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Abstract

Let G = (V,E,w) be a weighted undirected graph on |V | = n vertices and |E| = m edges, let k ≥ 1 be any
integer, and let ϵ < 1 be any parameter. We present the following results on fast constructions of spanners
with near-optimal sparsity and lightness,1 which culminate a long line of work in this area. (By near-optimal
we mean optimal under Erdos’ girth conjecture and disregarding the ϵ-dependencies.)

� There are (deterministic) algorithms for constructing (2k− 1)(1+ ϵ)-spanners for G with a near-optimal

sparsity of O(n1/k · log(1/ϵ)/ϵ)). The first algorithm can be implemented in the pointer-machine model
within time O(mα(m,n) · log(1/ϵ)/ϵ)+SORT(m)), where α(·, ·) is the two-parameter inverse-Ackermann
function and SORT(m) is the time needed to sort m integers. The second algorithm can be implemented
in the Word RAM model within time O(m log(1/ϵ)/ϵ)).

� There is a (deterministic) algorithm for constructing a (2k−1)(1+ ϵ)-spanner for G that achieves a near-

optimal bound of O(n1/k ·poly(1/ϵ)) on both sparsity and lightness. This algorithm can be implemented in
the pointer-machine model within time O(mα(m,n) ·poly(1/ϵ)+SORT(m)) and in the Word RAM model
within time O(mα(m,n) · poly(1/ϵ)).

The previous fastest constructions of (2k − 1)(1 + ϵ)-spanners with near-optimal sparsity incur a runtime

of is O(min{m(n1+1/k) + n logn, k · n2+1/k}), even regardless of the lightness. Importantly, the greedy

spanner for stretch 2k − 1 has sparsity O(n1/k) — with no ϵ-dependence whatsoever, but its runtime is

O(m(n1+1/k +n logn)). Moreover, the state-of-the-art lightness bound of any (2k− 1)-spanner (including the
greedy spanner) is poor, even regardless of the sparsity and runtime.

1 Introduction

Let G = (V,E,w) be a weighted undirected graph on |V | = n vertices and |E| = m edges. We say that H is
a t-spanner for G, for a parameter t ≥ 1, if H preserves all pairwise distances of G to within a factor of t; the
parameter t is called the stretch of the spanner. (A more detailed definition appears in Section 2.) The most basic
requirement from a low-stretch spanner is to be sparse, i.e., of small size; the normalized notion of size, sparsity,
is the ratio of the spanner size to the size n− 1 of a spanning tree. A generalized requirement is to have a small
weight; the weight of a spanner is the sum of its edge weights, and the normalized notion of weight, lightness, is
the ratio of the spanner weight to the weight w(MST(G)) of a minimum spanning tree MST(G) for G.

Sparse and light spanners have been studied extensively over the years, and have found a wide variety
of applications across different areas, from distributed computing and motion planning to computational
biology and machine learning. As prime examples, they have been used in achieving efficient broadcast
protocols [ABP90, ABP92], for synchronizing networks and computing global functions [Awe85, PU89a, Pel00], in
gathering and disseminating data [BKR+02, VWF+03, DK02], and to routing [WCT02, PU89b, ABLP89, TZ01b].

The holy grail is to achieve optimal tradeoffs between stretch and sparsity and between stretch and lightness,
within a small running time. For unweighted graphs, this goal has been achieved already in the mid 90s, via a
simple yet clever clustering approach due to Halperin and Zwick [HZ96]: A linear-time construction of (2k − 1)-
spanners with the optimal (under Erdos’ girth conjecture [Erd64]) sparsity ofO(n1/k); we note that, for unweighted
graphs, the sparsity and lightness parameters coincide.

The fundamental question underlying this work is whether one can achieve this goal in general weighted
graphs. Chechik and Wulff-Nilsen [CW16] gave a poly-time construction of (2k− 1)(1 + ϵ)-spanners with a near-
optimal bound of O(n1/k · poly(1/ϵ)) on both sparsity and lightness; by near-optimal we mean optimal under

*The full version of the paper can be accessed at https://arxiv.org/abs/2108.00102v1
�University of Massachusetts Amherst.
�Tel Aviv University.
1The sparsity (respectively, lightness) is a normalized notion of size (resp., weight), where we divide the size (resp., weight) by the

size n− 1 of a spanning tree (resp., the weight w(MST) of a minimum spanning tree MST).
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Erdős’ girth conjecture and disregarding the ϵ-dependencies. Although the runtime of the construction of [CW16]
is polynomial, it is far from linear. Is it possible to achieve a fast — ideally linear time — spanner construction
with the same guarantees? This question is open even disregarding the lightness: All known spanner constructions
with near-optimal sparsity incur a rather high runtime.

Next, we survey the main results on spanners for general graphs, starting with sparse spanners and proceeding
to light spanners. Subsequently, we present our contribution.

Sparse spanners. Graph spanners were introduced in the late 80s [PS89, PU89a]; initially, the focus was on
the stretch-sparsity tradeoff. For unweighted graphs, the aforementioned construction of [HZ96] gives an optimal
result. We shall henceforth consider general n-vertex m-edge weighted graphs. The “greedy spanner” is perhaps
the most basic spanner construction, introduced in the seminal work of Althöfer et al. [ADD+93]. For any integer
parameter k ≥ 1, it provides a (2k− 1)-spanner with sparsity O(n1/k). On the negative side, the running time of
the greedy spanner is rather high, namely O(m(n1+1/k + n log n)).

The celebrated paper of Baswana and Sen [BS03] presents a randomized algorithm for constructing (2k− 1)-
spanners with sparsity O(n1/k · k), within time O(m · k). Roditty, Thorup and Zwick [RTZ05a] derandomized the
Baswana-Sen [BS03] algorithm, without any loss in parameters. This result is optimal except for an extra factor
of k that appears in both the spanner size and the runtime bound.

Building on Miller et al. [MPVX15], Elkin and Neiman [EN18] gave a randomized algorithm for constructing
(2k − 1)(1 + ϵ)-spanners with sparsity O(n1/k · log k · log(1/ϵ)/ϵ), within time O(m), for any ϵ < 1; in fact,
their runtime analysis overlooks the time consumed by a certain bucketing procedure, which, at least naively,
requires Ω(SORT(m)) time, where SORT(m) is the time needed to sort m integers. Alstrup et al. [ADF+19]
achieved a deterministic algorithm with the same guarantees; we note that time Ω(SORT(m)) is also needed by
the construction of [ADF+19] for the same reason. These results demonstrate that by incurring an arbitrarily
small multiplicative error of 1+ϵ to the stretch bound, one can achieve, within linear time (modulo the overlooked
time needed for integer sorting), a near-optimal sparsity bound, except for an extra log k factor. Additional results
are summarized in Table 1.

As shown in Table 1, the previous state-of-the-art runtime for constructing (2k − 1)(1 + ϵ)-spanners with
near-optimal sparsity is O(min{m(n1+1/k) + n log n, k · n2+1/k}), even regardless of the lightness.

Question 1. Can one achieve a (nearly) linear time spanner construction with near-optimal sparsity?

We answer Question 1 in the affirmative by presenting two algorithms for constructing spanners with near-
optimal sparsity in near-linear time. Specifically, we prove the following result. (Refer to Table 1 for a detailed
comparison between our and previous results.)

Theorem 1.1. For any weighted undirected n-vertex m-edge graph G, any integer k ≥ 1 and any ϵ < 1, one
can deterministically construct (2k− 1)(1+ ϵ)-spanners with a near-optimal sparsity of O(n1/k · log(1/ϵ)/ϵ). This
construction can be implemented:

� In the pointer-machine model within time O(mα(m,n) · log(1/ϵ)/ϵ+ SORT(m)).2

� In the Word RAM model within time O(m log(1/ϵ)/ϵ).3

We remark that α(m,n) = O(1) when m = Ω(n log∗ n). In fact, α(m,n) = O(1) even when m = Ω(n log∗(c) n)

for any constant c, where log∗(ℓ)(.) denotes the iterated log-star function with ℓ stars; that is, O(mα(m,n)) is

bounded by O(m + n log∗(c) n) for any constant c. Thus the running time in the first item of Theorem 1.1 is
linear in m in almost the entire regime of graph densities, i.e., except for very sparse graphs. Moreover, even

2In the pointer machine model, one can perform binary comparisons between data, arithmetic operations on data, dereferencing

of pointers, and equality tests on pointers. The model does not permit pointer arithmetic or tests other than equality on pointers
and thus is less powerful than the RAM model [Tar79].

3The Word RAM model is similar to the classic unit-cost RAM model, except that (1) For a word length w ≥ 1 the contents of all

memory cells are integers up to 2w. (2) Some additional instructions are available; in particular, the available unit-time operations
are those from the restricted instruction set : addition and subtraction, (noncyclic) bit shifts by an arbitrary number of positions,
and bitwise boolean operations, but not multiplication. (3) It is also assumed that w ≥ logn. We note that if the running time of the

algorithm depends on the input size but not on the word size, then the model is further called Transdichotomous model; the running
time of our algorithms do not depend on the word size.
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Stretch Sparsity Lightness Construction Time Ref

(2k − 1) O
(︂
n1/k

)︂
O (n/k) O

(︂
mn1+1/k + n logn

)︂
[ADD+93]

(2k − 1)(1 + ϵ) O
(︂
n1/k

)︂
O
(︂
kn1/k

)︂
O
(︂
mn1+1/k + n logn

)︂
[CDNS92]

(2k − 1) O(n1/k) — O
(︂
kn2+1/k

)︂
[RZ11]

(2k − 1) O
(︂
k · n1/k

)︂
— O

(︂
kmn1/k

)︂
[TZ01a]R

(2k − 1)(1 + ϵ) O
(︂
n1/k

)︂
O
(︂
kn1/k

)︂
O
(︂
kn2+1/k

)︂
[ES16]

(2k − 1)(1 + ϵ) O
(︂
n1/k

)︂
O
(︂
n1/k · k/ log k

)︂
O
(︂
mn1+1/k + n logn

)︂
[ENS15]

(2k − 1)(1 + ϵ) O
(︂
n1/k

)︂
O
(︂
n1/k

)︂
nΘ(1) [CW18]

(2k − 1)(1 + ϵ) O
(︂
n1/k

)︂
O
(︂
n1/k

)︂
O
(︂
mn1+1/k + n logn

)︂
[FS20]

(2k − 1)(1 + ϵ) O
(︂
n1/k

)︂
O
(︂
n1/k

)︂
O(n2+1/k+ϵ′) [ADF+19]

(2k − 1) O
(︂
k · n1/k

)︂
— O (km) [BS07]R [RTZ05b]

(2k − 1)(1 + ϵ) O
(︂
k · n1/k

)︂
O
(︂
kn1/k

)︂
O (SORT(m) + km+ n logn) [ES16]

(2k − 1)(1 + ϵ) O(log k · n1/k) O
(︂
k · n1+1/k

)︂
O(SORT(m) + n · logn) [EN18]R

(2k − 1)(1 + ϵ) O
(︂
log k · n1/k

)︂
— O(SORT(m)) [EN18, ADF+19]

(2k − 1)(1 + ϵ) O
(︂
log k · n1/k

)︂
O
(︂
log k · n1/k

)︂
O(SORT(m) + n · logn) [ADF+19]

(2k − 1)(1 + ϵ) O(n1/k) — O(mα(m,n) + SORT(m)) Theorem 1.1 P

(2k − 1)(1 + ϵ) O(n1/k) — O(m) Theorem 1.1 W

(2k − 1)(1 + ϵ) O(n1/k) O(n1/k) O(mα(m,n) + SORT(m)) Theorem 1.2 P

(2k − 1)(1 + ϵ) O(n1/k) O(n1/k) O(mα(m,n)) Theorem 1.2 W

Table 1: Table summarizing known and new spanner constructions for general weighted graphs, for stretch values
of 2k − 1 and (2k − 1)(1 + ϵ). In the top and middle parts of the table we list rather slow and fast known
spanner constructions, respectively. Our new results appear at the bottom. Results marked with R correspond
to randomized constructions. We use the superscript marks P and W to distinguish between the new algorithms
that apply to the pointer-machine versus the Word RAM models, respectively.

when α(m,n) is super-linear, it can still be viewed as constant for most practical purposes. However, there is
a significant qualitative difference between truly linear-time and nearly linear-time algorithms, and shaving this
factor for the entire regime of graph densities, as provided by the second item of Theorem 1.1, is of fundamental
theoretical importance.

The previous linear-time algorithms for constructing sparse spanners in general weighted graphs [MPVX15,
EN18, ADF+19] achieve a sub-optimal sparsity bound of O(n1/k · log k · log(1/ϵ)/ϵ), and, as mentioned, their
runtime is actually O(SORT(m)). Moreover, these constructions, as well as all other spanner constructions with
runtime o(km) (including ours), use a hierarchical clustering approach that involves constructing a so-called
cluster graph in each level of the hierarchy. Importantly, the cluster graph is a simple graph (without self loops
and parallel edges), and all the previous works either overlooked the time needed to guarantee that the cluster
graph is simple or they included an extra factor of α(m,n) in the runtime bound — due to the usage of the
classic Union-Find data structure [Tar75]. We demonstrate that this factor can be shaved via a novel clustering
approach, which we name MST-clustering; refer to Subsection 1.1 for a discussion on the technical details.

Light spanners. Like sparsity, the lightness of spanners has been extremely well-studied. Althöfer et
al. [ADD+93] showed that the lightness of the greedy (2k − 1)-spanner is O(n/k). Despite extensive research,
the state-of-the-art lightness bound of any known (2k − 1)-spanner construction (including the greedy spanner)
remains poor, even regardless of the sparsity and runtime. It is thus only natural to explore the lightness bound
for a slightly increased stretch of (2k − 1)(1 + ϵ), where ϵ < 1 is an arbitrarily small parameter of our choice.
Chandra et al. [CDNS92] showed that the greedy (2k− 1)(1 + ϵ)-spanner has lightness O(k · n1/k · (1/ϵ)2). There
was a sequence of works from recent years on light spanners [ES16, ENS14, CW16, FS20, EN18, ADF+19, LS21].
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In particular, a construction of (2k−1)(1+ ϵ)-spanners with a near-optimal lightness of O(n1/k ·poly(1/ϵ)) within
a runtime of O(mα(m,n) was presented recently [LS21], where α(·, ·) is the inverse-Ackermann function; on the
negative side, the sparsity of the construction of [LS21] is unbounded. As mentioned, the construction of [CW16]
achieves a near-optimal bound of O(n1/k · poly(1/ϵ)) on both sparsity and lightness, but its runtime is far from
linear. The result of Filtser and Solomon [FS20] implies that the greedy spanner achieves the same bounds as
the construction of [CW16], but the runtime O(m(n1+1/k + n log n)) of the greedy spanner is also rather high.
The construction of [ADF+19] is nearly linear, but the sparsity bound and lightness bound are suboptimal, as
indicated in Table 1.

Question 2. Can one achieve a (nearly) linear time spanner construction with a near-optimal bound on both the
sparsity and lightness?

We answer Question 2 in the affirmative by presenting an algorithm for constructing (2k− 1)(1+ ϵ)-spanners
with near-optimal sparsity and lightness in near-linear time, which culminates a long line of work in this area.
Specifically, we prove the following result.

Theorem 1.2. For any weighted undirected n-vertex m-edge graph G, any integer k ≥ 1 and any ϵ < 1, one
can deterministically construct (2k − 1)(1 + ϵ)-spanners with a near-optimal bound of O(n1/k · poly(1/ϵ)) on both
sparsity and lightness. This construction can be implemented:

� In the pointer-machine model within time O(mα(m,n) · poly(1/ϵ) + SORT(m)).

