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Summary 49 

● Revealing the contributions of genes to plant phenotype is frequently challenging 50 

because loss-of-function effects may be subtle or masked by varying degrees of 51 

genetic redundancy. Such effects can potentially be detected by measuring plant 52 

fitness, which reflects the cumulative effects of genetic changes over the lifetime 53 

of a plant. However, fitness is challenging to measure accurately, particularly in 54 

species with high fecundity and relatively small propagule sizes such as 55 

Arabidopsis thaliana.  56 

● An image segmentation-based method using the software ImageJ and an object 57 

detection-based method using the Faster Region Based Convolutional Neural 58 

Network algorithm were used for measuring two Arabidopsis fitness traits: seed 59 

and fruit counts.  60 

● The segmentation-based method was error-prone (correlation between true and 61 

predicted seed counts, r2=0.849) because seeds touching each other were 62 

undercounted. In contrast, the object detection-based algorithm yielded near 63 

perfect seed counts (r2=0.9996) and highly accurate fruit counts (r2=0.980). 64 

Comparing seed counts for wild type and 12 mutant lines revealed fitness effects 65 

for three genes; fruit counts revealed the same effects for two genes. 66 

● Our study provides analysis pipelines and models to facilitate the investigation of 67 

Arabidopsis fitness traits and demonstrates the importance of examining fitness 68 

traits when studying gene functions.    69 

 70 

Keywords: fitness traits; deep learning; machine vision; segmentation; object detection; 71 
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Introduction 73 

A major goal of biology is to understand the molecular basis for the development of 74 

organisms and their adaptation to different environments (McDonald, 1983). One 75 

approach is to evaluate the effects of genetic variants on phenotypes. However, it is often 76 

challenging to investigate such effects because gene functions may be masked by genetic 77 

redundancy (Bouché & Bouchez, 2001; Sun et al., 2012) and/or be condition specific 78 

(Hirsch et al., 1998; Meissner et al., 1999). Moreover, the physiological and/or 79 

developmental changes caused by loss of gene function may be too subtle to detect. This 80 

challenge can be alleviated by measuring the effects of genetic variations on fitness (i.e., 81 

the ability of an individual to survive and reproduce) because it reflects the cumulative 82 

effects of genetic changes over the lifetime of a plant. Accurate estimates of fitness are 83 

therefore valuable for several fields of study, including plant genetics, evolution, and 84 

plant breeding.  85 

Among fitness measures, the most direct measure is the number of progenies 86 

produced (Thomson & Hadfield, 2017). In Arabidopsis thaliana, a predominantly selfing 87 

plant, the total number of seeds produced per plant is a particularly good estimate of 88 

fitness because it incorporates both male and female contributions. However, because 89 

Arabidopsis seeds are small (~0.1–0.2 mm2; Jahnke et al., 2016) and produced in large 90 

numbers (up to thousands per plant; Boyes et al., 2001; Morales et al., 2020), it is 91 

difficult to obtain accurate seed counts. As a consequence, fruit (silique) number 92 

(Busoms et al., 2015) and total fruit length (Roux et al., 2004; Kerwin et al., 2015; 93 

Busoms et al., 2015) are often used to measure fitness. Both measures are correlated with 94 

seed production, but fruit number is not perfectly correlated with seed number (e.g., 95 

r2=0.960, Mauricio & Rausher, 1997) and correlations with fruit length are highly 96 

variable across studies, ranging from r2=0.988 (Roux et al., 2004) to r2=0.256 (Gnan et 97 

al., 2014). In addition, fruit numbers (up to 450 per plant; Hamidinekoo et al., 2020) are 98 

typically counted manually, and these counts can be error prone. Thus, to better measure 99 

fitness, both fruit and seed numbers should be evaluated using methods that are not 100 

hindered by propagule size or number. 101 
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Several programs have been designed to increase the efficiency and accuracy of seed 102 

analyses. Some are aimed at measuring the properties of individual seeds (e.g., size and 103 

shape) and others at obtaining high throughput seed counts (Herridge et al., 2011; 104 

Tanabata et al., 2012; Moore et al., 2013). These approaches typically require that seeds 105 

be separated before imaging, which increases the time needed for processing. Other 106 

systems have been designed to separate seeds mechanically such as the phenoSeeder 107 

device (Jahnke et al., 2016), large-particle flow cytometer (Morales et al., 2020), and the 108 

BELT imaging system combined with the phenoSEED algorithm (Halcro et al., 2020). A 109 

drawback of these methods is that they require specialized equipment, hindering their 110 

widespread adoption. Another approach that has been increasingly used in plant biology 111 

for applications such as measurement of fitness traits is machine vision, the application of 112 

deep learning algorithms to image analysis (Mochida et al., 2019).  113 

Deep learning approaches, in particular Convolutional Neural Network (CNN)-based 114 

frameworks, have been developed to detect vastly different objects (from cars to plant 115 

seeds) in images. For example, aiming to train instance segmentation models where seed 116 

counting was not the primary task, Toda et al. (2020) were able to detect the seeds of 117 

rice, lettuce, oat, and wheat with 96% recall and 95% precision using Mask Region Based 118 

CNN (R-CNN). However, the detection of much smaller objects using CNN-based 119 

approaches remains challenging (Cao et al., 2019), likely because CNNs create low-level 120 

abstractions of the images, and if the objects are too small, the resulting abstractions are 121 

too simple to be used to distinguish whether the object is present or not. Although the 122 

CNN-based models developed by Toda et al. (2020) detected seeds with high accuracy, 123 

the smallest seeds tested were lettuce seeds, which have areas ranging from 1.5–3.6 mm2 124 

