, G has a balanced separator of size
O(mn'=Y4). Furthermore, the separator can be found in O(T-n) expected time.

Since 7-lanky property is closed under taking subgraphs, i.e., it is a monotone property, Theorem [1| implies
that any subgraph of k vertices of a 7-lanky graph has a separator of size O(Tkl’l/ 4). Thus, as a by-product, we
obtain monotone sublinear separators.

Unlike criteria introduced earlier for Euclidean spaces which are mostly based on intersections of objects such
as balls or convex shapes, our criterion in Theorem [] directly related to the edge length of G via the notion of
7-lanky. As a result, our criterion works better for spanners, where distances (and hence edge lengths) play a
central role. Furthermore, as we will show later, for most spanners in this paper, it is relatively easy to see that
they are 7-lanky for some constant 7 (that depends on the dimension and €). Thus, Theorem [1| can be seen as a
positive answer to Question

Our second contribution is to show that greedy spanners of Euclidean graphs, unit ball graphs, and point sets
with small fractal dimensions are T-lanky. Our proof is relatively simple; see Section [4] for details. Since T-lanky
is monotone, Theorem (1| implies that:

Theorem 2. Let H be a subgraph of k vertices of the greedy (1 + €)-spanner for a graph G. Then,
(1) H has a balanced separator of size O(K*Y4) if G is a complete Buclidean graph representing a set of points
in RY.
(2) H has a balanced separator of size O(k*~Y%) if G is a unit ball graph in RY.
(8) H has a balanced separator of size O(klfl/df) if G is a complete graph representing a set of points in R?
that has a fractal dimension dy > 2.
Furthermore, the separator of H can be found in O(k) expected time given H.

Theorem [2| provides a positive answer to Question [, and completely resolves the open problem raised by
Eppstein and Khodabandeh [EK21].

Our third contribution is to show that the classical (1 + €)-spanner of Chan et al. [CGMZ16] which is the
first spanner for doubling metrics of constant maximum degree, has a sublinear separator. This result resolves
the open problem raised by Abam and Har-Peled [AHP10] a decade ago. We obtain our result by showing that
the spanner is 7-lanky for a constant 7. It then follows by Theorem [I] that:
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Theorem 3. There exists a (1 + €)-spanner in doubling metrics of dimension d > 2 with a constant mazimum
degree such that any subgraph H of k vertices of the spanner has a balanced separator of size O(kzl_l/d). When
d=1, H has a balanced separator of size O(logk).

Furthermore, the separator of H can be found in O(k) expected time given H.

Finally, we study the greedy (1 + €)-spanner for doubling metrics. By taking r = 0, the 7-lanky property
implies that the maximum degree of a 7-lanky graph G is at most 7. However, Smid [Smi09] showed that the
greedy spanner could have a maximum degree up to n — 1, and thus, the lankiness parameter 7 of the greedy
spanner is n — 1 in the worst case. On the other hand, the spread of the metric by Smid [Smi09] is A = 282(n).
Therefore, it is natural to ask: Does the greedy spanner for a doubling metric with a subexponential spread have
a sublinear separator? We answer this question by introducing another property in our criterion: x-thinness.
A graph G is k-thin if for any two sets of diameter at most r whose distance is at least r has x edges between
them; see Definition [§] for a formal definition. We then show (Theorem @ that any 7-lanky and x-thin graph
in doubling metric of dimension d has a separator of size O(kn'~"/% + 7). Indeed, our Theorem [6|is stronger as
it holds for a weaker notion of lankiness which does not impose the maximum degree of the graph by 7. The
size of the separator now depends on 7 additively instead of multiplicatively as in Theorem [[] By showing that
the greedy spanner for doubling metrics is 7-lanky and k-thin for 7 = O(log A) and & = O(1), we have that the
greedy spanner of doubling metrics has a sublinear separator for any subexponential spread, as described in the
following theorem.

Theorem 4. Let (X,0x) be a doubling metric of n points with a constant doubling dimension d. Let G be a
(1 + €)-greedy spanner of (X,0x). G has a balanced separator of size O(n'~"% +1og(A)) when d > 2 and of size
O(log(n) +1og(A)) when d =1.

1.2 Algorithmic Implications One of the most popular applications of the spanners is to serve as overlay
networks in wireless networks [vRWO04, [BDS04] [SST0]. In these applications, we are often interested in solving
computational problems in the spanner, such as shortest path [LWF03|, [GZ05], independent set [Bas01, MM09|,
dominating sets [MMO09 [PCAT1S], connected dominating set [YWWY13]. The existence of sublinear separators
in spanners implies that we can design provably good algorithms for these problems.

Specifically, by the result of Henzinger et al. [HKRS97], Theorem [2| and Theorem [3| directly imply that
Dijkstra’s algorithm can be implemented in expected linear time on the spanners in these theorems. This improves
upon the (deterministic) algorithm of Eppstein and Khodabandeh [EK21] that has running time O(nlog'(n))
time for any constant i; here log'” (z) = log(log" " (x)) is the i-times iterated logarithm.

In graph-theoretic terms, the spanners in Theorem [2[ and Theorem [3| have polynomial expansion [DNI6].
Har-Peled and Quanrud [HPQ17] showed that many unweighted optimization problems such as independent
set, vertex cover, dominating set, connected dominating set, packing problems, admit a polynomial-time
approximation scheme (PTAS) in graphs with polynomial expansion. Thus, all of these problems admit
PTAS in our spanners. However, if the graphs have weights on vertices, the algorithm of Har-Peled and
Quanrud [HPQ17], which is based on local search, does not have any guarantee on the approximation ratio.
Indeed, designing a PTAS for vertex-weighted NP-hard problems in graphs with polynomial expansion remains
an open problem [Dvol8]. We remark that planar graphs and minor-free graphs on which these problems were
extensively studied [Bak94, [Epp00], [DHO05, [DHKO05] are special cases of graphs with polynomial expansion.

On the other hand, Dvoidk [Dvol8] showed that if a graph has a polynomial expansion and bounded mazimum
degree, then vertex-weighted optimization problems considered above admit a PTAS. This implies that these
problems admit a PTAS on the spanners considered in Theorem [2] and Theorem [3| even when we have weights on
the vertices, as these spanners have bounded maximum degree. As approximating the vertex-weighted problems
has been studied in many wireless network applications [SNS14l WBO08| Bas01), [Hual3], our results could be of
interest in these settings.

2 Preliminaries

We denote an edge-weighted graph by G = (V, E,w) where V is the vertex set, F is the edge set, and w : E(G) - R*
is the weight function on the edge set. We denote a minimum spanning tree of G by MST(G). When the graph is
clear from context, we use MST as a shorthand for MST(G). The distance between two vertices p, ¢ in G, denoted
by da(p,q), is the minimum weight of a path between them in G. The diameter of G, denoted by diam(G), is
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the maximum pairwise distance in G.

For a subset of vertices A ¢ V, we denote by G[A] the subgraph induced by A. We denote by G - {e} a
subgraph of G’ obtained from G' by removing the edge e. For a subgraph H of G, we define w(H) = ¥ ey w(e)
to be the total weight of edges in H.

A c-balanced separator of a graph G is a subset S of V' such that every connected component of G[V \ S] has
at most c|V| vertices. If ¢ is a constant, we simply refer to S as a separator.

In this paper, we study the spanner obtained by the (path) greedy algorithm. The following fact is well known
for greedy spanners (see, e.g., Fact 6.1 in the full version of [LS19])

Fact 1. Let H be a t-spanner of a graph G = (V,E,w), then t-w(xz,y) < 0g—-e(x,y) for any edge e = (z,y) in H.

We denote a metric space X with a distance function dx by (X,0x). The diameter of a point set is the
maximum distance between points in the set. A ball Bx(p,r) centered at p of radius r is the set of points within
distance at most r from the center p. We say that a ball Bx (p,r) cuts an edge if exactly one endpoint of the edge
is in Bx (p,r). When the metric is clear from the context, we drop the subscript X in the notation Bx (p,r). We
say that a set of points P is r-separated with r > 0 if the distance between any two points in P is at least r.

Given a set of points P € (X,dx), we say that a subset N ¢ P is an r-net of P if N is r-separated and for
every point y € P, there exists a point x € N such that dx (z,y) < 7.

Given two sets of points A and B, we denote by dx (A, B) = aerilibr;B dx(a,b) the distance between A and B.

