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Summary

e Revealing the contributions of genes to plant phenotype is frequently challenging

because loss-of-function effects may be subtle or masked by varying degrees of
genetic redundancy. Such effects can potentially be detected by measuring plant
fitness, which reflects the cumulative effects of genetic changes over the lifetime
of a plant. However, fitness is challenging to measure accurately, particularly in
species with high fecundity and relatively small propagule sizes such as
Arabidopsis thaliana.

An image segmentation-based method using the software ImagelJ and an object
detection-based method using the Faster Region Based Convolutional Neural
Network algorithm were used for measuring two Arabidopsis fitness traits: seed
and fruit counts.

The segmentation-based method was error-prone (correlation between true and
predicted seed counts, 1*=0.849) because seeds touching each other were
undercounted. In contrast, the object detection-based algorithm yielded near
perfect seed counts (r>=0.9996) and highly accurate fruit counts (r>=0.980).
Comparing seed counts for wild type and 12 mutant lines revealed fitness effects
for three genes; fruit counts revealed the same effects for two genes.

Our study provides analysis pipelines and models to facilitate the investigation of
Arabidopsis fitness traits and demonstrates the importance of examining fitness

traits when studying gene functions.

Keywords: fitness traits; deep learning; machine vision; segmentation; object detection;

Arabidopsis
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Introduction

A major goal of biology is to understand the molecular basis for the development of
organisms and their adaptation to different environments (McDonald, 1983). One
approach is to evaluate the effects of genetic variants on phenotypes. However, it is often
challenging to investigate such effects because gene functions may be masked by genetic
redundancy (Bouché & Bouchez, 2001; Sun et al., 2012) and/or be condition specific
(Hirsch et al., 1998; Meissner et al., 1999). Moreover, the physiological and/or
developmental changes caused by loss of gene function may be too subtle to detect. This
challenge can be alleviated by measuring the effects of genetic variations on fitness (i.e.,
the ability of an individual to survive and reproduce) because it reflects the cumulative
effects of genetic changes over the lifetime of a plant. Accurate estimates of fitness are
therefore valuable for several fields of study, including plant genetics, evolution, and

plant breeding.

Among fitness measures, the most direct measure is the number of progenies
produced (Thomson & Hadfield, 2017). In Arabidopsis thaliana, a predominantly selfing
plant, the total number of seeds produced per plant is a particularly good estimate of
fitness because it incorporates both male and female contributions. However, because
Arabidopsis seeds are small (~0.1-0.2 mm?; Jahnke et al., 2016) and produced in large
numbers (up to thousands per plant; Boyes ef al., 2001; Morales et al., 2020), it is
difficult to obtain accurate seed counts. As a consequence, fruit (silique) number
(Busoms et al., 2015) and total fruit length (Roux et al., 2004; Kerwin et al., 2015;
Busoms et al., 2015) are often used to measure fitness. Both measures are correlated with
seed production, but fruit number is not perfectly correlated with seed number (e.g.,
1?=0.960, Mauricio & Rausher, 1997) and correlations with fruit length are highly
variable across studies, ranging from 1?=0.988 (Roux et al., 2004) to 1*=0.256 (Gnan et
al., 2014). In addition, fruit numbers (up to 450 per plant; Hamidinekoo et al., 2020) are
typically counted manually, and these counts can be error prone. Thus, to better measure
fitness, both fruit and seed numbers should be evaluated using methods that are not

hindered by propagule size or number.
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Several programs have been designed to increase the efficiency and accuracy of seed
analyses. Some are aimed at measuring the properties of individual seeds (e.g., size and
shape) and others at obtaining high throughput seed counts (Herridge et al., 2011;
Tanabata et al., 2012; Moore et al., 2013). These approaches typically require that seeds
be separated before imaging, which increases the time needed for processing. Other
systems have been designed to separate seeds mechanically such as the phenoSeeder
device (Jahnke ef al., 2016), large-particle flow cytometer (Morales et al., 2020), and the
BELT imaging system combined with the phenoSEED algorithm (Halcro et al., 2020). A
drawback of these methods is that they require specialized equipment, hindering their
widespread adoption. Another approach that has been increasingly used in plant biology
for applications such as measurement of fitness traits is machine vision, the application of

deep learning algorithms to image analysis (Mochida et al., 2019).

Deep learning approaches, in particular Convolutional Neural Network (CNN)-based
frameworks, have been developed to detect vastly different objects (from cars to plant
seeds) in images. For example, aiming to train instance segmentation models where seed
counting was not the primary task, Toda ef al. (2020) were able to detect the seeds of
rice, lettuce, oat, and wheat with 96% recall and 95% precision using Mask Region Based
CNN (R-CNN). However, the detection of much smaller objects using CNN-based
approaches remains challenging (Cao et al., 2019), likely because CNNs create low-level
abstractions of the images, and if the objects are too small, the resulting abstractions are
too simple to be used to distinguish whether the object is present or not. Although the
CNN-based models developed by Toda et al. (2020) detected seeds with high accuracy,
the smallest seeds tested were lettuce seeds, which have areas ranging from 1.5-3.6 mm?
(Penaloza et al., 2005) and are ~10 times larger than Arabidopsis seeds. Another
consideration is that the most convenient way to count all the seeds from an Arabidopsis
plant, which can produce thousands of seeds (Boyes et al., 2001; Morales et al., 2020),
would be to put all the seeds in a single image, thus resulting in a relatively small ratio of
seed size to image size. However, because of the small images (1024 x 1024 px? or 2000
x 2000 px?) used in Toda et al. (2020), the ratio of seed size to image size was relatively
large (>5000 px” per barley seed), which limited the number of seeds that could be

included in an image. Therefore, it is important to assess how well the CNN-based
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approaches perform in detecting objects as small as Arabidopsis seeds in an image

containing thousands of them.