(Penaloza et al., 2005) and are ~10 times larger than Arabidopsis seeds. Another 125 

consideration is that the most convenient way to count all the seeds from an Arabidopsis 126 

plant, which can produce thousands of seeds (Boyes et al., 2001; Morales et al., 2020), 127 

would be to put all the seeds in a single image, thus resulting in a relatively small ratio of 128 

seed size to image size. However, because of the small images (1024 × 1024 px2 or 2000 129 

× 2000 px2) used in Toda et al. (2020), the ratio of seed size to image size was relatively 130 

large (>5000 px2 per barley seed), which limited the number of seeds that could be 131 

included in an image. Therefore, it is important to assess how well the CNN-based 132 
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approaches perform in detecting objects as small as Arabidopsis seeds in an image 133 

containing thousands of them.  134 

CNN-based approaches have also been used in fruit counting. For example, wheat 135 

spikes can be detected, counted, and analyzed to estimate yield using R-CNN (correlation 136 

between true and predicted counts: r2=0.93 with a slope of 1.01; Hasan et al., 2018). 137 

Starting from two pre-trained models (ResNet and ResNext), Afonso et al., (2020) 138 

applied the Mask R-CNN approach to detect and count tomato fruits from images, 139 

obtaining an F1 of 0.94 when fruits partially overlapped with each other. DeepPod 140 

effectively counts Arabidopsis fruits but results in a high number of false negatives when 141 

there are many fruits (r2=0.90 with a slope of ~0.70; Hamidinekoo et al., 2020). In 142 

addition, the inflorescences need to be harvested when the fruits are still green, 143 

preventing the harvesting of seeds for future propagation or analysis. Thus, it is important 144 

to develop tools or models to detect and count mature fruits when seeds need to be saved 145 

for future experiments. Because Arabidopsis fruits shatter easily when dry, such tools 146 

should ideally be able to count fruits at different stages, including intact fruits and those 147 

that have already dehisced and released seed. 148 

In this study, we evaluated two approaches for counting seeds from an Arabidopsis 149 

plant in a single image: (1) a segmentation-based method using the software ImageJ 150 

(Schneider et al., 2012) and (2) an object detection method using the Faster R-CNN 151 

algorithm (Ren et al., 2017). We also applied Faster R-CNN to count fruits in whole plant 152 

images captured after seeds were mature. To facilitate seed and fruit counting in diverse 153 

images, we established models using input images with varying resolution, contrast, 154 

brightness, and blurriness. The final seed and fruit models are provided and can be 155 

readily used by the research community. Finally, we used our pipeline to count seeds for 156 

loss-of-function mutants of six pairs of duplicate genes. We showed that mutation of 157 

three genes affects fitness, illustrating the potential importance of measuring fitness traits 158 

and the utility of our pipeline in the investigation of gene functions. 159 

 160 

Materials and Methods 161 
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Plant materials 162 

T-DNA insertion mutants in the Arabidopsis Col-0 background and wild-type (WT) 163 

Col-0 controls were used for training seed and fruit counting models. Information about 164 

these lines is provided in Tables S1, S2, and S3. Fitness data are reported for T-DNA 165 

insertion mutants of PURPLE ACID PHOSPHATASE 2 (PAP2), PAP9, HIGH 166 

MOBILITY GROUP A4 (HON4), HON5, EUKARYOTIC INITIATION FACTOR 4B1 167 

(EIF4B1), EIF4B2, ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE-LIKE 5 168 

(APRL5), APRL7, PLANT AND FUNGI ATYPICAL DUAL-SPECIFICITY 169 

PHOSPHATASE 3 (PFA-DSP3), PFA-DSP5, PFA-KINESIN 7.2 (KIN7.2), and KIN7.4 170 

(Tables S4, S5). These mutants were collected as part of a large-scale study to assess the 171 

degree of genetic redundancy between duplicate genes. Multiple homozygous mutant and 172 

WT sibling plants were identified by PCR with gene-specific primers (two to six plants 173 

per genotype, Table S3). Seeds harvested from these independent lines (referred to as 174 

sublines) were planted (n = 5–20 per subline, total n ≥ 40 per genotype) for fitness 175 

comparison between mutants and WT, and each mutant was compared with its WT 176 

sibling. This was done to reduce the chance that observed fitness effects were due to 177 

other undetected T-DNA insertions.  178 

For plants grown for fitness analysis (Tables S3-S5) and seed scan images (Table 179 

S1), seeds were grown as described in Methods S1. Plants were grown until they were 180 

mature (i.e., had undergone global arrest). When plants were completely dry, the number 181 

of intact and completely or partially shattered fruits from each plant were processed as 182 

detailed in Methods S1. The total seed number produced per plant was estimated in two 183 

steps. First, the seed number was divided by the number of intact fruits to obtain the 184 

average seed number per fruit. Second, the average seed number per fruit was multiplied 185 

by the total fruit number (both intact and shattered) to estimate the total seed number per 186 

plant. Plants used for fruit imaging (Table S2) were grown as described in Methods S1. 187 

  188 

Seed image scanning, processing, and counting with the segmentation method 189 

Prior to seed imaging, we separated the seeds from the chaff (see Methods S1). Seed 190 

images were obtained by placing petri plate lids containing seeds in a template made 191 
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from white acrylic (295 mm × 210 mm × 10 mm, Fig. 1a) and taking scans with a 192 

desktop scanner (see Methods S1). The ImageJ (version 1.52a, https://imagej.nih.gov, 193 

Schneider et al., 2012) workflow is shown in Fig. 1. Details about seed counting using 194 

ImageJ are in Methods S1. The image conversion program and the ImageJ macro were 195 

combined into a Windows batch script (available in our Github repository, see Data 196 

availability), in which a for-loop was used to quickly count seeds for images in 197 

sequence. It took approximately 5 min to fully process 10 images.  198 

 199 

Seed image processing and counting with an object detection method using Faster 200 

