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Abstract11

Dynamic graph matching algorithms have been extensively studied, but mostly under edge updates.12

This paper concerns dynamic matching algorithms under vertex updates, where in each update step13

a single vertex is either inserted or deleted along with its incident edges.14

A basic setting arising in online algorithms and studied by Bosek et al. [FOCS’14] and Bernstein15

et al. [SODA’18] is that of dynamic approximate maximum cardinality matching (MCM) in bipartite16

graphs in which one side is fixed and vertices on the other side either arrive or depart via vertex17

updates. In the BASIC-incremental setting, vertices only arrive, while in the BASIC-decremental18

setting vertices only depart. When vertices can both arrive and depart, we have the BASIC-dynamic19

setting. In this paper we also consider the setting in which both sides of the bipartite graph are20

dynamic. We call this the MEDIUM-dynamic setting, and MEDIUM-decremental is the restriction when21

vertices can only depart. The GENERAL-dynamic setting is when the graph is not necessarily bipartite22

and the vertices can both depart and arrive.23

Denote by K the total number of edges inserted and deleted to and from the graph throughout24

the entire update sequence. A well-studied measure, the recourse of a dynamic matching algorithm25

is the number of changes made to the matching per step. We largely focus on Maximal Matching26

(MM) which is a 2-approximation to the MCM. Our main results are as follows.27

In the BASIC-dynamic setting, there is a straightforward algorithm for maintaining a MM, with28

a total runtime of O(K) and constant worst-case recourse. In fact, this algorithm never removes29

an edge from the matching; we refer to such an algorithm as irrevocable.30

For the MEDIUM-dynamic setting we give a strong conditional lower bound that even holds in31

the MEDIUM-decremental setting: if for any fixed η > 0, there is an irrevocable decremental32

MM algorithm with a total runtime of O(K · n1−η), this would refute the OMv conjecture; a33

similar (but weaker) hardness result can be achieved via a reduction from the Triangle Detection34

conjecture.35

Next, we consider the GENERAL-dynamic setting, and design an MM algorithm with a total36

runtime of O(K) and constant worst-case recourse. We achieve this result via a 1-revocable37

algorithm, which may remove just one edge per update step. As argued above, an irrevocable38

algorithm with such a runtime is not likely to exist.39

Finally, back to the BASIC-dynamic setting, we present an algorithm with a total runtime of40

O(K), which provides an ( e
e−1 )-approximation to the MCM.41

To this end, we build on the classic “ranking” online algorithm by Karp et al. [STOC’90].42

Beyond the results, our work draws connections between the areas of dynamic graph algorithms and43

online algorithms, and it proposes several open questions that seem to be overlooked thus far.44
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1 Introduction59

Dynamic matching algorithms have been intensively studied in recent years. The great60

majority of previous work considers graphs that change via edge updates, where in each61

update step a single edge is either inserted to or deleted from the graph. In dynamic graphs62

that are subject to vertex updates, where each update step consists of an insertion or a63

deletion of a vertex (with all its incident edges), the literature is much more sparse and, to64

the best of our knowledge, essentially all of it is restricted to incremental (insertion only) or65

decremental (deletion only) updates. This work studies matching algorithms in fully dynamic66

graphs under vertex updates.67

1.1 Background68

In the area of dynamic graph algorithms, one can try to optimize the amortized or worst-case69

update time of an algorithm, where both measures are defined with respect to a worst-case70

sequence of updates, and the worst-case (resp., amortized) update time designates the71

maximum (resp., average) update time spent by the algorithm over all update steps.72

In graphs subject to vertex updates, which is our focus, when it comes to the update time,73

one should care about amortized bounds. Indeed, the update time following a vertex update74

must be at least linear in the degree of that vertex. Due to possibly significant differences in75

the degrees of updated vertices, the worst-case update time is rather meaningless. On the76

other hand, the amortized update time is a normalized notion of the total runtime of the77

algorithm, where we divide the total runtime by the number of edges ever inserted and deleted78

to and from graph; dividing by the number of vertex updates is far less informative. Thus,79

in the background survey to follow (also in graphs subject to edge updates), we usually omit80

the distinction between amortized and worst-case bounds. We start with dynamic graphs81

subject to edge updates (Section 1.1.1) and later move on to vertex updates (Section 1.1.2).82

1.1.1 Edge updates83

We do not cover in this survey the entire literature on matching algorithms under edge84

updates. We shall restrict attention to the state-of-the-art results on matchings whose size85

approximates that of the maximum cardinality matching (MCM) to within a factor of 2,86

which is the focus of this work; this includes maximal matching (MM), which provides a87

2-approximate MCM.88
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Maximal matching (MM)89

Deterministically, the only improvements to the naive MM algorithm with update time O(n)90

are for sufficiently sparse graphs: update time O((n + m)
√

2/2) was achieved in [24], which91

was improved in [27] to O(
√

m), where n (resp., m) denote the fixed (resp., dynamic) number92

of vertices (resp., edges) in the graph, respectively.93

Better deterministic algorithms are known for bounded arboricity graphs. The arboricity94

of an m-edge graph G, denoted by α = α(G), is the minimum number of forests into which95

it can be decomposed; this parameter ranges from 1 to
√

m and is a common measure of96

“uniform sparsity”. The current state-of-the art is update time O(α +
√

α log n), due to [20].97

Allowing randomization against a (non-adaptive) oblivious adversary, an update time of98

O(log n) was achieved [2], which was subsequently improved to O(1) [31]. We remark that99

an oblivious adversary is not allowed to learn anything about the random bits used by the100

algorithm, which can alternatively be viewed as if the entire sequence of updates is fixed by101

the adversary in advance, i.e., prior to any random choices made by the algorithm.102

Can one improve the
√

m deterministic update time of [27], even using randomization103

against an adaptive adversary? No lower bound whatsoever is known.104

▶ Question 1.1. Is there a deterministic algorithm, or a randomized one against an adaptive105

adversary, for maintaining an MM in general graphs with a sub-polynomial update time?106

Better-than-2 approximate MCM107

A (1+ϵ) (resp., (3/2+ϵ))-approximate MCM can be maintained with update time O(
√

m/ϵ2)108

[19] (resp., O(m1/4ϵ−2.5)) [6, 7], for any 0 < ϵ < 1/2. These results were generalized for109

bounded arboricity graphs: A (1 + ϵ) (resp., (3/2 + ϵ))-approximate MCM can be maintained110

with update time O(α/ϵ2) [28] (resp., O(α1/4ϵ−2.5 + ϵ−6) [17]), where α is the arboricity111

bound, which, as mentioned, ranges from 1 to
√

m.112

A randomized algorithm against an oblivious adversary for maintaining a (2 − Ω(ϵ))-113

approximate MCM with update time O(∆ϵ+polylog(n)) was given in [3], where ϵ is a constant114

and the Ω-notation in the approximation bound hides a tiny constant. For bipartite graphs,115

similar results can be achieved without making the oblivious adversary assumption, either via116

a randomized algorithm against an adaptive adversary [8, 33] or via a deterministic algorithm117

[8, 9]. We also mention a result for graphs of bounded neighborhood independence1 β: There is118

a randomized algorithm against an adaptive adversary for maintaining a (1 + ϵ)-approximate119

MCM with update time O( β
ϵ3 log 1

ϵ ) [26].120

For any fixed ϵ > 0, a (1 + ϵ)-MCM can be maintained in constant (resp., polylog(n))121

update time in incremental general (resp., decremental bipartite) graphs [16] (resp., [9]).122

The following is a major open problem.123

▶ Question 1.2. Is there any algorithm for maintaining a better-than-2 approximate MCM in124

general graphs with a sub-polynomial update time? Further, is it possible to get a significantly125

better than 2 (say, 1.99) approximation with a small polynomial update time?126

1.1.2 Vertex updates127

For matching algorithms under vertex updates, which is the focus of this work, the literature128

is much more sparse. In FOCS’14, Bosek et al. [11] considered bipartite graphs in which129

1 The neighborhood independence (number) of a graph G, denoted by β = β(G), is the size of the largest
independent set in the neighborhood of any vertex.