Definition 2 (c-Separated Pair). A pair of subsets (A, B) in a metric (X,0x) is a c-separated pair for some
¢ >0 if the distance between A and B is at least ¢ times the mazimum diameter of A and B.

If (X,0x) is the Euclidean metric, we use |uv| to denote the distance between u and v, and use |4, B| to
denote the distance between two point sets A and B. Another metric studied in this paper is doubling metrics.

Definition 3 (Doubling Metric). A metric space (X,0x) has doubling constant X if any ball of radius R can be

covered by at most X balls of radius g. The number ddim =log, A is called the doubling dimension of (X,dx).

It is well-known that the metric induced by any point set in R? has doubling dimension O(d). Doubling
metrics and the Euclidean metric of dimension d satisfy the following packing bound.

Lemma 1. Let B(p,r) be a ball of radius R in a Euclidean/doubling metric of dimension d, andY an'Y < B(p, )
be an r-separated subset for some r < R, then |Y|=20() (%)d.

We also consider the notion of fractal dimension introduced by Sidiropoulos and Sridhard [SS17].

Definition 4 (Fractal Dimension). Let P be a set of points in RY. P has a fractal dimension dy if and only if
for any two positive numbers r >0, R > 2r, any point p e R%, and any r-net N of P, [N nB(p, R)| = O((R/r)%).

3 Criteria of Graphs with Sublinear Separators

In this section, we provide two criteria of graphs with sublinear separators in low dimensional Euclidean and
doubling metrics: one for bounded degree graphs (Section , and one for graphs with high vertex degrees
(Section [3.2). Our proof uses the following lemma due to Har-Peled and Mendel [HPMO6].

Lemma 2 (Lemma 2.4 [HPMOG6]). Let P be a set of n points in a metric (X,dx) with doubling constant \x.
There exists a point v € P and a radius v > 0 such that (a) [Bx(v,r)nP| > 33— and (b) [Bx(v,2r)n P| < 3.

Furthermore, v and r can be found in O(A\%n) expected time.

Before presenting these criteria in details, we introduce a notion of a packable metric space (Definition ,
which captures the packing bound (Lemma [I}) in both Euclidean and doubling metrics. The notion of packable
metric is very similar to the notion of fractal dimension in Definition [4 the main difference is that we do not
restrict a packable metric to being a submetric of an Euclidean metric.

Definition 5 ((n,d)-Packable Metric Space). A metric (X,dx) is (n,d)-packable if for any r € (0,1] and any

d
r-separated set P S X contained in a unit ball, |P|<n(1)".
We call d the packing dimension of the metric and n the packing constant of the metric.
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A folklore result is that the doubling dimension of the Euclidean metric of dimension d is O(d). However,
since the dimension of the metric will appear in the exponent of the separator, treating Euclidean metrics as a
special case of doubling metrics would result in a polynomial loss in the size of the separator. A strength of our
technique is that, we only need the packing bound (Lemma 1)) in the construction of the separator. This property
allows us to unify the construction of both doubling and Euclidean metrics via packable metrics.

By setting R = 1 in Lemma |1} the Euclidean metric and doubling metrics of dimension d are both (7, d)-
packable for some 7 = 2°(®) . We observe that the packing Lemma [1|also holds for (n, d)-packable metric space as
well.

Observation 1. Let B be any ball of radius R in a (n,d)-packable metric space (X,0x), and P € B be any
r-separated set for some r such that 0 <r < R. Then |P| <1 (%)d.

Proof. Scaling the metric by %, B has radius 1 and P is (r/R)-separated. The observation now follows from
Definition O

We observe that the doubling dimension of a (7,d)-packable metric (X,dx) is also close to the packing
dimension of X.

Observation 2. Let Y be a subset of points in an (n,d)-packable metric (X,0x). Let 0y be the restriction of
the distance function 6 on'Y xY. Then (Y,8y) has doubling constant \y < n2¢, and hence doubling dimension
ddimy = d +1log(n).

Proof. Let By (v, R) be a ball of radius R in Y centered at a vertex v € Y. Let N ¢ By (v, R) be a R/2-net of
By (v, R). By Deﬁnition IN| <n2¢. Since By (v, R) can be covered by balls of radius R/2 centered at points in
N, it follows that Ay <729, O

We say that an edge-weighted graph G = (V, E,w) with n vertices is a graph in a metric space (X,0x) if
V ¢ X and for any two vertices u # v eV, w(u,v) = dx(u,v).
3.1 Bounded Degree Graphs We now introduce the lanky property, and then we show that lanky graphs

have sublinear separators.

Definition 6 (7-Lanky). We say that a graph G = (V, E,w) in a metric (X,dx) is 7-lanky if for any non-negative
r, and for any ball Bx (x,r) of radius r centered at a vertex x €V, there are at most T edges of length at least r
that are cut by Bx (z,71).

Intuitively, if G is 7-lanky for a constant 7, then for any ball B of radius r, there is only a constant number
of edges of length at least r coming out from B. We note that there could be as many as Q(|E|) short edges of
G that are cut by B. We observe in the following that if G is lanky, it has small degree.

Observation 3. If G T-lanky, then its mazimum degree is at most T.

Proof. Let v be any vertex in GG, and let r = 0. By Definition [} there are at most 7 edges in G of positive length
that cut the ball B(v,r), which only contains v. Thus, the degree v is at most 7. O

We now show the main theorem in this section: if G is thin and lanky, it has a sublinear separator.

Theorem 5. Let (X,0x) is an (n,d)-packable metric space and G = (V, E,w) is an n-vertex graph in (X,dx)

such that G is T-lanky. Then, G has a (1 - %)—balanced separator S such that |S| = O(mn8%n'~Y%) when d > 2
n2

and |S| = O(tn8%logn) when d = 1. Furthermore, S can be found in O((n*8% +7)n) expected time.

We first show the following lemma, which says that there exists a ball of radius r* that contains a constant
fraction of vertices of G and cut at most O(n'~4@) short edges of G. Our proof uses the random ball technique of
Har-Peled [HP11]; the same technique was used in the construction of Sidiropoulos and Sridhar [SS17].

Lemma 3. There exists a vertex veV and a radius r* such that:

(1) #S|Bx(v,r*)ﬁ‘/|§g
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(2) |E*| = O(rn8n'~Y%) when d > 2 and |E*| = O(mn8%logn) when d = 1. Here E* is the set of all edges in G
of length at most r* that are cut by Bx (v,1*).
38d

Furthermore, v and r* can be found in O((n°8* + 7)n) expected time.

Proof. Let (V,dy) be the submetric of (X,dx) induced by V. By Observation 2| (V,dy) has doubling constant
Av = n2¢. By Lemma [2| we can find in O(A\3n) = O(*8%n) time a vertex v and a radius 7 such that: (a)
By (v,7)] > 33 > sgarr and (b) By (v,2r)| < 3.

Let o € [0,1] be chosen uniformly at random. Let r* = (1 + o)r; r* < 2r since o < 1. By properties (a)
and (b), we have that [Bx (v,r*) n V| = [By(v,r*)[ > [By(v,r)| > ;5 and that [Bx (v,r*) n V| =By (v,r*)| <
By (v,2r)| < 5. Thus, Item (1) is satisfied.

We now bound the expected size of E*, the set of edges of length at most r* that are cut by Bx (v,7*). Let
E’ be the set of edges of length at most 2r that are cut by Bx (v,r*). Then E* ¢ E’. We will bound the expected
size of E' instead, which implies the same bound on the expected size of E*. We partition E’ into two sets My, Mo
where M contains every edge of weight at most rn~'/? and M, = E’~ M;. Observe that every edge e of weight at
most rn~/¢ is cut by By (v,7*) with probability at most T”TJ =n Y4 By Observation |E| < 7n/2, and hence
there are at most 7n/2 edges of weight at most rn~"/¢. Thus, it follows that:

(3.1) E(|M]) < n~Ye(rn)/2 = nt~H/2

We now bound the expected size of My. For each i € [1,[log(2n/%)]], we define r; = 2°"'n"4 and a set

. -1/d .
of edges M3 = {(u,v) € Malr; < w(u,v) < riy1}. Observe that My = Uz[lzolg(% il M. Let N; be a (r;/2)-net of

Bx (v,2r). By Observation [1} we have that:

d d d
2r 4r 8n
3.2 N;| < =n|l———| =n—
(3:2) [Nil n(ri/Z) 77(2"111‘1/‘17“) i

Let NV; be set of balls with center in N; and radius 2:~2n~'/?r. Since r* < 2r, N; covers all points in Bx (v,7*).
Furthermore, since each ball in N; has diameter at most r;, every edge of length at least r; (including edges in M)
will be cut by at least one ball (and at most two balls) in N. Note that the construction of N; is deterministic.