� In the Word RAM model within time O(mα(m,n) · poly(1/ϵ)).

We obtain the result of Theorem 1.2 by strengthening the framework of [LS21] for fast constructions of light
spanners to achieve a near-optimal bound on the sparsity as well. To this end, we plug the ideas used in the
proof of Theorem 1.1, in conjunction with numerous new insights, on top of the framework of [LS21] in a highly
nontrivial way. Our MST-clustering approach plays a key role not just in the proof of Theorem 1.1, but also in
the proof of Theorem 1.2; refer to Subsection 1.1 for more details.

1.1 Technical Highlights Our spanner construction is inspired by the constructions of [MPVX15], [EN18]
and [ADF+19], which we briefly review next. All these constructions achieve a runtime of O(m), modulo the
time needed for sorting the edge weights; we shall elaborate on this point later. The construction of [MPVX15]
achieves stretch O(k) with sparsity O(n1/k log(k))), while the two other constructions achieve the same sparsity
but with a stretch of (2k − 1)(1 + ϵ). (For clarity, we shall ignore the dependency on ϵ in the sparsity bounds.)

The construction of [MPVX15]4 starts by dividing the edge set into µk
def.
= O(log k) sets {E1, E2, . . . , Eµk},

such that for each set Eσ, σ ∈ [1, µk], any two edge weights are either within a factor of 2 from each other or
they are separated by at least a factor of kc for some constant c. The algorithm then focuses on constructing a
spanner Hσ for each edge set Eσ separately; the sparsity of Hσ is O(n1/k), which ultimately leads to a sparsity
bound of O(µk · n1/k) = O(log(k) · n1/k) of the final spanner H. In the construction of Hσ, the edge set Eσ is
further divided into smaller subsets {Eσ

1 , E
σ
2 , . . .}, where edges in the same set Eσ

i have the same weights up to
a factor of 2, and the weights of edges in Eσ

i are at least kc times greater than the weights of edges in Eσ
i−1,

for each i. The construction of [MPVX15] uses a hierarchy of clusters and an unweighted cluster graph Ri for
each level i of the hierarchy. The vertex set of Ri corresponds to a subset of level-i clusters that are incident to
at least one edge in Eσ

i , and the edge set of Ri corresponds to a subset of edges in Eσ
i interconnecting level-i

clusters. A preprocessing step is applied to the construction of Ri to remove parallel edges, which are edges in Eσ
i

connecting the same two level-i clusters, and self-loops, which are edges in Eσ
i whose both endpoints are in the

same level-i cluster. The construction of [MPVX15] then builds an O(k)-spanner for the (unweighted) graph Ri

to obtain a subset of edges Si of E
σ
i to add to Hσ. Next, vertices in Ri are grouped into a set U of subgraphs of

(unweighted) diameter Θ(k); each subgraph in U is then transformed into a level-(i+1) cluster. The construction
then continues to level i+ 1, then to level i+ 2, etc., until all the edges in the graph have been considered. The
construction of the (unweighted) O(k)-spanner of Ri and the set of subgraphs U is randomized and based on
sampling from an exponential distribution.

4The algorithm used in [MPVX15] is parallel, and our interpretation of it is in the standard sequential model.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



The construction of [EN18] builds on that of [MPVX15]. First, it partitions the edge set into µk,ϵ =
O(log(k)/ϵ) sets of edges instead of O(log k) sets as in [MPVX15]; the idea is that for each set Eσ, σ ∈ [1, µk,ϵ],
any two edge weights are either within a factor of 1 + ϵ from each other, or are separated by at least a factor
of kc for some constant c. Next, the construction of [EN18] uses the same idea of [MPVX15] to construct the
spanner of Ri and the set of subgraphs U . However, the stretch of the spanner is improved to (2k − 1), which
readily implies a stretch of (4k−2)(1+ ϵ) for the final spanner. We note that the stretch is (4k−2)(1+ ϵ) instead
of (2k − 1)(1 + ϵ), due to a subtlety involving randomness in [MPVX15]. With a more sophisticated analysis,
[EN18] resolves this subtlety and reduces the stretch to (2k − 1)(1 + ϵ). The sparsity of the final spanner is
O(µk,ϵ · nk) = O(log(k) · n1/k), ignoring the dependence on ϵ.

Unlike the constructions of [MPVX15, EN18], the construction of [ADF+19] is deterministic. A central idea
in the construction of [ADF+19], inspired by an earlier work [ES16], is to use a modified version of the Halperin-
Zwick algorithm [HZ96] in the construction of the spanner of Ri. The spanner of Ri has stretch (2k − 1), which
implies the final stretch of (2k − 1)(1 + ϵ). The sparsity of the spanner remains O(µk,ϵ · nk) = O(log(k) · n1/k),
as in [MPVX15, EN18].

We note the following points regarding the aforementioned constructions.

1. First, the sparsity incurs an extra factor of O(log k), i.e., it is O(log(k) · n1/k) rather than O(n1/k). This
is inevitable, since subgraphs in U of Ri have a diameter of Θ(k), hence the weights of edges in Eσ

i+1 and
Eσ

i must be at least a factor of kc apart from each other, which ultimately leads to a factor O(log k) in the
number of sets that the edge set E is partitioned to.

2. Second, each set Eσ is partitioned into O(logU) sets {Eσ
1 , E

σ
2 , . . .}, where U is the maximum edge weight.

Thus, at least naively, the partition of Eσ can be constructed in time O(m + logU) rather than O(m),
where U could be unbounded. One way to avoid the dependency on U is to sort all edge weights of Eσ,
which requires time SORT(m). We note that the computation of the partition of Eσ into subsets has been
overlooked in the aforementioned constructions [MPVX15, EN18, ADF+19]. In the Word RAM model, we
use the simple observation that O(logU) is roughly the word size to guarantee that such a partition can be
computed within O(m) time.

3. Third, the aforementioned constructions involve constructing a cluster graph Ri associated with each level
i of the hierarchy. While the details of maintaining Ri are not precisely described in these constructions,
we observe that Ri can be efficiently maintained using the Union-Find data structure. However, the total
runtime would be O(mα(m,n)) rather than O(m). We next show that the non-optimal sparsity bound
of O(n1/k log k) achieved by the previous works can be used to remove the factor α(m,n). Observe that
mα(m,n) = O(m) when m = Ω(n log log(n)). If m = O(n1+1/k log k), we can simply return the whole
graph as the output spanner. Otherwise, m = Ω(n1+1/k log k) = Ω(n log log n) for every k ≥ 2, in which
case the total time to construct a spanner of size O(n1+1/k log k) is O(mα(m,n)) = O(m). However, the
same argument fails when aiming for the near-optimal sparsity bound of O(n1/k) that we achieve (e.g.,
O(n1+1/k) = O(n) when k = Ω(log n)). To construct a spanner with a sparsity of O(n1/k) in O(m) time,
one must overcome the “Union-Find barrier”. We note that even in the cell-probe model, which is stronger
than the Word RAM model, one cannot avoid the factor α(m,n) in the Union-Find data structure [FS89].

Our first construction is in the pointer-machine model; there we overcome the “(unweighted) diameter barrier”
of Θ(k) of subgraphs in U constructed from Ri: Subgraphs in our construction have (unweighted) diameters of

O(1). As a consequence, we demonstrate that it suffices to partition E into µϵ
def.
= O( 1ϵ log(1/ϵ)) sets instead of

O(log k/ϵ) sets, which ultimately leads to the optimal sparsity of O(n1/k), ignoring the dependence on ϵ. The key
idea behind our construction is rather simple — we prove that it suffices to construct level-(i + 1) clusters from
level-i clusters such that the total number of clusters is reduced by Ω(|V (Ri)|). We then use the Halperin-Zwick
algorithm [HZ96] to construct a (2k−1)-spanner for Ri. Next, we construct the set of subgraphs U greedily, with
each having diameter O(1). By using the Union-Find data structure in the construction of Ri, the total running
time of our algorithm is O(mα(m,n)), plus an additive term of SORT(m) needed for computing the partition
of Eσ as discussed above. Note that we cannot use the trick that we provided earlier to remove the α(m,n)
factor since our spanner construction does not have any slack on the sparsity. Our construction is deterministic,
it improves the aforementioned constructions [MPVX15, EN18, ADF+19] — yet is arguably simpler.
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Our linear-time spanner construction in the Word RAM model is based on a novel clustering approach, which
we name MST-clustering. Specifically, we guarantee that the subgraphs induced by clusters are subtrees of a
minimum spanning tree (MST) of the graph, denoted by MST, and hence, every Union operation is performed
along the edges of MST. That is, each Union operation is of the form Union(u, v), where (u, v) is an edge in MST.
As a result, we are able to determine all the Union operations even before the cluster construction takes place.
This allows us to use a refined Union-Find data structure, by Gabow-Tarjan [GT85], which has O(1) amortized
cost per Union/Find operation. To the best of our knowledge, this is the first time that the MST serves as
the union tree in the Gabow-Tarjan Union-Find data structure, other than in applications that directly concern
MST.

The idea of using the MST in the context of clustering in spanner constructions is quite surprising. In many of
the known spanner constructions, clusters in the cluster hierarchy need to satisfy a diameter constraint. That is,
clusters at level-i should have a diameter of at most f(Li), for some function f , often a linear function, where Li

is an upper bound on the edge weights in Eσ
i . In particular, the approaches of [MPVX15, EN18, ADF+19, LS21]

utilize the fact that some edges (not in MST) have been added during the construction of clusters at lower levels,
and use these edges to construct clusters that satisfy the diameter constraint. By restricting ourselves to only use
MST for clustering, it seems much more challenging (and perhaps impossible at first) to guarantee the diameter
constraint for level-i clusters. Our key insight is that it is still possible to do so, and to this end we rely on the cycle
property of MST, both for arguing that clusters have small diameters and for constructing clusters efficiently.

Finally, we show how to construct a spanner with near-optimal sparsity and lightness. Our construction
builds on the fast construction of spanners with near-optimal lightness in [LS21]. The construction of [LS21]
has a preprocessing step and a main construction step. In the preprocessing step, every edge of weight at most
w(MST)
mϵ is added to the spanner. Clearly the number of edges added in this step could be as large as Ω(n2) (for

dense graphs). Our first observation is that, except for MST edges, edges added in the preprocessing step are not
involved in the main construction step, and hence we can apply our sparse spanner construction from Theorem 1.1
to reduce the number of edges added in the preprocessing step to O(n1+1/k). The main construction step is based
on a cluster hierarchy. However, clusters in [LS21] are “equipped” with a potential function, and the challenge
of the cluster construction is to guarantee a sufficient reduction in the potential values between two consecutive
levels of the hierarchy. A cluster graph is also used to select a subset of edges in Eσ

i to add to the spanner.
Again, the number of edges added in this step could be as large as Ω(n2). In order to obtain a spanner with
near-optimal guarantees on both sparsity and lightness, we employ the insight that we developed in this paper for
the construction of sparse spanners, by constructing clusters in such a way that, between two consecutive levels,
there is a sufficient reduction not just in the potential values, but also in the number of clusters. This, in turn,
makes the task of constructing clusters much more challenging; indeed, a-priori, it is unclear that it is possible to
achieve both objectives via a single (fast) spanner construction.

The spanner construction of [LS21] constructs level-(i + 1) clusters in 5 steps; each level-(i + 1) cluster
corresponds to a subgraph of a cluster graph Ri. We note that the cluster graph Ri in this construction is
different from the cluster graph used in the sparse spanner constructions in that its MST, denoted by ˜︃MSTi, is
derived from the MST of G. We observe that among the 5 steps used in [LS21], there are two steps where the
reduction in the number of clusters is not guaranteed. Furthermore, the clusters formed in these two steps are
subgraphs of ˜︃MSTi. Thus, our idea is to apply the insights we developed in the sparse spanner construction in the
Word RAM model to this setting. However, there are two subtleties in the construction of [LS21] that we need to
address. First, the cluster graph Ri has weights on both edges and vertices. As a result, ˜︃MSTi also has weights on
both edges on vertices. Second, clusters in the construction of [LS21] contain virtual vertices; these vertices are
not in the input graph and are introduced to support the design of the potential function for clusters. We show
an analogous version of the cycle property for ˜︃MSTi. We use this property, in addition to several other technical
ideas, to transfer insights that we developed in the construction of sparse spanners in the Word RAM model to
the cluster construction in this setting. As a result, our spanner construction that achieves near-optimal bounds
on both sparsity and lightness is much more involved than our two aforementioned constructions (which prove
Theorem 1.1) with near-optimal sparsity but possibly huge lightness.

2 Preliminaries

We denote by G = (V,E,w) a graph G with vertex set V , edge set E, and weight function w : E(G)→ R+ on its
edges. We denote by MST(G) the minimum spanning tree of G; there could be MSTs for G, but we may assume
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w.l.o.g. that there is only one (e.g., by using lexicographic rules to break ties for edges of the same weight). When
the graph is clear from the context, we abbreviate MST(G) as MST. We denote by w(G) =

∑︁
e∈E w(e) the weight

of G, i.e., the sum of all edge weights in G.
We use dG(u, v) to denote the distance between two vertices u and v in G. The diameter of G is the maximum

pairwise distance in G, and is denoted by Dm(G).
For a subset of vertices X ⊆ V , we denote by G[X] the subgraph of G induced by X. We also define a

subgraph of G induced by an edge set F by G[F ] = (V, F )
Let H be a spanning subgraph of G (with edge weights inherited from G). The stretch of H is defined as

maxu̸=v∈V
dH(u,v)
dG(u,v) ; H is called a t-spanner of G if its stretch is at most t. The next well-known observation, which

states that the stretch of H is realized by an edge of G, follows from the triangle inequality.

Observation 1. maxu ̸=v∈V (G)
dH(u,v)
dG(u,v) = max(u,v)∈E(G)

dH(u,v)
dG(u,v) .

We say that H is a spanner for a subset of edges X ⊆ E if max(u,v)∈X
dH(u,v)
dG(u,v) ≤ t.

Our constructions use the aforementioned linear-time construction of (2k−1)-spanners for unweighted graphs
by Halperin-Zwick [HZ96], which we record in the following theorem for further use.

Theorem 2.1. ([HZ96]) For any unweighted n-vertex m-edge graph G and any integer k ≥ 1, a (2k−1)-spanner

of G with O(n1+ 1
k ) edges can be constructed deterministically in O(m+ n) time.

In proving Theorem 1.1 and Theorem 1.2, we assume that ϵ is sufficiently smaller than 1. That is, ϵ ≤ 1/c
for some constant c ≥ 1. We can remove this assumption by setting ϵ = ϵ′/c for any 0 < ϵ′ < 1. This will increase
the dependency on ϵ of the sparsity and running time only by a constant factor.

3 An O(mα(m,n) + SORT(m))-time Algorithm

In this section we prove the first item of Theorem 1.1. By scaling, we assume that the minimum edge weight is

1. We partition the edge set E into µϵ = log1+ϵ

(︁
1
ϵ

)︁
= Θ( log(1/ϵ)ϵ ) sets {Eσ}1≤σ≤µϵ

such that each Eσ can be
written as Eσ = ∪i∈NE

σ
i with:

(3.1) Eσ
i = {e ∈ E :

Li

(1 + ϵ)
≤ w(e) ≤ Li, i ∈ N}, where Li = L0/ϵ

i, L0 = (1 + ϵ)σ.