ITCS 2022
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one side is fixed (n fixed “servers”) and vertices (“clients”) on the other side either arrive130

or depart in n vertex updates; we will refer to these settings as BASIC-incremental and131

BASIC-decremental. They optimized two measures: The total runtime of the algorithm132

(or equivalently the amortized update time) and the recourse bound, which measures how133

many changes to the matching are done per step. They designed an exact (respectively,134

(1 + ϵ)-approximate) MCM algorithm with a total runtime of O(m
√

n) (resp., O(mϵ−1)),135

where n and m are the number of vertices and edges in the graph, matching the performance136

of the celebrated Hopcroft-Karp [22] algorithm for a one-time static computation. Their137

exact and approximate algorithms admit recourse bounds of O(
√

n) and O(ϵ−1), respectively.138

A different exact MCM algorithm with an amortized recourse bound of O(log2 n) was given139

in SODA’18 by Bernstein et al. [4]. See also [18, 14, 12, 13, 5, 32], and the references therein.140

The recourse bound141

The recourse bound is a basic measure of quality, and has been subject to growing attention142

in recent years [18, 14, 12, 13, 4, 5, 30, 29]. In some applications such as job scheduling, web143

hosting, streaming content delivery and data storage, and in situations where the matched144

edges are hardwired in a physical sense, a replacement of a matched edge by another one145

may be prohibitively expensive, possibly much more than the time needed to compute these146

replacements. Moreover, a low recourse bound is important when the matching algorithm is147

used as a black-box subroutine inside a larger data structure or algorithm (see, e.g., [7, 1]).148

The worst-case (resp., amortized) recourse bound of an algorithm measures the maximum149

(resp., average) number of changes to the output matching per update step, over the entire150

sequence of updates. The recourse bounds in the algorithms of [11] and [4], as well as in151

other previous works [18, 14, 12, 13, 5] are amortized. Under vertex updates, as mentioned,152

the worst-case update time is not too informative, as it is problematic to compare update153

times following updates of vertices with significantly different degrees; the same is not true154

of course for edge updates. However, the recourse bound is not necessarily affected by the155

degrees of the updated vertices, and so optimizing the worst-case recourse bound is not less156

natural or important than optimizing the amortized recourse bound.157

It was shown in ITCS’21 [30] that any dynamic algorithm for maintaining a γ-approximate158

MCM with update time T , for any γ ≥ 1, T and ϵ > 0, can be transformed into an algorithm159

for maintaining a (γ(1+ϵ))-approximate MCM with update time T +O(1/ϵ) and a worst-case160

recourse bound of O(1/ϵ). This transformation applies to both edge and vertex updates.161

Although this transformation only increases the approximation guarantee by a factor of162

1 + ϵ, the transformed algorithm does not preserve the qualitative properties of the matching163

maintained by the original algorithm; in particular, an MM algorithm will be transformed164

into an algorithm that maintains a (2 + ϵ)-approximate MCM, which is very different of165

course than an MM.166

1.2 Our contribution167

As mentioned, our work studies matching algorithms in graphs that change dynamically168

under vertex updates, whereas most previous work in the area considers edge updates. In the169

area of online algorithms, on the other hand, most of the literature revolves around vertex170

updates. In both areas, vertex updates are easier to deal with than edge updates (further171

details on that are given in Section 1.2.1). We stress that the objectives in the areas of online172

algorithms and dynamic graph algorithms are inherently different. In the former the objective173

is to optimize the competitive ratio of an online algorithm (the ratio of the approximation174
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guarantee provided by the online algorithm to that of the best possible offline algorithm),175

each decision of the algorithm is irrevocable, and no runtime measure is considered. In the176

latter the main objective is to optimize the update time of the algorithm, and while the177

decisions are allowed to be “revoked” as many times as necessary, it is important nonetheless178

to optimize the recourse bound.179

The previous works on dynamic matching algorithms under vertex updates were inspired180

by the area of online algorithms; e.g., the paper of Bosek et al. [11] is titled “online matching in181

offline time”. In particular, as with most papers in the area of online algorithms, all previous182

work on dynamic matching algorithms under vertex updates considers either incremental or183

decremental updates. Our paper is the first to study dynamic matching algorithms184

under fully dynamic vertex updates. We denote by K the total number of edges inserted185

and deleted to and from the graph throughout the sequence of vertex updates, and note that186

a total runtime of K · t, for any t, translates into an amortized update time of t.187

We first observe that in bipartite graphs where one side is fixed, i.e., consists of n fixed188

vertices that we may view as “servers”, and the other side is fully dynamic, i.e., vertices on189

that side that we may view as “clients” arrive and depart via vertex updates, hereafter the190

BASIC-dynamic setting, there is a trivial MM algorithm with a total runtime of O(K) and191

constant worst-case recourse. In fact, this algorithm resembles an online algorithm in that192

it never removes an edge from the matching; we refer to such an algorithm as irrevocable.193

Throughout the paper, we shall distinguish between two types of edges deleted from the194

matching: Those due to the algorithm, which will be referred to as removals (only from the195

matching), and those due to the adversary (the entity performing the updates), which will be196

referred to as deletions (they get deleted from the graph, but then also from the matching).197

Further details are given in Section 2.198

We then consider bipartite graphs in which both sides are fully dynamic, hereafter the199

MEDIUM-dynamic setting. For this setting we prove that, based on popular conjectures, no200

irrevocable algorithm with a total runtime of O(K) may exist.201

▶ Theorem 1. An irrevocable MM algorithm with a total runtime of O(K ·n1−η), for any fixed202

η > 0, would refute the the online matrix-vector multiplication (OMv) conjecture. Moreover,203

a runtime of O(K ·mη), for some fixed η > 0, would refute the Triangle Detection conjecture.204

We also extend the hardness result provided by Theorem 1 to the decremental setting, called205

MEDIUM-decremental, where the update sequence only contains vertex deletions. In this206

setting, we can fix the graph and its initial maximal matching, and the dynamic algorithm207

must be able to maintain the maximal matching under vertex deletions. Alternatively, our208

results apply to an “almost-decremental” sequence of updates, which starts with a batch of209

insertions and proceeds with a batch of deletions. The decremental setting is more restricted210

than the fully dynamic setting, which makes our lower bound stronger.211

Next, we consider general graphs under vertex updates, hereafter the GENERAL-dynamic212

setting. We say that an algorithm is i-revocable, for an integer parameter i ≥ 0, if it may213

remove at most i edges per update step in the worst-case. (An irrevocable algorithm is214

0-revocable.)215

▶ Theorem 2. For any sequence of updates in the GENERAL-dynamic setting, one can216

maintain an MM via a deterministic 1-revocable algorithm with a total runtime of O(K).217

Any i-revocable MM algorithm may add at most 2i + 1 edges to the matching per step, and218

so the algorithm provided by Theorem 2 has a constant worst-case recourse. Theorem 2 and219

Theorem 1 establish a strong separation between 1-revocable and irrevocable MM algorithms.220

ITCS 2022
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Recall that in the edge update setting, the fastest deterministic update time is
√

m; see221

Question 1.1.222

Finally, back to the BASIC-dynamic setting, we prove the following theorem in Section 5.223

224

▶ Theorem 3. For any sequence of updates in the BASIC-dynamic setting, one can maintain225

a ( e
e−1 )-approximation (in expectation) to the MCM with a total runtime of O(K).226

To achieve this result, we build on the classic “ranking” online algorithm by Karp et al.227

[25]. More specifically, we demonstrate how to efficiently maintain a matching corresponding228

to the ranking algorithm under vertex updates. Given any fixed ranking over the servers,229

our algorithm performs deterministically within total runtime O(K), but the approximation230

factor may approach 2. To get an ( e
e−1 )-approximation (in expectation), we use a random231

ranking over the servers, which is withheld from the adversary. Thus our algorithm is232

randomized and it works against an oblivious adversary. Recall that in the edge update233

setting, the fastest update time (including algorithms against an oblivious adversary) is234

polynomial in n; see Question 1.2.235

1.2.1 Conceptual highlights236

Beyond the results reported above, we next discuss the conceptual contribution of this work.237

A more refined measure of recourse238

We have already discussed the importance of the recourse bound. The number of changes to239

the matching is comprised of the number of edge removals and edge insertions. Removing an240

edge from the matching is arguably much more problematic or expensive than adding an edge241

to the matching, when it comes to real-life applications. Recall that an i-revocable algorithm242

may remove at most i edges from the matching per update in the worst-case; we identified243

this parameter, which we may refer to as the revocable parameter, as a pivotal measure of244

MM algorithms: While there is a 1-revocable MM algorithm with constant amortized update245

time (Theorem 2), based on popular conjectures, any irrevocable algorithm must incur a246

polynomial update time. For MM algorithms, this parameter provides a more refined measure247

than the standard recourse bound, since any i-revocable MM algorithm has a recourse of at248

most 3i + 1; in particular, both irrevocable and 1-revocable MM algorithms have constant249

recourse.250

It would be interesting to explore this measure further. For example, what is the251

relationship between irrevocable MM algorithms and maximum matching algorithms with252

no bound on the revocable parameter? Both problems admit high conditional lower bounds,253

but can we reduce one of the problems to the other? What about a (2 + ϵ)-approximation254

algorithm that does not maintain an MM: Is there an irrevocable (2 + ϵ)-approximate MCM255

algorithm with constant amortized update time? The hardness result of Theorem 1 exploits256

the maximality of the matching but not the approximation guarantee. We note that the257

( e
e−1 )-approximation algorithm of Theorem 3 may incur a large revocable parameter. Is it258

possible to achieve a similar approximation and update time via a 1-revocable, or even an259

irrevocable, algorithm?260

Better-than-2 approximate MCM261

As mentioned in Section 1.1.1, whether or not one can maintain a better-than-2 approximate262

MCM in sub-polynomial update time under edge updates is a major open problem (see263
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Question 1.2). On the other hand, Theorem 3 shows that one can maintain a ( e
e−1 )-264

approximate MCM in constant update time under vertex updates. To achieve this result, we265

maintained a matching corresponding to the ranking online algorithm of [25]. This draws a266

natural connection between the areas of online algorithms and dynamic graph algorithms. We267

anticipate that the area of dynamic graph algorithms could benefit significantly by borrowing268

more from the area of online algorithms, and it could also contribute to it of course.269