Let E; be the set of edges of length at least r; and at most 2r; that are cut by at least one ball in ;. Since
G is 7-lanky, there are at most 7 edges of length at least r;/2 that are cut by a ball in A;. It follows that

8p
9id

(3.3) |E;| < 7|N;| =Tn

by Equation (3.2). Since every edge in e in E; is cut by Bx(v,r*) with probability at most w(e)/r < ri.1/r.
Thus, it follows that E(|M3]) < |E;|ris1/r. By the linearity of expectation and Equation (3.3)), we have:

[og(2n~Y%)] ‘ O(logn) 8dn Pii
B(Meh= > E(MID= 3 o
(3.9) . o .
ogn i,—1/d ogn %
B d n 2'n T d_1-1/d 1
=718 2 P A— =71n8"n 1:21 (—2(#1

We conclude that E(|Ms|) = O(mn8%logn) when d = 1 and E(|Ms]) = O(mn8%n'~'/?) when d > 2. By
Equation (3.1), we have that:

(3.5) E[|E*] = mn' "2+ O(rn8™n' ") = O(7y8'n' /%)

Thus, by Markov’s inequality, with a constant probability, E* has size O(rn8%n'~/?). Since the running time
to find E* for each random choice of r* is O(|E|) = O(7n), by repeating many times until we find r* such that
E* satisfies Ttem (2), the expected running time is still O(7n). Recall that v can be found in O(7*8%n) expected

time. Thus, the total expected running time is O((738 + 7)n) as claimed. O
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We are now ready to prove Theorem

Proof of Theorem[5 Let v and r* the center and the radius of the ball Bx (v,7*) as in Lemma We define the
function g(d,n) as follows g(d,n) = O(log(n)) when d = 1 and g(d,n) = O(n*~"/%) when d > 2. Let E be the set
of edges that are cut by Bx(v,7*). By Item (2) in Lemma there are at most O(m18%g(d,n)) edges in E of
length at most 7*. Since G is 7-lanky, there are at most 7 edges of length at least * in E. Thus, it holds that

(3.6) |E| = O(mn8%(d,n) + 1)

Let S be the set of all endpoints of edges in E. Then removing S from G disconnects the set of points in B x (v,r*

from the set of points outside Bx (v,r*). Thus, S is a (1 - Tﬂ%)—balanced separator by Item (1) of Lemma
The running time to construct S is dominated by the running time to construct v and 7*, which is O((738% +7)n)
by Lemma O

Observe by the definition that 7-lanky property is closed under taking subgraph: if G is 7-lanky, then any
subgraph H of G is also 7-lanky. Thus, by Theorem [5] we have:

Corollary 1. Let (X,0x) is an (n,d)-packable metric space and G = (V, E,w) is a graph in (X,0x) such that G
is T-lanky. Let H be any subgraph of G with k vertices. Then, H has a (1 - ﬁ)-balanced separator S such that

S| = O(rn8%k~Y4) when d > 2 and |S| = O(tn8% log k) when d = 1. Furthermore, S can be found in O((n>8%+7)k)
expected time given H.

3.2 Graphs with High Vertex Degrees By Observation [3| the 7-lanky property implies that the maximum
degree is bounded by 7. In this section, we introduce another criterion that could be used for graphs with high
vertex degrees. Our criterion is based on two properties: weakly lanky and thin.

Definition 7 (Weakly 7-lanky). A graph G = (V, E,w) in a metric (X,0x) is weakly T-lanky if for any non-
negative r, and for any ball Bx (x,r) of radius v centered at a vertex x € V', there are at most T vertices inside
Bx(z,r) that are incident to all edges of length at least r cut by Bx (x,r).

Observe that 7-lanky implies weakly 7-lanky but the converse statement does not hold. There could be ©(n)
edges of length at least r incident to a single vertex that is cut by a ball of radius r. We observe that the same
proof in Section is applicable to yield a separator of size O(7n'~1/?) for a weakly 7-lanky graph. However, in
this section, we look for a separator of size O(n'~'/? + 7). To this end, we introduce anther property that we call
k-thin.

Definition 8 (x-Thin). A graph G = (V,E,w) in a metric (X,0x) is k-thin if for any 1-separated pair (A, B)
of V', there are at most k edges between A and B.

Our goal in this section is to show the following theorem, which implies that if G is k-thin and weakly 7-lanky,
it has sublinear separator.

Theorem 6. Let (X,0x) is an (1, d)-packable metric space and G = (V, E,w) is a graph in (X, dx) that is weakly
7-lanky and k-thin. Then, G has a (1 - ﬁ)-balanced separator S such that |S| = O(n®M 20D xp1=1/d 4 7Y when

d>2 and |S| = O(n°M 29 klogn+7) when d = 1. Furthermore, S can be constructed in O((n>8* +k)n) expected
time.

In the proof of T heorem@, we follow the same construction presented in Section take a ball By (v,7*) of
random radius r* € [r,2r] centered at a specific vertex v, and construct the separator S by taking the endpoint
inside Bx (v,r*) of every edge cut by the ball. We then show that in expectation, the size of S is small. There
are three places in the proof of Theorem [5| where the 7-lanky property is used to bound the size of the separator;
here we point out how the x-thin property could be used to replace 7. First, the number of edges in F is bounded
by 7n/2, and this fact is used to bound the expected size of of edges M; in Equation . We show in Lemma
below that x-thin property, implies that |E| = O(xn). Second, the number of edges in E of size at most 2r; for
some radius r; cut by some ball of radius at least r; is bounded by 7, and this fact is used to bound the size of F;
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in Equation . We show in Lemma [5| that the number of such edges is O(x) if G is k-thin, thereby, removing
the depedency on 7. Finally, the 7-lanky property is used to bound the number of edges of length at least 2r
cut by Bx (v,7*), which contribute an additive 7 in the size of E in Equation (3.6). Since we can tolerate the
additive term 7 in Theorem [6] we do not need to do anything.

Now we focus on showing that x-thin property implies that G has O(xn) edges. Our proof uses well-separated
pair decomposition. An s-well-separated pair decomposition (s-WSPD) for a point set P for some non-negative
parameter s in a metric (X,dx) is the set of s-separated pairs P = {(A1,B1),...,(Am, Bn)} such that (i)
A, B; S P,A;nB; =@ for all i € [1,m] and (ii) for every pair of points (p,q), there exists a some i € [1,m] such
that either pe A;,qe B; or g€ A; and p € B;.

Lemma 4. If an n-vertex graph G = (V,E,w) in an (n,d)-packable metric (X,0x) is k-thin, then |E| =
O(n°M20dkn).

Proof. Let D ={(A1,B1),(A2,B2),...(An,By)} be a 1-WSPD of V' with minimum number of pairs. Har-Peled
and Mendel (Lemma 5.1 [HPMO6]) show that for any n-point set P in a metric of doubling dimension ddim has
an s-well-separated pair decomposition P with |P| = 20 (ddim) gddim, for any s > 1. Since X has doubling dimension
d +1og(n) by Observation 2 |D| = n°12°9(Dp, For each i € [1,m], let H; be the set of edges between A; and B;.
Since (A;, B;) is 1-separated, |H;| = x by Definition [8] By the definition of well-separated pair decomposition, for
each edge e = (u,v) € F, there exists an index i such that (u,v) or (v,u) is in A; x B;. Thus, Uy H; = E. Tt
follows that:

(3.7) 1Bl = U Hil < 3 || = O(n°M20@ e,
1= =1

as claimed. O

Next, we show that, if G is x-thin, then the number of edges of length at least r and at most 2r cut by a ball
of radius r is O(k).

Lemma 5. Let Bx(x,r) be any ball of radius r centered at some point x € X. If G is k-thin, there are are at
most O(*2°D k) edges of G of length at least v and at most 2r that are cut by Bx (z,r).