R-CNN 201 

Before seed detection, each scanned image was split into 12 sub images; each sub 202 

image contains a single plate lid and is referred to as a “whole-plate image”. After testing 203 

several algorithms, we chose to use Faster R-CNN for seed detection (for reasons, see 204 

Methods S1). Faster R-CNN combines the generation of region proposals (i.e., 205 

circumscribing the areas of interest, a regression problem) and their classification (i.e., in 206 

our case, the object is a seed or not) into a single pipeline (Ren et al., 2017). In Faster R-207 

CNN, images were first processed by a feature extractor (Inception v.2; Szegedy et al., 208 

2016), and the resulting feature maps were used to predict bounding boxes (referred to as 209 

proposals) containing images of individual seeds (left panel in Fig. S1); then these 210 

proposals were used to crop features from the feature maps (right panel in Fig. S1). These 211 

cropped features were subsequently used for classification and bounding box regression. 212 

Faster R-CNN models were trained using Tensorflow object detection API (Huang et 213 

al., 2017) and implemented in Tensorflow v1.13.2 (Abadi et al., 2016) in python v3.6.4. 214 

In the initial Faster R-CNN modeling trial, each whole-plate image was split into four 215 

quarter-plate images. Images were pre-processed and seeds were annotated as detailed in 216 

Methods S1. To speed up the training process, a pre-trained model 217 

(faster_rcnn_inception_v2_coco) was used as a starting point. To optimize Arabidopsis 218 

seed detection, we conducted hyperparameter tuning (Methods S1, Tables S6, S7, and 219 

Fig. S2, S3) and evaluated tuned models using the measure IoU, which is defined as the 220 
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intersection (I) over (o) the union (U) of a ground truth area and a prediction area, as 221 

detailed in Methods S1. 222 

 223 

Fruit image capturing and counting with an object detection method based on 224 

Faster R-CNN  225 

Each dry Arabidopsis plant was placed on a pink paper background and photographed 226 

with an iPhone 8 smartphone. The images were saved in jpeg format with dimensions of 227 

3024 × 4032 pixels. Fruits in the images were manually annotated, and the annotated 228 

coordinates were then converted to the csv and TFrecord formats, as conducted for the 229 

seed images (Methods S1). The same pre-trained Faster R-CNN model used for seed 230 

counting was used to build the fruit counting models, and the same three hyperparameters 231 

were tuned to optimize the model performance but with a different hyperparameter space 232 

(Table S8). For each hyperparameter combination, a model was saved after 6000 steps, 233 

when the performance had converged. A final model was established using 234 

hyperparameters selected based on performance on the validation set images.  235 

 236 

Statistical analysis of fitness traits 237 

Data from the border cells (see Methods S1) showed different distributions compared 238 

with data from inside cells; therefore, these data were excluded from further analysis. For 239 

each block (i.e., one including pap, hon, and eif4b and one including aprl, pfa-dsp, and 240 

kin7, see Methods S1), quantile normalization was performed across flats using R 241 

package “broman” (https://github.com/kbroman/broman) to account for variation 242 

between flats. Each mutant was compared with its WT control using the Wilcoxon rank-243 

sum test. Each pair of duplicate genes had the same WT sibling control.  244 

 245 

Results 246 

Seed counting with the segmentation method using ImageJ  247 
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Because ImageJ is widely used for seed morphology analysis (Cervantes et al., 2016), 248 

we first developed a pipeline for seed counting that incorporated ImageJ analysis based 249 

on segmentation of seed areas. When fewer than 200 seeds were placed on the plate lid 250 

and separated using forceps, seeds were detected and counted with high accuracy 251 

(correlation between true and predicted seed counts, r2=0.996, slope=0.9998, 60 images, 252 

Fig. 1b,c, Table S9). Our segmentation-based pipeline allowed the detection of about 52 253 

template images (total of 624 plate lids) per hour with a typical laptop (Intel(R) Core i7-254 

7500U CPU, 16GB RAM).  255 

However, when seeds were placed on plate lids without separation, big clumps of 256 

seeds were not counted by the segmentation method, and small clumps where a small 257 

number of seeds were touching each other were recognized as single seeds (Fig. 2a). The 258 

prediction accuracy drops off as the number of seeds increases (Fig. 2c, Table S10); this 259 

is because the more seeds there are on the plate lid, the more likely it is that seeds touch 260 

each other, leading to an increase in the false negative rate of prediction. Moreover, the 261 

detection of seeds could be disrupted by scratches or letters on the plate lids, and seeds 262 

outside the predefined circular search regions were not detected (purple arrowheads in 263 

Fig. S4). Thus, to obtain accurate counts based on segmentation, it is necessary to 264 

separate seeds and confine them to the center of the plate lid, which is time consuming 265 

and not amenable to high-throughput analysis.  266 

 267 

Improved seed counting by an object detection method based on Faster R-CNN  268 

Next, we evaluated the performance of an object detection approach using Faster R-269 

CNN in seed counting. Since it is time-consuming to annotate a large number of seeds for 270 

model training, we adopted a two-step strategy. First, we split the 256 whole-plate images 271 

into 1024 quarter-plate images, and manually labeled a subset (180) of these quarter-plate 272 

images to speed up the training process. A total of 160 labeled quarter-plate images 273 

(Training image set 1 in Fig. 3a) were used to build the models, and the remaining 20 274 

images were set aside as the validation image set (Fig. 3a) to evaluate model 275 

performance. A model (Modelseed 66) built with the optimal hyperparameter combination 276 

(scale-B, aspect ratio-A and 10,000 proposals, see Methods S1) was used to detect seeds 277 
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in the remaining 844 quarter-plate images to produce “in silico” seed annotations for the 278 

second-round modeling (Fig. 3a,b), resulting in 211 labeled whole-plate images.  279 