Recall that the result of Theorem 3 applies to the BASIC-dynamic setting. It is unclear270

if our approach can be extended to the MEDIUM-dynamic setting, let alone to the GENER-271

AL-dynamic setting; each of these settings adds another level of difficulty. Note also that272

in the GENERAL-dynamic setting, which concerns general rather than bipartite graphs, the273

approximation factor of 1−1/e does no longer apply. However, a generalization of the ranking274

algorithm [23] gives an approximation of roughly 1.919 (i.e., 1
0.5211 ); one can hope to get275

this approximation in the GENERAL-dynamic setting. Achieving a better-than-2 approximate-276

MCM in these settings is not only an intriguing question on its own right, but could also be277

a stepping stone towards resolving Question 1.2, first in bipartite graphs and ultimately in278

general graphs.279

2 An irrevocable MM in the BASIC-dynamic setting280

In this section, we describe a simple irrevocable maximal matching algorithm for the BA-281

SIC-dynamic setting, which works in total runtime of O(K). Recall that we use K to denote282

the total number of edges inserted and deleted to and from the graph throughout the entire283

update sequence.284

In what follows, we denote by degi(v) and Ni(v) the degree and set of neighbors of a285

vertex v in the graph after update step i, respectively; when the update step i is clear from286

the context, we omit the subscript. In the BASIC-dynamic setting, vertices on the fixed side287

S of the bipartition are often called servers while vertices on the dynamically changing side288

C are called clients.289

Upon insertion of a client u, we scan its neighborhood and look for a free server in N(u)290

to be matched with u. If there is such a server, denoted by v (v is chosen arbitrarily if291

there are multiple options), we add edge (u, v) to the maintained matching M; otherwise,292

the algorithm “notifies” all the servers in N(u) that u is free: For each server x in S , we293

maintain a doubly linked list F (x) of free neighbors, and to notify the neighboring servers294

that u is free, the algorithm appends u to their linked lists. Whenever the algorithm appends295

some client u to the list F (x) of a neighbor x ∈ N(u), it stores the pointer to that entry in296

F (x) with vertex u; this pointer is later used to erase the corresponding entry (if needed) in297

O(1) time. See also the pseudocode of procedure HandleInsertion(u) in Algorithm 1.298

When a client u gets deleted, we remove the occurrences of u from the lists F (x), for all299

servers x ∈ N(u). If the deleted client was matched, we first need to delete (u, v) from the300

matching M, where v is the mate of u. This renders server v free, so the algorithm needs301

to rematch it with a free client in N(v). To this end the algorithm checks if F (v) is empty,302

and if not, the vertex at the front of the list, denoted by w, is removed from F (v), and gets303

matched with v. See procedure HandleDeletion in Algorithm 1.304

Clearly, Algorithm BasicMM is an irrevocable algorithm for maintaining an MM. More-305

over, it is readily verified that the total runtime of this algorithm is O(K).306

▶ Corollary 4. For any sequence of updates in the BASIC-dynamic setting, one can maintain307

an MM via a deterministic irrevocable algorithm with a total runtime of O(K).308

ITCS 2022
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Algorithm 1 BasicMM
1: procedure HandleDeletion(u)
2: if mate(u) ̸= ∅ then ▷ let v = mate(u)
3: delete (u, v) from M
4: if F (v) ̸= ∅ then
5: take the first entry w from F (v) and add (v, w) to M
6: Notify(w, matched)
7: else
8: Notify(u, free)
9: procedure HandleInsertion(u)

10: scan the neighbors of u ▷ in O(deg(v)) time
11: if no free neighbor is found then Notify(u, free)
12: else
13: let v be an arbitrary free neighbor of u; add (u, v) to M
14: procedure Notify(u, State) ▷ State ∈ {free, matched}
15: if State = free then
16: for x ∈ N(u) do
17: append u to F (x) ▷ keep the pointer from u to its entry in F (x)
18: else ▷ State = matched
19: for x ∈ N(u) do
20: remove u from F (x) ▷ in O(1) time, using the pointer stored with u

3 Lower bounds for irrevocable MM in the MEDIUM setting309

In this section we prove a strong lower bound of amortized time Ω(n1−ϵ) per edge update for310

any constant ϵ < 1, assuming that the OMv conjecture holds (Conjecture 5). This essentially311

means that for each vertex update, one cannot do much better than scanning the entire312

vertex neighborhood. Our lower bound even holds for MEDIUM-decremental setting; in this313

setting, we require that the decremental algorithm is able to handle any update sequence314

that consists of vertex deletions applied to any graph G and any maximal matching M of G.315

The Online Boolean Matrix-Vector Multiplication (OMv ) conjecture was introduced by316

Henzinger et al. [21] for proving conditional hardness of various (dynamic) problems. In the317

OMv problem, we are given an n×n Boolean matrix M and a sequence of n Boolean vectors318

arriving one by one v1, v2 . . . , vn. For each vector vt where t ∈ [1, n], we need to output the319

Boolean product M · vt before the next vector comes. The OMv conjecture is the following:320

▶ Conjecture 5 (OMv Conjecture [21]). For any constant ϵ > 0, there is no algorithm that321

solves the OMv problem with an error probability of at most 1/3 and runs in O(n3−ϵ) time.322

The same paper [21] introduced another problem, called the Online Vector-Matrix-Vector323

Multiplication (OuMv ) problem. In this problem, we are given an n× n Boolean matrix M324

and a sequence of n pairs of Boolean vectors arriving one by one (u1, v1), (u2, v2) . . . , (un, vn).325

The task is, for each time step t ∈ [1, n], to output the Boolean product u⊺
t Mvt, before the326

next vector pair arrives. Henzinger et al. [21] showed that if the OMv conjecture holds, there327

is no algorithm for OuMv with total running time O(n3−ϵ) for any fixed ϵ > 0 even if one is328

allowed to preprocess M in polynomial time before any vector pair arrives.329

▶ Theorem 6 (Theorem 2.4 [21]). For any constant ϵ > 0, assuming that the OMv conjecture330
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holds, there is no algorithm with a polynomial preprocessing that solves the OuMv problem331

with an error probability of at most 1/3 and runs in O(n3−ϵ) time.332

We first present a lower bound for the fully dynamic setting, as the proof is simpler333

and conveys some intuition for the decremental setting. The lower bound proof for the334

decremental setting follows the same principle, but we introduce an additional idea. In335

particular, we introduce the Stop-OuMv problem (Definition 13), which is a variant of of the336

OuMv problem. We show that the Stop-OuMv and OuMv are equivalent under truly subcubic337

time reductions. We then prove a lower bound for the decremental setting via a reduction338

from the Stop-OuMv problem.339

Hardness from triangle detection340

We also achieved a weaker lower bound, under the Triangle Detection conjecture:341

▶ Conjecture 7. There is a constant 0 < δ, such that in the Word RAM model with words of342

O(log n) bits, any algorithm requires m1+δ−o(1) time in expectation to detect whether an m343

edge graph contains a triangle.344

Our lower bound holds for the decremental setting as well; due to space constraints, this345

lower bound is omitted.346

3.1 The fully dynamic setting347

Our proof of the lower bound for irrevocable MM in the MEDIUM-dynamic setting is via a348

reduction from the OuMv problem. In particular, we show that:349

▶ Theorem 8. If for some fixed ϵ > 0, there is an algorithm that maintains an irrevocable350

maximal matching in the MEDIUM-dynamic setting with error probability at most 1/3 in351

O(K ·n1−ϵ) time, then the OuMv problem can be solved in O(n3−ϵ) time with error probability352

of at most 1/3, using O(n2) preprocessing time.353

Theorem 8 and Theorem 8 imply that, unless the OMv conjecture fails, there is no354

algorithm with running time O(K · n1−ϵ) time and error probability at most 1/3 that355

maintains an irrevocable maximal matching in the MEDIUM-dynamic setting.356

Henceforth, we focus on proving Theorem 8. We construct the dynamic graph in 2 phases,357

starting from an empty graph. In the first phase, we are given an n × n matrix M . We358

construct a bipartite graph G = (V, E) by adding vertices in a specific order such that the359

maximal matching maintained by the algorithm is perfect. The running time of the first360

phase is O(n2), which we charge to the preprocessing time of the algorithm for solving the361

OuMv problem. The second phase has n time steps, and in each time step t when we receive362

a pair of vectors (ut, vt), we delete and insert vertices to G = (V, E) such that the total363

number of edges incident to the deleted/inserted vertices is O(n). We argue that depending364

on the size of the maximal matching, we can determine whether u⊺
t Mvt is 0 or 1. Since the365

total number of edges inserted/deleted over n time steps is K = O(n2), an algorithm of366

running time O(K · n1−ϵ) for irrevocable MM implies an algorithm of running time O(n3−ϵ)367

for the OuMv problem with preprocessing time O(n2), as claimed.368

We now describe each phase in turn.369
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Phase 1.370

In this phase, given an n × n matrix M , we incrementally construct a bipartite graph371

G = (V, E) as follows. The vertex set V is the union of four vertex sets V = V ∗
L ∪VL∪VR∪V ∗