Proof. Let Eghort be the set of edges of length in [r,2r]. Observe by the triangle inequality that for every
edge (u,v) € Egort, both endpoints u and v are in Bx(x,3r). Let By, (Bout) be the set of balls obtained

by taking balls of radius § centered at points in a g-net of Bx(z,7) (Bx(z,3r)). By Observation

Bl = 0(n (55)) = O(n6) and Bow = O(n ()" = O(n18?) that covers By (x,3r). Let (Bin, Bout) € Bin x Bous
be a pair of balls such that there exists an edge (u,v) € Egort between them. By the triangle inequality,
6x (Bin, Bout) = 6x (u,v) — diam(Biy,) - diam(Boy) > 7 — 2r/6 — 2r/6 = r/3. Hence, max‘{;gigﬁg;:’gim)} > 1, which
implies that (Biy,, Boyt) is 1-separated. Thus, there are at most « edges between Bj, and Boyy by the definition
of k-thin (Definition . It follows that |Esport| = £|Bin % Bout| = O(n?£108%) = O(n?*2°Mg), as claimed. O

Next, we show the following lemma, which is analogous to Lemma [3| The key difference is that the size of
E*, the set of edges of length at most r* cut by Bx (v, r*).

Lemma 6. Let G = {V,E,w} is a weakly T-lanky and x-thin graph in an (n,d)-packable metric space (X,dx).
There exists a vertex v eV and a radius r* such that:
(1) st < [Bx(v,r*)nV][< 3
(2) |E*| = O(n°M20 xn1=1dy when d > 2 and |E*| = O(n°M2°D glogn) when d = 1. Here E* is the set of
all edges in G of length at most r* that are cut by Bx (v,r*).

Furthermore, v and r* can be found in O(n°M 20D kn) expected time.

Proof. We reuse the notation in the proof of Lemmal[3] Specifically, we construct v,r and 7* as in Lemma 3} Item
(1) follows directly from the construction. Next, we bound the size of E* following the same strategy: partitioning
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1-1/d

E* into two set M7 and My where M is the set of edges with length at most rn and M contains the other

edges. The same argument in Lemma [3| specifically Equation (3.1)), yields:
(3.8) E(|M:]) < n Y4 E| < O(n° M 29D k)p

by Lemma 4

To bound the expected size of My, we partition My into {Mi, ..., Mf,e(2n-1/4y)}, Where M, be the set of
edges with length in (r;, 7441 ]; here r; = 207'n!=1/4; Following the same in Lemma |3, we construct
a set of N of balls of radius 2°-2n""%r = r;/2 covering Bx (v,2r). By Equation 1) NG| = ng;—i?. Let E; by the
set of edges of length at least r; and at most 2r; cut by at least one ball in ;. By Lemma [5] it follows that:

8n n
(39) B < NG = 0(22° Dy = O (320 21

The rest of the argument is exactly the same as the proof of Lemma [3| (with different constants), that yields
E[M,] = O(kn?20@n1=1/4) when d > 2 and E[M,] = O(kn*2°(® log(n)) when d = 1. This in turn implies
|E*| = O(nPM 20D gpl=1/d) when d > 2 and |E*| = O(n°M2°4Dklogn) when d = 1 as desired. The expected
running time bound follow the same line of reasoning in the proof of Lemma O

We are now ready to complete the proof of Theorem [6]

Proof of Theorem [, Let v and r* be the center and radius of the ball Bx(v,r*) in Lemma [6] Let g(d,n) =
O(logn) if d = 1 and g(d,n) = O(n*~Y?) if d > 2. Let S be the set of all endpoints in Bx (v,7*) of edges in
E. Recall that F is the set of edges that are cut by Bx(v,r*). Removing S from G disconnects By (v,7*)
and V N~ By (v,r*). By Item (2) of Lemma @ there are O(n°M2°Dk)g(d,n) edges of length at most 7* cut
by Bx (v,7*). By Definition 7] there are at most 7 points in Bx (v,r*) that are incident to all edges of length
at least v* in E. Thus, S| = O(n°M2°Dg)g(d,n) + 7. By Item (1) of Lemma@ Sisa (1 - nz—}m)—balanced
separator of G. The expected time to find v and r* is O(no(1)2o(d)mn) by Lemma @ Since the time to find all
endpoints in Bx (v,7*) of edges in E is O(|E]) = O(n°M2°@ kn), the total time complexity to construct S is
O(n°M20(d kn). O

Since weakly 7-lanky and x-thin properties are closed under taking subgraphs, we have:

Corollary 2. Let (X,0x) is an (n,d)-packable metric space and G = (V, E,w) is a graph in (X,6x) such that
G is weakly T-lanky and k-thin. Let H be any subgraph of G with k vertices. Then, H has a (1 - ﬁ)-balanced

separator S such that |S| = O(n°M 29 gk =1d 4 1) when d > 2 and |S| = O(n° M 29D klogk + 1) when d = 1.
Furthermore, S can be found in O(no(l)QO(d)nk) expected time given H.

4 Separators of Greedy Spanners for Graphs in Euclidean Spaces

In this section, we prove Theorem [2] Specifically, in Section [4.1} we focus on the greedy spanners of point sets in
Euclidean spaces. In Section we focus on the greedy spanners of point sets that have a low fractal dimension.
In Section we focus on the greedy spanners of unit ball graphs (UBGs).

4.1 Euclidean Spaces First, we focus on proving Theorem |z| below, which implies Item (1) of Theorem

Theorem 7 (Separators for Subgraphs of Greedy Spanners). Let P be a given set of points in the d-dimensional
Euclidean space and G be the greedy (1 + €)-spanner of P for some e € (0,1/2]. Then any k-vertex subgraph H
of G has a (1 - ﬁ)—balanced separator S of size O(QO(d)el’de'l’l/d). Furthermore, S can be found in expected

O((2°D + €12\ k) time given H.

Our goal in the proof of Theorem [7|is to show that the greedy (1 + ¢)-spanner G is 7-lanky for some 7 that
depends on € and d only. To this end, we rely on the following lemma, which bounds the number of edges in the
greedy (1 + €)-spanner between subsets of points X and Y, where X has a small diameter and Y is sufficiently
far from X.

Copyright (©) 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Lemma 7. Let P be a set of n points in R for a constant d and G be a greedy (1+€)-spanner of P for e € (0,1/2].
Let X and 'Y be two subsets of P such that diam(X) < % and | X,Y|> R. Then G has O(e'=%) edges between X
and Y.

Proof. Let x be an (arbitrary) point in X. We cover the space R? by a minimum number of cones with apex z,
each with an angle 6 = €/8; the number of cones in the cover is O(d(“*/2(x/0)4"1) = O(e*~¢) [NSO7]. We show
below that for each cone, there is at most one edge in G between X and the subset of points of Y in the cone. It
then follows that the number of edges in G between X and Y is O(el™%).

(a) (b)

Figure 1: (a) Points y and ¢ of Y are in the same cone bounded by two red dashed lines at apex z and (b) the
triangle xqy with <yzq =.

Suppose for a contradiction that there two edges (s,q) and (¢,y) in G, where s, € X and ¢,y €Y. W.lLo.g,
we assume |zy| > |zql; see Figure[[(a). Our goal is to show that:

(4.10) (L +€)ltyl > 61,4 (¢, y)
which contradicts Fact [I} To that end, we first observe that:
Claim 1. |zy| > |yq| + (1 —€/4)|xq].
Proof. Consider the triangle zyq and let h be the projection of ¢ on xy. Since |xy| > |zg|, h is in the segment
between z and y. Let v = 2yxzq; see Figure[I[(b). Observe that v <6 = €/8 <1 when € € (0,1/2). We have:
lwyl = lyal > lvy| - lyhl| - [hq| = |zh] = |hq| = (cosy = siny)lzq|
> (cos 6 - sin @)|xq| (cos(x) —sin(z) is monotonically decreasing for x € (0,1))
2 (1-20)|zq| = (1 -€/4)|zq| .
The penultimate inequality is due to that cos(z) —sin(z) > 1 - 2z every z € [0,1]. Thus, we conclude that
lzy| > lyg| + (1 — €/4)|zq| as claimed. O
We now prove Equation . We observe that:
A +e)tyl = (1 +e)(|lzy| - |t=|) (by the triangle inequality)
> (1+¢€)(Jygl + (1 —€/4)|zq]) — (1 + €)|tx] (by Claim
> (1+6)|yql + (1 +¢€/2)|xq| - (1 +¢€)|tz| (since 0 < e< 1)
> (1+e€)|ygl + (1 +¢€/2)(|sq| - |zs]) = (1 + )|tz (by the triangle inequality)
> (1+¢€)|yq| +|sq| + eR[2 - (1 +€/2)|xs| - (1 +€)[tx] (since |sq| > |X,Y| > R)
>(1+e€)|yg +sql+ (L +e)lts| +eR/2—  ((1+¢€)|ts|+ (1 +¢€/2)|zs| + (1 + €)|tx|)