CNN-based approaches have also been used in fruit counting. For example, wheat
spikes can be detected, counted, and analyzed to estimate yield using R-CNN (correlation
between true and predicted counts: 1?=0.93 with a slope of 1.01; Hasan et al., 2018).
Starting from two pre-trained models (ResNet and ResNext), Afonso et al., (2020)
applied the Mask R-CNN approach to detect and count tomato fruits from images,
obtaining an F1 of 0.94 when fruits partially overlapped with each other. DeepPod
effectively counts Arabidopsis fruits but results in a high number of false negatives when
there are many fruits (r>=0.90 with a slope of ~0.70; Hamidinekoo et al., 2020). In
addition, the inflorescences need to be harvested when the fruits are still green,
preventing the harvesting of seeds for future propagation or analysis. Thus, it is important
to develop tools or models to detect and count mature fruits when seeds need to be saved
for future experiments. Because Arabidopsis fruits shatter easily when dry, such tools
should ideally be able to count fruits at different stages, including intact fruits and those

that have already dehisced and released seed.

In this study, we evaluated two approaches for counting seeds from an Arabidopsis
plant in a single image: (1) a segmentation-based method using the software ImageJ
(Schneider et al., 2012) and (2) an object detection method using the Faster R-CNN
algorithm (Ren ef al., 2017). We also applied Faster R-CNN to count fruits in whole plant
images captured after seeds were mature. To facilitate seed and fruit counting in diverse
images, we established models using input images with varying resolution, contrast,
brightness, and blurriness. The final seed and fruit models are provided and can be
readily used by the research community. Finally, we used our pipeline to count seeds for
loss-of-function mutants of six pairs of duplicate genes. We showed that mutation of
three genes affects fitness, illustrating the potential importance of measuring fitness traits

and the utility of our pipeline in the investigation of gene functions.

Materials and Methods
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Plant materials

T-DNA insertion mutants in the Arabidopsis Col-0 background and wild-type (WT)
Col-0 controls were used for training seed and fruit counting models. Information about
these lines is provided in Tables S1, S2, and S3. Fitness data are reported for T-DNA
insertion mutants of PURPLE ACID PHOSPHATASE 2 (PAP2), PAP9, HIGH
MOBILITY GROUP A4 (HON4), HON5, EUKARYOTIC INITIATION FACTOR 4B1
(EIF4B1), EIF4B2, ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE-LIKE 5
(APRLS), APRL7, PLANT AND FUNGI ATYPICAL DUAL-SPECIFICITY
PHOSPHATASE 3 (PFA-DSP3), PFA-DSP5, PFA-KINESIN 7.2 (KIN7.2), and KIN7.4
(Tables S4, S5). These mutants were collected as part of a large-scale study to assess the
degree of genetic redundancy between duplicate genes. Multiple homozygous mutant and
WT sibling plants were identified by PCR with gene-specific primers (two to six plants
per genotype, Table S3). Seeds harvested from these independent lines (referred to as
sublines) were planted (n = 5-20 per subline, total n > 40 per genotype) for fitness
comparison between mutants and WT, and each mutant was compared with its WT
sibling. This was done to reduce the chance that observed fitness effects were due to

other undetected T-DNA insertions.

For plants grown for fitness analysis (Tables S3-S5) and seed scan images (Table
S1), seeds were grown as described in Methods S1. Plants were grown until they were
mature (i.e., had undergone global arrest). When plants were completely dry, the number
of intact and completely or partially shattered fruits from each plant were processed as
detailed in Methods S1. The total seed number produced per plant was estimated in two
steps. First, the seed number was divided by the number of intact fruits to obtain the
average seed number per fruit. Second, the average seed number per fruit was multiplied
by the total fruit number (both intact and shattered) to estimate the total seed number per

plant. Plants used for fruit imaging (Table S2) were grown as described in Methods S1.

Seed image scanning, processing, and counting with the segmentation method

Prior to seed imaging, we separated the seeds from the chaff (see Methods S1). Seed

images were obtained by placing petri plate lids containing seeds in a template made

7



192
193
194
195
196
197
198

199

200
201

202
203
204
205
206
207
208
209
210
211
212

213
214
215
216
217
218
219
220

from white acrylic (295 mm % 210 mm x 10 mm, Fig. 1a) and taking scans with a

desktop scanner (see Methods S1). The ImagelJ (version 1.52a, https://imagej.nih.gov,

Schneider et al., 2012) workflow is shown in Fig. 1. Details about seed counting using
ImagelJ are in Methods S1. The image conversion program and the ImageJ macro were
combined into a Windows batch script (available in our Github repository, see Data
availability), in which a for-loop was used to quickly count seeds for images in

sequence. It took approximately 5 min to fully process 10 images.