A new model, Modelseed 67, with the same parameters as Modelseed 66, was built 280 

using 161 (Training image set 2 in Fig. 3b) out of these 211 images. The remaining 50 281 

labeled whole-plate images (Test image set in Fig. 3b) were used to evaluate the 282 

performance of Modelseed 67, which had an improved average F1 of 0.992 (Table S10) 283 

compared with the F1 (~0.970) of Modelseed 66 (Fig. S2). Note that the test set images 284 

were not used for training or validating Modelseed 67; they were thus ideal for 285 

independently testing the model. In contrast to the segmentation method, Modelseed 67 286 

correctly predicted seeds even if they were in contact with each other (Fig. 2b), and the 287 

prediction accuracy was not influenced by the total seed number (r2=0.9996, p=1.7e-83, 288 

Fig. 2d). The differences between true and predicted seed counts were close to zero, 289 

much smaller than those in segmentation-based analysis (Fig. 2e). Furthermore, Modelseed 290 

67 allowed the detection and counting of seeds in about 240 whole-plate images per hour 291 

using 1 GPU (Nvidia Tesla K80) with 4 GB of GPU memory in a UNIX cluster, or about 292 

33 images per hour using a laptop with 16 GB of memory (i.e., ~800 seed images can be 293 

processed per day). These results suggest that our Faster R-CNN-based models provide 294 

highly accurate Arabidopsis seed counts and can be used for large-scale fitness studies.  295 

 296 

Impact of seed density on the Faster R-CNN model 297 

The number of seeds in an image has a detrimental effect on the performance of the 298 

segmentation method, but not on that of Faster R-CNN (Fig. 2d). To verify that the 299 

Faster R-CNN model performance was not affected by the seed density, we established 300 

the seed density index (SDI), which takes into account the differing densities across a 301 

single plate. First, a circle with a radius of 30 pixels (corresponding to 0.62 mm, 302 

approximate length of two seeds) was drawn from the center of a seed, then the number 303 

of seeds with central points located within the circle were calculated. Finally, the average 304 

number of seeds per circle in a whole-plate image was defined as the SDI (Fig. 4a).  305 

We calculated the SDIs of the test set images (for examples see Fig. S5) and 306 

determined the Pearson’s Correlation Coefficient (PCC) between SDI and the 307 
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performance of Modelseed 67 on the test set images (Fig. 4b). The higher the seed density, 308 

the lower the model performance (PCC between SDI and F1 was -0.581, p=9.8e-06, Fig. 309 

4b; for the correlation between SDI and other performance measures see Fig. S6). 310 

Nevertheless, the effect of seed density on the performance of Modelseed 67 was small, as 311 

the F1 only dropped from 1.000 for an SDI of 1.157 to 0.971 for an SDI of 3.100 (Fig. 312 

4b, Table S10). An F1 of 0.971 with a recall of 0.968 indicates that for an image with 313 

1000 seeds, there would only be 32 false negatives (seeds not detected) and 25 false 314 

positives (seeds detected in an area with no seeds or a seed area counted more than once). 315 

Consistent with this, there was no significant correlation between the SDI and the 316 

difference between true and predicted seed counts (PCC=-0.206, p=0.15), in contrast to 317 

the significant negative correlation observed for the segmentation method (PCC=-0.886, 318 

p=1.2e-17, Fig. 2f). We also calculated SDIs for the predicted seed coordinates and found 319 

that the PCC value between true and prediction-based SDIs was 0.997 (p=1.5e-54; Fig. 320 

4c), demonstrating that our Faster R-CNN model also predicts the locations of seeds very 321 

well.  322 

 323 

Model improvement through data augmentation 324 

Our goal is to provide a seed counting model that can be widely used by different 325 

researchers, who may have seed images with different properties. Thus, we investigated 326 

the utility of Modelseed 67 using images with varying resolution, contrast, brightness, and 327 

blurriness (Fig. 5a). These modified seed images were created by modifying the 328 

properties of the test set images (Fig. 3b, for the image property settings see Table S11). 329 

In the modified test set, there were 1750 images: the original test set images (50) and 330 

modified images with 34 different attributes (34 × 50, light green box, Fig. 3b). A slight 331 

but significant decrease in F1 was observed when the brightness of the images was ≤ 0.60 332 

(p=0.01, one-sided Wilcoxon signed-rank test) relative to the original images, while the 333 

F1 dropped dramatically when the relative brightness was ≥ 1.20 (p=6.4e-08, Fig. 5b). A 334 

significant decrease in F1 was also observed when the relative contrast of images 335 

(relative to the original image) was ≤ 0.50 (p=1.0e-07) or ≥ 1.75 (p=5.0e-4), the relative 336 

blurriness was ≥ 1.50 (p=6.7e-10), or the relative resolution was ≤ 0.50 (p=9.1e-10, Fig. 337 
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5b). These results suggest that although Modelseed 67 is suitable for a range of image 338 

qualities, the seed detection accuracy will decrease dramatically when the image 339 

properties deviate from the training images beyond a certain point. 340 

To improve the robustness of Modelseed 67, we applied data augmentation, in which 341 

the size and properties of training datasets are increased so better prediction models can 342 

be built (Shorten & Khoshgoftaar, 2019). To accomplish this, we used 20 of the 161 343 

training set 2 images to produce additional images with 21 different property settings (21 344 

× 20, darker green box, Fig. 3b, for the image property settings see Table S11). These 345 

420 additional images, together with the original 161 images, were used to build a new 346 

model, Modelseed 68 (Fig. 3b), with the same hyperparameter settings as Modelseed 67. 347 