< 3(1+€)eR/12 = e(1+€)R/4 since diam(X)< eR/12
>(1+6)|yql +|sql+ (L +¢€)|ts| +eR/2— (1 +€)eR/4
> (1+6)|yq| +|sq| + (1 +¢€)lts| (since € < 1/2)
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Since G is a (1 + €)-spanner, (1 +€)|yq| > da(y,q) and (1 +¢€)|ts| > dg(t,s). Thus, we have:

(1+ )|ty > 0c(y,q) +dc(s,q) +da(t,s)

Observe that max{|yql, |st|} < diam(X) < eR/12 < € X,Y|/12 < €|ty|/12. This implies (1 + ) max{|yq|,|st|} < |ty
when ¢ € (0,1/2]; that is, edge (¢,y) cannot be in the shortest paths from y to ¢ and from s to t in
G. Thus, d6(y,q) = 0a-(ty)(y,q) and dg(t,s) = dg_(t,y)(t,s). Furthermore, since (s,q) is an edge in G,

06 (8,q) = 6G—(t,4)(5,q). Thus, it holds that:

(L + )ty > 0a—(t,y) (¥, @) + 6G-(1,5) (5, @) + OG- (t,9) (£, 8) = (1,9 (t,Y) -
That is, Equation (4.10]) holds as claimed. O

Lemma 8. Let P be a set of n points in R for a constant d and G be a greedy (1+¢)-spanner of P for e € (0,1/2].
Then G is O(e'=24)-lanky.

Proof. Let B(z,r) be a ball of radius r centered at a vertex x € P. Let E be the set of edges of length at least r

that are cut by B(z,7). Let B be a minimum collection of balls of radius {g that covers B(x,r). By Lemma

IB| = O(¢%). We observe that, since every edge in E has length at least the diameter of every ball in B, each edge
in E must be cut by some ball in B.

Consider a ball B € B, and e = (u,v) € F be an edge that is cut by B. W.l.o.g., we assume that u € B. Then
by the triangle inequality, [v, B| > w(e) —diam(B) > r - £} > 7/2 when € < 1/2. Since diam(B) = 57, by Lemma
there are at most O(e'~?) such edges e in E that cut B. Thus, |E| < |B|O(¢'"%) = O(¢'72?); the lemma follows. [

Proof of Theorem[7], When d = 1, the theorem holds trivially. Thus, we assume that d > 2. By Lemma G
is 7-lanky with 7 = O(e'~2?). Since the Euclidean space of dimension d is (7, d)-packable with n = 29(?) by
Lemma by Corollary (1} H has a separator S of size O(el’QdQO(d)kl’l/d). Also by Corollary |1} S can be found
in O((2987 + 724k time. O

4.2 Point Sets of Low Fractal Dimensions We now consider a point set P in R? that has a small fractal
dimension. Since P is still a set of points in R?, Lemma remains true for the greedy (1+¢)-spanner G of P. The
only difference is that, the metric induced by P, by Definition {4} is an (O(1),dy)-packable metric. This implies
a separator of smaller size.

Theorem 8. Let P be a given set of points in R? that has fractal dimension dy¢, and G be the greedy (1+¢€)-spanner
of P. Then any k-vertex subgraph H of G has a (1 - 2O(#df))—balanced separator S of size O(2O(df)el’2dk1*1/df).
Furthermore, S can be found in expected O((2°04) + ' =2N\k) time given H.

Proof. By Definition |4 and Definition [5| the metric induced by P is (O(1),dy)-packable. By Lemma |8 G is
O(er2d)-lanky. By Corollary , every k-vertex subgraph H of G has a (1 - 2Tldf))—balanced separator of size
0(20041) 1=2d}1=1/ds) that can be found in expected O((29(4) + 124k time. O

We note that Theorem [8| implies Item (3) in Theorem

4.3 Unit Ball Graphs In this section, we show that the greedy spanners of UBGs have sublinear separators,
as described in the following theorem. We note that Theorem [J] implies Item (2) of Theorem

Theorem 9. Let G be the greedy (1 + €)-spanner of a unit ball graph in R, Then any k-vertex subgraph H of
G has a (1 - ﬁ)—balanced separator S of size O(QO(d)el‘Qdkl_l/d). Furthermore, S can be found in expected

O((2°) 4+ €12 L) time given H.

Unit ball graphs are intersection graphs of unit balls. Since we scale the metric so that the minimum inter-
point distance is 1, we assume that the unit ball graphs are the intersection graphs of balls of radius p for some
positive p.

We consider the greedy spanners of unit ball graphs. We prove that a greedy spanner of a unit ball graph in a
d-dimensional Euclidean space also admits 7-lanky property. We prove a lemma which is analogous to Lemma [7}
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Lemma 9. Let P be a set of n points in R for a constant d. Let Gg be the unit ball graphs with the set of
centers P and G be a greedy (1 + €)-spanner of G for e € (0,1/2]. Let X and Y be two subsets of P such that
diam(X) < <& and |X,Y|> R. Then G has O(e'™?) edges between X and Y.
Proof. Let = be an arbitrary point in X. We partition the space R? into O(e!?) cones with apex z and angle
6 = €/8. We prove that for each cone C, there is at most one edge in G from X to Y nC. We follow the same
proof strategy of Lemma[7] Assume that there are two edges (s,q) and (¢,y) in G with s,t € X and ¢,y €Y (see
Figure . W.o.l.g., we suppose that |[zy| > |zg|. Our goal is to show that (1 +¢)ddgy (t,y) > dg—(1,y)(t,y), which
contradicts Fact [Il

First, we prove that (¢,y) € E(Gg). By Claim I} we obtain |zy| - |yq| > (1 - €/4)|zg|. Using the triangle
inequality, we have that:

lyal < feyl —(L—e/4) fuql  <[ty|+ |ot] +(1 -€/4) |sz| —(1-€/4) |sq|

(4.11) <Jtyl+[t] 2|sq|-|sz| <$& <<B >R
eR eR eR eR 3R
<ltyl+ —+(1-€/4)—-(1-€¢/)R<ty|+ —+ — - — <ty <2 i <1/2).
ol + 5 + (L= /)55 = (L= R <yl + T+ 55 - S <yl <2 (since < 1/2)

The bound |yq| < 2u implies that y is adjacent to ¢ in G . For any pair of vertices (v1,v2) with vy, v € X, v1 # vg,
we observe that |vivg| < % < R < [ty| € 2u. Hence, v; is adjacent to vy in Gg. Then, we have (¢,s) € E(Gg).
In Lemma [7} we have prove that (1 +¢)|ty| > (1 + ¢)|yq| + |sq| + (1 + ¢)|ts|. Since G is a (1 + ¢)-spanner of Gp,
0c(y,q) < (1+€)oa; (y,q) = (1 +¢€)|yg| and da(t, s) < (1 +€)da,(t,s) = (1 +¢€)|ts|]. Then, we have:

(4.12) (1+ )|ty > 0c(y,q) +dc(q,s) +da(s,t) -

The edge (t,y) cannot be in the shortest path from s to t in G or the path from y to g because |ty| >
max{dc(¥,q),0c5(s,t)}. Since (g,s) € G, we obtain dg_(;,,)(q,5) = dc(g,s). Hence, we have:

(413) (1 + €)|ty| > 5G—(t,y)(ya Q) + 6G—(t,y)(Qa 5) + 6G—(t,y)(5a t) 2 5G’—(t,y) (t, y) .

Thus, (1+€)dg,(t,y) > dg-(t,y)(t,v), a contradiction. O
The proof of Lemma [8 implies that G is O(e!~2¢)lanky. The same proof of Theorem [7| yields Theorem @

5 Bounded Degree Spanners with Sublinear Separators in Doubling Metrics

Chan, Gupta, Maggs and Zhou [CGMZ05], hereafter CGMZ, constructed a (1 + €)-spanner with a maximum
degree of ¢ 9@ for points in doubling metrics of dimension d. We show in this section that their spanner is
r-lanky for 7 = e 9(9). This implies that CGMZ’s spanner has sublinear separator, thereby resolving the question
asked by Abam and Hal-Peled in [AHPI0].