Seed image processing and counting with an object detection method using Faster

R-CNN

Before seed detection, each scanned image was split into 12 sub images; each sub
image contains a single plate lid and is referred to as a “whole-plate image”. After testing
several algorithms, we chose to use Faster R-CNN for seed detection (for reasons, see
Methods S1). Faster R-CNN combines the generation of region proposals (i.e.,
circumscribing the areas of interest, a regression problem) and their classification (i.e., in
our case, the object is a seed or not) into a single pipeline (Ren et al., 2017). In Faster R-
CNN, images were first processed by a feature extractor (Inception v.2; Szegedy et al.,
2016), and the resulting feature maps were used to predict bounding boxes (referred to as
proposals) containing images of individual seeds (left panel in Fig. S1); then these
proposals were used to crop features from the feature maps (right panel in Fig. S1). These

cropped features were subsequently used for classification and bounding box regression.

Faster R-CNN models were trained using Tensorflow object detection API (Huang et
al., 2017) and implemented in Tensorflow v1.13.2 (Abadi et al., 2016) in python v3.6.4.
In the initial Faster R-CNN modeling trial, each whole-plate image was split into four
quarter-plate images. Images were pre-processed and seeds were annotated as detailed in
Methods S1. To speed up the training process, a pre-trained model

(faster_rcnn_inception_v2_coco) was used as a starting point. To optimize Arabidopsis

seed detection, we conducted hyperparameter tuning (Methods S1, Tables S6, S7, and

Fig. S2, S3) and evaluated tuned models using the measure loU, which is defined as the
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intersection (I) over (0) the union (U) of a ground truth area and a prediction area, as

detailed in Methods S1.

Fruit image capturing and counting with an object detection method based on

Faster R-CNN

Each dry Arabidopsis plant was placed on a pink paper background and photographed
with an iPhone 8 smartphone. The images were saved in jpeg format with dimensions of
3024 x 4032 pixels. Fruits in the images were manually annotated, and the annotated
coordinates were then converted to the csv and TFrecord formats, as conducted for the
seed images (Methods S1). The same pre-trained Faster R-CNN model used for seed
counting was used to build the fruit counting models, and the same three hyperparameters
were tuned to optimize the model performance but with a different hyperparameter space
(Table S8). For each hyperparameter combination, a model was saved after 6000 steps,
when the performance had converged. A final model was established using

hyperparameters selected based on performance on the validation set images.

Statistical analysis of fitness traits

Data from the border cells (see Methods S1) showed different distributions compared
with data from inside cells; therefore, these data were excluded from further analysis. For
each block (i.e., one including pap, hon, and eif4b and one including aprl, pfa-dsp, and
kin7, see Methods S1), quantile normalization was performed across flats using R
package “broman” (https://github.com/kbroman/broman) to account for variation
between flats. Each mutant was compared with its WT control using the Wilcoxon rank-

sum test. Each pair of duplicate genes had the same WT sibling control.

Results

Seed counting with the segmentation method using ImageJ



248
249
250
251
252
253
254
255

256
257
258
259
260
261
262
263
264
265
266

267

268

269
270
271
272
273
274
275
276
277

Because ImagelJ is widely used for seed morphology analysis (Cervantes et al., 2016),
we first developed a pipeline for seed counting that incorporated ImageJ analysis based
on segmentation of seed areas. When fewer than 200 seeds were placed on the plate lid
and separated using forceps, seeds were detected and counted with high accuracy
(correlation between true and predicted seed counts, r>=0.996, slope=0.9998, 60 images,
Fig. 1b,c, Table S9). Our segmentation-based pipeline allowed the detection of about 52
template images (total of 624 plate lids) per hour with a typical laptop (Intel(R) Core i7-
7500U CPU, 16GB RAM).

However, when seeds were placed on plate lids without separation, big clumps of
seeds were not counted by the segmentation method, and small clumps where a small
number of seeds were touching each other were recognized as single seeds (Fig. 2a). The
prediction accuracy drops off as the number of seeds increases (Fig. 2¢, Table S10); this
is because the more seeds there are on the plate lid, the more likely it is that seeds touch
each other, leading to an increase in the false negative rate of prediction. Moreover, the
detection of seeds could be disrupted by scratches or letters on the plate lids, and seeds
outside the predefined circular search regions were not detected (purple arrowheads in
Fig. S4). Thus, to obtain accurate counts based on segmentation, it is necessary to
separate seeds and confine them to the center of the plate lid, which is time consuming

and not amenable to high-throughput analysis.

Improved seed counting by an object detection method based on Faster R-CNN

Next, we evaluated the performance of an object detection approach using Faster R-
CNN in seed counting. Since it is time-consuming to annotate a large number of seeds for
model training, we adopted a two-step strategy. First, we split the 256 whole-plate images
into 1024 quarter-plate images, and manually labeled a subset (180) of these quarter-plate
images to speed up the training process. A total of 160 labeled quarter-plate images
(Training image set 1 in Fig. 3a) were used to build the models, and the remaining 20
images were set aside as the validation image set (Fig. 3a) to evaluate model
performance. A model (Modelseea 66) built with the optimal hyperparameter combination

(scale-B, aspect ratio-A and 10,000 proposals, see Methods S1) was used to detect seeds
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in the remaining 844 quarter-plate images to produce “in silico” seed annotations for the

second-round modeling (Fig. 3a,b), resulting in 211 labeled whole-plate images.