Thus, for any edge set Eσ, any two edge weights are either roughly the same (up to a factor of 1+ ϵ) or far apart
(separated by at least a factor of 1/ϵ). For technical convenience, we shall define L−1 = 0.

For notional convenience, we define Eσ
i for every i ∈ N. However, we are only interested in i such that Eσ

i = ∅,
and there are only a finite number of such indices.

We note that the time needed to compute the partition of E into the sets {Eσ}1≤σ≤µϵ is upper bounded
by O(m + SORT(m′)) = O(SORT(m)), where m′ is the number of non-empty sets. Indeed, this computation
can be carried out naively in linear time, except for the time needed to sort the indices of the non-empty sets in
{Eσ

i }1≤σ≤µϵ,i∈N. In the runtime analysis that follows we shall disregard this initial time investment, under the
understanding that we include it in the final runtime bound.

We now construct a (2k − 1)(1 +O(ϵ))-spanner Hσ for each set Eσ with sparsity O(n1/k) in O(m · α(m,n))

time. A (2k − 1)(1 + O(ϵ))-spanner H for G with sparsity O(n1/k · log(1/ϵ)ϵ ) is then obtained as the union of all

Hσ’s: H = ∪1≤σ≤µϵH
σ, within time O(m · α(m,n) · log(1/ϵ)ϵ ).

We focus on the construction of Hσ, for a fixed σ ∈ [1, µϵ]. Initially Hσ
0 = (V, ∅). The construction is carried

out in what we call levels: at level i, we shall construct a subgraphHσ
i such thatHσ

≤i is a (2k−1)(1+O(ϵ))-spanner

for the edge set Eσ
≤i. Here Hσ

≤i = ∪0≤j≤iH
σ
j and Eσ

≤i = Eσ
0≤j≤i. By induction, Hσ def.

= ∪i≥0H
σ
i would provide a

(2k− 1)(1+O(ϵ))-spanner for the edge set Eσ. Consequently, H = ∪1≤σ≤µϵH
σ will provide a (2k− 1)(1+O(ϵ))-

spanner for E =
⋃︁

1≤σ≤µϵ
Eσ, and, by Observation 1, also for G . All graphs Hσ

i share the same vertex set V
and hence are distinguished by the edge set.

A cluster is a set of vertices. Our construction uses a hierarchical clustering, where for each i ≥ 0, the
construction at level i is associated with a set of clusters Ci such that:

� (P1) Each cluster C ∈ Ci is a subset of V . Furthermore, clusters in Ci induce a partition of V .
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� (P2) Each cluster C ∈ Ci induces a subgraph Hσ
≤i[C] of diameter ≤ gLi−1 for some constant g.

C0 is the set of n singletons of V and hence trivially satisfies both Properties (P1) and (P2) (recall that
L−1 = 0). The cluster sets {C0, C1, . . .} provide a hierarchy of clusters H. In particular, for any i ≥ 1, Ci−1 is a
refinement of Ci: any cluster C ∈ Ci is the union of a subset of clusters in Ci−1.

Representing Ci by Disjoint Sets. We shall use the classic Union-Find data structure [Tar75] in our
clustering procedure, for representing clusters in Ci, grouping subsets of clusters to larger clusters (via the Union
operation), and checking whether a pair of vertices belongs to the same cluster (via the Find operation). In
particular, each cluster C ∈ Ci will have a representative vertex, denoted by r(C), that can be accessed from
any vertex v ∈ C by calling Find(v); we define r(v) := Find(v). The amortized time per each Union or Find
operation is O(α(a, b)), where a is the total number of Union and Find operations and b is the number of vertices
in the data structure.

Constructing Hσ
i . We assume that |Eσ

i | > 0; otherwise, we will skip the construction at level i and set
Ci+1 = Ci. We say that a cluster at level i is isolated if none of its vertices is incident on any edge of Eσ

i ; otherwise
it is non-isolated. Let X be the set of all non-isolated level-i clusters. We say that two edges (u, v) and (u′, v′) in
Eσ

i are parallel if r(u) = r(u′) (i.e., u and u′ are in the same level-i cluster) and r(v) = r(v′) (i.e., v and v′ are
in the same level-i cluster). We say that (u, v) is a self-loop if r(u) = r(v) (i.e., u and v are in the same level-i
cluster). Let Si be obtained from Eσ

i by removing from it all self-loops and keeping only the lightest edge in every
maximal set of parallel edges of Eσ

i ; we refer to the edges of Si as the source edges.
We then construct an unweighted graph Ri, called the representative graph, as follows: V (Ri) = {r(C) : C ∈

X} and E(Ri) = {(r(u), r(v)) : (u, v) ∈ Si}. The vertices and edges of Ri are referred to as the representative
vertices and representative edges, respectively; note that each representative edge corresponds to a unique source
edge. Let E′

i ← HalperinZwick(Ri, 2k − 1) be the edge set obtained by applying the spanner algorithm
of Theorem 2.1 to Ri. Let S

′
i be the subset of source edges in Si corresponding to the representative edges in E′

i.
Our graph Hσ

i has S′
i as its edge set.

Lemma 3.1. dHσ
≤i
(u, v) ≤ (2k−1)(1+O(ϵ))w(u, v) for every edge (u, v) ∈ Eσ

i , assuming ϵ ≤ 1/(2g). Furthermore,

S′
i can be constructed in O(|Eσ

i |α(m,n)) time.

Proof. Let (u, v) be an arbitrary edge in Eσ
i . We first consider the case where (u, v) ∈ Si. Then, there is an edge

(r(u), r(v)) ∈ Ri. By Theorem 2.1, there is a path P between r(u) and r(v) in (V (Ri), E
′
i) that contains at most

2k − 1 edges. We write P = (r(x0) = r(u), (r(x0), r(x1)), r(x1), (r(x1), r(x2)), . . . , r(xp) = r(v)) as an alternating
sequence of representative vertices and edges, where x0 = u, xp = v and p ≤ 2k − 1. Let (y2ℓ , y

1
ℓ+1) be the source

edge in S′
i that corresponds to the representative edge (r(xℓ), r(xℓ+1)), for each ℓ ∈ [0, p− 1]. Denote by Cℓ the

level-i cluster with r(Cℓ) = r(xℓ). Let y
1
0 = u and y2p = v. Let

(3.2) Q = Q0(y
1
0 , y

2
0) ◦ (y20 , y11) ◦Q1(y

1
1 , y

2
1) . . . ◦ (y2p−1, y

1
p) ◦Qp(y

1
p, y

2
p)

be a path from u to v, where Qℓ(y
1
ℓ , y

2
ℓ ) is a shortest path between y1ℓ and y2ℓ in Hσ

≤i−1[Cℓ], for each 0 ≤ ℓ ≤ p,

and ◦ is the path concatenation operator. By property (P2), w(Qℓ(y
1
ℓ , y

2
ℓ )) ≤ gLi−1 = gϵLi. It follows that

(3.3)

w(Q) ≤ (2k − 1)Li + (2k)gϵLi ≤ (2k − 1)(1 + 2gϵ)Li

≤ (2k − 1)(1 + 2gϵ)(1 + ϵ)w(u, v) (since w(u, v) ≥ Li/(1 + ϵ))

≤ (2k − 1)(1 + (4g + 1)ϵ)w(u, v) (since ϵ ≤ 1)

Thus, the stretch of (u, v) is at most (2k − 1)(1 + (4g + 1)ϵ).
Next, we consider the complementary case that (u, v) ̸∈ Si. By definition, the edge (u, v) is not in Si either

because it is a self-loop or it is parallel to another edge (u′, v′) that belongs to Si, with w(u′, v′) ≤ w(u, v).
In the former case, property (P2) implies the existence of a path from u to v in Hσ

≤i−1 of weight at most

gLi−1 = gϵLi ≤ Li

1+ϵ ≤ w(u, v) when ϵ < 1
2g . Thus, in this case the stretch of edge (u, v) is 1. For the

latter case, let Cu and Cv be the level-i clusters containing u and v, respectively, and without loss of generality
assume that u′ ∈ Cu and v′ ∈ Cv. By property (P2), Dm(Hσ

≤i−1[Cu]),Dm(Hσ
≤i−1[Cv])) ≤ gLi−1 = gϵLi. The

same argument used for deriving Equation (3.3), when applied to the edge (u′, v′) rather than (u, v), yields:

(3.4) dH≤i
(u′, v′) ≤ (2k − 1)(1 + (4g + 1)ϵ)w(u′, v′) ≤ (2k − 1)(1 + (4g + 1)ϵ)w(u, v).
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By the triangle inequality,

dH≤i
(u, v) ≤ dH≤i

(u′, v′) + Dm(H≤i−1[Cu]) + Dm(H≤i−1[Cv])

≤ (2k − 1)(1 + (4g + 1)ϵ)w(u, v) + 2gϵLi (by Equation (3.4))

≤ (2k − 1)(1 + (4g + 1)ϵ)w(u, v) + 4gϵw(u, v) (since w(u, v) ≥ Li/(1 + ϵ) ≥ Li/2)

= (2k − 1)(1 + (8g + 1)ϵ)w(u, v) (since k ≥ 1)

Thus, the stretch of edge (u, v) is (2k− 1)(1+ (8g+1)ϵ) = (2k− 1)(1+O(ϵ)). Summarizing, we have shown that
in all cases the stretch of edge (u, v) is at most (2k − 1)(1 +O(ϵ)), as required.

By construction of the representative graph Ri, all clusters corresponding to vertices of Ri are non-isolated,
hence no vertex of Ri is isolated, yielding |V (Ri)| = O(|E(Ri)|) = O(|Eσ

i |). Thus, the construction of the edge
set Si and the representative graph Ri, via the usage of the Union-Find data structure, takes total time of
O(|Eσ

i |α(m,n)). The set of edges S′
i by Theorem 2.1 can be constructed in time O(|E(Ri)|+ |V (Ri)|) = O(|Eσ

i |)
time. Thus, the total running time to construct S′

i is O(|Eσ
i |α(m,n)).

Constructing Ci+1. Every cluster C ∈ Ci \ X becomes a level-(i+ 1) cluster. We next focus on the level-i
clusters of X . Recall that V (Ri) is the set of all representatives of clusters in X . We construct a collection U of
vertex-disjoint subgraphs of Ri in the following two steps:

(1) Initially, we greedily construct a maximal set of vertex-disjoint stars of Ri, and initialize U as this edge set;
thus, each subgraph U ∈ U contains a vertex and all of its neighbors in Ri.

(2) We scan the remaining vertices in V (Ri) that haven’t been grouped to any subgraph in U . For every such
remaining vertex v ∈ V (Ri), it must have at least one neighbor that is contained in a subgraph U ∈ U (by
the maximality of U); we add to U the vertex v and an edge (v, u) leading to such a neighbor u of v (chosen
arbitrarily if there are multiple such neighbors).

For each subgraph U in the resulting edge set U , we form a level-(i+ 1) cluster CU ∈ Ci by taking the union
of all the clusters whose representatives are V (U) as CU .

Lemma 3.2. All clusters in Ci+1 satisfy Properties (P1) and (P2) when ϵ ≤ 1/(2g) and g ≥ 9, and they can
be constructed in time O(|Eσ

i | · α(m,n)). Furthermore, every cluster CU ∈ Ci+1 that is formed from a subgraph
U ∈ U , as described above, is the union of at least 2 level-i clusters.

Proof. Property (P1) holds trivially. To prove that Property (P2) holds, we first note that each subgraph
U ∈ U (with vertices in Ri) has hop diameter at most 4, which follows directly from the above two-step
construction of U . Any edge connecting two vertices in U corresponds to a source edge in Si, and thus also
in Eσ

i , and as such has length at most Li, which implies that CU induces a subgraph of diameter at most
5(gLi−1) + 4Li = 5gϵLi + 4Li ≤ 9Li = gLi, since ϵ ≤ 1/g and g ≥ 9. Thus, Property (P2) holds.

The construction of the edge set Si and the representative graph Ri takes total time of O(|Eσ
i |α(m,n))

using the Union-Find data structure. As for the construction of the collection U of vertex-disjoint subgraphs of
Ri, Step (1) of this construction, i.e., which constructs a maximal set of vertex-disjoint stars, involves a greedy
linear-time algorithm, whereas Step (2) naively takes linear time, so together they are implemented within time
O(|E(Ri)|) = O(|Eσ

i |). Constructing the corresponding clusters {CU : U ∈ U} can be implemented within the
same amount of time in the obvious way. The construction of clusters in Ci+1 that are clusters in Ci \ X requires
no extra time.

Finally, we argue that any cluster CU ∈ Ci+1 that is formed from a subgraph U ∈ U contains at least 2 level-i
clusters. Indeed, any cluster formed in Step (1) of the construction of U contains at least 2 level-i clusters, by
the maximality of U and since no vertex in Ri is isolated. Any remaining level-i cluster must be grouped in Step
(2) of the construction of U to clusters formed in Step (1), and this too holds by the maximality in Step 1 of the
construction of U and since no vertex in Ri is isolated.

We are now ready to prove the first item of Theorem 1.1.
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Proof. [Proof of the first item of Theorem 1.1] Recall that H = ∪1≤σ≤µϵ
Hσ. Let ∆i+1 = |Ci|− |Ci+1|. Recall that

C0 is the set of n singletons, i.e., |C0| = n. Thus,
∑︁

i≥0 ∆i+1 ≤ |C0| = n.

By Lemma 3.2, ∆i+1 ≥ |V (Ri)|
2 . Furthermore, Theorem 2.1 yields |S′

i| = O(|V (Ri)|1+1/k), hence |S′
i| =

O(n1/k) ·∆i+1. Thus, we have:

(3.5) |E(Hσ)| = | ∪i≥0 E(Hσ
i )| =

∑︂
i≥0

|S′
i| =

∑︂
i≥0

O(n1/k) ·∆i+1 = O(n1+1/k).

The sparsity of H is O(n1/k · log(1/ϵ)ϵ ) by Equation (3.5). The stretch of H is at most (2k − 1)(1 + O(ϵ))
by Lemma 3.1; we can reduce the stretch down to (2k − 1)(1 + ϵ) by scaling ϵ ← ϵ/c, for a sufficiently large
constant c, which will affect the sparsity and runtime bounds by constant factors. The time needed to construct
Hσ is O(

∑︁
i≥0 |Eσ

i | · α(m,n)) = O(m · α(m,n)) by Lemma 3.1 and Lemma 3.2. Thus, the overall time needed
to construct H, when also considering the runtime O(SORT(m)) for computing the partition of E into the sets

{Eσ}1≤σ≤µϵ , is O(m · α(m,n) · log(1/ϵ)ϵ + SORT(m)).

4 A Linear Time Algorithm in the Transdichotomous Model

In this section, we prove the second item of Theorem 1.1. We follow the same framework as in Section 3; our focus,
as before, is on constructing a (2k − 1)(1 +O(ϵ))-spanner Hσ for Eσ, for a fixed σ ∈ [1, µϵ]. The construction is
carried out in levels, where Hσ

i is constructed at level i, and uses a hierarchy of clusters such that each cluster
C ∈ Ci satisfies two properties that are similar to those used in Section 3, namely Properties (P1) and (P2).

We also use a Union-Find data structure to represent clusters in Ci. However, our construction relies
on a special case of Union-Find , where the set of Union operations are pre-specified at the outset of the
construction. Gabow and Tarjan [GT85] designed a data structure for this special case of Union-Find in the
Transdichotomous model; this result is summarized in the following theorem.