We assume doubling metric (X, dx) has dimension d, minimum pairwise distance 1 and spread A. CGMZ’s
construction relies on a net-tree that we define below.

Definition 9 (Net Tree). Let 79 = 1/4 and Ng = X. For each integer i € [1,[log(A)] +2], we define r; = 2'ry and
N; € Ni_1 be the ri-net of Nij_1. The hierarchy of nets No 2 N1 2...2 Njiog(a)]+2 tnduces a rooted tree T' where:

(1) T has [log(A)] + 3 levels in which level i corresponds to the set of points N; for every i € [0, [log(A)]+2].
(2) The parent of a vertex v at level i € [0, [log(A)]+1] is the closest vertex in N;.1; ties are broken arbitrarily.

Note that since A is the maximum pairwise distance, Njjog(a)j+2 contains a single point. Additionally, the
starting radius ro = 1/4 is an artifact introduced by CGMZ [CGMZ05] to handle some edge cases gracefully; one
could construct the net tree with the starting radius ro = 1.

Since a point x € X may appear in many different nets, we sometimes write (x,7) to explicitly indicate the
copy of z in the net N;. We denote by p(z,) the parent of the point (x,7), which is a point in N;,; when (z,1)
is not the root of the tree T. For each point x € X, we denote by i*(x) the maximum level that x appears in the
net tree T'.
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CGMZ Spanner Construction. The spanner construction of CGMZ has two steps. In the first step, they
construct a (1 + ¢€)-spanner G with O(n) edges using the cross edge rule. Edges of G; are then oriented by the
maximum level of the endpoints: an edge (u,v) is oriented as (u — v) if ¢*(u) < i*(v); if both endpoints have the
same maximum level, then the edge is oriented arbitrarily. CGMZ showed that the out-degree of every vertex of
(1 after the orientation is a constant. In the second step, they reduced the in-degree of every vertex by rerouting
to its neighbors following a rerouting rule. The graph after rerouting edges has bounded degree (for constant e
and d). In the following, we formally describe two steps.

7

CGMZ Algorithm [CGMZ05]: The construction has two steps.

e Step 1: Let vy =4+ 3?2 For each net N; at level i of the net tree T, let E; be the set of all pairs
(u,v) of vertices in N; such that dx (u,v) <yr; and (u,v) has not appeared in Uz;(l) E;. We call E;
the set of cross edges at level i. The edge set of G is the union of all E;’s: E(Gy) = Ul[lfog(A)HQ E;.
Let 61—1) be obtained from G; by orienting every edge (u,v) as (u — v) if i*(u) <i*(v), as (v — u) if
1*(u) >i*(v), and arbitrarily if ¢* (u) = *(v). Let E)i be the set of oriented edges corresponding to
E;.

e Step 2: Let [ =[(1/e)]+ 1. For each point w € N;, i € [0,[log(A)] + 2], N/ (w) = {ve N;: (v -
w) € E(C_JI )} be the set of in-neighbors at level i of w. We construct another directed graph C_¥; with

the same vertex set X as follows. Initially, é—; has no edge. Let I, = {i1,42,...,%m, } be the list of
levels sorted by increasing order such that w has at least one in-neighbor at each level in the list;

my, <0 (w). For each index j < [1,my,,], if j <1, we add every directed edge in E)ij to CT;; otherwise,
j > 1, we choose a point u € N;_; and for every edge (v - w) € E’:—_j, we add an edge (v — u) to 62.

4
We say that (v - w) is rerouted to u. Let G5 be obtained from Ga by ignoring the directions of the
edges; we return G as the output spanner.

Our goal is to show that G5 is 7-lankly for 7 = e 9(?)_ To this end, we show several properties of G; and Go.
CGMZ [CGMZ16] showed the following lemmas.

Lemma 10. G; and 61 have following properties:

(1) For every point u e N;, i€ [0, [log(A)] +2], IN™(u)| < (47)%; Claim 5.9 [CGMZIG].
(2) The out-degree of a vertex u in G is €O ; see Lemma 5.10 [CGMZ10).

The proof of Item (1) in Lemma [10]is by using the packing bound (Lemma [I). For Item (2) in Lemma
CGMZ observed that that for every vertex u, there are O(log(1/¢)) levels where u could have edges oriented out
from w; the bound on the out-degree then follows from Item (1).

Lemma 11 (Lemma 5.12 [CGMZ16]). G5 is a (1 +4€)-spanner of (X,0x) with mazimum degree ¢ (@

CGMZ used the following claim to show the stretch bound (1 + 4€) of G2 (Equation (4) [CGMZ16]). Since
we also use this claim here, we include its proof for completeness.

Claim 2. If (v > w) is rerouted to (v - u), then dx (u,w) < edx(v,w) and dx (v,w) > dx(v,u)/(1+€).

Proof. First, we show that dx (u,w) < edx (v, w). Let ¢ and j be two levels such that (v,w) € E; and (u,w) € Ej.
It follows that dx (v,w) > yr;_1 since (v, w) does not appear in E;_1, and that dx (u,w) < yr; by the definition
of E;. By the construction in Step 2, ¢ > j +1. We have that ox(v,w) > yri-1 > 2l’yrj > M. Thus,
Ox(u,w) < edx (v, w) as claimed.

By the triangle inequality, dx (v,u) < dx (v, w) + dx (w,u) < (1 +€)dx (v, w); the second claim follows. O

Next, we show that any ball of radius  only contains exactly one point that is incident to a long edge in Gj.
Recall that v =4+ % is the parameter defined in |CGMZ Algorithml
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Lemma 12. Let B(p,r) be any ball of radius r centered at some point p. There is at most one point in B(p,r)
that is incident to an edge in Gy with length at least 4~r.

d
More generally, for any parameter 8 > 0, there are at most 2°(® (%) points in B(p,r) that are incident to edges
in Gy of length at least Br.

Proof. By the construction of G, two endpoints of an edge with length at least 4yr must be in r;-net N; such
that r; > 4r. Since any two points in N; has distance at least r; > 47, |B(p,r) N N;| < 1; this implies the first claim.
T

We now show the second claim. Let B be a set of balls obtained by taking balls of radius % centered at

d
points in a (%)—net of B(p,r). By Lemma 1B| = 20(4) (%) . Let Eiong be the set of edges in Gy of length

at least fr. For each ball B € B, there is at most one point in B nB(p,r) that is incident to an edge in Eiong
by the first claim. It follows that the total number of points in B(p,r) incident to an edge in Eiong is at most

B = 20 (%)d. O

Next, we show that there is a small number of edges in G5 between any well-separated pair. For any two sets
A and B, we define r4p = max{diam(A),diam(B)}.

Lemma 13. Let (A, B) be a y-separated pair in (X,0x). Then, there are at most € 94 edges in Gy between A
and B.

Proof. We count the number of directed edges with length at least yr4p betweem A and B in Z;_; (Recall that
vy=4+ 32.) We consider the edges that are directed from A to B; those directed from B to A can be counted
by the same argument. By Claim [2 ' an edge, say (v - u), of length at least yrap from a point v in A must be
rerouted from an edge (v - w) € E(Gl) of length at least 7;:‘3 > ’Yd”lliT(A) It follows that the set of the endpoints
of the directed edges of length at least yrp from A to B is a subset of the set of the endpoints in A, denoted by
Ua, of edges of length at least 22 in G.

By applying Lemma [I2] to a minimum ball enclosing A (of radius at most diam(A)), we have that

d
[U4] = 20(D (7/(1+ )) =200 (1 4+ €)% =200 By Lemma [11} there are at most [U|e” (@) = 20(d)=O(d) = ~0(d)

edges in Gy incident to points in Uga; here we use the fact that € < 1/2. It follows that the number of directed
-0(d)

edges from A to B in (7; of length at least vr 45 is e ©(?. By the same argument, there are ¢ edges from B

to A in 672) of length at least vr4p. The lemma now follows. O

We obtain the following generalization of Lemma

2d
Corollary 3. Let (A, B) be a (B-separated pair in (X,0x). Then there are at most (%) e 9@ edges in Gy
between A and B.