A new model, Modelseeq 67, with the same parameters as Modelseed 66, was built
using 161 (Training image set 2 in Fig. 3b) out of these 211 images. The remaining 50
labeled whole-plate images (7est image set in Fig. 3b) were used to evaluate the
performance of Modelseed 67, which had an improved average F1 of 0.992 (Table S10)
compared with the F1 (~0.970) of Modelseea 66 (Fig. S2). Note that the test set images
were not used for training or validating Modelseeqd 67; they were thus ideal for
independently testing the model. In contrast to the segmentation method, Modelseeqd 67
correctly predicted seeds even if they were in contact with each other (Fig. 2b), and the
prediction accuracy was not influenced by the total seed number (r>=0.9996, p=1.7¢-83,
Fig. 2d). The differences between true and predicted seed counts were close to zero,
much smaller than those in segmentation-based analysis (Fig. 2¢). Furthermore, Modelseed
67 allowed the detection and counting of seeds in about 240 whole-plate images per hour
using 1 GPU (Nvidia Tesla K80) with 4 GB of GPU memory in a UNIX cluster, or about
33 images per hour using a laptop with 16 GB of memory (i.e., ~800 seed images can be
processed per day). These results suggest that our Faster R-CNN-based models provide

highly accurate Arabidopsis seed counts and can be used for large-scale fitness studies.

Impact of seed density on the Faster R-CNN model

The number of seeds in an image has a detrimental effect on the performance of the
segmentation method, but not on that of Faster R-CNN (Fig. 2d). To verify that the
Faster R-CNN model performance was not affected by the seed density, we established
the seed density index (SDI), which takes into account the differing densities across a
single plate. First, a circle with a radius of 30 pixels (corresponding to 0.62 mm,
approximate length of two seeds) was drawn from the center of a seed, then the number
of seeds with central points located within the circle were calculated. Finally, the average

number of seeds per circle in a whole-plate image was defined as the SDI (Fig. 4a).

We calculated the SDIs of the test set images (for examples see Fig. S5) and
determined the Pearson’s Correlation Coefficient (PCC) between SDI and the

11
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performance of Modelseed 67 on the test set images (Fig. 4b). The higher the seed density,
the lower the model performance (PCC between SDI and F1 was -0.581, p=9.8e-06, Fig.
4b; for the correlation between SDI and other performance measures see Fig. S6).
Nevertheless, the effect of seed density on the performance of Modelseed 67 was small, as
the F1 only dropped from 1.000 for an SDI of 1.157 to 0.971 for an SDI of 3.100 (Fig.
4b, Table S10). An F1 0of 0.971 with a recall of 0.968 indicates that for an image with
1000 seeds, there would only be 32 false negatives (seeds not detected) and 25 false
positives (seeds detected in an area with no seeds or a seed area counted more than once).
Consistent with this, there was no significant correlation between the SDI and the
difference between true and predicted seed counts (PCC=-0.206, p=0.15), in contrast to
the significant negative correlation observed for the segmentation method (PCC=-0.886,
p=1.2e-17, Fig. 2f). We also calculated SDIs for the predicted seed coordinates and found
that the PCC value between true and prediction-based SDIs was 0.997 (p=1.5¢-54; Fig.
4c), demonstrating that our Faster R-CNN model also predicts the locations of seeds very

well.

Model improvement through data augmentation

Our goal is to provide a seed counting model that can be widely used by different
researchers, who may have seed images with different properties. Thus, we investigated
the utility of Modelseed 67 using images with varying resolution, contrast, brightness, and
blurriness (Fig. 5a). These modified seed images were created by modifying the
properties of the test set images (Fig. 3b, for the image property settings see Table S11).
In the modified test set, there were 1750 images: the original test set images (50) and
modified images with 34 different attributes (34 x 50, light green box, Fig. 3b). A slight
but significant decrease in F1 was observed when the brightness of the images was < 0.60
(»=0.01, one-sided Wilcoxon signed-rank test) relative to the original images, while the
F1 dropped dramatically when the relative brightness was > 1.20 (p=6.4¢e-08, Fig. Sb). A
significant decrease in F1 was also observed when the relative contrast of images
(relative to the original image) was < 0.50 (p=1.0e-07) or > 1.75 (p=5.0e-4), the relative
blurriness was > 1.50 (p=6.7¢-10), or the relative resolution was < 0.50 (p=9.1e-10, Fig.

12
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5b). These results suggest that although Modelseed 67 is suitable for a range of image
qualities, the seed detection accuracy will decrease dramatically when the image

properties deviate from the training images beyond a certain point.

To improve the robustness of Modelseed 67, we applied data augmentation, in which
the size and properties of training datasets are increased so better prediction models can
be built (Shorten & Khoshgoftaar, 2019). To accomplish this, we used 20 of the 161
training set 2 images to produce additional images with 21 different property settings (21
x 20, darker green box, Fig. 3b, for the image property settings see Table S11). These
420 additional images, together with the original 161 images, were used to build a new
model, Modelseeqa 68 (Fig. 3b), with the same hyperparameter settings as Modelseed 67.
Modelsced 68 was then used to detect seeds in the modified test set images. Although there
was a slight decrease in F1 when the relative blurriness was > 3.00 (p=0.04, median F1
decrease=0.002) or when the relative resolution was < 0.30 (p=0.02, median F1
decrease=0.003, Fig. Sb), Modelsecqa 68 (blue, Fig. Sb) performed better than the non-
augmented Modelseed 67 (red, Fig. Sb) in all situations and thus, the augmented model is

robust to different image properties.