Theorem 4.1. (Gabow and Tarjan [GT85]) Let T be a rooted tree with n vertices. One can design a Union-
Find data structure in the Transdichotomous model that maintains disjoint sets of V (T ) and supports m Union
and Find operations in O(m+ n) total time, in which each Union operation is of the form Union(v, pT (v)) for
some non-root vertex v ∈ V (T ). Here pT (v) denotes the parent of v in T .

We emphasize that the Union-Find data structure of Gabow and Tarjan in Theorem 4.1 only works in the
Transdichotomous model. The tree T in Theorem 4.1 is called a union tree of the Union-Find data structure.
We use Link(v) to specifically denote the Union operation of the form Union(v, pT (v)).

The construction of Section 3 achieves a super-linear running time. To improve this runtime to linear in m,
we plug the following new ideas on top of the construction of Section 3.

The second term in the super-linear runtime O(m · α(m,n) · log(1/ϵ)ϵ + SORT(m)), namely SORT(m), stems
from the time needed to compute the partition of E into the sets {Eσ}1≤σ≤µϵ

, which boils down to sorting the
indices of the non-empty sets in {Eσ}1≤σ≤µϵ . In the Word RAM model, we employ a rather simple trick to carry

out such an index sorting in time O(m · log(1/ϵ)ϵ ); the details of this optimization appear in Subsection 4.1.

The main obstacle lies in shaving the factor α(m,n) from the first term O(m · α(m,n) · log(1/ϵ)ϵ ). For this
optimization, the two key ideas are the following:

� Idea 1. We use an MST for G as the union tree for the Union-Find data structure. In the
Transdichotomous model, Fredman and Willard [FW94] designed an algorithm to construct a minimum
spanning tree in O(m) time. Let MST be an arbitrary minimum spanning tree for G; we root MST at an
arbitrary vertex r.

� Idea 2. We guarantee that every level-i cluster C ∈ Ci induces a subtree of MST of diameter at most gLi−1,
for some constant g. As we will show in the sequel, by forcing clusters to induce subtrees of MST, we are
able to use Link operations to form level-(i + 1) clusters from level-i clusters, which is the source of our
speed-up. The crux of our construction is in realizing idea 2.

Theorem 4.1 guarantees that each of the Union and Find operations takes O(1) amortized time. As a result, we
shave the α(m,n) factor in the running time of the algorithm from Section 3.
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Next we proceed to the details of the linear-time construction. The construction will satisfy the following two
properties of clusters in Ci, the first of which is identical to Property (P1) of Section 3 whereas the second is an
adaptation of Property (P2).

� (P1’) Each cluster C ∈ Ci is a subset of V . Furthermore, clusters in Ci induce a partition of V .
� (P2’) Each cluster C ∈ Ci induces a (connected) subtree MST[C] of MST with diameter at most gLi−1, for
some constant g (the same constant used in Idea 2 above which is different than the one used in (P2)).

We will add all edges of MST to the spanner, by setting Hσ
0 as MST, which adds one unit to the sparsity and

lightness. Property (P2’) is inherently more restrictive than Property (P2), as it aims at guaranteeing the same
(perhaps up to a constant factor) diameter bound, but when restricted to subtrees of MST.

Representing Ci. As in Section 3, we use the Union-Find data structure to represent clusters in Ci, but
we use the data structure provided by Theorem 4.1, which guarantees constant amortized cost. As a result, we
will maintain the property that the representative r(C) of any cluster C ∈ Ci is always set to be the root of the
subtree MST[C]. By setting the representative of a cluster C to be its root, C can be united with other clusters
via Link(r(C)), which is crucial for applying the result of Theorem 4.1. The children of C can be united to C by
the same way.

Constructing Hσ
i . The construction is the same as the construction of Hσ

i in Section 3. Specifically, we
construct a set of level-i clusters X , the representative graph Ri, and the edge set S′

i, which is obtained by running
the spanner algorithm of Theorem 2.1 to Ri. Since the Union and Find operations now admit O(1) (amortized)
time, we derive the following lemma, whose proof follows along similar lines as those in the proof of Lemma 3.1.

Lemma 4.1. dH≤i
(u, v) ≤ (2k−1)(1+O(ϵ))w(u, v) for every edge (u, v) ∈ Eσ

i , assuming ϵ < 1/(2g). Furthermore,
S′
i can be constructed in O(|Eσ

i |) time.

Constructing Ci+1. Our construction of Ci+1 relies on the notion of cluster forest defined below; see Figure 1
for an illustration.

Definition 1. (Cluster Forest) Let Y ⊆ Ci be a set of level-i clusters. A cluster forest for Y, denoted by
FY , is a directed forest with a weight function ω on the edges such that:

(1) Each node φC ∈ FY corresponds to a cluster C ∈ Y,

(2) There is a directed edge (φC1
→ φC2

) in the forest FY if C2 contains the parent, say pMST(v), of the
representative, say v, of C1. Furthermore, ω(φC1

→ φC2
) = w(v, pMST(v)).

By definition, every edge of a cluster forest FY corresponds to an MST edge. LetMST i = FCi
be the cluster

forest defined for the entire set Ci of level-i clusters; by Property (P2’), it holds thatMST i is a tree. We stress
that MST i is only used in the analysis of our algorithm; indeed, computing MST i, at least naively, would
require Ω(|Ci|) time, which is too costly.

For a set Y of level-i clusters, we say that the cluster forest FY is Li-bounded if every edge in it has weight
at most Li. The following lemma is the crux of our construction.

Recall that X denotes the set of all non-isolated level-i clusters in the representative graph Ri.

Lemma 4.2. Let Ai be the set ofMST i edges of weight at most Li, and let Y be the set of nodes that are incident
on at least one edge in Ai. Let FY be the forest with node set Y and edge set Ai. Then the following two conditions
hold:

(1) X ⊆ Y.

(2) Every tree in Fpruned
Y has at least 2 nodes.

Proof. Condition (2) follows directly from the construction. We next prove that Condition (1) holds.
Let φCu

be the node corresponding to a level-i cluster Cu in X . By the definition of X , there is an edge
(u, v) ∈ Eσ

i such that u ∈ φCu
. Let Cv be the level-i cluster containing v and φCv

be the node corresponding to
Cv. If (u, v) ∈ MST, then φCu ∈ Y, and we’re done.
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Figure 1: (a) Level-i clusters induce subtrees of MST enclosed by oval curve, and (b) a cluster forest FY .

We henceforth assume that (u, v) ̸∈ MST. Consider the fundamental cycle Cuv of MST formed by MST[u, v]
and edge (u, v). By the cycle property of MST, every edge e ∈ MST[u, v] satisfies w(e) ≤ w(u, v). Recall thatMST i

is a tree by Property (P2’). Moreover, by the definition of MST i, each edge in MST i[φCu
, φCv

] corresponds
to an edge in MST[u, v], and so has weight at most w(u, v) ≤ Li. Hence φCu is incident to an edge of Ai by the
definition of Ai, which yields φCu ∈ Y.

We now construct the set of level-(i+1) clusters Ci+1 as follows. Let FY be the cluster forest for Y provided
by Lemma 4.2. We construct Ci+1 as follows. Every level-i cluster C ∈ Ci \ Y becomes a level-(i + 1) cluster.
Then, we construct a collection U of subtrees of FY , such that each subtree U ∈ U contains at least two nodes
and has hop-diameter at most 4. For each subtree U , we form a level (i+ 1) cluster CU = ∪φC∈V(U)C. We note
that U can be constructed greedily via the same algorithm used in Section 3, within time O(|Y|).

In the following lemma we assume that the set of clusters Y is given to us. In the proof of Theorem 1.1 where
we use Lemma 4.3, we will specify the construction of Y.

Lemma 4.3. All clusters in Ci+1 satisfy Properties (P1’) and (P2’) when ϵ ≤ 1/(2g) and g ≥ 9, and they can
be constructed in time O(|Y|). Furthermore, every cluster CU ∈ Ci+1 that is formed from a subgraph U ∈ U, as
described above, is the union of at least 2 level-i clusters.

Proof. The proof of this lemma follows similar lines to those in the proof of Lemma 3.2 from Section Section 3,
hence we aim for conciseness. As mentioned, U can be constructed within time O(|Y|).

Recall that every edge in FY corresponds to an edge of the form v → pMST(v) for some vertex v ∈ V . Thus,
for each subgraph U ∈ U, the level-(i + 1) cluster CU can be constructed by calling |V(U)| − 1 Link operations.
Therefore, {CU : U ∈ U} can be constructed in time O(

∑︁
U∈U |U|) = O(|Y|). Note that we do not pay any running

time for constructing clusters in Ci+1 that are clusters in Ci \ Y. Therefore Ci+1 can be constructed in O(|Y|)
time.

Property (P1’) holds trivially. Property (P2’) follows from the fact that each subgraph U ∈ U has hop
diameter at most 4 and that each edge between two nodes in U corresponds to an edge in MST of length at most
Li since every edge of FY has a weight at most Li by construction.

Note that U is constructed using same two-step algorithm used in Section 3. Thus, the same argument in
Lemma 3.2 applies to this case. Specifically, any cluster formed in Step (1) of the construction of U contains
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at least 2 nodes, since no vertex in FY is isolated, and any remaining node must be grouped in Step (2) of the
construction of U to sugraphs formed in Step (1).

We are now ready to prove the second item of Theorem 1.1.

Proof. [Proof of the second item of Theorem 1.1] Recall that H = ∪1≤σ≤µσ
Hσ. We employ a similar charging

argument to the one used in Section 3 to bound |E(Hσ)|. Let ∆i+1 = |Ci| − |Ci+1|. Note that |C0| = n, hence∑︁
i≥0 ∆i+1 ≤ n. By Lemma 4.3 and Lemma 4.2, we have ∆i+1 ≥ |Y|

2 = Ω(|X |) = Ω(|V (Ri)|). (Note that
|X | = |V (Ri)|.) Thus, Equation 3.5 of Section 3 holds in this case as well. It follows that the sparsity of H is

O(n1/k · log(1/ϵ)ϵ ). The stretch is (2k−1)(1+O(ϵ)) by Lemma 4.1; we can reduce the stretch down to (2k−1)(1+ϵ)
by scaling ϵ← ϵ/c, for a sufficiently large constant c, which will affect the sparsity and runtime bounds by constant
factors. The runtime to construct Hσ is O(

∑︁
i≥0 |Eσ

i |) = O(m) by Lemma 4.1.
We now bound the time to construct the clusters in Ci+1. The main difficulty is that the size of Y constructed

in Lemma 4.2 could be much larger than |Eσ
i |, hence we cannot bound the runtime by |Eσ

i | as we did in Section 3.
Here we employ a more delicate argument. At the outset of the construction, we divide the edges of MST into
levels as we did for Eσ

i . The level-i edges of MST, denoted by Bi, include every edge of length larger than Li−1

and at most Li. The time to construct Bi is O(n log(1/ϵ)), following the same index-sorting argument used for
constructing Eσ

i efficiently in Subsection 4.1.
At the outset of the construction of Ci+1, we assume that we are given the set of edges Di−1 that contains

every edge of weight at most Li−1 of MST i. For level i = 0, we set Di−1 = ∅. Let Bi be the set of edges of
MST i corresponding to edges in Bi. The edge set Bi can be constructed in O(|Bi|) time as follows. For each
edge (u, v) ∈ Bi, we add an edge (φCu , φCv ) to Bi, where Cu and Cv are the two level-i clusters containing u and
v, respectively, which can be found via Find(u) and Find(v).

The set of edges Ai defined in Lemma 4.2 is Di−1 ∪ Bi. Note that |Ai| ≤ |Y| since FY is acyclic. Thus, the
running time to construct Ai is O(|Y|), as we have both Di−1 and Bi stored in a list data structure. To construct
the set of Di for the construction at the next level, we simply identify edges in FY that are between two different
subgraphs U in the construction of Ci+1. Thus, the running time to construct Di is also O(|Y|). The running time
to construct Ci+1 is O(|Y|) by Lemma 4.3. It follows that the total running time of the construction of clusters at

level i is O(|Y|). Since ∆i+1 ≥ |Y|
2 , the time to construct Ci+1 is bounded by O(∆i+1), where ∆i+1 = |Ci|− |Ci+1|.

It follows that the total running time to construct clusters over all levels is
∑︁

i≥0 O(∆i+1) = O(n).

In summary, the running time to construct H is O((m+ n) · log(1/ϵ)ϵ ) = O(m · log(1/ϵ)ϵ ).

4.1 Index sorting in linear time First, we assume that the word size is w̄ ≥ log(n) and all edge weights
are bounded above by 2w̄, as per the Word RAM model. The total number of different indices is given by
log1+ϵ 2

w̄ = Θ(w̄/ϵ). It follows that the number of integers is n′ ≤ w̄/ϵ. In this range of values, predecessor search
can be done in O(log(n′)/ log w̄) = O(log(1/ϵ)) time using the fusion tree data structure [FW90] (see also [PT06]).
Consequently, the time needed to compute the partition of E into the sets {Eσ}1≤σ≤µϵ , which involves index
sorting via predecssor search, is bounded by O(m log(1/ϵ)). Partitioning the set of edges of MST into levels can
be done in the same way; the running time is O(n log(1/ϵ)) as there are n − 1 edges in MST. Summarizing, the
running time of these partitioning steps is bounded by O((m+ n) log(1/ϵ)) = O(m log(1/ϵ)).

5 Optimally Sparse and Light Spanners in O(mα(m,n)) Time

Le and Solomon [LS21] recently show that a (2k − 1)(1 + ϵ)-spanner with lightness Oϵ(n
1/k) can be constructed

in Oϵ(mα(m,n)) time; the notation Oϵ(.) hides a polynomial factor of 1/ϵ. However, their spanner is not sparse,
i.e., in the worst case, the number of edges of the spanner is Ω(m), which could be Ω(n2) for dense graphs.
Here we use the insights we develop in Section 3 and Section 4 on top of the construction of [LS21] to obtain a
(2k − 1)(1 + ϵ)-spanner that is both sparse and light as claimed in Theorem 1.2.

First, we briefly recap the algorithm of Le and Solomon [LS21], called LS algorithm. LS algorithm first divides

E into two sets of edges: Elight = {e ∈: w(e) ≤ w(MST)
mϵ } and Eheavy = E \ Elight. Every edge in Elight shall be

added to the final spanner, and this only incurs an additive + 1
ϵ in the lightness since:

(5.6) w(Elight) ≤ m · w(MST)
mϵ

≤ w(MST)

ϵ
.
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For edges in Eheavy, LS algorithm constructs a (2k − 1)(1 + ϵ)-spanner Hheavy that has two properties:

(5.7)
(1) w(Hheavy) ≤ Oϵ(n

1+1/k)w(MST)

(2) dG(u, v) ≤ dHheavy
(u, v) ≤ (2k − 1)(1 + ϵ)dG(u, v) ∀(u, v) ∈ Eheavy

The final spanner of the graph is H = Hheavy ∪ Elight. By Equation (5.6) and Equation (5.7), it follows that
w(H) = (Oϵ(n

1/k) + 1
ϵ )w(MST) = Oϵ(n

1/k)w(MST), and hence the lightness of H is Oϵ(n
1/k).