R,372

each has n vertices. It follows that |V | = 4n. There is an edge between a vertex pair373

(iL, jR) ∈ VL × VR if and only if M [iL, jR] = 1. For each vertex iL ∈ VL, there is a374

corresponding vertex i∗
L ∈ V ∗

L of degree 1 that is connected to iL. That is (iL, i∗
L) is the375

only edge incident to i∗
L. Similarly, for each vertex jR ∈ VR, there is a corresponding vertex376

j∗
R ∈ V ∗

R of degree 1 that is connected to jR. Clearly G is a bipartite graph. We would377

like the maximal matching M maintained by the algorithm by the end of phase 1 to be378

{(i∗
L, iL) : iL ∈ VL} ∪ {(j∗

R, jR) : jR ∈ VR}. To realize this assumption, we add vertices to379

G in the following order. First, we add all vertices of V ∗
L and V ∗

R one by one. We then add380

vertices of VL and finally add vertices of VR. Observe that, every time a vertex iL ∈ VL381

is added, the algorithm will match it to the corresponding vertex i∗
L ∈ V ∗

L , since it has no382

other neighbor. Similarly, when vertex jR ∈ VR is added, the algorithm will match it to383

the corresponding vertex j∗
R ∈ V ∗

R, since its neighbors in VL are already matched and the384

algorithm is not allowed to change the matching. We conclude that:385

▶ Observation 9. The total number of edges of G after Phase 1 is O(n2). Also, the maximal386

matching after Phase 1 is {(i∗
L, iL) : iL ∈ VL} ∪ {(j∗

R, jR) : jR ∈ VR}, which has size 2n.387

Phase 2.388

This phase has n time steps, and in each time step t, a pair of vectors (ut, vt) arrives. First,389

for each j ∈ [1, n] such that vt[j] = 1, we activate the j-th vertex jR ∈ VR by deleting its390

neighbor j∗
R in V ∗

R. Let y be the number of 1-entries of vt. Then, for each i ∈ [1, n], we391

activate the i-th vertex iL ∈ VL by deleting its counterpart i∗
L ∈ VL and query the size of the392

maximal matching. We call vertices in VL ∪ VR whose neighbors are deleted active vertices.393

We show in the following lemma that by querying the size of the maximal matching, we can394

determine the value of u⊺
t Mvt. Let xi be the number of 1-entries of ut whose indices are in395

[1, i]. Let Mi be the maximal matching following the deletion of i∗
L.396

▶ Lemma 10. u⊺
t Mvt = 1 if and only if there exists i ∈ [n] such that |Mi| = 2n− y− xi + 1397

and for every 1 ≤ i′ < i, |Mi′ | = 2n− y − xi′ .398

Proof. Observe that when the algorithm deletes i∗
L, there are y + xi vertices that have been399

deleted from V ∗
L ∪ V ∗

R in total. Thus, |Mi| ≥ 2n − y − xi. The algorithm may add a new400

matching edge between a vertex in VL and a vertex in VR after deleting vertices from V ∗
L ∪V ∗

R.401

We argue that the number of such edges is at most 1, and that this happens only when402

u⊺
t Mvt = 1. Recall that u⊺

t Mvt = 1 is either 0 or 1. Furthermore, u⊺
t Mvt = 1 if and only403

if there exists a unique pair of indices (i, j) ∈ [n]× [n] such that ut[i] = M [i, j] = vt[j] = 1.404

It follows that, before iL is activated, there is no edge from active vertices in VL to active405

vertices in VR. Thus, |Mi′ | = 2n− y− xi′ for every 1 ≤ i′ < i. When i∗
L is deleted, iL is free406

and hence, will be matched to jR. Thus, |Mi| = 2n− y − xi + 1. □407

408

Lemma 10 implies that we are able to decide whether u⊺
t Mvt = 1 by querying the size of409

the maximal matching, and find the first index i ∈ [n] such that |Mi| = 2n− y − xi + 1 (we410

stop the phase at that i). If we cannot find such an index i, then u⊺
t Mvt = 0.411

Next, we need to “undo” the changes of the maximal matching to prepare for the arrival412

of the next vector pair (ut+1, vt+1). If u⊺
t Mvt = 0, all we need to do is to insert the deleted413
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vertices of V ∗
L ∪ V ∗

R back into the graph, and the algorithm will match all of them with their414

counterparts in VL∪VR. If u⊺
t Mvt = 1, let i be the first index such that |Mi| = 2n−y−xi +1.415

We delete iL from VL, then insert the deleted vertices of V ∗
L ∪ V ∗

R back, and finally insert iL416

back into the graph. Note that iL will not be matched to any jR ∈ VR since each jR was417

matched to its counterpart in j∗
R, which was inserted before iL. Thus, iL will be matched to418

i∗
L and the algorithm can proceed to the next time step.419

▶ Observation 11. At each time step t ∈ [n], the number of edges deleted and inserted is420

O(n).421

Proof. Since the algorithm deletes at most n vertices of degree 1 (in V ∗
L ∪ V ∗

R) and at most422

one vertex in VL, the number of deleted edges is at most 2n. The number of inserted edges423

is exactly the number of of deleted edges. Thus, the observation follows. □424

425

Proof of Theorem 8. By Observation 9, the running time in Phase 1 is O(n2), which we426

charge to the preprocessing time of M . Phase 2 has n time steps, and by Lemma 10, we can427

correctly decide whether u⊺
t Mvt = 1 for each time step t by querying the size of the maximal428

matching. By Observation 11, the total number of edges over the entire update sequence is429

K = O(n2), including the edges updated in Phase 1. It follows that if the running time to430

maintain an irrevocable MM is O(Kn1−ϵ) = O(n3−ϵ), then the total running time to solve431

OuMv is O(n3−ϵ). □432

433

3.2 The decremental setting434

Our goal is to show that, such an algorithm with running time O(K · n1−ϵ) where K is the435

total number of edges deleted implies that the OuMv problem can be solved in O(n3−ϵ) time.436

▶ Theorem 12. If for some ϵ > 0, there is an algorithm that maintains an irrevocable437

maximal matching for any graph G and its maximal matching in the MEDIUM-decremental438

setting with error probability at most 1/3 in O(K ·n1−ϵ) time, where K is the overall number439

of edges being deleted from the graph throughout the entire sequence of updates, then the440

OMv conjecture is false.441

Recall that in the lower bound proof in the fully dynamic setting (Theorem 8), in each442

time step t ∈ [n] in Phase 2, we use vertex insertions to restore the matching before the next443

pair of vectors (ut+1, vt+1) arrives. In particular, we need to insert back vertices of V ∗
L ∪ V ∗

R444

and a vertex iL ∈ VL.445

We would like to use auxiliary vertices to simulate all re-insertions of nodes i∗
L by deletions.446

Here is an idea. In our fully dynamic reduction, we removed vertices i∗
L to free up their447

matches iL in the matching. At the end of the phase, we want to re-insert i∗
L so it can be448

matched to iL again. The idea is that instead of a single i∗
L, we will have a copy i∗

j,L for each449

j = 1, . . . , n, one for each phase. At the beginning of the t-th phase, iL is matched to some450

i∗
t,L; in particular, the initial matching contains (iL, i∗

1,L). During the phase i∗
t,L is deleted to451

make iL available, and at the end of the phase we want iL to get matched to i∗
t+1,L, while452

i∗
t,L stays deleted (rather than being re-inserted). Since we have at most n phases, we would453

only need n2 total nodes i∗
j,L. To make i∗

t+1,L available to be matched, in the initial graph,454

for every j > 1, each i∗
j,L has a single node i∗∗

j,L connected only to it, and the edge (i∗
j,L, i∗∗

j,L)455

is in the initial matching for all j > 1. Then to make i∗
j,L available, it suffices to delete i∗∗

j,L.456
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Doing this, we simulate all re-insertions except those of iL by deletions at the cost of457

having O(n2) vertices; the number of edges stays O(n2). However, it seems difficult to458

simulate the re-insertion of iL. To handle this, we use a different idea.459

Here, we instead exploit the fact that in the fully dynamic construction the cases when460

utMvt = 0 were easy to handle, and that the difficulties came when we found that utMvt = 1.461

We introduce a variant of the OuMv problem, which we call the Stop-OuMv problem,462

where we can stop the online update sequence of pairs of vectors whenever we encounter the463

first time step t such that u⊺
t Mvt = 1. Namely, the goal of the Stop-OuMv problem is to464

detect the first time step ℓ ∈ [n] where u⊺
ℓ Mvℓ = 1. While Stop-OuMv seems easier than465

OuMv , we will show that the two problems are equivalent under truly subcubic reductions.466

Thus, it suffices to reduce Stop-OuMv to our decremental MM problem.467

We proceed similarly to our fully dynamic reduction. The key idea is that whenever we468

detect that u⊺
t Mvt = 1, we do not need to worry about the matching at future time steps.469

As a result, there is no need to insert iL back and hence, we can avoid vertex insertion470

entirely. The remaining technical challenge is to show that an O(n3−ϵ)-time algorithm for471

the Stop-OuMv problem falsifies the OMv conjecture. (The reduction from Stop-OuMv to472