Fruit counting using Faster R-CNN models

Compared with seed number, total fruit count is an even more frequently used proxy
for fitness. Because dry Arabidopsis fruits shatter easily, it is not always possible to
harvest all fruits produced by a single plant after seeds have matured, especially for
plants growing in the field. In this case, the best method would be to count all fruits
(including dehisced ones) and count seeds per fruit for a subset that haven’t dehisced, and
then calculate total seed number by multiplying the number of seeds per fruit by the total
fruit number. Thus, to obtain more accurate estimates of seed production per plant, it is
necessary to record the numbers of both intact and shattered fruits. With these
considerations in mind, we developed Faster R-CNN models to count all fruits without
harvesting the fruits first. When capturing the images for fruit counting, a pink
background was used to maximize the contrast between the background and the dark, dry

fruits and the pale replum of shattered fruits that remained after the valves fell from the

13
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fruit (Fig. 6a,d). Because fruits in each image were less abundant and much larger

compared with seeds, we manually labeled the fruits in 120 images.

Eighty, 20, and 20 images were randomly selected and used as training, validation,
and test sets, respectively (Fig. 6a). Different combinations of hyperparameter values
(Table S8) were evaluated and the resulting models (Modelgwit 1-75, Fig. 6a) had similar
performances with an average F1 of 0.925 (Fig. S7). Thus, to minimize the
computational cost (lower scales or aspect ratios) while maximizing the number of fruits
detected per plant (more proposals), the model built with scalefi-A, aspect ratiofit-A,
and 500 proposals (Modelswit 21) was used. Modelsit 21 was applied to the test set
images, resulting in an average F1 of 0.914 (Table S12). This F1 value translates into one
false positive and 15 false negatives for an image with 100 fruits. Although the r?
between true and predicted fruit counts was 0.980 (p=6.7e-17), the detection error
increased with an increasing number of fruits in an image and the error was mostly due to
undercounting or false negatives (Fig. 6b,c). The majority of the false negatives were
unopened fruits that overlapped with the stem or with each other. One potential reason
for the failure to detect these fruits is that they are similar to the stem in color and shape.
Another reason may be the smaller number of labeled intact fruits (543) compared with

the number of pale replums (2082) in our training images.

To assess the robustness of our model on images with different qualities, we applied
Modelswit 21 on test set images with different image properties (Fig. 6d, modified test set,
700 images, for the image property settings see Table S11). Significant decreases in F1
were observed when the relative image brightness was < 0.70 (p=0.04) or > 1.40
(p=0.02), the relative contrast was < 0.50 (p=0.02) or > 1.50 (p=0.03), the relative
blurriness was > 2.0 (p=0.002), or the relative resolution was < 0.6 (p=0.05) (Fig. 6e). By
including images with different properties (Table S11) in the training set (1840 images),
a new model, Modelswit 76, was established and applied to the modified test set. A
significant but slight decrease in the resulting F1 values was only observed when the
relative resolution was < 0.3 (p=0.02, median F1 decrease=0.01) (Fig. 6e), indicating the
robustness of Modelswit 76. Using this model 180 images could be processed per hour

using a UNIX node with 1 GPU and 4 GB graphics memory, and 90 images per hour
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could be processed using a laptop (1 CPU, 16 GB memory). Thus, our Faster R-CNN-

based models can process over a thousand plant images per day.

Effects of loss of gene function revealed by measuring fitness traits

To evaluate the importance of fitness traits in investigating gene functions and the
utility of our pipeline, the fruits and seeds produced by loss-of-function mutants of six
pairs of duplicate genes (Tables S3-S5) were counted and compared with those of WT.
Of these 12 mutants, three (pap2, kin7.4, and hon5) showed a significant difference in
total seed count compared with the corresponding WT control (Fig. 7 and Fig. S8, S9).
One of these genes, PAP2, modulates carbon metabolism; in addition, overexpression of
PAP?2 resulted in earlier bolting and a higher seed yield than WT (Sun ef al., 2012),
which is consistent with the lower fitness that we observed for the pap2 mutant (total
seed counts, p=3.6e-03, Wilcoxon rank-sum test, Fig. 7b). However, when studying this
same mutant, Sun et al. observed no significant differences in plant growth or seed yield

relative to WT (Sun et al., 2012).