Our first observation is that in LS algorithm, Hheavy does not contain any other edge of Elight, except for
MST edges. It follows that if we construct a (2k − 1)(1 + ϵ)-spanner Hlight for the subgraph of G induced by
Elight ∪ MST by applying the construction in Theorem 1.1, and set H = Hlight ∪ Hheavy ∪ MST, then H is still a
(2k − 1)(1 + ϵ)-spanner of G. Furthermore, w(H) ≤ w(Elight) + w(Hheavy) + w(MST) = Oϵ(n

1/k)w(MST). Thus,
the lightness of H is Oϵ(n

1/k). Observe that Hlight ∪ MST has sparsity Oϵ(n
1/k). It follows that, to guarantee

that H has sparsity Oϵ(n
1/k), we need to construct Hheavy such that its sparsity and lightness are both Oϵ(n

1/k).
Our construction crucially makes use of the cycle property of MST following the same spirit of the construction in
Section 4.

5.1 The construction of Hheavy We assume that Eheavy has no edges of weight at least w(MST) since we
could safely remove them from Eheavy without affecting the stretch of the construction. The spanner Hheavy

constructed by LS algorithm is a subgraph of Gheavy, which is a subgraph G induced by Eheavy∪E(MST). However,

the construction operates on a graph G̃ obtained from Gheavy by subdividing edges of MST using virtual vertices.

Specifically, we define w̄ = w(MST)/ϵ, and for each edge of e ∈ MST, if w(e) ≥ w̄, we subdivide e into ⌈w(e)
w̄ ⌉ edges,

each of weight at most w̄, whose total weight is w(e). Let ˜︃MST be the subdivided MST and G̃ = (Ṽ , E(˜︃MST)∪Eheavy).

That is, G̃ and G share the same set of edges Eheavy. Vertices in Ṽ \ V are called virtual vertices. Le and
Solomon [LS21] observed that:

Observation 2. (Observation 3.4 in [LS21]) |Ṽ | = O(m).

We now divide Eheavy further into subsets {Eσ}1≤σ≤µϵ
with µϵ = O( 1ϵ log(1/ϵ)), as we did in Section 3

(Equation (3.1)):

(5.8) Eσ
i =

{︃
e :

Li

1 + ϵ
≤ w(e) ≤ Li

}︃
with Li = L0/ϵ

i, L0 = (1 + ϵ)σw̄ .

We note that constructing every Eσ
i can be done in O(m) by simply sorting all indices i such that Eσ

i ̸= ∅.
This is because the maximum index imax is O(log(n)) (Claim 3.5 in [LS21]) and hence, the sorting step takes only
O(log(n) log log(n)) = O(n) time.

The construction then focuses on each set Eσ separately. That is, we construct a (2k− 1)(1 +O(ϵ))-spanner
Hσ for each set Eσ in O(mα(m,n)) time, and set Hheavy = ∪1≤σ≤µϵ

Hσ. It follows that the running time to

construct Hheavy is O(mα(m,n)/ϵ). Here we slightly abuse notation as Hσ is a subgraph of G̃ instead of being a

subgraph of Gheavy. However, the difference between G̃ and Gheavy lies only in MST vs ˜︃MST, and by assuming that

Hσ contains ˜︃MST, we can transform Hσ to a subgraph of Gheavy by replacing each path of subdividing virtual
vertices with the corresponding original edge of MST.

For notational convenience, we set Hσ
0 = (Ṽ , E(˜︃MST)). The construction of Hσ happens in levels: at level i, we

construct a subgraph Hσ
i such that Hσ

≤i is a (2k− 1)(1 +O(ϵ))-spanner for edges in Eσ
≤i. Here Hσ

≤i = ∪0≤j≤iH
σ
j

and Eσ
≤i = ∪0≤j≤iE

σ
j . Recall that E

σ
0 = ∅ since every edge in Eheavy has a weight of at least w̄/ϵ. By induction,

Hσ def.
= ∪i≥0H

σ
i is a (2k − 1)(1 +O(ϵ))-spanner for G̃.

Similar to the construction of a sparse spanner in Section 3, we construct a hierarchy of clusters, and each
level i ≥ 1 of the construction is associated with a set of clusters Ci satisfying the following properties:

(1) Each cluster C ∈ Ci is a subset of V . Furthermore, clusters in Ci induce a partition of Ṽ .
(2) Each cluster C ∈ Ci is the union of Ω(1/ϵ) clusters in Ci−1 for any i ≥ 2.
(3) Each cluster C ∈ Ci induces a subgraph Hσ

≤i−1[C] of diameter at most gLi−1 for some constant g.
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By property (3), clusters at level 1 are subgraphs of H0, which is ˜︃MST. The construction is described in the
following lemma.

Lemma 5.1. (Lemma 3.8 in [LS21]) In time O(m), we can construct a set of level-1 clusters C1 such that, for
each cluster C ∈ C1, the subtree ˜︃MST[C] of ˜︃MST induced by C satisfies L0 ≤ Dm(˜︃MST[C]) ≤ 14L0.

Thus, by choosing g ≥ 14, property (3) is satisfied for clusters in C1. Property (1) follows directly from
Lemma 5.1, and property (2) is not applicable.

A crucial component in LS algorithm is a potential function Φ : 2Ṽ → R+ that associates each cluster C ∈ Ci
with a potential value Φ(C). Let Φi =

∑︁
C∈Ci

Φ(C) be the total potential value at level i. The potential values
of level 1 clusters are defined as follows:

(5.9) Φ(C) = Dm(˜︃MST[C]) ∀C ∈ C1

By Lemma 5.1, we have that:

(5.10) Φ1 =
∑︂
C∈C1

Dm(˜︃MST[C]) ≤ w(MST)

Next, Le and Solomon [LS21] define a potential change ∆i+1 = Φi − Φi+1. Let imax be the maximum level,
and define Φimax+1 = 0. The idea is to bound the weight of the to-be-constructed spanner Hσ

i by the potential
change Oϵ(n

1/k)∆i+1 (modulo a small additive term that we will describe later). It follows that we can bound
the weight of Hσ, again modulo a small additive term, as follows.

(5.11) w(Hσ) ≤ Oϵ(n
1/k)

imax∑︂
i=0

∆i+1 = Oϵ(n
1/k)(Φ1 − Φimax+1) = Oϵ(n

1/k)Φ1 = Oϵ(n
1/k)w(MST)

In [LS21], Le and Solomon showed the following lemma, which is the key to their construction.

Lemma 5.2. (Lemma 2.6 and Theorem 1.9 [LS21]) For each level i ≥ 1, there is an algorithm that can
compute a subgraph Hσ

i induced by a subset of Eσ
i , as well as the set of level-(i + 1) clusters Ci+1 satisfying

properties (1)-(3) given a set of clusters Ci at level i, such that:

(1) w(Hσ
i ) = Oϵ(n

1/k)∆i+1 + ai for some ai ≥ 0 such that
∑︁

1≤i≤imax
ai = Oϵ(n

1/k)w(MST).
(2) for every (u, v) ∈ Eσ

i , dHσ
≤i
(u, v) ≤ (2k − 1)(1 + (10g + 1)ϵ)w(u, v).

Furthermore, the total running time of the construction of all levels is O(mα(m,n)) in the pointer-machine model.

In Lemma 5.2, ai is a corrective term added to handle some edge cases where ∆i+1 = 0 or even negative.
The stretch is (2k− 1)(1+ (10g+1)ϵ) instead of (2k− 1)(1+ ϵ), but we can obtain the stretch (2k− 1)(1+ ϵ) by
scaling ϵ← ϵ

10g+1 . Note that Lemma 5.2 does not provide any bound on the number of edges of Hσ
i .

To bound the sparsity of Hσ in our construction, we distinguish between isolated clusters and non-isolated
clusters. A cluster C ∈ Ci is non-isolated if it contains at least one endpoint of an edge in E(Hσ

i ), and otherwise,
is isolated. By examining the construction of Le and Solomon carefully, we have that:

Lemma 5.3. (Le and Solomon [LS21]) Let Yi ⊆ Ci be the set of all non-isolated clusters. Then |E(Hσ
i )| =

Oϵ(n
1/k)|Yi|.

By property (2), the number of clusters is geometrically decreasing when ϵ is sufficiently smaller than 1, and
hence, the total number of clusters at all levels is O(|C|1). This implies that:

(5.12) |E(Hσ)| =
∑︂
i≥1

|E(Hσ
i )| =

∑︂
i≥1

Oϵ(n
1/k)|Ci| = Oϵ(n

1/k)|C1| = Oϵ(n
1/k)|Ṽ |

However, |Ṽ | could be up to Ω(m) as it contains virtual vertices (Observation 2). Thus, Equation (5.12) does
not provide any meaningful bound on the number of edges of Hσ.
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We now describe our idea to modify LS algorithm and to bound the number of edges in Hσ
i . For each cluster

C ∈ Ci, we introduce two new types of clusters: non-virtual clusters, denoted by Ni, and virtual clusters, denoted
byMi. A cluster C ∈ Ci is virtual if C only contains virtual vertices, i.e., C ⊆ Ṽ \ V ; otherwise C is non-virtual.
Since a non-isolated cluster contains at least one non-virtual vertex, which is the endpoint of an edge in E(Hσ

i ),
we have:

Observation 3. Yi ⊆ Ni.

Following the same idea of the construction in Section 4, our goal is to construct a set of cluster Ci+1

such that (in addition to properties in Lemma 5.2) |Ni| − |Ni+1| = Ω(|Yi|). For notational convenience,
we define Nimax+1 = ∅. By the same argument in Section 4 and using Lemma 5.3, we could show that
|E(Hσ)| = Oϵ(n

1/k)|N1|. Recall by the definition of non-virtual clusters that |N1| ≤ n. It follows that
|E(Hσ)| = Oϵ(n

1+1/k), which implies the desired sparsity bound. These ideas are formalized in the following
lemma, whose proof is provided in Subsection 5.3.

Lemma 5.4. For each level i ≥ 1, there is an algorithm that can compute a subgraph Hσ
i induced by a subset of

Eσ
i , as well as the set of level-(i+ 1) clusters Ci+1 satisfying properties (1)-(3) given a set of clusters Ci at level

i, such that:

(1) w(Hσ
i ) = Oϵ(n

1/k)∆i+1 + ai for some ai ≥ 0 such that
∑︁

1≤i≤imax
ai = Oϵ(n

1/k)w(MST).
(2) for every (u, v) ∈ Eσ

i , dHσ
≤i
(u, v) ≤ (2k − 1)(1 + (10g + 1)ϵ)w(u, v).

(3) |E(Hσ
i )| = Oϵ(n

1/k)|Yi|.
(4) |Ni| − |Ni+1| ≥ |Yi|/2.

Furthermore, the total running time of the construction of all levels is Oϵ(mα(m,n)) in the pointer-machine
model.

In the next section, we prove Theorem 1.2, assuming that Lemma 5.4 holds.

5.2 Proof of Theorem 1.2 Recall that H = Hlight ∪Hheavy ∪ MST, where Hlight is a (2k− 1)(1+ ϵ)-spanner of
Elight. By Theorem 1.1, Hlight can be constructed in O(mα(m,n)poly(1/ϵ) + SORT(m)) in the pointer-machine
model, and in O(mpoly(1/ϵ)) time in the Transdichotomous model. MST can be constructed in O(mα(m,n)) by
the pointer-machine model by Chazelle’s algorithm [Cha00]. By Lemma 5.4, the running time to construct
Hσ is O(mα(m,n)poly(1/ϵ)), which implies the running time to construct H is O(mα(m,n)poly(1/ϵ))µϵ =
O(mα(m,n)poly(1/ϵ)). Thus, the running time to construct H is O(mα(m,n)poly(1/ϵ) + SORT(m)) in the
pointer-machine model and is O(mα(m,n)poly(1/ϵ)) in the Transdichotomous model.

We now focus on bounding the sparsity and lightness of H. By Item (1) in Lemma 5.4, we have that:

(5.13)

w(Hσ) =

imax∑︂
i=0

w(Hσ
i ) =

imax∑︂
i=0

Oϵ(n
1/k)∆i+1 + ai

= Oϵ(n
1/k)(Φ1) +

imax∑︂
i=0

ai = Oϵ(n
1/k)w(MST),

by Equation (5.10) and Item (2) of Lemma 5.4. Furthermore, by Item (4) of Lemma 5.4, it follows that:

(5.14)

|E(Hσ)| =
imax∑︂
i=0

|E(Hσ
i )| =

imax∑︂
i=0

Oϵ(n
1/k)|Yi| (by Item (3) of Lemma 5.4)

=

imax∑︂
i=0

Oϵ(n
1/k)(|Ni| − |Ni+1|) (by Item (4) of Lemma 5.4)

= Oϵ(n
1/k)|N1| = Oϵ(n

1+1/k).

It follows that w(Hheavy) =
∑︁

σ∈[1,µϵ]
w(Hσ) = Oϵ(n

1/k)w(MST) and |E(Hheavy)| =
∑︁

σ∈[1,µϵ]
|E(Hσ)| =

Oϵ(n
1+1/k) since µϵ = O(log(1/ϵ)1/ϵ).
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Observe that w(Hlight) ≤ w(Elight) ≤ w(MST)/ϵ by Equation (5.6). Furthermore, |E(Hlight)| = Oϵ(n
1+1/k) by

Theorem 1.2. We then conclude that:

w(H) ≤ w(Hlight) + w(Hheavy) = Oϵ(n
1/k)w(MST)

|E(H)| = |E(Hlight)|+ |E(Hheavy)| = Oϵ(n
1+1/k).

That is, the sparsity and lightness of H are both Oϵ(n
1/k).

We now bound the stretch of H. Let (u, v) be any edge in G. If (u, v) is in Elight, then the stretch of (u, v)
is (2k − 1)(1 + ϵ) in Hlight. If (u, v) ∈ MST, then the stretch is 1 since H contains MST as a subgraph. Otherwise,
(u, v) ∈ Eheavy, and this means there exist σ ∈ [1, µϵ] and i ∈ [1, imax] such that (u, v) ∈ Eσ

i . By Item (1) in
Lemma 5.4, the stretch of (u, v) in Hσ

≤i, and hence in Hheavy, is (2k− 1)(1+ (10g+1)ϵ). In summary, the stretch
in H of any edge (u, v) ∈ E(G) is at most (2k − 1)(1 + (10g + 1)ϵ). By scaling ϵ ← ϵ/(10g + 1), we obtain a
spanner of stretch (2k − 1)(1 + ϵ), and with the same lightness and sparsity bounds.

5.3 Construction of Hσ
i and Ci+1 In this section, we construct Hσ

i and Ci+1 with properties claimed in
Lemma 5.4. Without loss of generality, we assume that ϵ is sufficiently small, and in particular, ϵ is smaller than
1/(c · g) for any constant c. We now introduce new notation used in this section.

Notation. We consider graphs with weights on both edges and vertices in this section. We define the
augmented weight of a path to be the total weight of all edges and vertices along the path. The augmented
distance between two vertices in G is defined as the minimum augmented weight of a path between them in G.
The augmented diameter of G is denoted by Adm(G), which is the maximum pairwise augmented distance in G.

Cluster graphs. The construction of Ci+1 is done via a cluster graph Gi(Vi, E ′i , ω) that has weights on both
edges and nodes (we use nodes to refer to vertices of Gi). Each node φC ∈ Vi corresponds to a level-i cluster C
and has weight:

(5.15) ω(φC) = Φ(C)

That is, the weight of each node is the potential value of its corresponding cluster. The edge set E ′i is the union
of two edge sets Ei ∪˜︃MSTi:

� Each edge e = (φCu
, φCv

) ∈ Ei corresponds to an edge (u, v) ∈ Eσ
i ∪ E(˜︃MST) where Cu and Cv are level-i

clusters containing u and v, respectively. Furthermore, ω(e) = w(u, v).
� Ei corresponds to a subset of edges of Eσ

i and ˜︃MSTi corresponds to a subset of edges of ˜︃MST, the subdivided
MST. ˜︃MSTi induces a minimum spanning tree of Gi, and we abuse notation by denoting ˜︃MSTi the spanning
tree of Gi by edges in ˜︃MSTi.