OuMv is trivial.)473

We start by giving the formal definition of the Stop-OuMv problem.474

▶ Definition 13 (Stop-OuMv Problem). We are given an n × n Boolean matrix M and a475

sequence of n pairs of Boolean vectors arriving one by one (u1, v1), (u2, v2) . . . , (un, vn). At476

each time step t ∈ [1, n], we compute the Boolean product u⊺
t Mvt, and if u⊺

t Mvt = 0, we477

proceed to the next vector pair; otherwise, we stop and return that u⊺
t Mvt = 1.478

Later in the section we prove the following theorem, giving an equivalence between479

OMv and Stop-OuMv .480

▶ Theorem 14. For any constant ϵ > 0, assuming that the OMv conjecture holds, there is481

no algorithm with polynomial preprocessing that solves the Stop-OuMv problem with an error482

probability of at most 1/3 and runs in O(n3−ϵ) time.483

We are now ready to prove Theorem 12, assuming Theorem 14.484

Proof of Theorem 12. We will show that a decremental algorithm as stated in Theorem 12485

implies an algorithm with running time O(n3−ϵ) for the Stop-OuMv problem, thereby falsifying486

the OMv conjecture by Theorem 14.487

Given a matrix M of the Stop-OuMv problem, we first construct a graph G = (V, E) and488

its maximal matchingM. Specifically, V is the union of six vertex sets V = V ∗∗
L ∪ V ∗

L ∪ VL ∪489

VR ∪ V ∗
R ∪ V ∗∗

R . VL and VR have n vertices each, and there is an edge between a vertex pair490

(iL, jR) ∈ VL × VR if and only if M [iL, jR] = 1. For each vertex iL ∈ VL, we add n vertices491

{i∗
1,L, . . . , i∗

n,L} to V ∗
L ; each vertex in this set is connected to iL by an edge. We apply the492

same construction to each vertex jR ∈ VR; the new neighbors of jR are added to V ∗
R. Finally,493

for each vertex i∗
t,L ∈ V ∗

L for t > 1, we add a vertex i∗∗
t,L in V ∗∗

L and connect i∗∗
t,L to i∗

t,L by an494

edge. We apply the same construction to each vertex in V ∗
R, but new vertices are are added495

to V ∗∗
R . This completes the construction of G. See Figure 1 for an illustration.496

The maximal matchingM we choose is {(i∗
1,L, iL) : iL ∈ VL}∪{(j∗

1,R, jR) : jR ∈ VR} plus497

all the edges incident to V ∗∗
L ∪ V ∗∗

R , except for those who are matched to vertices in VL ∪ VR.498

This can be accomplished by first inserting the edges of M, and then the rest of the edges.499

Note by the construction that vertices in V ∗∗
L ∪ V ∗∗

R have degree 1 in G and those in500

V ∗
L ∪ V ∗

R have degree 2.501
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2∗∗2,R

3∗∗3,R

3∗∗2,R

1 0 1
1 0 1
0 1 1

M =

Figure 1 Here we see an example construction of the reduction graph obtained from the 3 × 3
matrix M . The edges in the initial matching M are shown in bold.

▶ Observation 15. Let m be the number of 1-entries of the matrix M . Then |M| = 2n2,502

and G has m + 4n2 − 2n edges and 4n2 vertices.503

Since m = O(n2), by Observation 15, G andM can be constructed in O(n2) time; we charge504

this running time to the preprocessing time of the Stop-OuMv problem.505

Next, for each time step t ∈ [n], the pair of vectors (ut, vt) arrives. We will inductively506

maintain the following invariant:507

Matching Invariant: At the beginning of time step t, for every vertex iL ∈ VL508

(jR ∈ VL), there is an edge (iL, i∗
t,L) (resp. (jR, j∗

t,R)) in the maximal matching.509

Clearly, the Matching Invariant holds when t = 1 by the construction of M. For each510

j ∈ [n] such that vt[j] = 1, we activate the j-th vertex jR ∈ VR by deleting its neighbor511

j∗
t,R ∈ V ∗

R. We apply the same operation for each i ∈ [n] such that ut[i] = 1. We call512

vertices in VL ∪VR whose neighbors are deleted active vertices. Let zt be the total number of513

1-entries of ut and vt. We call the first time step ℓ where u⊺
ℓ Mvℓ = 1 the critical time step.514

Observe that in each time step t ≤ ℓ, we delete exactly zt edges from the initial maximal515

matching M. Furthermore, the algorithm will add exactly one edge to M at the critical516

time step ℓ and the matching edge is (iL, jR) where (iL, jR) is the (unique) pair such that517

ut[iL] = M [iL, jR] = vt[jR] = 1. Thus, we have:518

▶ Observation 16. LetMt be the matchingM after time step t. Then |Mt| = 2n2−
∑︁t

k=1 zk519

for any t < ℓ and |Mt| = 2n2 −
∑︁t

k=1 zt + 1 when t = ℓ.520

From Observation 16, our idea to detect the critical time step is to maintain Zt =
∑︁t

k=1 zk521

after each time step. At time step t, after activating vertices in VL∪VR as described above, we522

query the size of the maximal matchingMt and check it against 2n2−Zt. If |Mt| = 2n2−Zt,523

then u⊺
t Mvt = 0. Otherwise, |Mt| = 2n2 − Zt + 1, and it follows that t = ℓ. The algorithm524

deletes every vertex of G afterward.525

To prepare for the arrival of the vector pair in the next time step t + 1, we need to526

maintain the Matching Invariant. We do so by deactivating the active vertices in VL ∪ VR.527

Note that we only need to deactivate vertices when t < ℓ, and in this case, there is no edge528

between two active vertices since u⊺
t Mvt = 0. Specifically, we deactivate an active vertex529

iL ∈ VL by deleting vertex i∗∗
t+1,L in V ∗∗

L . This deletion leaves i∗
t+1,L free, and the algorithm530

will match iL to i∗
t+1,L . We deactivate an active vertex jR ∈ VR in the same way. Thus,531

Matching Invariant is maintained.532
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We now bound the total running time of solving the Stop-OuMv problem. Clearly533

K = O(n2) by Observation 15. Maintaining {Zt}n
t=1 takes O(n2) time. Thus, the runtime of534

the algorithm, by the assumption of Theorem 12, is O(Kn1−ϵ) + O(n2) = O(n3−ϵ). □535

536

Finally, we close this section by proving Theorem 14 by a reduction from OuMv problem.537

Reducing OuMv to Stop-OuMv: Proof of Theorem 14.538

Suppose that we have an algorithm for solving the Stop-OuMv problem with a polynomial539

preprocessing time p(n) and total computation time O(n3−ϵ) for some fixed ϵ > 0, we will540

show that the OuMv can be solved in O(n3−2ϵ/3) time by using O(n5/3p(n2/3)) preprocessing541

time; the error probability of both algorithms is 1/3. Thus, Theorem 14 follows from542

Theorem 6.543

Given an instance of the OuMv problem with an n× n matrix M , we partition M into544

n2(1−a) blocks of size na × na for a = 2/3. Then we construct an instance of Stop-OuMv for545

each block of M .546

Next, for each time step t ∈ [n] where a pair of vectors (ut, vt) arrives, we split ut and vt547

into blocks of length na. For each pair (x, y) ∈ [n1−a]× [n1−a], we give the x-th block of ut,548

denoted by ut(x), and y-th block of vt, denoted by vt(y), to the Stop-OuMv data structure549

for the (x, y)-block of M , denoted by M(x, y). If the Stop-OuMv data structure for M(x, y)550

outputs 0, we continue for the next pair. Otherwise, we return that u⊺
t Mvt = 1 and initiate551

a new Stop-OuMv data structure for block M(x, y). Furthermore, whenever the current552

Stop-OuMv data structure for M(x, y) “overflows”, that is, we has given exactly na vector553

pairs to the data structure, we initiate a new Stop-OuMv data structure for M(x, y).554

We first bound the preprocessing time. Observe that for each block M(x, y), the total555

number of Stop-OuMv data structures needed is at most n. Thus, we can initialize exactly n556

Stop-OuMv data structures for each block M(x, y) before any vector pair arrives. The total557

time is O(n1+2(1−a)p(na)) = O(n5/3)p(n2/3), which we will charge to the preprocessing time558

of OuMv algorithm. We note that the number of Stop-OuMv data structures actually used559

by the algorithm for each block M(x, y) could be much smaller than n, and hence, many560

copies of the Stop-OuMv data structures for M(x, y) might go unused.561

We now bound the online running time. Since the number of vector pairs given to the562

Stop-OuMv data structures for each block M(x, y) is n over the entire sequence, we need563

at most n1−a Stop-OuMv data structures for M(x, y) to handle overflows. Furthermore,564

we need at most n additional Stop-OuMv data structures over all pairs (x, y) due to that565

u⊺
t (x)M(x, y)vt(y) = 1. Thus, the total running time of all Stop-OuMv data structures is:566