Modelseed 68 was then used to detect seeds in the modified test set images. Although there 348 

was a slight decrease in F1 when the relative blurriness was ≥ 3.00 (p=0.04, median F1 349 

decrease=0.002) or when the relative resolution was ≤ 0.30 (p=0.02, median F1 350 

decrease=0.003, Fig. 5b), Modelseed 68 (blue, Fig. 5b) performed better than the non-351 

augmented Modelseed 67 (red, Fig. 5b) in all situations and thus, the augmented model is 352 

robust to different image properties.  353 

 354 

Fruit counting using Faster R-CNN models 355 

Compared with seed number, total fruit count is an even more frequently used proxy 356 

for fitness. Because dry Arabidopsis fruits shatter easily, it is not always possible to 357 

harvest all fruits produced by a single plant after seeds have matured, especially for 358 

plants growing in the field. In this case, the best method would be to count all fruits 359 

(including dehisced ones) and count seeds per fruit for a subset that haven’t dehisced, and 360 

then calculate total seed number by multiplying the number of seeds per fruit by the total 361 

fruit number. Thus, to obtain more accurate estimates of seed production per plant, it is 362 

necessary to record the numbers of both intact and shattered fruits. With these 363 

considerations in mind, we developed Faster R-CNN models to count all fruits without 364 

harvesting the fruits first. When capturing the images for fruit counting, a pink 365 

background was used to maximize the contrast between the background and the dark, dry 366 

fruits and the pale replum of shattered fruits that remained after the valves fell from the 367 
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fruit (Fig. 6a,d). Because fruits in each image were less abundant and much larger 368 

compared with seeds, we manually labeled the fruits in 120 images. 369 

Eighty, 20, and 20 images were randomly selected and used as training, validation, 370 

and test sets, respectively (Fig. 6a). Different combinations of hyperparameter values 371 

(Table S8) were evaluated and the resulting models (Modelfruit 1–75, Fig. 6a) had similar 372 

performances with an average F1 of 0.925 (Fig. S7). Thus, to minimize the 373 

computational cost (lower scales or aspect ratios) while maximizing the number of fruits 374 

detected per plant (more proposals), the model built with scalefruit-A, aspect ratiofruit-A, 375 

and 500 proposals (Modelfruit 21) was used. Modelfruit 21 was applied to the test set 376 

images, resulting in an average F1 of 0.914 (Table S12). This F1 value translates into one 377 

false positive and 15 false negatives for an image with 100 fruits. Although the r2 378 

between true and predicted fruit counts was 0.980 (p=6.7e-17), the detection error 379 

increased with an increasing number of fruits in an image and the error was mostly due to 380 

undercounting or false negatives (Fig. 6b,c). The majority of the false negatives were 381 

unopened fruits that overlapped with the stem or with each other. One potential reason 382 

for the failure to detect these fruits is that they are similar to the stem in color and shape. 383 

Another reason may be the smaller number of labeled intact fruits (543) compared with 384 

the number of pale replums (2082) in our training images.  385 

To assess the robustness of our model on images with different qualities, we applied 386 

Modelfruit 21 on test set images with different image properties (Fig. 6d, modified test set, 387 

700 images, for the image property settings see Table S11). Significant decreases in F1 388 

were observed when the relative image brightness was ≤ 0.70 (p=0.04) or ≥ 1.40 389 

(p=0.02), the relative contrast was ≤ 0.50 (p=0.02) or ≥ 1.50 (p=0.03), the relative 390 

blurriness was ≥ 2.0 (p=0.002), or the relative resolution was ≤ 0.6 (p=0.05) (Fig. 6e). By 391 

including images with different properties (Table S11) in the training set (1840 images), 392 

a new model, Modelfruit 76, was established and applied to the modified test set. A 393 

significant but slight decrease in the resulting F1 values was only observed when the 394 

relative resolution was ≤ 0.3 (p=0.02, median F1 decrease=0.01) (Fig. 6e), indicating the 395 

robustness of Modelfruit 76. Using this model 180 images could be processed per hour 396 

using a UNIX node with 1 GPU and 4 GB graphics memory, and 90 images per hour 397 
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could be processed using a laptop (1 CPU, 16 GB memory). Thus, our Faster R-CNN-398 

based models can process over a thousand plant images per day. 399 

 400 

Effects of loss of gene function revealed by measuring fitness traits  401 

To evaluate the importance of fitness traits in investigating gene functions and the 402 

utility of our pipeline, the fruits and seeds produced by loss-of-function mutants of six 403 

pairs of duplicate genes (Tables S3-S5) were counted and compared with those of WT. 404 

Of these 12 mutants, three (pap2, kin7.4, and hon5) showed a significant difference in 405 

total seed count compared with the corresponding WT control (Fig. 7 and Fig. S8, S9). 406 

One of these genes, PAP2, modulates carbon metabolism; in addition, overexpression of 407 

PAP2 resulted in earlier bolting and a higher seed yield than WT (Sun et al., 2012), 408 

which is consistent with the lower fitness that we observed for the pap2 mutant (total 409 

seed counts, p=3.6e-03, Wilcoxon rank-sum test, Fig. 7b). However, when studying this 410 

same mutant, Sun et al. observed no significant differences in plant growth or seed yield 411 

relative to WT (Sun et al., 2012).  412 

One possible explanation for this discrepancy is the different fitness measures used by 413 

Sun et al.—seed weight per plant, seed weight per 100 seeds, and fruit number per 414 

plant—none of which were significantly different between pap2 and WT (Sun et al., 415 

2012). To compare our fitness estimates more directly with those of Sun et al., we 416 

measured the same traits and found no significant difference in fruit number (p=0.15, Fig. 417 