We refer readers to Lemma 3.16 in [LS21] for the construction of Gi. At a high level, the construction removes
edges that are self-loops, parallel edges, and those that have stretch at most (2k − 1)(1 + 6gϵ) in ˜︃MSTi as these
edges already have a good stretch.

Lemma 5.5. (Lemma 3.16 and Lemma 3.22 [LS21]) Gi can be constructed in O((|Vi| + |Eσ
i |)α(m,n)) time.

Furthermore, if the subset of edges of Eσ
i corresponding to Ei has stretch (2k − 1)(1 + sϵ) in Hσ

≤i for some
constant s that only depends on g, then every edge in Eσ

i has stretch (2k−1)(1+max{s+4g, 10g}ϵ) in Hσ
≤i when

ϵ ≤ 1
max{s+4g,10g} .

Lemma 5.5 implies that it suffices for the construction to focus on constructing a spanner for the subset of
edges of Eσ

i that correspond to edges in Ei.
Level-(i + 1) clusters. Instead of constructing level-(i + 1) directly from level-i clusters, we construct a

collection X of vertex-disjoint subgraphs of Gi. Each subgraph X ∈ X has the vertex set denoted by V(X ) and
the edge set denoted by E(X ), and is mapped to a level-(i+ 1) cluster, denoted by CX , as follows:

(5.16) CX = ∪φC∈V(X )C

That is, CX is the union of all level-i clusters corresponding to the nodes of X . Note that X has weights on both
edges and nodes. We then define the potential value of CX as follows.

(5.17) Φ(CX ) = Adm(X )
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That is, the potential value of CX is the augmented diameter of the corresponding subgraph. Recall that
the potential value will then be the weight of the node corresponding to CX in the cluster graph Gi+1 in the
construction of the next level, see Equation (5.15). Furthermore, inductively, we can show that, if ω(φC) is an
upper bound on Dm(Hσ

≤i−1[C]), then Adm(X ) is an upper bound on Dm(Hσ
≤i[CX ]). As a result, guaranteeing

properties (1)-(3) for level-(i+1) clusters can be translated into guaranteeing the following properties for subgraphs
in X:

� (P1’). {V(X )}X∈X is a partition of Vi.
� (P2’). |V(X )| = Ω( 1ϵ ).
� (P3’). Li ≤ Adm(X ) ≤ gLi.

Lemma 5.6. (Lemma 3.14 [LS21]) Let X be any subgraph in X satisfying properties (P1’)-(P3’). Suppose that
every edge (φCu

, φCv
) ∈ E(X ) corresponds to an edge (u, v) that is added to Hσ

i . Then, CX satisfies all properties
(1)-(3).

We remark that Lemma 5.6 is based on the assumption that (u, v) is added to Hσ
i , which we have not

constructed yet.
Constructing level(i + 1) clusters. Lemma 5.6 translates the construction of clusters in Ci+1 to the

construction of the set of subgraphs X satisfying (P1’)-(P3’). The main difficulty is not only to satisfy these
properties; but also to guarantee that the weight of Hσ

i is bounded by the potential change ∆i+1 (and a small
additive term) as claimed in Item (1) of Lemma 5.4. Recall by Equation (5.15) and Equation (5.17) that:

(5.18)

Φi =
∑︂
C∈Ci

Φ(C) =
∑︂

φC∈Vi

ω(φC)

Φi+1 =
∑︂

CX∈Ci+1

Φ(CX ) =
∑︂
X∈X

Adm(X )

Thus, if we define the local potential change of X as follows:

(5.19) ∆i+1(X ) =
∑︂

φC∈V(X )

ω(φX )− Adm(X ),

then it follows that:

Claim 1. (Claim 3.15 [LS21]) ∆i+1 =
∑︁

X∈X ∆i+1(X ).

That is, the potential change ∆i+1 can be decomposed into local potential changes of subgraphs in X. This
meanss we could bound the weight of Hσ

i locally via bounding the total weight of edges incident to nodes in X
by the local potential change of X .

Partitioning Vi and X. We say that a partition V = {Vhigh
i ,V low+

i ,V low−

i } of Vi is a degree-specific partition

if every node φC ∈ Vhigh
i is incident to Ω(1/ϵ) edges in Ei and every node φC ∈ V low+

i ∪V low−

i is incident to O(1/ϵ)

edges in Ei. That is, Vhigh
i is the set of high-degree nodes of Vi and V low+

i ∪ V low−

i is the set of low-degree nodes

of Vi. The difference between V low+

i and V low−

i will be made clear later.

We say that a partition {Xhigh,Xlow+

,Xlow−} of a collection X of subgraphs of Gi conforms with a degree-
specific partition V if

(i) Every subgraph X ∈ Xlow−
has V(X ) ⊆ V low−

i , and ∪X∈Xlow−V(X ) = V low−

i .

(ii) For every node φC ∈ Vhigh
i , there exists a subgraph X ∈ Xhigh such that φC ∈ V(X ), and that every subgraph

X ∈ Xhigh contains at least one node in Vhigh
i .

Observe that property (ii) implies that V(X ) ⊆ V low+

i for every X ∈ Xlow+

. Also, it is possible that a subgraph

X ∈ Xhigh contains a node in V low+

i .
The construction of X in [LS21] is described by the following lemma.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Lemma 5.7. (Lemma 3.17 [LS21]) Given Gi, we can construct in time O((|Vi| + |Ei|)ϵ−1) (i) a degree-specific

partition V = {Vhigh
i ,V low+

i ,V low−

i } of Vi and (ii) a collection X of subgraphs of Gi along with a partition

{Xhigh,Xlow+

,Xlow−} conforming V such that:

(1) Let ∆+
i+1(X ) = ∆(X ) +

∑︁
e∈˜︂MSTi∩E(X ) w(e). Then, ∆+

i+1(X ) ≥ 0 for every X ∈ X, and

(5.20)
∑︂

X∈Xhigh∪Xlow+

∆+
i+1(X ) =

∑︂
X∈Xhigh∪Xlow+

Ω(|V(X )|ϵ2Li).

(2) There is no edge in Ei between a node in Vhigh
i and a node in V low−

i . Furthermore, if there exists an edge

(φCu , φCv ) ∈ Ei such that both φCu and φCv are in V low−

i , then V low−

i = Vi and |Ei| = O( 1
ϵ2 ); this case is

called the degenerate case.

(3) For every subgraph X ∈ X, X satisfies the three properties (P1’)-(P3’) with constant g = 31, and
|E(X ) ∩ Ei| = O(|AX |) where AX is the set of nodes in X incident to an edge in E(X ) ∩ Ei.

We call ∆i+1(X ) the corrected potential change of X . We remark that ∆i+1(X ) could be negative but
∆i+1(X ) is always positive by Item (1) of Lemma 5.7. Furthermore, Item (1) in Lemma 5.7 only tells us about

the corrected potential changes of subgraphs in Xhigh ∪ Xlow+

; there is no guarantee on the corrected potential
changes of subgraphs in Xlow−

other than non-negativity, and as a result, we could not bound the total weight
of edges incident to a subgraph X ∈ Xlow−

by the local potential change of X . However, Item (2) means that

subgraphs in Xlow−
do not need to “pay for” their incident edges (by their corrected potential changes)—these

edges can be paid for by subgraphs in Xhigh ∪ Xlow+

—unless the degenerate case happens, which only incurs a
small weight (of O(1/ϵ2) edges). Furthermore, subgraphs in Xlow−

do not contain any edge in Ei by Item (2) of
Lemma 5.7 unless the degenerate case happens.

Observation 4. (Observation 3.20 in [LS21]) If the degenerate case does not happen, for every edge (φ1, φ2)

with one endpoint in V low−

i , the other endpoint must be in V low+

i , and hence, E(X ) ∩ Ei = ∅ if X ∈ Xlow−
.

We remark that Item (3) in Lemma 5.7 is slightly different from the corresponding item in Lemma 3.17 [LS21],
which is Item (5), in that |E(X ) ∩ Ei| is bounded by O(|V(X )|). Here we need a slightly stronger bound, and
Item (3) can be seen directly from the construction of [LS21]. For completeness, we will show this item in the
construction in Subsection 5.3.2.

While the construction in Lemma 5.7 provides a mean to construct Hσ
i and bounding its weight by (corrected)

potential changes via Item (1), it does not give us a sufficient reduction in the number of non-virtual clusters
as claimed by Items (3) and (4) in Lemma 5.4. The reduction in the number of non-virtual clusters was used
to bound the total number of edges of Hσ in Subsection 5.2. Our main contribution is a modification of the
construction by Le and Solomon [LS21] using the cycle property of MST to achieve the reduction in the number
of non-virtual clusters.

We call a node φC virtual if it corresponds to a virtual cluster C; otherwise, we call φC non-virtual. We
say that φC is isolated if C is isolated, and otherwise, is non-isolated. By definition, a non-isolated node is a
non-virtual node.

We abuse notation by denoting Ni andMi the sets of non-virtual nodes and virtual nodes of Vi, respectively.
We denote by Yi the set of non-isolated nodes in Vi. We will show later that Yi is exactly the set of nodes defined
in Lemma 5.3. That is, every node in Yi corresponds to a level-i cluster that contains at least one endpoint of an
edge in Hσ

i .
We say that a subgraph X ∈ X is non-virtual if it contains at least one non-virtual node, and otherwise, is

virtual. A non-virtual subgraph corresponds to a non-virtual level-(i + 1) cluster. Our main contribution is the
construction of X described by the following lemma.

Lemma 5.8. We can construct in O((|Vi| + |Ei|)ϵ−1) a degree-specific partition V of Vi and a collection X of
subgraphs of Gi that satisfy all properties in Lemma 5.7 with g = 42. Furthermore, if we denote by Ni+1 the set
of non-virtual subgraphs in X, then |Ni| − |Ni+1| ≥ |Yi|/2.

In the following section, we prove Lemma 5.4 assuming that Lemma 5.8 holds. The proof of Lemma 5.8 is
deferred to Subsection 5.3.2.
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5.3.1 Proof of Lemma 5.4 We use the same algorithm in [LS21] to construct Hσ
i . The algorithm has three

steps. Initially Hσ
i has no edge.

� Step 1. For every subgraph X ∈ X, we add to Hσ
i every edge in Eσ

i that corresponds to an edge in
E(X ) ∩ Ei. The purpose of this step is to guarantee the assumption of Lemma 5.6.

� Step 2. Wee use Halperin-Zwick algorithm (Theorem 2.1) to construct a (2k−1)-spanner for edges between
Vhigh
i only. Specifically, we create an unweighted graph Ki that has Vhigh

i as the vertex set and the subset of

edges of Ei between Vhigh
i as the edge set. Then, we run Halperin-Zwick algorithm [HZ96] on Ki to obtain

an edge set Eprunedi . We then add every edge in Eσ
i corresponding to an edge in Eprunedi to Hσ

i .

� Step 3. We add to Hσ
i every edge that corresponding to an edge of Ei incident to a node in V low+

i ∪V low−

i .

Le and Solomon (Lemma 3.22 and Lemma 4.5 in [LS21]) showed that w(Hσ
i ) = Oϵ(n

1/k)∆i+1 + ai for ai
satisfying Lemma 5.4, and that the stretch of every edge (u, v) ∈ Eσ

i is at most (2k − 1)(1 + (10g + 1)ϵ) in Hσ
i .

Since their proof only uses properties stated in Lemma 5.7, and that our construction in Lemma 5.8 also satisfies
Lemma 5.7, Items (1) and (2) in Lemma 5.4 hold in our construction as well. We remark that the additive term
ai is used to handle the degenerate case in Item (2) of Lemma 5.7, since in that case, ∆i+1 ≤ 0.

We now focus on proving Items (3) and (4) of Lemma 5.4. First, we observe that for every node φC that is

incident to an edge e ∈ Ei, the corresponding edge of e in Eσ
i is added to Hσ

i , unless φC ∈ Vhigh
i and Halperin-

Zwick algorithm does not pick e to Eprunedi . In this exceptional case, another edge incident to φC must be picked

to Eprunedi ; otherwise, φC is not connected to any node in the graph induced by Eprunedi , contradicting that the
output is a spanner. It follows that Yi corresponds to level-i clusters that have at least one incident edge in Hσ

i .
Thus, Item (4) of Lemma 5.4 follows from Lemma 5.8.

By Item (3) in Lemma 5.7, the total number of edges added in Step 1 is O(1)
∑︁

X∈XAX = O(1)|Yi|. The

number of edges added in Step 2 is |Eprunedi | = O(|Vhigh
i |1+1/k) = O(n1/k)|Vhigh

i | = O(n1/k)|Yi| since Vhigh
i ⊆ Yi by

the definition of non-isolated nodes. In Step 3, for each node φC ∈ V low+

i ∪V low−

i , we add at most O(1/ϵ) incident

edges to Hσ
i since nodes in V low+

i ∪ V low−

i have degree O(1/ϵ). Thus, the total number of edges added in Step 3
is O(1/ϵ)|Yi|. Item (3) of Lemma 5.4 now follows.

For the running time, we first note that constructing Gi takes O((|Vi|+ |Ei|)α(m,n)) time by Lemma 5.5. The
set of subgraphs X is constructed in Oϵ(|Vi|+ |Ei|) time by Lemma 5.8. In the construction of Hi

σ, Steps 1 and 3
take O(|Vi|+ |Ei|) by a straightforward implementation. Step 2 takes O(|Vi|+ |Ei|) time by Theorem 2.1. Thus,
the total running time of the construction at level i is O((|Vi| + |Ei|)α(m,n)). It follows that the total running
time over all levels is:

∑︂
i≥1

Oϵ ((|Vi|+ |Ei|)α(m,n)) = Oϵ

⎛⎝(
∑︂
i≥1

|Vi|+m)α(m,n)

⎞⎠
= Oϵ

(︂
(|Ṽ |+m)α(m,n)

)︂
(by property (P2))

= Oϵ (mα(m,n)) (by Observation 2)

Lemma 5.4 now follows.

5.3.2 The construction of X Recall that ˜︃MST is the tree obtained by subdividing MST edges by virtual vertices.
For each edge e ∈ MST, we denote by Pe the corresponding path of MST subdivided from e. We call Pe the subdivided
path of e. Since each virtual cluster C ∈ Ci only contains virtual vertices, C induces a subpath of the subdivided
path Pe of some edge e ∈ MST. We call Pe the parent path of C, and e the parent edge of C; see Figure 2(a). We
also refer to Pe as the parent path and to e as the parent edge of the virtual node φC corresponding to C.

Our goal is to construct X satisfying all properties in Lemma 5.7, and such that there is a significant reduction
in the number of non-isolated clusters as claimed in Lemma 5.4. To guarantee this additional constraint, we rely
on a specific structure of Gi described in the following lemma, which is an analogous version of the cycle property
of the minimum spanning tree.

Lemma 5.9. Let e = (φ1, φ2) be any edge in Ei, and Z the fundamental cycle of ˜︃MSTi formed by e. For any
virtual node φ ∈ Z, w(eφ) ≤ ω(e) where eφ is the parent edge of φ.
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Figure 2: Virtual clusters are yellow shaded and non-virtual clusters are green shaded. (a) A virtual cluster C, its
parent path Pe, and the edge e that corresponds to Pe. (b) The fundamental cycle Z of ˜︃MSTi formed by an edge e.
(c) The corresponding cycle Z̃ in G̃heavy corresponding to Z. Shaded nodes are u0, v0, u1, v1, . . . , uk−1, vk−1. (d)

The cycle Z of Gheavy corresponding to Z̃ obtained by replacing each subdivided path Pe′ with the corresponding
edge e′ in MST. Solid (black) edges are MST edges, and red (dashed) edges are non-MST edges.