(n(1−a) · n2(1−a) + n) ·O(na(3−ϵ)) = 2n ·O(n(2/3)(3−ϵ)) = O(n3−2ϵ/3),567

as claimed.568

4 A 1-revocable MM in the GENERAL-dynamic setting569

In this section, we present an MM algorithm for the GENERAL-dynamic setting that works in570

total time O(K).571

We start presenting the algorithms by introducing some notation that shall be used572

throughout this section. For each vertex v we maintain an estimated degree deg′(v) = deg′
i(v):573

We set deg′(v) to deg(v) = |N(v)| once v is inserted to the graph (line 8 in Algorithm 2),574
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and from that point onwards we update v’s estimated degree whenever it differs from its575

degree by a factor of 2 (line 15 in Algorithm 2).576

We partition the (dynamic) vertex set V = Vi into R = Ri, S = Si, and O = Oi: The sets577

of risky, safe, and outlier vertices, respectively. A matched vertex u is designated as risky only578

if deg′(u) > 2 · deg′(v), where v = mate(u); otherwise it is designated as safe. Thus, at most579

one endpoint (the one of higher estimated degree) of any matched edge may be risky. A free580

vertex can be either risky or an outlier. Upon any change in the estimated degree of a risky581

matched vertex, the algorithm designates that vertex as safe (even if deg′(u) > 2 · deg′(v),582

where v = mate(u)).583

For a vertex u, the sets of its neighbors, risky neighbors, safe neighbors, and outlier584

neighbors are denoted by N(u), R(u), S(u), and O(u), respectively. We further partition585

R(u) into R≤(u) and R>(u), which contain the risky neighbors of u with estimated degree586

≤ deg′(u) and > deg′(u), respectively. The algorithm maintains the following invariant.587

▶ Invariant 1. For each vertex v, we maintain a partition of N(u) into S(u), R≤(u), R>(u),588

and O(u). All vertices in S(u) are matched and all free neighbors of u are in R≤(u)∪R>(u)∪589

O(u). (The set O(u) is the set of outlier neighbors of u; all vertices in O(u) are free.)590

The main intuition behind partitioning the neighborhood of each vertex into risky, safe,591

and outlier vertices is that for any safe vertex we have “credits” for scanning its entire592

neighborhood. This informally means that we do not need to maintain invariants for safe593

vertices, and the goal of the invariants is to provide a way to handle the risky vertices without594

scanning their neighborhoods.595

The following invariant will allow us to argue that the matching maintained by update596

algorithm GENERAL-dynamicMM is in fact maximal.597

▶ Invariant 2. For each risky vertex, all its free neighbors (if any) belong to R≤(u) ∪O(u).598

4.1 The update algorithm599

Whenever there is an update, some vertices may switch their states from risky to safe and600

vice versa; our algorithm will check and perform these state updates. (See also procedure601

HandleUpdate(u) in Algorithm 2.) To keep the presentation of our ideas clean, we ignore602

the details of these state changes.603

Suppose first that u is safe. In this case we scan its entire neighborhood. If u has604

a free neighbor, we match u to its free neighbor of highest estimated degree, denoted w.605

If w ∈ O(u), we move w from O(u) to the subset among R≤(u), R>(u), S(u) to which it606

should belong, and then update the data structures of w’s neighbors accordingly. (E.g., if607

deg′(w) ≤ 2 ·deg′(u), w becomes safe and moves to S(u).) Similarly, we designate u as either608

risky or safe as appropriate, and update the data structures of u’s neighbors accordingly.609

In the case that u does not have any free neighbor, we leave u free, and designate u as an610

outlier by moving it from S(w) to O(w) for each neighbor w of u. (Note that we only need611

to designate u as an outlier for its risky neighbors w such that u /∈ R≤(w), so as to maintain612

Invariant 2, but we might as well designate u as an outlier with respect to all its neighbors.)613

If u is risky and R≤(u) ∪ O(u) = ∅, we leave u free. In what follows we assume that614

u is risky and R≤(u) ∪ O(u) ̸= ∅. If O(u) ̸= ∅, we match u with an arbitrary (free)615

vertex w ∈ O(u), move w from O(u) to the subset among R≤(u), R>(u), S(u) to which it616

should belong. Otherwise we match u with an arbitrary vertex w ∈ R≤(u). Finally, if w617

was previously matched to w′, we remove edge (w, w′) from the matching, and handle w′
618

recursively. Since w was a risky vertex, it implies that w′ was previously designated as safe;619

thus we handle w′ recursively as a safe vertex.620
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Figure 2 An illustration of an update step of algorithm GENERAL-dynamicMM. Solid edges
are in the maintained matching M and solid vertices are risky. (a) Before deletion of vertex v, it
is matched to a risky vertex u. Vertex u has two risky neighbors constituting R(u) and three safe
neighbors constituting S(u). (b) Following deletion of v, vertex u becomes free and the algorithm
tries to rematch it (cf. procedure HandleUpdate(u) in Algorithm 2). Since O(u) is empty, vertex w

is chosen from R≤(u) and (u, w) is added to M. (This change might trigger u and/or w to become
safe, which we ignored in this example for simplicity.) At this stage, (w, w′) is removed from M and
w′ becomes free. Since w was risky while matched to (w, w′), this means that w′ has to be safe. (c)
The algorithm tries to rematch w′ (recursively invoking HandleUpdate(w′)). Vertex x which is an
outlier is chosen to be matched to w′.

If the estimated degree of some vertex x changes in the current vertex update (line 15 in621

Algorithm 2), we designate is as safe and update the matching and invariants using the same622

procedure, HandleUpdate(x).623

This completes the description of the algorithm. We are ready to prove Theorem 2. We624

argue correctness of the algorithm in Lemma 17 and analyze its running time in Lemma 18.625

We proceed to argue correctness of the algorithm.626

▶ Lemma 17. Algorithm GENERAL-dynamicMM maintains an MM in the GENERAL-dy-627

namic setting throughout the entire sequence of updates. Moreover, following any update, the628

algorithm removes at most a single edge from the maintained matching M.629

Proof. We first argue that the maintained matching is maximal at all times. By the630

description of the algorithm, a safe vertex that becomes free is left free if and only if it631

does not have any free neighbors. Moreover, a risky vertex u may be left free if and only if632

R≤(u) ∪ O(u) = ∅, while there cannot be any free vertex in R>(u) ∪ S(u) by Invariants 1633

and 2. It follows that any vertex that is left free throughout the execution of the algorithm634

does not lead to a violation of M’s maximality.635

To see that the algorithm is a 1-revocable algorithm, note that the only case in which the636

algorithm removes an edge from the matching is when a risky vertex u becomes free due to637

the adversary. More specifically, the only case in which the algorithm removes an edge (w, w′)638

from the matching is when u is risky, O(u) = ∅ and R≤(u) ̸= ∅, and then an arbitrary vertex639

w from the set R≤(u) is chosen as a mate for u. Then the algorithm proceeds recursively to640

handling w′, the old mate of w, which must be safe, since w was risky. Consequently, the641

algorithm will not remove any edge from the matching as part of this recursive call.642

It is easy to verify that the algorithm never violates the validity of Invariant 1.643

Finally, we argue that Invariant 2 remains valid throughout the execution of the algorithm.644

Suppose first that u is safe. If u has a free neighbor, it is matched to its free neighbor of645

highest estimated degree, denoted w. If deg′(w) > deg′(u), u remains safe and there cannot646

be any violation to the invariant with respect to u. As for w, even if it becomes risky, it does647

not have any free neighbors by the maximality of the matching, thus the invariant holds for it648

vacuously. Otherwise (deg′(w) ≤ deg′(u)), it is possible that u becomes risky, but there is no649
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Algorithm 2 GENERAL-dynamicMM
1: procedure HandleDeletion(u)
2: let Q be an empty queue ▷ vertices to be processed by HandleUpdate
3: if mate(u) ̸= ∅ then
4: delete (u, mate(u)) from M and add mate(u) to Q

5: UpdateDegrees(u, Q,−1) ▷ decrease the degree of each neighbor by one
6: for x ∈ Q do HandleUpdate(x)
7: procedure HandleInsertion(u)
8: deg′(u)← |N(u)|; deg(u)← deg′(u)
9: Notify(u, safe)

10: let Q be a list containing vertex u; UpdateDegrees(u, Q, +1)
11: for x ∈ Q do HandleUpdate(x)
12: procedure UpdateDegrees(u, Q, sgn)
13: for x ∈ N(u) do
14: deg(x)← deg(x) + sgn
15: if deg(x) ≤ deg′(x)/2 or deg(x) ≥ 2 · deg′(x) then
16: deg′(x)← deg(x)
17: Notify(x, safe)
18: if mate(x) = ∅ then add x to Q

19: procedure HandleUpdate(u)
20: if state(u) = safe then
21: choose w ∈ N(u) maximizing deg′(w) among free neighbors of u

22: if u has no free neighbors then Notify(u, outlier)
23: else Match(u, w)
24: else if O(u) ̸= ∅ then take an arbitrary w ∈ O(u) and Match(u, w) ▷ u is risky
25: else if R≤(u) ̸= ∅ then take an arbitrary w ∈ R≤(u) and Match(u, w)
26: procedure Match(u, w)
27: add (u, w) to M
28: if deg′(u) ≤ 2 · deg′(w) then Notify(u, safe) else Notify(u, risky)
29: if deg′(w) ≤ 2 · deg′(u) then Notify(w, safe) else Notify(w, risky)
30: if w was matched to w′ then
31: remove (w, w′) from M
32: HandleUpdate(w′)
33: procedure Notify(u, State) ▷ State ∈ {safe, risky, outlier}
34: if state(u) = State then exit ▷ do nothing if state remains the same
35: state(u)← B