7a) or total seed weight per plant (p=0.40, Fig. 7c). However, the pap2 mutant did have a 418 

higher weight per 100 seeds than the WT (p=3.8e-08, Fig. 7d). This could potentially 419 

indicate differences in viability because larger seeds have more resources for germination 420 

and early seedling growth (Sundaresan, 2005), but we observed no difference in 421 

germination rate between WT and pap2 (Table S4), suggesting that there is no difference 422 

in seed viability. Taken together, our findings suggest that seed number is a better 423 

measure for revealing fitness effects of loss of PAP2 function. However, we cannot rule 424 

out the possibility that we observed these effects because our experimental conditions 425 

were more stressful (i.e., nutrient limiting) than those in Sun et al. (2012).  426 
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For GH1-HMGA2/HON5, which encodes a high-mobility group protein (Kotliński et 427 

al., 2017), and KIN7.4, which belongs to the kinesin motor family, members of which are 428 

involved in microtubule-based movement (Moschou et al., 2016),there were significant 429 

differences in both fruit numbers (p=0.04 for hon5 and p=5.0e-04 for kin7.4 , Fig. 7e,g) 430 

and seed numbers (p=5.8e-03 for hon5 and p=3.0e-05 for kin7.4 , Fig. 7f,h) between the 431 

mutants and WT. No functions have been reported for KIN7.4. HON5 was previously 432 

shown to regulate the transition to flowering along with HON4 by repressing FLC 433 

expression, but no effects on fitness were reported (Zhao et al., 2021). Loss of function of 434 

HON4 was previously reported to cause sterility (Charbonnel et al., 2018), but neither we 435 

nor Zhao et al. (2021) observed this phenotype when using a different mutant with an 436 

insertion in a similar location (intron 2), suggesting that the sterility phenotype of the 437 

hon4 mutant may be dependent on environmental conditions. 438 

 439 

Discussion 440 

Fitness is one of the best measures of gene functionality because it reflects the ability of a 441 

plant to survive and reproduce given all the phenotypic effects of the mutation over the 442 

lifetime of the individual. For self-pollinating species such as Arabidopsis, fitness is 443 

better assessed by counting the numbers of seeds than fruits, as they more directly reflect 444 

the number of offspring and reproductive success. Because of the lack of an effective tool 445 

enabling high throughput counting of small seeds en masse, seed counts are often 446 

estimated indirectly, for example by dividing the total seed weight per plant by the 447 

estimated individual seed weight (Cvetkovic et al., 2017), or multiplying the fruit count 448 

by the average fruit length (Kerwin et al., 2015; Taylor et al., 2019). However, these 449 

approaches may not yield accurate estimates of seed production because of the imperfect 450 

correlation between seed number and fruit length (Roux et al., 2004). Here, we 451 

established a model employing a deep learning approach, Faster R-CNN, to count 452 

Arabidopsis seeds—one of the smallest objects analyzed using machine vision to date—453 

with a near perfect accuracy (F1=0.992) using images with multiple different properties 454 

or qualities.  455 
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Our model outperforms the Mask R-CNN approaches in Toda et al., (2020) (F1 of 456 

about 0.95), where the detected objects were much larger than Arabidopsis seeds. Mask 457 

R-CNN is built on top of Faster R-CNN so the differences in performance likely are not 458 

due to differences in algorithms. The better performance of our model is likely because 459 

our training seed images are more representative of the diversity in seed sizes and shapes 460 

than the repetitive cropped images used by Toda et al. The Faster R-CNN-based 461 

predictions greatly outperform those of the segmentation method implemented in ImageJ, 462 

a well-known platform with macros/modules for segmentation and morphology 463 

extraction (Schneider et al., 2012; Cervantes et al., 2016; Vasseur et al., 2018). In 464 

addition, object detection based on Faster R-CNN is less time consuming than 465 

segmentation using ImageJ because seeds can be accurately detected without first being 466 

separated or confined to predefined regions.  467 

One of the challenges when using deep learning approaches is the requirement for a 468 

large number of labeled data (in our case, labeled seeds). To overcome this, we adopted a 469 

two-step modeling strategy to reduce the labor needed for seed annotations. In step 1, we 470 

split the images and used a subset of the split images to build a preliminary model 471 

(F1<0.975) and applied it to the remaining images. While the predictions were not 472 

perfect, this step drastically reduced the manual annotations needed because we only 473 

needed to correct mis-predictions to boost our seed labels by ~5 fold (29,360 labels in the 474 

first-round, 138,929 labels in the second-round). Using this much larger set of seed 475 

labels, new models were built (step 2) that had improved model performance (F1=0.992), 476 

indicating the effectiveness of our strategy.  477 

The Faster R-CNN approach also shows promise in fruit detection and counting 478 

(r2=0.98, slope=0.79). The performance of our fruit counting model was better than that 479 

of another recently published CNN-based approach, DeepPod (r2=0.90, slope ~0.70, 480 

Hamidinekoo et al., 2020). In that paper, the task (i.e., fruit detection) was first divided 481 

into four classification tasks: the detection of the tip, body, and base of the fruits and the 482 

detection of the stem. The separately detected parts were then joined together as a whole 483 

fruit. As the authors noted, this post-processing step affected the final fruit detection 484 

performance. In our study, the fruits were labeled and detected as whole objects, thus 485 

avoiding the need for post-processing. In addition, different from Hamidinekoo et al. 486 
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(2020), where most fruits and the stems in the images were fresh and green, fruits in our 487 

study were dry and light brown to gray, or were shattered with only the pale replum 488 

remaining. Thus, our fruit counting approach is expected to be applicable to a wider 489 

range of Arabidopsis fruit developmental stages. This is especially important when plants 490 

must be grown to maturity, and seed counts are estimated by multiplying the average 491 

number of seeds per intact fruit by the total number of fruits (intact and dehisced) 492 

(Conner & Rush, 1997).  493 

Nevertheless, our fruit counting models did not perform as well as our seed counting 494 

models and a published ImageJ-based segmentation and skeletonization approach 495 