Proof. Recall that G̃heavy is obtained from Gheavy by subdividing MST edges, and that Gheavy = (V,Eheavy ∪
E(MST)). Let e be the edge in Gheavy corresponding to e. We construct a cycle Z̃ of G̃heavy from Z as follows.
Write

Z = (φC0
, e0, φC1

, e1, . . . , φCk−1
, ek−1, φC0

)

as an alternating sequence of nodes and edges that starts from and ends at the same node φC0 . (See Figure 2(a)
and (b) for an illustration.) For notational convenience, we regard the last node φC0

as φCk
with the subscript

modulo k. Let (ui, vi) be the edge in G̃heavy corresponding to ei, and Qi be the shortest path from v(i−1) mod k

to ui in Hσ
≤i[Ci] for any 0 ≤ i ≤ k − 1. Then Z̃ = (u0, v0) ◦Q1 ◦ (u1, v1) ◦Q2 ◦ . . . ◦ (uk−1, vk−1) ◦Qk−1 is a cycle

of G̃; here ◦ is the path concatenation operator. Observe that Z̃ contains the parent path, say Pe, of φ. Let Z be
the cycle of Gheavy obtained from Z̃ by replacing each subdivided path say Pe′ in Z̃ with the corresponding MST

edge e′; see Figure 2(d). Note that both e and eφ belong to Z.
Observe by property (P3) that Dm(Hσ

≤i[Ci]) ≤ gϵLi < Li/(1 + ϵ) ≤ ω(e) = w(e) when ϵ ≤ 1/(2g). Thus, the
weight of any non-MST edge in Z is at most w(e). That is, any edge of weight larger than w(e) in Z must be an
MST edge. If there exists such an edge, then the edge of maximum weight in Z is an MST edge, contradicting the
cycle property of MST. Thus, e is an edge of maximum weight in Z, which gives w(eφ) ≤ w(e) = ω(e) as claimed.

Note by definition that a non-isolated node is a non-virtual node. We say that a subgraph X is good if it
either contains no non-isolated node or if it contains one non-isolated node, it has at least two non-virtual nodes
(one of which is the non-isolated node). If every subgraph in X is good, then we could show that the number
of non-virtual clusters is reduced by at least |Yi|/2. In LS construction, which has five steps, only subgraphs
formed in Steps 2 and 5 (more precisely, Step 5B) may not be good. For Step 5B, only need to make a minor
modification and argue that the resulting subgraph is good using Lemma 5.9. For Step 2, we need an entirely
different construction. As a result, our construction also has five steps. Steps 1,3, 4 and 5A are the same as the
LS construction, and are taken verbatim from [LS21] for completeness. Notation introduced in this section is
summarized in the following table.

Notation Meaning

Elight {e ∈ E(G) : w(e) ≤ w/ε}
Eheavy E \ Elight

Eσ
⋃︁

i∈N+ Eσ
i
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Eσ
i {e ∈ E(G) : Li

1+ϵ < w(e) ≤ Li}
Hσ

i A spanner constructed for edges in Eσ
i

Hσ
≤i Hσ

≤i = ∪j≤iH
σ
i

g constant in property (P3), g = 42

Non-virtual cluster A cluster containing at least one non-virtual vertex

Non-virtual node A node in Vi corresponding to a non-virtual cluster

Ni the set of non-virtual clusters (nodes) at level i

Mi the set of virtual clusters (nodes) at level i

Non-isolated cluster A cluster containing an endpoint of an edge added to Hσ
i

Non-isolated node A node in Vi corresponding to a non-isolated cluster

Yi the set of non-isolated clusters (nodes) at level i; Yi ⊆ Ni

Gi = (Vi,˜︃MSTi ∪ Ei, ω) cluster graph

Ei corresponds to a subset of edges of Eσ
i

X a collection of subgraphs of Gi
X ,V(X ), E(X ) a subgraph in X, its vertex set, and its edge set

Good subgraph X X contains no non-isolated node or at least two non-virtual nodes

Φi

∑︁
c∈Ci

Φ(c)

∆i+1 Φi − Φi+1

∆i+1(X ) (
∑︁

ϕC∈X Φ(C))− Φ(CX )

∆+
i+1(X ) ∆i+1(X ) +

⋃︁
e∈E(X )∩˜︂MSTi w(e)

CX
⋃︁

ϕC∈X C

{Vhigh
i ,V low+

,V low−

i } a degree-specific partition of Vi
{Xhigh,Xlow+

,Xlow−} A partition of X conforming a degree-specific partition.

Table 2: Notation introduced in this section

Lemma 5.10. (Step 1, Lemma 5.1 [LS21]) Let Vhigh
i be the set of nodes incident to at least 2g/ϵ edges in Ei,

and Vhigh+
i be the set of all nodes in Vhigh

i and their neighbors that are connected via edges in Ei. We can construct
in O(|Vi|+ |Ei|) time a collection of node-disjoint subgraphs X1 of Gi such that:

(1) Each subgraph X ∈ X1 is a tree.

(2) ∪X∈X1
V(X ) = Vhigh+

i .
(3) Li ≤ Adm(X ) ≤ 13Li, assuming that ϵ ≤ 1/g.
(4) |V(X )| ≥ 2g

ϵ .

Let ˜︁F (2)
i be the forest obtained from ˜︃MSTi by removing every node in Vhigh+

i (defined in Lemma 5.10). LS

algorithm deals with branching nodes of ˜︁F (2) in Step 2. We say that a node in a tree ˜︁T is ˜︁T -branching if it has
degree at least 3 in ˜︁T . A node in a forest ˜︁F is ˜︁F -branching if it is ˜︁T -branching in some tree ˜︁T of ˜︁F . We will omit
the prefixes ˜︁T and ˜︁F in the branching notation whenever the tree and the forest are clear from the context.

Similar to LS algorithm, our goal is to group all branching nodes of ˜︁F (2)
i into subgraphs. However, we need

to guarantee that subgraphs formed in this step are good, which a priori, are not guaranteed to be good in LS
construction.

Lemma 5.11. We can construct in O(|Vi|) time a collection X2 of subtrees of ˜︁F (2)
i and a subset of nodes Z of˜︁F (2)

i such that, for every X ∈ X2:
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(1) X is a tree, has an X -branching node, and is good.
(2) Li ≤ Adm(X ) ≤ 20Li.
(3) |V(X )| = Ω( 1ϵ ) when ϵ ≤ 2/g.

(4) Let ˜︁F (3)
i be obtained from ˜︁F (2)

i by removing every node contained in subgraphs of X2 and in Z. Then, for

every tree ˜︁T ⊆ ˜︁F (3)
i , either (4a) Adm( ˜︁T ) ≤ 6Li or (4b) ˜︁T is a path.

(5) Nodes in Z are augmented to subgraphs in X1 such that for every subgraph Y ∈ X1 that are augmented, Yaug

remains a tree and Adm(Yaug) ≤ 24Li where Yaug is Y after the augmentation.

There are two differences in the construction of Step 2 in our construction compared to the construction in
LS algorithm. First, the graphs constructed are good. Second, for some edges cases where we could not group
branching nodes into subgraphs satisfying Item (1), we show that they could be augmented to subgraphs in X1.
These nodes are in Z in Item (5), and our construction guarantees that the augmentation does not change the
structure of subgraphs in X1. That is, subgraphs in X remain trees, and their diameters are not increased by
much. The increase in the diameter from 13Li in Lemma 5.10 to 24Li in Item (5) in Lemma 5.11 does not affect
the overall argument of Le and Solomon [LS21]; this only affects the choice of g, which we have the freedom to
choose as large as we want. The augmented diameter of X in Item (2) in Lemma 5.11 is also slightly larger than
the diameter of subgraphs in [LS21], which is at most 2Li. This change also only affects the choice of g. The
proof of Lemma 5.11 will be delayed to Subsection 5.3.3.

Step 3: Augmenting X1 ∪ X2. We say that a path of augmented diameter at least 6L in the forest ˜︁F (3)
i

in Item (4) of Lemma 5.11 a long path. In this step, we further augment graphs formed in Steps 1 and 2. The
purpose is to guarantee that for any long path after this step, at least one endpoint of the path is connected to a
node in a subgraph of X1 ∪ X2 via an ˜︃MSTi edge.

The construction. Let A be the set of all nodes in a long path of ˜︁F (3)
i that is ˜︃MSTi-branching. For

each node φ ∈ A, let X ∈ X1 ∪ X2 be (any) subgraph such that φ is connected to a node in X via an˜︃MSTi edge e. We then add φ and e to X .

Lemma 5.12. (Lemma 5.3. [LS21]) The augmentation in Step 3 can be implemented in O(|Vi|) time, and
increases the augmented diameter of each subgraph in X1 ∪ X2 by at most 4Li when ϵ ≤ 1/g.

Furthermore, let ˜︁F (4)
i be the forest obtained from ˜︁F (3)

i by removing every node in A. Then, for every tree ˜︁T ⊆ ˜︁F (4)
i ,

either:

(1) Adm( ˜︁T ) ≤ 6Li or

(2) ˜︁T is a path such that (2a) every node in ˜︁T has degree at most 2 in ˜︃MSTi and (2b) at least one endpoint φ

of ˜︁T is connected via an ˜︃MSTi edge to a node φ′ in a subgraph of X1 ∪ X2, unless X1 ∪ X2 = ∅.

We emphasize that in Item (2a) of Lemma 5.12, the degree bound is in ˜︃MSTi. This is important for the

construction in Step 5. Step 4 deals with long paths of ˜︁F (4)
i , the forest in Lemma 5.12. The construction uses

Red/Blue Coloring. The coloring guarantees that for any long path in ˜︁F (4)
i , the nodes in the prefix/suffix of

augmented length at most Li get red color, while other nodes get blue color.

Red/Blue Coloring. The coloring applies to each long path ˜︁P ∈ ˜︁F (4)
i . Specifically, a node gets red

color if its augmented distance to at least one of the two endpoints of ˜︁P is at most Li; otherwise, it
gets blue color.

Lemma 5.13. (Step 4, Lemma 5.4 [LS21]) We can construct in O((|Vi| + |Ei|)ϵ−1) time a collection X4 of
subgraphs of Gi such that every X ∈ X4:

(1) X contains a single edge in Ei.
(2) Li ≤ Adm(X ) ≤ 5Li.
(3) |V(X )| = Θ( 1ϵ ) when ϵ≪ 1

g .

(4) ∆+
i+1(X ) = Ω(ϵ2|V(X )|Li).

(5) Let ˜︁F (5)
i be obtained from ˜︁F (4)

i by removing every node contained in subgraphs of X4. If we apply Red/Blue

Coloring to each path of augmented diameter at least 6Li in ˜︁F (5)
i , then there is no edge in Ei that connects

two blue nodes in ˜︁F (5)
i .
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Item (5) of Lemma 5.13 guarantees that for any edge with one endpoint in a long path of ˜︁F (5)
i , at least one

of the endpoints must have red color. ˜︁F (5)
i has the following structure.

Observation 5. (Observation 5.7 [LS21]) Every tree ˜︁T ⊆ ˜︁F (5)
i of augmented diameter at least 6Li is

connected via ˜︃MSTi edge to a node in some subgraph X ∈ X1 ∪ X2 ∪ X4, unless there is no subgraph formed
in Steps 1-4, i.e., X1 ∪ X2 ∪ X4 = ∅.

We observe that any tree ˜︁T ⊆ ˜︁F (5)
i of diameter at least 6Li must be a path, and that, by Item (2a) in

Lemma 5.12, only endpoints of ˜︁T could have an edge in ˜︃MSTi to a node outside ˜︁T . We call such an endpoint a
connecting endpoint of ˜︁T . Note that ˜︁T could have up to two connecting endpoints.

Step 5 has two smaller steps. In Step 5A, we augment trees of ˜︁F (5)
i of low augmented diameter to existing

subgraphs. In Step 5B, we form new subgraphs from long paths, and augment the prefix/suffix to an existing
subgraph in previous steps.

Step 5. Let ˜︁T be a path in ˜︁F (5)
i obtained by Item (5) of Lemma 5.13. We construct two sets of subgraphs,

denoted by Xintrnl
5 and Xpref

5 .

� (Step 5A) If ˜︁T has augmented diameter at most 6Li, let e be an ˜︃MSTi edge connecting ˜︁T and a node in some

subgraph X ∈ X1 ∪ X2 ∪ X4, assuming that X1 ∪ X2 ∪ X4 ̸= ∅. We add both e and ˜︁T to X .

� (Step 5B) Otherwise, ˜︁T is a path. We break ˜︁T into subpaths of augmented diameter at least Li and at

most 7Li by applying the construction in Lemma 5.14 below. For any subpath ˜︁P broken from ˜︁T , if ˜︁P is
connected to a node in a subgraph X via an edge e ∈˜︃MSTi, we add ˜︁P and e to X ; otherwise, ˜︁P becomes a
new subgraph. We add ˜︁P to Xpref

5 if it is a prefix/suffix of ˜︁T ; otherwise, we add ˜︁P to Xintrnl
5 .

(a)
(b)

(d) (c)

Pe

Qe
e

5

R~

P~

P

F

Q Q
1 2Q~1 Q~2

R~1 R~2

Figure 3: An illustration for the proof of Lemma 5.14. Small circles are virtual vertices; black (solid) edges are ˜︃MST
edges and red (dashed) edges are edges in Ei. (a) Non-isolated nodes in ˜︁P are those incident to red edges. Nodes
grouped in previous steps are in the blue-shaded region. The path Qe corresponds to an e in P is highlighted. Qe

is a subpath of the parent path Pe of the virtual clusters in the construction of e. (b) The path P obtained from˜︁P in figure (a) by the construction in the proof of Lemma 5.14; the only virtual node in P is the (connecting)
endpoint of P. Suppose that every edge in Qe in figure (a) has weight 1, then e has weight 5 since Qe has 5 edges.
In general, ω(e) = w(Qe). (c) Forest F obtained from P by removing every edge of weight at least 2Li. A in this
case includes two paths Q1 and Q2. (d) Two paths Q̃1 and Q̃2 in P constructed from Q1 and Q2, respectively.
Two other paths R̃1 and R̃2 are broken from the path R̃ in (a).

Lemma 5.14. Let ˜︁P be a path of augmented diameter at least 6Li in ˜︁F (5)
i . We can break ˜︁P into a collection of

paths P such that each path ˜︁P ′ ∈ P has two properties:
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(1) Li ≤ Adm( ˜︁P ′) ≤ 7Li.

(2) If ˜︁P ′ contains a non-isolated node, then it contains at least two non-virtual nodes, or a connecting endpoint

of ˜︁P .

The running time of the construction is O(|V( ˜︁P )|).

Proof. Recall that by Item (2a) in Lemma 5.12, every node in ˜︁P has degree 2 in ˜︃MSTi. This means, if an endpoint of˜︁P is non-connecting, then it is a non-virtual node. Recall by the definition of a virtual node φC , its corresponding
cluster C is virtual, and hence, structurally, C induced a subpath of the parent path Pe.