One possible explanation for this discrepancy is the different fitness measures used by
Sun et al.—seed weight per plant, seed weight per 100 seeds, and fruit number per
plant—none of which were significantly different between pap2 and WT (Sun et al.,
2012). To compare our fitness estimates more directly with those of Sun ez al., we
measured the same traits and found no significant difference in fruit number (p=0.15, Fig.
7a) or total seed weight per plant (p=0.40, Fig. 7c). However, the pap2 mutant did have a
higher weight per 100 seeds than the WT (p=3.8e-08, Fig. 7d). This could potentially
indicate differences in viability because larger seeds have more resources for germination
and early seedling growth (Sundaresan, 2005), but we observed no difference in
germination rate between WT and pap?2 (Table S4), suggesting that there is no difference
in seed viability. Taken together, our findings suggest that seed number is a better
measure for revealing fitness effects of loss of PAP2 function. However, we cannot rule
out the possibility that we observed these effects because our experimental conditions

were more stressful (i.e., nutrient limiting) than those in Sun et al. (2012).
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For GHI-HMGA2/HONS, which encodes a high-mobility group protein (Kotlinski et
al.,2017), and KIN7.4, which belongs to the kinesin motor family, members of which are
involved in microtubule-based movement (Moschou ef al., 2016),there were significant
differences in both fruit numbers (p=0.04 for hon5 and p=5.0e-04 for kin7.4 , Fig. Te,g)
and seed numbers (p=5.8e-03 for hon5 and p=3.0e-05 for kin7.4 , Fig. 7f,h) between the
mutants and WT. No functions have been reported for KIN7.4. HONS was previously
shown to regulate the transition to flowering along with HON4 by repressing FLC
expression, but no effects on fitness were reported (Zhao et al., 2021). Loss of function of
HON4 was previously reported to cause sterility (Charbonnel et al., 2018), but neither we
nor Zhao et al. (2021) observed this phenotype when using a different mutant with an
insertion in a similar location (intron 2), suggesting that the sterility phenotype of the

hon4 mutant may be dependent on environmental conditions.

Discussion

Fitness is one of the best measures of gene functionality because it reflects the ability of a
plant to survive and reproduce given all the phenotypic effects of the mutation over the
lifetime of the individual. For self-pollinating species such as Arabidopsis, fitness is
better assessed by counting the numbers of seeds than fruits, as they more directly reflect
the number of offspring and reproductive success. Because of the lack of an effective tool
enabling high throughput counting of small seeds en masse, seed counts are often
estimated indirectly, for example by dividing the total seed weight per plant by the
estimated individual seed weight (Cvetkovic ef al., 2017), or multiplying the fruit count
by the average fruit length (Kerwin et al., 2015; Taylor et al., 2019). However, these
approaches may not yield accurate estimates of seed production because of the imperfect
correlation between seed number and fruit length (Roux et al., 2004). Here, we
established a model employing a deep learning approach, Faster R-CNN, to count
Arabidopsis seeds—one of the smallest objects analyzed using machine vision to date—
with a near perfect accuracy (F1=0.992) using images with multiple different properties

or qualities.
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Our model outperforms the Mask R-CNN approaches in Toda et al., (2020) (F1 of
about 0.95), where the detected objects were much larger than Arabidopsis seeds. Mask
R-CNN is built on top of Faster R-CNN so the differences in performance likely are not
due to differences in algorithms. The better performance of our model is likely because
our training seed images are more representative of the diversity in seed sizes and shapes
than the repetitive cropped images used by Toda et al. The Faster R-CNN-based
predictions greatly outperform those of the segmentation method implemented in Imagel,
a well-known platform with macros/modules for segmentation and morphology
extraction (Schneider ef al., 2012; Cervantes et al., 2016; Vasseur et al., 2018). In
addition, object detection based on Faster R-CNN is less time consuming than
segmentation using Imagel because seeds can be accurately detected without first being

separated or confined to predefined regions.

One of the challenges when using deep learning approaches is the requirement for a
large number of labeled data (in our case, labeled seeds). To overcome this, we adopted a
two-step modeling strategy to reduce the labor needed for seed annotations. In step 1, we
split the images and used a subset of the split images to build a preliminary model
(F1<0.975) and applied it to the remaining images. While the predictions were not
perfect, this step drastically reduced the manual annotations needed because we only
needed to correct mis-predictions to boost our seed labels by ~5 fold (29,360 labels in the
first-round, 138,929 labels in the second-round). Using this much larger set of seed
labels, new models were built (step 2) that had improved model performance (F1=0.992),

indicating the effectiveness of our strategy.

The Faster R-CNN approach also shows promise in fruit detection and counting
(12=0.98, slope=0.79). The performance of our fruit counting model was better than that
of another recently published CNN-based approach, DeepPod (r?=0.90, slope ~0.70,
Hamidinekoo et al., 2020). In that paper, the task (i.e., fruit detection) was first divided
into four classification tasks: the detection of the tip, body, and base of the fruits and the
detection of the stem. The separately detected parts were then joined together as a whole
fruit. As the authors noted, this post-processing step affected the final fruit detection
performance. In our study, the fruits were labeled and detected as whole objects, thus

avoiding the need for post-processing. In addition, different from Hamidinekoo et al.

17



487
488
489
490
491
492
493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

513
514
515
516
517

(2020), where most fruits and the stems in the images were fresh and green, fruits in our
study were dry and light brown to gray, or were shattered with only the pale replum
remaining. Thus, our fruit counting approach is expected to be applicable to a wider
range of Arabidopsis fruit developmental stages. This is especially important when plants
must be grown to maturity, and seed counts are estimated by multiplying the average
number of seeds per intact fruit by the total number of fruits (intact and dehisced)

(Conner & Rush, 1997).