Proof. We have that dx (A, B) > frap. Let A and B be minimum collections of balls with radius % that cover

) d d d
A and B, respectively. By Lemma we have that [A| = 20(4) (;?:‘27“/1((2’%) < 200d) (,&052714/?2@) = 20(d) (%) . By

the same argument, |B| = 20(®) %) Let (A’, B") € Ax B be any pair of balls. Observe that (4'nA,B'nB) is a
there are e (9 edges between A’ n A and B’ n B. It follows that the number

2d 2d
of edges between A and B in Gy is |A||Ble 94 = 20(4) (%) 0 = (%) e 90 since € < 1/2. O

~y-separated pair. By Lemma

Next, we show that that the number of short edges, those of length at least r» and at most yr, cut by a ball
with radius r is small. This reduce the task of showing lankiness of G5 to bounding the number of long edges of

G.

Lemma 14. Let B(p,r) be any ball of radius r centered at some point p. The number of edges with length from
r to yr cut by B(p,r) is e 9D,

Proof. Let Egport € E(G2) be the set of edges of length in [r,yr] cut by B(p,r). Observe by the triangle inequality
that for every edge (u,v) € Egport, both uw and v are in B(p, (7 + 1)r). Let Bin (Bous, resp.) be the minimum
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collection of balls with radius er that covers B(p,r) (B(p, (v + 1)r), resp.). By the packing lemma (Lemma [1f),
B[ = 20 ()" = O and [Byyy| = 200 (21)" = O,

Let (Bin, Bout) € Bin % Bout be any pair in of ball such that there is an edge e = (u,v) between Bj, and
Bout. By the triangle inequality, we have that dx (Bin, Bout) > 0x (u,v) — diam(B;,) — diam(Beoyt) > 7 — 4er.
Thus, 2XWinBoue) 5 roder _ 1ode (Recall that rp

by definition is the maximum diameter of Bj, and

TBin, Bout 2er 2e in,Bout
Boyt.) This implies that (Bin, Bout) is a (1536 )-separated pair. By applying Corollary [3| with 3 = e it
2d
follows that there are (12_7466) ¢ OWd) = 90(d)~0(d) - ~0(d) edges in Egnory between Bj, and Bgu. Thus,
| Eshort| = €_O(d)|Bin x Bout| = e 9@ as desired. 0

8(v, uy=yr

E(Gy) B(p, c¢1)

Figure 2: An edge (v — w) € E(a) incident to a vertex w € B(p,c- ) is rerouted to some point u € B(p,c-r).
—
That is, (v - u) € E(G3).

By Lemma to show that G5 is lanky, it suffices to focus on edges of length at least yr. To that end, we

show the following structure lemma, which bounds the number of directed edges in C_T'l) of length at least vr that
are incident the same vertex w in a ball of radius ¢-r for some parameter ¢ > 1 and rerouted (from w) to other

N
points in the same ball in the construction of G3. See Figure [2| for an illustration.

Lemma 15. Let B(p,c-r) be any ball centered at some point p that has radius c-r >0 for some parameter ¢ > 1.

For every point w e B(p,c-r), there are € 9 ([loge] +1) edges (v —w) in 5I such that (v - w) is rerouted to
a point u in B(p,c-r) and dx(v,u) >r.

Proof. Let I, = {i1,iz,... im, } be the increasing sequence of indices such that N;"(w) # @ for every 1 <t <my,.

Let Pout(w) be the set of vertices v such that (v - w) € E(CTI), (v - w) is rerouted to a point, say u, in B(p, c-r)
and 0x (v,u) > yr. Observe that Poy(w) is a subset of U}y N/ (w). Let i; be the smallest index in I,, such that
Nl’]"(w) N Pout(w) # @. Our goal is to show that Pyyui(w) € Uij]logc]ﬂ N}Zt (w). Recall that I =[(1/e)] + 1, which
is defined in Step 2 of [CGMZ Algorithm] '

Suppose that there exists an integer h > [ +[log c]+3 such that N/ (w)n Py (w) # @. Let vy # v2 be any two

Tj+h

points in Pyys(w) such that vy € NZ]”(w) and vy € ij’ih (w). Let ug be the point such that (v, - w) is rerouted to,
a€{1,2}. (See Figure 8| for an illustration.) By the definition of Py (w), we have that u;,us € B(p,c-r) and that
Ox (vi,u1),0x (ve,uz) >vr. By Claim Ox (vi,w) > %j;ul) > {=. Hence, 7, > 7= by the construction in Step
1 of |CGMZ Algorithm} Since vy € N (w), by the construction in Step 2 of |CGMZ Algorithm|7 ug € N;" (w).
It follows that:

r
>2c-r,

(5.14) §X(w7UQ) > Tijena 2 Tij+h-l 2 2[10gc]+3’r-. >
+ €

15 =
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since € < 1 and ¢-r > 0. However, by the triangle inequality, dx (w,u2) < dx(w,p) + dx(p,us) < 2¢r, which
contradicts Equation 1) Thus, P,y (w) only contains points in Uiigog +2 pyin (w).

T+t

By Item (1) of Lemma there are at most (4)? points in each net that are adjacent to w in G;. Hence,
|Pyut(w)] < (1+ [log ] +3)0(47)¢ = e 9 ([logc] + 1); this implies the lemma. O

w Uy
Uy
h-1 .
B(p: C'T‘)
@ @ Vi,
Uy w
[
v B(G)
’ . N7f ! —;
u1 w E(GZ)
(a) (b)

Figure 3: (a): The positions of uj,us,v1,v2 and w in the net tree and (b) the edges (v1 — w) and (ve - w) are
rerouted to u; and usg, respectively. We show in Lemma [15| that us must be outside B(p, ¢ 7).

We now have all necessary tools to show that G4 is lanky.
Lemma 16. G5 is e_o(d)—lanky.

Proof. Let B(p,r) be a ball of radius r. We assume that r > 1/2 since otherwise, we could enlarge r to 1/2 without
changing the number of edges that cut B(p,r). We show that the number of edges of length at least r cut by
B(p,r) is bounded by € (9 which implies the lemma by the definition (Definition .

Let Eghort be the set of edges of length in [r,yr] cut by B(p,r). Observe by Lemma (14| that | Egport| = e O,
Thus, it remains to focus on the set of edges in Gy of length at least vr cut by B(p,r), which we denote by Fiong.
Let E’)long be the set of directed edges corresponding to Ejgne in é—;

Recall that in the construction of Step 2 of |CGMZ Algoritth some edges in CT; are copied over (_15 (the

case where j > [) while other edges are rerouted to different endpoints (the case where j > 1). Let E)llong be the
set of edges in é—; that are copied from @_1) , and Eﬁmg = Elong \ E)llong. Let EllOng and Eﬁmg be the undirected

counterparts of E)ilong and E‘)fong,

We observe by the definition that if a point is incident to an edge in Ellong, it is also incident to an edge with
length at least 4r in G;. By applying Lemma with 3 = 1, there are 2°(9) points in B(p,r) incident to an edge
with length at least yr in F(G;). By Lemma each of these points is incident to at most e (%) edges in Eiong

since Eiong € E(Ga). Thus, |EL,,| = 20D C@ = O gince e < 1/2.

respectively.

lon

. oy - . - - .
To bound the size of Elzong, we partition Eimg into two sets: EZ = {(v > u) € Eimg | uweB(p,r)} is the
set of edges directed into B(p,r) and Egut ={(u—-y)e E’)ﬁmg | u e B(p,r)} is the set of edges directed out of

B(p,r). We bound the number of edges of E)lzn and Egut in Claim [3| and Claim |4] respectively.
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Claim 3. |E2| = 0@,

Proof. Let j be the index that 4r > r; > 2r. Recall that for each ¢ € [0, [log(A)]+2], E; is the set of cross edge at
level i defined in Step 1. Let ]\—4)1 be the set of edges (v - u) € E)?n such that (a) (v — u) is formed by rerouting
(v - w) to u in Step 2 and (b) (u,w) € E;s for some j' > j. Let E =E2 N J\_jl.