(r2=0.91, slope= ~1; Vasseur et al., 2018), which may be due to the much fewer labeled 496 

fruits than labeled seeds (there were about 52 times more labeled seeds than fruits). Thus, 497 

the performance of the fruit counting model is expected to be improved when more fruit 498 

labels are included to train the model. In addition, one notable drawback of our approach 499 

is the undercounting at higher fruit numbers; this was mainly due to overlap between 500 

intact fruits and between intact fruits and stems. To remedy this, one approach is to 501 

rearrange the inflorescences before capturing the images to keep fruits from overlapping 502 

with each other and with stems. Another potential approach, which is an important future 503 

direction, is to analyze multiple images (or frames of a movie) taken at different angles or 504 

to examine the 3D reconstruction of the inflorescence. In addition, there have been 505 

substantial advances in object detection algorithms in terms of performance and 506 

processing speed. New initial models that can be retrained (e.g., Inception v.3 and v.4) 507 

have also been developed (we used Inception v.2). Although we explored some of these 508 

algorithms and initial models (see Methods S1), we did not optimize them because of the 509 

significant computational complexity in just optimizing Faster R-CNN/Inception v.2 for 510 

fitness traits. Thus, in future studies, these algorithms and initial models should be more 511 

thoroughly explored to further improve fitness trait phenotyping. 512 

We should emphasize that the picture of seeds or fruits are taken for record keeping 513 

and documentation purposes regardless of whether a machine-vision-based approach or 514 

manual counting is used. After the picture is available, it takes our Faster R-CNN-based 515 

models about 109 and 40 seconds to provide counts for a seed and fruit picture, 516 

respectively. In contrast, manual counting takes us about 50 seconds per 100 seeds and 40 517 
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seconds per 100 fruits. Thus, as the seed and fruit number increases, our Faster R-CNN-518 

based models have an even bigger advantage over manual counting.  519 

By examining fitness traits, especially seed counts, we were able to observe 520 

phenotypic changes in loss-of-function mutants that were previously not detectable 521 

(pap2, Sun et al., 2012) or not reported (kin7.4 and hon5). In our relatively small sample 522 

of twelve mutants, effects on fitness were observed for three (25%). A similar percentage 523 

of lines with lower fitness than WT was reported by Rutter et al., (2017), who 524 

investigated the fitness effects of Arabidopsis T-DNA insertion lines using fruit number 525 

as a measure. They also found that a sizable percentage of lines had increased fitness 526 

compared with WT (12%), leading them to conclude that genetic redundancy is not 527 

common. We found that fruit counts could reveal fitness effects for two of three genes, 528 

indicating that seed counts are a better measure of fitness in some cases, such as when a 529 

genotype produces more fruits with fewer seeds per fruit. We are currently measuring 530 

both seed and fruit counts for a large number (>400) of mutants, which will allow us to 531 

obtain a more complete picture of the relative importance of fruit and seed counts for 532 

assessing fitness. 533 

The seed counting pipeline that we established does not measure seed size, which is 534 

an agriculturally important trait associated with yield and seed viability (Sundaresan, 535 

2005). By measuring seed weights, we found that pap2 produces larger seeds than WT. 536 

Although we observed no clear difference in viability between them, seed size is a useful 537 

distinguishing characteristic between these genotypes. It might also provide insight into 538 

the underlying biology. For example, one possible reason for the increased seed size in 539 

the mutant is a lower fertilization rate, which would lead to fewer seeds and less 540 

restriction on seed growth (Herridge et al., 2011; Fatihi et al., 2013). Because measuring 541 

seed weights is time consuming, a focus of our future work will be to adapt our pipeline 542 

to include approaches to measure seed size and number simultaneously.  543 

Taken together, our results illustrate the importance of fitness traits in the study of 544 

gene functions and show that Faster R-CNN-based models, which can almost perfectly 545 

detect and count Arabidopsis seeds and also detect fruits with high accuracy, are valuable 546 

tools in large-scale studies of plant fitness. In the future we will use these tools to 547 
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measure the fitness traits of a larger number of mutants to obtain a more complete picture 548 

of the effects of loss of gene function on fitness. 549 

 550 

Figure legends 551 

Fig. 1. Workflow and performance for seed counting with a segmentation method using 552 

ImageJ when seeds were deliberately separated. (a) Workflow. Seeds from 12 different 553 

plants were scattered and manually separated from each other on the lids of 12 petri 554 

plates, which were placed in a template and scanned. Twelve search areas, each with a 555 

diameter of 60 mm (yellow circles), were predefined. A threshold was applied by 556 

selecting pixels with intensities between 50 and 140 to separate the seed areas (red) from 557 

the background. Then pixels were converted to real-world distance units in mm. The 558 

“Analyze Particles” tool was used to detect and count the seeds. (b) An example of an 559 

image with detected seeds (left) and an enlarged image showing the seeds (right). Red 560 

region with number: individual detected seed area. (c) Correlation between true and 561 

predicted seed counts using the segmentation method when seeds were deliberately 562 

separated. 563 

 564 

Fig. 2. Comparison between the performances of the segmentation and Faster R-CNN-565 

based seed counting methods for test set images of seeds that were not deliberately 566 

separated. (a, b) The same seed scan image analyzed by the segmentation method using 567 

ImageJ (a) and by Faster R-CNN (b). Three different regions of the plate lid with 568 

different densities are outlined. Region 1 has low seed density, region 2 has moderate 569 

density, and region 3 has a high density. In (a) the red colored regions represent the 570 

segmented areas identified by the segmentation method; seeds outlined in yellow and 571 

assigned numeric IDs were counted. In (b) the blue rectangles represent seeds detected by 572 

Faster R-CNN. (c,d) Correlation between true and predicted seed numbers from 573 

segmentation method (c) and Faster R-CNN (d) analysis of the test set. (e) Distribution of 574 

differences between true and predicted seed numbers. Red lines: the segmentation 575 

method using ImageJ; blue lines: Faster R-CNN. (f) Correlation between seed density 576 

index (SDI) and difference between true and predicted seed counts. Each dot in (c,d,f) 577 
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corresponds to one of the 50 test set images. The red line in (c) is the regression line 578 

obtained using the loess method. The blue lines in (d,f) are fitted regression lines for 579 