Nevertheless, our fruit counting models did not perform as well as our seed counting
models and a published ImageJ-based segmentation and skeletonization approach
(1?=0.91, slope= ~1; Vasseur et al., 2018), which may be due to the much fewer labeled
fruits than labeled seeds (there were about 52 times more labeled seeds than fruits). Thus,
the performance of the fruit counting model is expected to be improved when more fruit
labels are included to train the model. In addition, one notable drawback of our approach
is the undercounting at higher fruit numbers; this was mainly due to overlap between
intact fruits and between intact fruits and stems. To remedy this, one approach is to
rearrange the inflorescences before capturing the images to keep fruits from overlapping
with each other and with stems. Another potential approach, which is an important future
direction, is to analyze multiple images (or frames of a movie) taken at different angles or
to examine the 3D reconstruction of the inflorescence. In addition, there have been
substantial advances in object detection algorithms in terms of performance and
processing speed. New initial models that can be retrained (e.g., Inception v.3 and v.4)
have also been developed (we used Inception v.2). Although we explored some of these
algorithms and initial models (see Methods S1), we did not optimize them because of the
significant computational complexity in just optimizing Faster R-CNN/Inception v.2 for
fitness traits. Thus, in future studies, these algorithms and initial models should be more

thoroughly explored to further improve fitness trait phenotyping.

We should emphasize that the picture of seeds or fruits are taken for record keeping
and documentation purposes regardless of whether a machine-vision-based approach or
manual counting is used. After the picture is available, it takes our Faster R-CNN-based
models about 109 and 40 seconds to provide counts for a seed and fruit picture,

respectively. In contrast, manual counting takes us about 50 seconds per 100 seeds and 40
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seconds per 100 fruits. Thus, as the seed and fruit number increases, our Faster R-CNN-

based models have an even bigger advantage over manual counting.

By examining fitness traits, especially seed counts, we were able to observe
phenotypic changes in loss-of-function mutants that were previously not detectable
(pap2, Sun et al., 2012) or not reported (kin7.4 and hon5). In our relatively small sample
of twelve mutants, effects on fitness were observed for three (25%). A similar percentage
of lines with lower fitness than WT was reported by Rutter et al., (2017), who
investigated the fitness effects of Arabidopsis T-DNA insertion lines using fruit number
as a measure. They also found that a sizable percentage of lines had increased fitness
compared with WT (12%), leading them to conclude that genetic redundancy is not
common. We found that fruit counts could reveal fitness effects for two of three genes,
indicating that seed counts are a better measure of fitness in some cases, such as when a
genotype produces more fruits with fewer seeds per fruit. We are currently measuring
both seed and fruit counts for a large number (>400) of mutants, which will allow us to
obtain a more complete picture of the relative importance of fruit and seed counts for

assessing fitness.

The seed counting pipeline that we established does not measure seed size, which is
an agriculturally important trait associated with yield and seed viability (Sundaresan,
2005). By measuring seed weights, we found that pap2 produces larger seeds than WT.
Although we observed no clear difference in viability between them, seed size is a useful
distinguishing characteristic between these genotypes. It might also provide insight into
the underlying biology. For example, one possible reason for the increased seed size in
the mutant is a lower fertilization rate, which would lead to fewer seeds and less
restriction on seed growth (Herridge et al., 2011; Fatihi et al., 2013). Because measuring
seed weights is time consuming, a focus of our future work will be to adapt our pipeline

to include approaches to measure seed size and number simultaneously.

Taken together, our results illustrate the importance of fitness traits in the study of
gene functions and show that Faster R-CNN-based models, which can almost perfectly
detect and count Arabidopsis seeds and also detect fruits with high accuracy, are valuable

tools in large-scale studies of plant fitness. In the future we will use these tools to
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measure the fitness traits of a larger number of mutants to obtain a more complete picture

of the effects of loss of gene function on fitness.

Figure legends

Fig. 1. Workflow and performance for seed counting with a segmentation method using
ImageJ when seeds were deliberately separated. (a) Workflow. Seeds from 12 different
plants were scattered and manually separated from each other on the lids of 12 petri
plates, which were placed in a template and scanned. Twelve search areas, each with a
diameter of 60 mm (yellow circles), were predefined. A threshold was applied by
selecting pixels with intensities between 50 and 140 to separate the seed areas (red) from
the background. Then pixels were converted to real-world distance units in mm. The
“Analyze Particles” tool was used to detect and count the seeds. (b) An example of an
image with detected seeds (left) and an enlarged image showing the seeds (right). Red
region with number: individual detected seed area. (¢) Correlation between true and
predicted seed counts using the segmentation method when seeds were deliberately

separated.

Fig. 2. Comparison between the performances of the segmentation and Faster R-CNN-
based seed counting methods for test set images of seeds that were not deliberately
separated. (a, b) The same seed scan image analyzed by the segmentation method using
ImagelJ (a) and by Faster R-CNN (b). Three different regions of the plate lid with
different densities are outlined. Region 1 has low seed density, region 2 has moderate
density, and region 3 has a high density. In (a) the red colored regions represent the
segmented areas identified by the segmentation method; seeds outlined in yellow and
assigned numeric IDs were counted. In (b) the blue rectangles represent seeds detected by
Faster R-CNN. (¢,d) Correlation between true and predicted seed numbers from
segmentation method (¢) and Faster R-CNN (d) analysis of the test set. (e) Distribution of
differences between true and predicted seed numbers. Red lines: the segmentation
method using ImageJ; blue lines: Faster R-CNN. (f) Correlation between seed density

index (SDI) and difference between true and predicted seed counts. Each dot in (¢,d,f)
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corresponds to one of the 50 test set images. The red line in (¢) is the regression line
obtained using the loess method. The blue lines in (d,f) are fitted regression lines for
Faster R-CNN predictions. The red line in (f) is the fitted linear regression line for the

segmentation method-based predictions. PCC: Pearson correlation coefficient.