36: for x ∈ N(u) do move u to appropriate set among S(x), R≤(x), and R>(x)
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violation to the invariant since all free neighbors z of u satisfy deg′(z) ≤ deg′(w) ≤ deg′(u),650

hence they all belong to R≤(u) ∪O(u). There is no violation with respect to w either, as it651

becomes safe. If u does not have any free neighbor, it becomes free and is designated as an652

outlier, which cannot lead to any violation to the invariant.653

We henceforth assume that u is risky. If R≤(u) ∪ O(u) = ∅, u is left free, and it is654

immediate that there is no violation to Invariant 2 for all neighbors of u. As for u itself,655

there cannot be any free vertex in R>(u) ∪ S(u) by Invariant 2. Otherwise, u is matched656

with an arbitrary (free) vertex w ∈ O(u), and if none exists it is matched to an arbitrary657

vertex w ∈ R≤(u). In this case, it is immediate that there is no violation to Invariant 2658

with respect to u. As for w, even if it becomes risky, either it belonged to O(u), and then it659

cannot have any free neighbors by the maximality of the matching, or it belonged to R≤(u)660

(and was risky), and then all its free neighbors must belong to R≤(w) ∪O(w) by Invariant 2.661

If w was matched to w′, w′ becomes free, which could potentially violate the validity of662

the matching’s maximality and the invariants. However, the algorithm does not stop at this663

stage, but rather proceeds to handling w′ recursively, hence the validity follows by induction.664

Finally, upon a change in the estimated degree of any vertex z, the vertex is designated665

as safe, which cannot lead to any violation to Invariant 2. □666

667

▶ Lemma 18. Algorithm GENERAL-dynamicMM has a total runtime of O(K).668

Proof. Before going into the details of our running time analysis, we briefly describe the669

intuition. For simplicity, we will first explain the intuition without taking into account the670

cost of O(deg′(w)) incurred in line 24; later on (in Claims 19 and 20), we address this issue.671

Our focus is on the most difficult case where a vertex v is deleted from the graph by the672

adversary. We could afford to spend O(deg′(v)) time, since we can charge this time to edges673

incident to v; each edge will be charged only O(1) time. If the mate of v, say u, is also a safe674

vertex, ignoring the running time of the recursive call, HandleUpdate(u) takes O(deg′(u))675

time, which is also O(deg′(v)) since deg′(u) ≤ 2 deg′(v) by the definition of safe vertices.676

Thus, the running time is within our budget. However, if u is risky, we could not afford to677

scan all neighbors of u. Instead, we can show that the running time of HandleUpdate(u),678

ignoring the recursive calls, is O(1) if R≤(u) = ∅ — in this case, the running time is within679

our budget again — or is O(deg′(w)) where w is the vertex chosen to match u in line 25.680

However, deg′(w) could be much larger than deg′(v) and hence, we could not charge the681

running time of O(deg′(w)) to the deletion of v. Our key idea to resolve this case is to charge682

this running time to the newly created matching edge (u, w). The cost associated with each683

matching edge will be paid when the matching edge is deleted either by the adversary or684

removed by the algorithm. Note that we can assume that eventually every vertex of the685

graph is deleted. This assumption can be enforced by appending to the update sequence the686

deletions of the remaining vertices of the graph; the cost of the algorithm is increased by at687

most a factor of 2.688

We now present the details of our argument. As mentioned above, each matching edge689

will be charged some cost arising from handling the updates of vertices. We control the cost690

associated with each matched edge by maintaining the following invariant.691

▶ Invariant 3. Each edge (u, v) ∈ M is charged a cost of at most c ·min(deg′(u), deg′(v))692

for a sufficiently large constant c.693

We now focus on bounding the running time of HandleUpdate(u). We consider two694

cases: u is safe and u is risky. The former case will be handled in Claim 19 and the latter695

case will be handled in Claim 20.696
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▷ Claim 19. If u is safe, then the cost of HandleUpdate(u) is c0 deg′(u), where c0 is a697

constant independent of c, plus the cost charged to the new matching edge (u, w) (if any)698

that satisfies Invariant 3 when c ≥ c0.699

Proof. Observe that the algorithm spends only O(deg′(u)) time if a free neighbor w ∈ R>(u)700

exists (lines 20–23). In case that no free neighbor has been found, u becomes an outlier701

and we assign a credit of O(deg′(u)) to it. (We can allow to assign this credit since u is a702

safe vertex.) Otherwise, if there is a free vertex w in O(u), we add (u, w) to the matching703

and spend O(deg′(w)) time to notify the neighbors of w about it new status. This cost is704

charged to the credit assigned to w at the time it switched from being a safe vertex to an705

outlier, as described above. The credit is spent only once — at the point when the outlier706

becomes a safe/risky vertex. If no match has been found, then u gets matched to w ∈ R≤(u)707

(if R≤(u) ̸= ∅, meaning that:708

deg′(u) ≥ deg′(w). (1)709

Ignoring the recursive call on the neighbor w′ of w or the possible cost charged to the outlier,710

the total running time is c0 deg′(u).711

We now handle the recursive call HandleUpdate(w′) (line 32). Since w is risky, w′ must712

be safe. It follows that deg′(w) > 2 deg′(w′). Thus, the recursive invocation of HandleUp-713

date(w′) is performed on a safe vertex with a degree lower by at least a factor of two. The cost714

of HandleUpdate(w′) is c0 deg′(w′). Thus, we only need to charge (i) the cost c0 deg′(w′)715

due to HandleUpdate(w′) and (ii) the cost associated with the matching edge (w, w′) (since716

it is removed from M) to the new matching edge (u, w). By Invariant 3, and Equation (1),717

the total cost charged to (u, w) is at most c0 deg′(w′) + c deg′(w′) ≤ c min(deg′(u), deg′(w)),718

when c ≥ c0. Invariant 3 now follows. □719

720

▷ Claim 20. If u is risky, then the cost of HandleUpdate(u) is O(1) plus the cost charged721

to the new matching edge (u, w) (if any) that satisfies Invariant 3 when c ≥ 3c0. Here c0 is a722

sufficiently large constant independent of c.723

Proof. If there a free vertex w in O(u) (line 24), then the algorithm spends O(deg′(w)) time724

notifying neighbors of w. This cost is charged to the credit assigned to w at the time it725

became an outlier. The credit is spent only once — at the point when the outlier becomes726

a safe/risky vertex. Otherwise, if R≤(u) is not empty, a vertex w ∈ R≤(u) is chosen to727

be matched to u (line 25). The cost of notifying w’s neighbors of its changed status is728

O(deg′(w)) ≤ c0 deg′(w). We charge this cost to the new matching edge (u, w).729

If w is matched to w′, we need to charge additional costs to (u, w). In particular, we730

charge to (u, w) the cost associated with the old matching edge (w, w′), which is at most731

c deg′(w′) by Invariant 3, and the cost due to HandleUpdate(w′). Since w′ is safe, the cost732

of HandleUpdate(w′) in line 32 is c0 deg′(w′) plus the cost charged to the new matching733

edge (if any) incident to w′ by Claim 19. We do not need to worry about the cost charged734

to the new matching edge incident to w′ since Invariant 3 is satisfied, and hence we only735

charge c0 deg′(w′) to edge (u, w). It follows that (u, w) is charged a total cost of at most736

c0 deg′(w) + c0 deg′(w′) + c deg′(w′) ≤ c min(deg′(u), deg′(w)), when c ≥ 3c0. In the last737

inequality, we use the fact that w is risky and hence deg′(w) ≥ 2 deg′(w′). Invariant 3 now738

follows. □739

740

We’ll now complete the proof of Lemma 18 by considering each type of update separately.741
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First, we consider the case when u is inserted into the graph. The cost of notifying its742

neighbors in line 9 is O(deg(u)) and the cost of update its neighbor’s degrees in line 10,743

excluding the cost to handle status changes of u’s neighbors in lines 16–18, is O(deg(u)). (By744

the end of this proof, we will discuss the cost of handling lines 16–18.) Thus, we can charge745

the insertion cost to edges incident to u, each is charged O(1) cost.746

We analyze the case when u is deleted from the graph. If u is free, we only update747

the degree of neighbors of u, and the cost is O(deg(u)) excluding the cost to handle status748

changes of u’s neighbors in lines 16–18. Thus, we can charge this cost to the deletion of u;749

each edge incident to u is charged O(1) cost. If u is not free, we denote by w the mate of u.750