We first bound |J\_4> 1| by showing that every edge in M 1 is directed towards the same endpoint, say w. If so,
|M1| = ¢ 9@ gince u has a degree at most e 9(?) by Lemma Suppose for contradiction that there is another
edge (v > u') € Ml such that u’ # u. We observe by the definition of cross edges in Step 1 that « and u’ belongs
to nets of level at least j. That means they both belong to the net N; at level j since nets are nested. Thus,
dx (u,u’") >r; > 2r by the definition of j. It follows that v and «’ could not both be in B(p,); a contradiction.

It remains to bound |M2| To this end, we define W ={w | I(v - u) € ]\_4)2 s.t. (v — w) is rerouted to u}. We
claim that W < B(p, (4y + 1)r). Let w be an arbitrary point in W. Let u,v be the points that (v - w)
is rerouted to w. Let j' be the index such that (u,w) € Ej;. By the definition of ]\72, j’ < 7. Since
(u,w) € Ejr, dx(u,w) < yr; < 4yr. By the triangle inequality, dx (p,w) < dx(p,u) + dx(u,w) < (4vy + L)r.
Thus, w € B(p, (4y + 1)r), as claimed.

By Claim Sx(v,w) > X Z=. Tt follows that w € N, where h is the minimum index such

1+e =
r

that 7, > f-. Since nets are nested, W ¢ N, n B(p,(4y + 1)r). By the packing lemma (Lemma [1)),

d
IN, 0 B(p, (47 + 1)r)| = 2004 (%) = 9@, By Lemma for each point w € W, there are at most

9D ([log(4y+1)]+1) = 9 edges in Mg. Tt follows that |]\72| = [W| e 9D = O The lemma now follows
from the fact that both Ml and MQ have e (9 edges. O

Claim 4. |E%ut| =0

P A2 2 o(d
Proof. Let U be the set of endpoints in B(p,r) of edges in EZ . By Lemma |E2 .| = O0(|Ule D). Let u be
—
an arbitrary point in U. Let z,y be two points that there exists an edge (v — ) € E(G1) that is rerouted to y.

That is, (u = y) € E)gut' Since E’)gut c Eﬁmg, 5X(u,y) >~r. By Claim we have dx (u,x) > % > {=. Hence,
u € N; where i is the minimum index such that r; > ;7—. It follow that u € N;nB(p,r) and hence, U ¢ N;nB(p,r).

+€

d
By the packing lemma (Lemma , |N; n B(p,r)| = 20 (L) = 20(d)  We conclude that the total number

r/(1+e€)
of edges in M, is bounded by [Ule 9D < |N; nB(p,r)|e 9D = 9D a5 claimed. O
Since E')lzong = E')?n U E')gum by Claim [3| and Claim |ED el = 9D As we showed | Bl = 0,
Thus, |Eiong| = |E110ng| + |E120ng| = e 9@ Since |Esnor| = € 2@, the number of edges of length at least  cut by
B(p,7) i8 |Eshort| + | Elong| = € ©9, as desired. O

6 Separators of Greedy Spanners for Doubling Metrics

In this section, we prove Theorem [d] We begin with the following lemma which bounds the number of edges in
the greedy spanner between two well separated pair.

Lemma 17. Let (A, B) be a (4/€)-separated pair in (X,0x). There is at most one edge in G between A and B.

Proof. Suppose that there are two edges (u,v) and (u’,v") such that v and u’ are in A and v and v’ are in
B. W.lo.g, we assume that dx(u,v) > dx(u',v"). By the definition of separated pairs, the diameters of A and
B are at most (e/4)6x (A, B). Thus, max{dx (u,u"),dx(v,v")} < (e/4)0x (A, B). By Fact [1} dg_(u,v)(u,u") <
(T+e€)dx(u,u’) < (1+€)(e/4)0x (A, B). Similarly, dg_(yu,v)(v,v") < (1+€)dx(v,0") < (1+¢€)(e/4)ox(A4,B). We
have:
6G7(u,v)(uav) < 6G—(u,7j)(uaul) +5G—(u,v)(u,avl)+ 5G—(u,v)(vl7v)
| S — [ —
(615) < (1+e)edx (A,B)/4 < (1+e)edx (A,B)/4
<2(1+e)edx(A,B)/4+0x(u',v") <edx (A, B) +dx(u',v") (since e<1)
<(1+€)dx(u,v) (since dx (A, B) <dx(u',v") <dx(u,v)) .
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Thus, (1+€)dx (u,v) > dg—(u,v)(u,v), contradicting that G is a (1 + ¢)-spanner (Fact . O
We obtain the following corollary of Lemma [T7]

2d
Corollary 4. Let (A, B) be a 8-separated pair in (X,0x). Then, there are at most O (5) edges in G between
A and B.

Proof. Let rap = max{diam(A),diam(B)}. By the definition of 8-separated pairs, rap < %. Let Nso (Ng)
be a (%%)—net of A (B). By Lemma it holds that:

o) diam(A))d O(d)( raB )d: 1y
(6.16) INa| <2 (eﬂmg/s <200 A O(eﬁ) .

d
By the same argument |[Ng| = O (é) . Let A (B) be a collection of balls with radius 6&% centered at points in

A (B). Note that balls in A and B cover A and B, respectively. For any two pairs of balls (A", B’) € A x B, we
observe that (A'nA,B'nB) isa (%)-separated pair. Thus, by Lemma there is at most one edge in G between
A’'n A and B’ n B. Therefore, the number of edges in G between A and B is at most:

1 2d
A 1Bl = |Nal - [Val =0 )
2

by Equation (6.16)); the corollary follows. O

Next, we show that G is lanky.

Lemma 18. Let P be a set of n points in a metric (X,0) of dimension d and spread A. Let G be a greedy
(1 + €)-spanner for P with e € (0,1/2]. Then G is O(e *log(A))-lanky.

Proof. Let B(p,r) be a ball of radius r centered at a point p € P.We assume that the minimum distance is at
least 1 and that r > 1/2; otherwise, we could increase r to 1/2 without changing the number of edges that cut
B(p,r).

Let E.yt be the set of edges with length at least 1 and cutting B(p,r). We partition the set Ee, into O(log A)
subsets: B’ = {(u,v) € Eey | 2'r < 6x (u,v) <2771} for 1 <i < [log A]. Let (u,v) be an edge in E! . Since (u,v)
is cut by B(p,r), at least one of the two endpoints, say u, of (u,v) is in B(p,r). By the triangle inequality, it
follows that dx (p,v) < 0x (u,v) +6x (p,u) < (27 + 1)r.

Let t = max{e2‘r,7}/4. Let Bg for R > 0 be a minimal collection of balls of radius ¢ that covered the ball
B(p, R) of radius R centered at p; Br can be constructed by taking balls of radius R centered at a R-net of

B(p,R). By Lemma when R =r, we have:
Y
B,| = 90(d) = 90(d)
1Bl r/4
and when R = (2! + 1)r, we have:

2i+1 4 1)\
Bygis 1y, | = 20@ (7 =0(e)™
IB(2i+141)r] 2/ (€)
since € < 1/2. '
Let A and B be two balls in B, and B(zi+1,1),, respectively, that contain two endpoints of an edge (u,v) € EZ,,;.
Observe by the triangle inequality that:

5x (A, B) > w(u,v) - diam(A) - diam(B) > w(u,v) - 4(e2'r/4) = 2°(1 - €)r > 2" !¢

since € < 1/2. By Corollary [4 with 8 = 27 - %, it follows that there are O(1)™? edges between A and B. Thus,

e2irf/4
we have: .
[Bil = O 1B, |- Bar 1y, = O(0)
It follows that |Eey| = O(€)™?log(A), which implies the lemma. O
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We are now ready to show Theorem [4]

Theorem 4. Let (X,0x) be a doubling metric of n points with a constant doubling dimension d. Let G be a
(1 + €)-greedy spanner of (X,0x). G has a balanced separator of size O(n*~"% +log(A)) when d > 2 and of size
O(log(n) +1log(A)) when d =1.

Proof. By Lemma G is T-lanky with 7 = O(e"%log(A)), and hence G is weakly 7-lanky with the same
parameter. By applying Corollary 4| with 8 = 1, G is k-thin with x = ¢2¢. Since a doubling metric of
dimension d is (n,d)-packable with 7 = 2°( by Lemma by Corollary H has a separator S of size
020D ed(l=dp1=1d L 1og(A))) = O(k'"H?) for fixed constants d and e € (0,1/2]. Also by Corollary [1} S
can be found in 029 e!=24k) = O(k) expected time. O
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