We construct path graph P from ˜︁P that contains non-virtual nodes and the endpoints of ˜︁P as follows. Each
edge e = (φ,φ′) ∈ P corresponds to a path between φ and φ′ in ˜︁T whose internal nodes are virtual. Note that all

virtual nodes on the path between φ and φ′ in ˜︁T share the same parent path Pe. Let Qe be the minimal subpath
of Pe whose endpoints are in the clusters corresponding to φ and φ′. We then assign a weight ω(e) = w(Qe).
Observe that ω(e) ≤ w(Pe) = w(e) where e is the MST edge from which Pe is subdivided. See Figure 3(a) and (b)
for an illustration.

Note by Item (2a) of Lemma 5.11, every node in ˜︁P has degree at most 2 in ˜︃MSTi. If φ is a non-isolated node

in ˜︁P , then it is incident to an edge, say e′, in Ei by definition. One of the incident edges of φ is part of the
fundamental cycle of ˜︃MSTi formed by e′. It follows from Lemma 5.9 that at least one edge in P of φ must have a
weight at most Li.

Let F be the forest induced by edges of weight at most 2Li in P. We further remove singletons from F .
Observe that a singleton in F is either a connecting endpoint of P, or an isolated node. We then greedily break
each path in F that contains at least three edges into subpaths of at least two edges and at most three edges each.
As a result, we obtain a collection A of subpaths of P that contain at least two nodes each. See Figure 3(c).

We now construct P as follows. (Step 1) For each path Q ∈ A, we construct the corresponding subpath ˜︁Q
of ˜︁P by replacing each edge in Q by the corresponding subpath in ˜︁P . We then add ˜︁Q to P. (Step 2) After

Step 1, remaining nodes in ˜︁P that are not grouped to a path in P induces a collection of subpaths, say Q, of ˜︁P .
Observe by the construction of F that, each subpath in the collection Q corresponds to a subpath of P, which
only contains virtual nodes and isolated nodes, that has at least one edge of weight at least 2Li. Now for each
path R̃ ∈ Q, observe that Adm(R̃) ≥ 2Li − 2w̄ − 2gϵLi ≥ 2Li − 4gϵLi ≥ Li when ϵ ≤ 1/2g. The negative term
−2w̄− 2gϵLi is due to that the two nodes neighboring the endpoints of R̃ are grouped to subpaths in P. We then
break R̃ into subpaths of augmented diameter at least Li and at most 2Li and add them to P. This completes
the construction of P. See Figure 3(d) for an illustration.

The running time follows directly from the construction. To bound the augmented diameter of paths in P,
we observe that path ˜︁Q in Step 1 has augmented diameter at most 3(2Li) + 4ϵgLi ≤ 7Li when ϵ ≤ 1/4g. The

additive term 4ϵgLi is due to (at most) four endpoints of (at most) three edges in ˜︁Q. Thus, every path in P has an
augmented diameter of at most max{7Li, 2Li} = 7Li. The lower bound Li follows directly from the construction;
this implies Item (1). Item (2) follows from the construction of A.

We note that in Step 5B in LS algorithm, ˜︁T is broken into subpaths of augmented length at least Li and at
most 2Li instead of at least Li and at most 7Li as in our construction. The increase in the augmented diameter
ultimately affects the choice of g. Other properties of subgraphs in Xintrnl

5 and Xpref
5 remains the same.

Lemma 5.15. (Lemma 5.8 [LS21]) We can implement the construction of Xintrnl
5 and Xpref

5 in O(|Vi|) time.

Furthermore, every subgraph X ∈ Xintrnl
5 ∪ Xpref

5 satisfies:

(1) X is a subpath of ˜︃MSTi.
(2) Li ≤ Adm(X ) ≤ 7Li.
(3) |V(X )| = Θ( 1ϵ ).

We note that the degenerate case in the above construction happens when X1 ∪ X2 ∪ X4 = ∅. When the

degenerate case happens, ˜︁F (5)
i has the following structure.

Lemma 5.16. (Lemma 5.10 [LS21]) If X1 ∪ X2 ∪ X4 = ∅, then ˜︁F (5)
i = ˜︃MSTi, and ˜︃MSTi is a single (long) path.

Moreover, every edge e ∈ Ei must be incident to a node in ˜︁P1 ∪ ˜︁P2, where ˜︁P1 and ˜︁P2 are the prefix and suffix
subpaths of ˜︃MSTi of augmented diameter at most Li. Furthermore, |Ei| = O(1/ϵ2).
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We are now ready to prove Lemma 5.8.
Proof of Lemma 5.8. The degree-specific partition V of Vi and the partition of X conforming V are

constructed as follows. If the degenerate case happens, then V low−

i = Vi (and hence Vhigh
i = V low+

i = ∅). In this

case, Xlow−
= Xintrnl

5 ∪ Xpref
5 , while Xhigh = Xlow+

= ∅. Otherwise, Vhigh
i to be the set of all nodes that are incident

to at least 2g/ϵ edges in Ei in Lemma 5.10, V low−

i = ∪X∈Xintrnl
5
V(X ) and V low+

i = Vi \ (Vhigh
i ∪V low−

i ). The partition

of X is {Xhigh = X1, Xlow+

= X2 ∪ X4 ∪ Xpref
5 ,Xlow−

= Xintrnl
5 }.

We note that Items (1) and (2) in Lemma 5.7 hold by the same proof in [LS21]. For Item (3), subgraphs in X
satisfy all properties (P1’)-(P3’) with constant g = 42 instead of 31 since the construction of Step 2 in Lemma 5.11
increases the augmented diameter of subgraphs in X1 by 11Li (on top of the upper bound 31Li). We remark
that the augmented diameter of other subgraphs is smaller than the augmented diameters of subgraphs in X1,
and hence, the increased diameter due to our construction does not affect g. The fact that |E(X )∩Ei| = O(|AX |)
where AX is the set of nodes in X incident to an edge in E(X )∩Ei follows from that X is a tree for all cases, except
in Step 4 (Lemma 5.13). However, in this case, X has a single edge in Ei, and hence |E(X ) ∩ Ei| ≤ 1 = O(|AX |).

It remains to show the reduction in the number of non-virtual clusters as claimed in Lemma 5.8. All we need
to show is that for every subgraph X that contains a non-isolated node, it contains at least two non-virtual nodes.
That is, X is good. This holds for subgraphs in X1 ∪ X4, since every subgraph in this set contains at least one
edge in Ei, whose endpoints are non-isolated by the definition of a non-isolated node. Every subgraph in X2 is
good by Item (1) in Lemma 5.11. Observe that each subgraph X ∈ Xintrnl

5 ∪ Xpref
5 corresponds to a subpath of ˜︁T

in Step 5B that does not contain the connecting endpoint. By Item (2) in Lemma 5.14, X contains at least two
non-virtual nodes, if it contains at least one non-isolated node, and hence X is good. Lemma 5.8 now follows.

5.3.3 Proof of Lemma 5.11 In this section, we provide the proofs of Lemma 5.11, which we restate below.

(a) (b)

T~
Qe
Pe

e

5
T

Figure 4: Virtual clusters are yellow shaded and non-virtual clusters are green shaded. Virtual vertices are small
circles. (a) A tree ˜︁T considered in the construction of Step 2 (Lemma 5.11). (b) The tree T constructed from

non-virtual nodes and connecting nodes of ˜︁T in the proof of Lemma 5.11. If every edge in the path Qe has weight
1 as in figure (a), then the weight of e in figure (b) is 5. In general, ω(e) = w(Qe). Every virtual node in T is a
connecting node. Subgraphs in the rectangular dashed curves are subgraphs formed in previous steps.

Lemma 5.11. We can construct in O(|Vi|) time a collection X2 of subtrees of ˜︁F (2)
i and a subset of nodes Z of˜︁F (2)

i such that, for every X ∈ X2:

(1) X is a tree, has an X -branching node, and is good.
(2) Li ≤ Adm(X ) ≤ 20Li.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



(3) |V(X )| = Ω( 1ϵ ) when ϵ ≤ 2/g.

(4) Let ˜︁F (3)
i be obtained from ˜︁F (2)

i by removing every node contained in subgraphs of X2 and in Z. Then, for

every tree ˜︁T ⊆ ˜︁F (3)
i , either (4a) Adm( ˜︁T ) ≤ 6Li or (4b) ˜︁T is a path.

(5) Nodes in Z are augmented to subgraphs in X1 such that for every subgraph Y ∈ X1 that are augmented, Yaug

remains a tree and Adm(Yaug) ≤ 24Li where Yaug is Y after the augmentation.

Proof. Let ˜︁T be a tree of augmented diameter at least 6Li in ˜︁F (2). We say that a node φ ∈ ˜︁T is a connecting
node if it has an MST edge to a subgraph X ∈ X1.

We now construct a tree T in the same way we construct a path P in Lemma 5.14. T is a tree that contains
non-virtual nodes and connecting nodes of ˜︁T , which may or may not be virtual. Note that branching nodes of ˜︁T
are non-virtual. Each edge e = (φ,φ′) ∈ T corresponds to a path between φ and φ′ in ˜︁T whose internal nodes

are virtual. Note that all virtual nodes on the path between φ and φ′ in ˜︁T share the same parent path Pe. Let
Qe be the minimal subpath of Pe whose endpoints are in the clusters corresponding to φ and φ′. We then assign
a weight ω(e) = w(Qe). Observe that ω(e) ≤ w(Pe) = w(e) where e is the MST edge from which Pe is subdivided.
See Figure 4 for an illustration.

Claim 2. If a node φ in ˜︁T is non-isolated and non-connecting, then φ is incident to an edge of weight at most
Li in T .

Proof. By definition of a non-isolated node, φ is incident to an edge, say e′, in Ei by definition. One of the incident
edges of φ belongs the fundamental cycle of ˜︃MSTi formed by e′. It follows from Lemma 5.9 that at least one edge
in T of φ must have a weight at most ω(e′) ≤ Li.

We first apply the following construction to obtain a collection of trees, say A, and then we will post-process
the trees to obtain X2 as claimed in Lemma 5.11. We say that a tree ˜︁T in ˜︁F (2) a long tree if its augmented
diameter is at least 6Li. The construction of A is similar to Step 2 in LS algorithm, except that the radius of the
BFS step in our construction is slightly larger.

� (Step i) Pick a long tree ˜︁T of ˜︁F (2)
i with at least one ˜︁T -branching node, say φ. If ˜︁T has a ˜︁T -branching

node that is non-isolated, we then choose φ to be a non-isolated node. We traverse ˜︁T by BFS starting from
φ and truncate the traversal at nodes whose augmented distance from φ is at least 2Li. The augmented
radius (with respect to the center φ) of the subtree induced by the visited nodes is at least Li and at most

2Li + w̄ + gϵLi ≤ 2Li + 2gϵLi. We then create a new tree ˜︁T ′ induced by the visited nodes.

After the construction in Step i, every tree in ˜︁T either has augmented diameter at most 6Li or is a path.
An important property that we would like to have is that every tree in A either contains no non-isolated

node or at least two non-virtual nodes. To this end, we need to post-process A. Our postprocessing relies on the
following structure of trees in A.

Claim 3. Let ˜︁T ′ ∈ A be a tree that contains exactly one non-isolated node, no connecting node, and no other
non-virtual node. Then ˜︁T ′ is adjacent to a tree T ′′ ∈ A that has at least two non-virtual nodes.

Proof. Let φ be the non-isolated node in ˜︁T ′. Observe that the center of ˜︁T ′ is a branching node, and hence,
is non-virtual. It follows that φ must be the center of ˜︁T ′ since otherwise, ˜︁T ′ contains two non-virtual nodes,
contradicting the assumption of the claim. Let φ′ be the neighbor in T of φ whose edge (φ′, φ) has weight at
most Li by Claim 2. By construction, the radius of the traversal is at least 2Li > Li + 2ϵgLi when ϵ ≤ 1/4g. If

φ′ is a virtual node (see Figure 5(a)), then it must be connecting, and hence φ′ belong to ˜︁T ′, contradicting that˜︁T ′ has no connecting node. Otherwise, φ′ is a non-virtual node and is grouped into another tree, say ˜︁T ′′ ∈ A (see

Figure 5(b)). Observe that ˜︁T ′ and ˜︁T ′′ are adjacent, i.e., connected by an edge in ˜︃MSTi, since all nodes between

φ and φ′ have degree 2 as they are virtual nodes. We claim that ˜︁T ′′ must have at least two non-virtual nodes.
If φ′ is not a center of ˜︁T ′′, then ˜︁T ′′ contains at least two non-virtual nodes since its center is a non-virtual node.
Otherwise, φ′ is the center of ˜︁T ′′, and hence, φ would have been merged to ˜︁T ′′ during the construction of ˜︁T ′′, a
contradiction.
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Figure 5: Two cases in the proof of Claim 3. (a) φ′ is a virtual node in T . Then it is a connecting node, and is

grouped to ˜︁T ′. (b) φ′ is a non-virtual node. Then it is grouped in ˜︁T ′′ that is adjacent to ˜︁T ′. ˜︁T ′′ contains at least
two non-virtual nodes (3 non-virtual nodes in this figure).

Our construction in the next step is as follows.

� (Step ii) Pick a tree ˜︁T ′ in A that has one non-isolated node and no other non-virtual node. If ˜︁T ′ contains a
connecting node, say φ. Let Y ∈ X1 be a subgraph such that φ has an ˜︃MSTi edge e to a node in Y. We then
add ˜︁T ′ and e to Y, and add the set of nodes of ˜︁T ′ to Z. Otherwise, ˜︁T ′ is adjacent to another tree ˜︁T ′′ ∈ A
that has at least two non-virtual nodes by Claim 3. We then add ˜︁T ′ and the ˜︃MSTi edge connecting ˜︁T ′ and˜︁T ′′ to ˜︁T ′′. We then repeat this step until it no longer applies. The set X2 is the set of trees in A after this
step completed.

We now prove all properties in Lemma 5.11. Step i is the same as Step 2 in LS algorithm and hence can
be implemented in O(Vi) following [LS21] (Lemma 5.2). Step ii can be implemented in O(|V( ˜︁F (2))|) = O(Vi) by
following each step of the construction. Thus, the total running time is O(|Vi|).

Item (1) of Lemma 5.11 and Item (4) follows directly from the construction. By the construction in
Step i, every tree has an augmented diameter at least 2Li and at most (2Li + 2ϵLi). The augmentation
in Step ii is done via a star-like way, and hence, increases the diameter of each tree in A by at most
2(2Li +2ϵgLi) + 2w̄ ≤ 2(2Li +2ϵgLi) + 2gϵLi = 4Li +6ϵLi. (Here we use the fact that w̄ ≤ Li−1 = ϵLi ≤ gϵLi.)
Thus, the final diameter is at most 2Li + 2ϵgLi + 4Li + 6ϵLi ≤ 6Li + 8ϵLi ≤ 14Li < 20Li when ϵ ≤ 1/g; this
implies Item (2) of Lemma 5.11.

For Item (3), note that each tree X ∈ X2 has augmented diameter at least 2Li, and that every edge/node
has a weight at most max{w̄, gϵLi} = gϵLi. It follows that |V(X )| ≥ 2Li

gϵLi
= Ω(1/ϵ), as claimed.

For Item (5), we observe that each subgraph Y ∈ X1 is augmented in Step ii via an ˜︃MSTi edges an in a star-like
way. Thus, Adm(Yaug) ≤ Adm(Y)+2(2Li+2ϵgLi)+2w̄ ≤ Adm(Y)+4Li+6ϵgLi ≤ 13Li+4Li+6gϵLi ≤ 23Li <
24Li when ϵ ≤ 1/g. This complete the proof of Lemma 5.11.
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