The algorithm will call HandleUpdate(w) as w is added to Q in line 4. We first charge the751

costs associated with matching edge (u, w), which is O(deg′(u)) = O(deg(u)) by Invariant 3,752

to edges incident to u, each is charged O(1) cost. Next, if w is safe, the cost of handling w753

is O(deg′(w)) = O(deg(w)) = O(deg(u)) by Claim 19. Note that the cost charged to the754

matching edge incident to w already satisfies Invariant 3 by Claim 19. Thus, we only need755

to charge the cost of handling w to incident edges of u, each is charged a cost of O(1). If w756

is risky, by the same argument and Claim 20, we only need to charge the cost of O(1) due757

to HandleUpdate(w) to incident edges of u. Summarizing, the total cost charged to each758

edge incident to u is O(1).759

It remains to bound the update time in lines 16–18. We observe that the total cost is760

O(deg′(x)). This cost consists of the notification cost in line 17 and the cost of HandleUp-761

date(x) (as it is added to the queue Q in line 18) which are both O(deg′(x)) by Claim 19,762

since x is a safe vertex. (Here we do not account for the cost charged to the new matching763

edge incident to x in HandleUpdate(x).) Thus, we can charge the cost of the update in764

lines 16–18 to the edges incident to x being added/inserted which lead to changes in the esti-765

mated degree of x; each edge is charged O(1) cost as the number of such edges is Ω(deg′(x)). □766

767

5 An ( e
e−1)-approximation in the BASIC-dynamic setting768

In this section, we switch our attention back to the BASIC-dynamic setting, for which769

we provide an ( e
e−1 )-approximate algorithm for the MCM problem. This approximation is770

achieved by building on the celebrated ranking algorithm by Karp, Vazirani, and Vazirani [25].771

Specifically, we demonstrate how to maintain a matching corresponding to the output of the772

ranking algorithm in a total runtime of O(K), assuming an oblivious adversary.773

We briefly recall the ranking algorithm. The algorithm works in a setting akin to the774

BASIC-incremental setting: A set of n servers S is fixed and the clients arrive to C one after775

another, starting from C = ∅ and ending with |C| = |S| = n. At the outset, the algorithm776

samples a random permutation σ over all n servers, which assigns a unique rank σ(s) to any777

server s ∈ S. Upon the arrival of a new client, the algorithm scans its neighborhood and778

irrevocably matches it with its free neighboring server of lowest rank, if any; if none exists,779

the client is left (forever) free. This completes the description of the ranking algorithm in780

the online setting, as given by [25]. For the analysis, we use the following theorem by [25];781

several different proofs of this theorem have been proposed (see, e.g., [15, 10]).782

▶ Theorem 21. [25] If the maximum matching size of the final bipartite graph is η, then783

the expected size of the matching provided by the ranking algorithm is η(1− 1/e).784

In the BASIC-dynamic setting, the vertices in C may also leave the graph and the algorithm785

is not necessarily irrevocable, i.e., the algorithm is allowed to remove some previously matched786
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edges and add others in their place. We shall use Gi = (S ⊔ Ci, Ei) to denote the graph in787

this setting right after the ith update step. Following the ranking algorithm, before the first788

update, we sample a random permutation σ over all n servers, which defines the ranks of789

servers. Our algorithm works against an oblivious adversary, which in particular means that790

the adversary is not aware of the random bits used for sampling σ. For each server x ∈ S,791

we keep a list of neighbors, L(x), to which end the algorithm appends new neighboring792

clients. Whenever a new client u arrives, it is appended to the end of the list L(x), for each793

of its neighboring servers x ∈ N(u). To ensure that the entry of u in L(x) can be deleted794

in constant time (if needed), we implement L(x) as a doubly linked list, and keep with u a795

pointer to its entry in L(x) (see lines 2 and 17 of Algorithm 3). Once it updates the lists L(·),796

the algorithm scans N(u) to see if there is any free vertex v ∈ N(u) to be matched with u.797

Among the free neighbors of u, if any, the one of lowest rank is chosen. This completes the798

description of the procedure for handling vertex insertion, which closely follows the ranking799

algorithm; the pseudocode of this procedure, HandleInsertion(u), is given in Algorithm 3.800

Whenever a client u is deleted, it gets removed from the lists L(x), for each of its neighbors801

x ∈ N(u). If u was previously matched, say with server v, the algorithm removes edge (u, v)802

from the maintained matchingM and tries to rematch vertex v. This is done by sequentially803

scanning the list L(v) until an appropriate mate w is found; vertex w is appropriate if it804

is free or it is matched with a vertex of higher rank than that of v. If w is free, we simply805

add (v, w) to the matching M. Otherwise, we remove (w, mate(w)) from M, we add (v, w)806

to M, and handle the server mate(w) recursively (in the same way as we handled v). The807

pseudocode of this procedure, HandleDeletion(u), is given in Algorithm 3.808

Algorithm 3 BasicApproxMCM
1: procedure HandleDeletion(u)
2: for x ∈ N(u) do remove u from L(x)
3: if mate(u) ̸= ∅ then ▷ let v = mate(u)
4: delete (u, v) from M
5: RematchServer(v)
6: procedure RematchServer(v)
7: while L(v) ̸= ∅ do
8: let w be the first vertex in L(v) ▷ also remove w from L(v)
9: if w is free then

10: add (v, w) to M
11: break ▷ exit the loop
12: else if σ(v) < σ(mate(w)) then
13: remove (w, mate(w)) from M; add (v, w) to M
14: RematchServer(mate(w))
15: break
16: procedure HandleInsertion(u)
17: for w ∈ N(u) do add u to L(w)
18: look for a free vertex v ∈ N(u) of lowest rank; if v is found, add (u, v) to M

We next argue, via Lemmas 22 and 23, that algorithm BasicApproxMCM proves Theo-809

rem 3: Lemma 22 implies the algorithm’s correctness and Lemma 23 bounds its runtime.810

▶ Lemma 22. Algorithm BasicApproxMCM maintains an ( e
e−1 )-approximation (in expec-811

tation) to the MCM.812
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Proof. Recall that we used a random permutation σ for the ranks of vertices in S. Following813

the ith update step, we let πi be the permutation of Ci representing the arrival order of the814

first i arriving clients; that is, πi(u) < πi(v) for u ̸= v, u, v ∈ Ci iff u arrives before v. For a815

given permutation σ, arrival order πi, and graph Gi = (S ⊔Ci, Ei), we let Ranking(Gi, σ, πi)816

be the matching returned by the ranking algorithm on Gi using ranks defined by σ and the817

arrival order πi. We next assert that for each i ≥ 0, following the ith update, the maintained818

matching Mi of Gi is equal to Ranking(Gi, σ, πi). By Theorem 21 and using the oblivious819

adversary assumption, if the maximum matching size of Gi = (S ⊔ Ci, Ei) is µ, then the820

expected size of the matching provided by our dynamic algorithm is µ(1− 1/e). That would821

complete the proof of Lemma 22.822

The proof of this assertion proceeds in two stages. In the first stage we analyze a variant of823

BasicApproxMCM, which works in the same way as the original algorithm, except that no824

element is deleted from the lists L(·) as part of the execution of procedure RematchServer825

(cf. line 8 of Algorithm 3). In other words, procedure RematchServer(v) scans all elements826

of L(v), namely all the neighboring clients of v in the current graph, in their arrival order.827

Denote this procedure by NaiveApproxMCM and the matching it maintains at the ith828

step by M′
i. One can prove by induction on the update step that M′

i = Ranking(Gi, σ, πi);829

the proof is rather straightforward and is omitted due to space constraints.830

In the second stage we prove that M′
i =Mi. To this end we observe that the following831

invariant is maintained by algorithm BasicApproxMCM at all times.832

▶ Invariant 4. For any client c, if c is matched to a server v at update step i ≥ 0, then at833

any later update step j (j > i), client c is matched to a server of rank no higher than σ(v).834

To see that Invariant 4 holds, note that the only place where the algorithm may rematch a835

client is in line 13 of procedure RematchServer. If that happens, the client gets matched836

to a server of rank lower than that of its previous mate.837

Invariant 4 implies that any element that gets discarded from the list L(v) in procedure838

RematchServer(v) without getting matched to v is always matched to a server of rank839

lower than v (until it possibly gets deleted from the graph), and thus the algorithm should840

never match v to any of the discarded elements. Hence, the executions of the two algorithms841

BasicApproxMCM and NaiveApproxMCM yield the same outcome, i.e., M′
i =Mi.842

Summarizing, it follows that Mi =M′
i = Ranking(Gi, σ, πi), and we are done. □843

844

▶ Lemma 23. Algorithm BasicApproxMCM has a total runtime of O(K).845

Proof. Procedure HandleInsertion(u) takes O(deg(u)) time. Procedure HandleDele-846

tion(u) also takes O(deg(u)) time, except for the call to the recursive procedure Rematch-847

Server. Next, we analyze the runtime of procedure RematchServer. Note that the848

parameter v of RematchServer(v) is a server. We argue that the total time spent by849

procedure RematchServer(v) for a fixed vertex v ∈ S is linear in the total number of850

inserted edges incident on v. Indeed, each call to procedure RematchServer involves a851

while loop (line 7); each iteration of the while loop takes constant time to examine a single852

neighbor w of v and do the required updates, and it also removes w from L(v), so that w853

will never be examined again. It follows that the total time spent by RematchServer, over854

all servers, is upper bounded by O(K). □855

856
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