Fig. 3. Workflow for building Faster R-CNN-based seed counting models. (a) First-round
modeling for enriching annotated seed labels. Each of the 256 whole-plate images was
split into four quarter-plate images. Among the 1024 quarter-plate images, 180 were used
in first-round modeling, and the remainder (844) were used in second-round modeling
described in (b). Seeds in the 180 quarter-plate images were manually annotated, and
then these annotated images were further split into training set 1 (160) and a validation
set (20) to train and evaluate models, respectively. Sixty-three combinations of three
hyperparameters (i.e., 3 proposal numbers x 3 scales [A, B, and C] x 7 aspect ratios [AR-
A through GJ; for scale and aspect ratio values see Table S6) were used to build 63
models. The optimal scale (B) and aspect ratio (AR-A) were selected based on the model
performance on validation set images (Fig. S2). An additional three models (Modelsced
64—66) were built using scale B, AR-A, and three larger proposal values, and the final
best model, Modelsced 66, with 10,000 proposals, was applied to the 844 quarter-plate
images reserved for second-round modeling to generate in silico seed annotations. (b)
Second-round modeling. The 844 quarter-plate images with seed predictions from
Modelseea 66 Were rejoined together to reconstruct 211 whole-plate images with in silico
seed annotations, which were then manually curated and used as ground truth seed
annotations. Modelseeqd 67 was built using 161 (training set 2) out of the 211 annotated
images with the same hyperparameters used in Modelseea 66, and was evaluated using the
test set (50 independent images not used for modeling) and the modified test set (i.e., the
50 independent test set images plus 1,700 images modified from the test set images that
had different image properties [blurriness, brightness, contrast, and resolution values]).
For data augmentation, the image properties of 20 images from training set 2 were
modified, and the resulting 420 images were combined with training set 2 (161 images),
resulting in 581 images (modified training set 2), which were used to build Modelsceq 68.

The modified test set was used to evaluate the performance of Modelseed 68.
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Fig. 4. Effect of seed density on the performance of the Faster R-CNN models. (a)
Examples with different seed density index (SDI) values. The radius of each circle is 30
pixels (0.62 mm). (b,c) Relationship between SDI and model performance (b) and
between the true SDI and SDI based on prediction (¢) for test images. Each dot
corresponds to one of 50 test set images. Blue lines are the fitted linear regression lines.

F1: F1 value at 0.5 IoU (Intersection over Union). PCC: Pearson correlation coefficient.

Fig. 5. Improvement of model robustness using training images with different properties.
(a) Examples of seed images with different relative brightness, contrast, blurriness, and
resolution values that were derived from the same original image. (b) Model performance
for Modelsced 67 and Modelseea 68 on the modified test set (Fig. 2b). F1: F1 value at 0.5
IoU (Intersection over Union); red boxplot: Modelscea 67; blue boxplot: Modelseed 68;
horizontal line in the box: median value; box range: interquartile range (IQR), i.e., 25™
(Q1) to 75" percentile (Q3); whisker below box: Q1 — 1.5*IQR to Q1; whisker above
box: Q3 to Q3 + 1.5*IQR.

Fig. 6. Fruit counting using Faster R-CNN models. (a) Fruit counting workflow. (b)
Relationship between true and predicted fruit numbers. (¢) Relationship between fruit
number in an image and the model performance. PCC: Pearson correlation coefficient.
(d) Examples of the same fruit image with different relative brightness, contrast,
blurriness, and resolution values. (e) Model performance for Modelsuic 21 and Modelfit
76 on test images with different properties. F1: F1 at 0.5 IoU (Intersection over Union);
red boxplot: Modelswuit 21; blue boxplot: Modelswit 76; horizontal line in the box: median
value; box range: interquartile range (IQR), i.e., 25" (Q1) to 75" percentile (Q3); whisker
below box: Q1 — 1.5*IQR to Q1; whisker above box: Q3 to Q3 + 1.5*IQR.

Fig. 7. Fitness measurements for three mutants. (a-d) Fruit counts per plant (a), seed
counts per plant (b), seed weight per plant (¢), and weight per 100 seeds (d) for the T-
DNA insertion mutant of PURPLE ACID PHOSPHATASE 2 (pap2) and wild type (WT).
(e-f) Fruit (e) and seed (f) counts per plant, for the T-DNA insertion mutant of HIGH
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MOBILITY GROUP A5 (hon5) and WT. (g-h) Fruit (g) and seed (h) counts per plant for
the T-DNA insertion mutant of KINESIN 7.4 (kin7.4) and WT. Sample sizes are shown in
parentheses on the x axis. p-values are from Wilcoxon signed-rank tests. Horizontal line
in the box: median value; box range: interquartile range (IQR), i.e., 25® (Q1) to 75™
percentile (Q3); whisker below box: Q1 — 1.5*IQR to Q1; whisker above box: Q3 to Q3
+ 1.5*IQR; violin plot: distribution of datapoint values; dot: datapoint from an individual

plant; yellow: loss-of-function mutant; cyan: WT.
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