Faster R-CNN predictions. The red line in (f) is the fitted linear regression line for the 580 

segmentation method-based predictions. PCC: Pearson correlation coefficient. 581 

 582 

Fig. 3. Workflow for building Faster R-CNN-based seed counting models. (a) First-round 583 

modeling for enriching annotated seed labels. Each of the 256 whole-plate images was 584 

split into four quarter-plate images. Among the 1024 quarter-plate images, 180 were used 585 

in first-round modeling, and the remainder (844) were used in second-round modeling 586 

described in (b). Seeds in the 180 quarter-plate images were manually annotated, and 587 

then these annotated images were further split into training set 1 (160) and a validation 588 

set (20) to train and evaluate models, respectively. Sixty-three combinations of three 589 

hyperparameters (i.e., 3 proposal numbers × 3 scales [A, B, and C] × 7 aspect ratios [AR-590 

A through G]; for scale and aspect ratio values see Table S6) were used to build 63 591 

models. The optimal scale (B) and aspect ratio (AR-A) were selected based on the model 592 

performance on validation set images (Fig. S2). An additional three models (Modelseed 593 

64–66) were built using scale B, AR-A, and three larger proposal values, and the final 594 

best model, Modelseed 66, with 10,000 proposals, was applied to the 844 quarter-plate 595 

images reserved for second-round modeling to generate in silico seed annotations. (b) 596 

Second-round modeling. The 844 quarter-plate images with seed predictions from 597 

Modelseed 66 were rejoined together to reconstruct 211 whole-plate images with in silico 598 

seed annotations, which were then manually curated and used as ground truth seed 599 

annotations. Modelseed 67 was built using 161 (training set 2) out of the 211 annotated 600 

images with the same hyperparameters used in Modelseed 66, and was evaluated using the 601 

test set (50 independent images not used for modeling) and the modified test set (i.e., the 602 

50 independent test set images plus 1,700 images modified from the test set images that 603 

had different image properties [blurriness, brightness, contrast, and resolution values]). 604 

For data augmentation, the image properties of 20 images from training set 2 were 605 

modified, and the resulting 420 images were combined with training set 2 (161 images), 606 

resulting in 581 images (modified training set 2), which were used to build Modelseed 68. 607 

The modified test set was used to evaluate the performance of Modelseed 68. 608 
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 609 

Fig. 4. Effect of seed density on the performance of the Faster R-CNN models. (a) 610 

Examples with different seed density index (SDI) values. The radius of each circle is 30 611 

pixels (0.62 mm). (b,c) Relationship between SDI and model performance (b) and 612 

between the true SDI and SDI based on prediction (c) for test images. Each dot 613 

corresponds to one of 50 test set images. Blue lines are the fitted linear regression lines. 614 

F1: F1 value at 0.5 IoU (Intersection over Union). PCC: Pearson correlation coefficient. 615 

 616 

Fig. 5. Improvement of model robustness using training images with different properties. 617 

(a) Examples of seed images with different relative brightness, contrast, blurriness, and 618 

resolution values that were derived from the same original image. (b) Model performance 619 

for Modelseed 67 and Modelseed 68 on the modified test set (Fig. 2b). F1: F1 value at 0.5 620 

IoU (Intersection over Union); red boxplot: Modelseed 67; blue boxplot: Modelseed 68; 621 

horizontal line in the box: median value; box range: interquartile range (IQR), i.e., 25th 622 

(Q1) to 75th percentile (Q3); whisker below box: Q1 – 1.5*IQR to Q1; whisker above 623 

box: Q3 to Q3 + 1.5*IQR. 624 

 625 

Fig. 6. Fruit counting using Faster R-CNN models. (a) Fruit counting workflow. (b) 626 

Relationship between true and predicted fruit numbers. (c) Relationship between fruit 627 

number in an image and the model performance. PCC: Pearson correlation coefficient. 628 

(d) Examples of the same fruit image with different relative brightness, contrast, 629 

blurriness, and resolution values. (e) Model performance for Modelfruit 21 and Modelfruit 630 

76 on test images with different properties. F1: F1 at 0.5 IoU (Intersection over Union); 631 

red boxplot: Modelfruit 21; blue boxplot: Modelfruit 76; horizontal line in the box: median 632 

value; box range: interquartile range (IQR), i.e., 25th (Q1) to 75th percentile (Q3); whisker 633 

below box: Q1 – 1.5*IQR to Q1; whisker above box: Q3 to Q3 + 1.5*IQR.  634 

 635 

Fig. 7. Fitness measurements for three mutants. (a-d) Fruit counts per plant (a), seed 636 

counts per plant (b), seed weight per plant (c), and weight per 100 seeds (d) for the T-637 

DNA insertion mutant of PURPLE ACID PHOSPHATASE 2 (pap2) and wild type (WT). 638 

(e-f) Fruit (e) and seed (f) counts per plant, for the T-DNA insertion mutant of HIGH 639 
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MOBILITY GROUP A5 (hon5) and WT. (g-h) Fruit (g) and seed (h) counts per plant for 640 

the T-DNA insertion mutant of KINESIN 7.4 (kin7.4) and WT. Sample sizes are shown in 641 

parentheses on the x axis. p-values are from Wilcoxon signed-rank tests. Horizontal line 642 

in the box: median value; box range: interquartile range (IQR), i.e., 25th (Q1) to 75th 643 

percentile (Q3); whisker below box: Q1 – 1.5*IQR to Q1; whisker above box: Q3 to Q3 644 

+ 1.5*IQR; violin plot: distribution of datapoint values; dot: datapoint from an individual 645 

plant; yellow: loss-of-function mutant; cyan: WT. 646 

 647 
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