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Abstract. We give a survey of some old and new results about the stated skein modules/algebras
of 3-manifolds/surfaces. For generic quantum parameter, we discuss the splitting homomorphism for
the 3-manifold case, general structures of the stated skein algebras of marked surfaces (or bordered
punctured surfaces) and their embeddings into quantum tori. For roots of 1 quantum parameter, we
discuss the Frobenius homomorphism (for both marked 3-manifolds and marked surfaces), describe
the center of the skein algebra of marked surfaces, the dimension of the skein algebra over the
center, and the representation theory of the skein algebra. In particular, we show that the skein
algebra of non-closed marked surface at any root of 1 is a maximal order. We give a full description
of the Azumaya locus of the skein algebra of the puncture torus and give partial results for closed
surfaces.
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1. Introduction

We survey some old and new results about the stated skein modules of marked 3-manifolds and
skein algebras of surfaces.

Kauffman bracket skein modules for 3-manifolds and skein algebras for surfaces were introduced
by Przytycki [Pr] and Turaev [Tu1, Tu2] in around 1987. The skein modules/algebras have played
an important role in low dimensional topology and quantum algebra as they have applications and
connections to objects such as character varieties [Bul, PS1, Tu1, BFK], the Jones polynomial and
its related topological quantum field theory (TQFT) [Kau, BHMV, Tu3], (quantum) Teichmüller
spaces and (quantum) cluster algebras [BW1, FGo, FST, Mu], the AJ conjecture [FGL, Le4], and
many more.

More than 20 years after the Kauffman bracket skein algebra was introduced, Bonahon and
Wong [BW1] made an important contribution, proving that the skein algebra of a surface with at
least one puncture can be embedded into a quantum torus by the quantum trace map, which is
a quantization of the map expressing the trace of curves in the shear coordinates of Teichmüller
space. The work opens possibilities to quantize Thurston’s theory of hyperbolic surfaces to build
hyperbolic TQFT and to better geometrically understand the volume conjecture [Kas1]. One main
problem is to understand the representation theory of the skein algebras at roots of 1.

Bonahon and Wong’s proof of the existence of the quantum trace map suggests that the skein
algebra of a surface can be split into smaller simple blocks. The first author [Le3] worked out
and made precise this splitting phenomenon by introducing the stated skein algebra for punctured
bordered surfaces, which are punctured surfaces having boundary. The main feature is the existence
of the splitting homomorphism relating the stated skein algebra of a surface and that of its splitting
along an ideal arc. This approach gives a new proof of the existence of the quantum trace map, and
more [CL1]. The stated skein algebra theory fits well with the integral quantum group associated
to SL2(C) and its integral dual Oq2(sl2), and many algebraic facts concerning the quantum groups
have simple transparent interpretations by geometric formulas. For example, the stated skein
algebra of the bigon B(D2), with its natural cobraided structure, is isomorphic to the cobraided
Hopf algebra Oq2(sl2), and under the isomorphism the natural basis of B(D2) maps to Kashiwara’s
canonical basis of Oq2(sl2), see [CL1] and Section 4.
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In this paper, we extend the definition of the stated skein modules to marked 3-manifolds (Section
2), and then survey some old and new results on the stated skein modules/algebras. In Section 3
we sketch a proof of the splitting homomorphism for the 3-manifold case. Section 4 gives general
properties of skein algebras of surfaces: basis, Noetherian domain, Gelfand-Kirillov dimension.
We also discuss relations between stated skein algebras and both quantum groups (for the ideal
bigon and the ideal triangle) and the quantum moduli algebra of Alekseev-Grosse-Schomerus and
Buffenoir-Roche (for once-marked surfaces). Section 5 explains two embeddings of the stated skein
algebra of a surface with at least one ideal point into quantum tori and relations between them.
For closed surfaces we discuss the embedding of an associated graded algebra into a quantum torus.
Section 6 gives the Chebyshev-Frobenius homomorphism for marked 3-manifolds. In Section 7 we
describe the center of the stated skein algebra of a marked surface at a root ξ of 1, calculate its
PI degree, discuss the Azumaya locus in the general case, and give a precise description of the
Azumaya locus for the punctured torus and partial results for closed surfaces. Proofs of some
results are sketched, and details of many results will appear elsewhere.

1.1. Acknowledgments. The authors would like to thank F. Bonahon, F. Costantino, C. Frohman,
J. Kania-Bartoszynska, T. Schedler, A. Sikora, and M. Yakimov for helpful discussions. The first
author is supported in part by NSF grant DMS 1811114.

2. Skein modules/algebras

2.1. Ground ring, notations. Throughout the paper, the ground ring R is a commutative Noe-
therian domain with a distinguished invertible element q1/2. Let N,Z,C denote respectively the
sets of non-negative integers, integers, and complex numbers.

2.2. Skein modules of marked 3-manifolds. As in [Le2], a marked 3-manifold is a pair (M,N ),
where M is an oriented 3-manifold with (possibly empty) boundary ∂M , and N ⊂ ∂M is a 1-
dimensional oriented submanifold, called the marking, such that each connected component of N
is diffeomorphic to the closed interval [0, 1].

An N -tangle in M is a compact 1-dimensional non-oriented submanifold α of M , equipped with
a non-tangent vector field, called the framing, such that ∂α = α ∩ N and the framing at each
boundary point of α is a positive tangent vector of N . Two N -tangles are N -isotopic if they are
isotopic in the class of N -tangles. The empty set is considered as a N -tangle isotopic only to itself.

A stated N -tangle α is a N -tangle equipped with a map s : ∂α→ {±}, called the states of α.
The skein module S (M,N ) is the R-module freely spanned by N -isotopy classes of N -tangles

modulo the local relations (A-E) described in Figure 1. In each relation, the diagrams represent
parts of N -tangles. The framings in the diagrams are perpendicular to the page and pointing to
the reader. In (C-E), we assume that N is perpendicular to the page, and its intersection with the
page is the bullet labeled by N there. There are two strands of the N -tangle coming to N , the
lower one being depicted by the broken line. There are no other strands ending on the segment of
N between the two strands. The states of the endpoints are marked by ±.

Remark 2.1. When N = ∅ we don’t need the relations (C-E). In this case the skein module was
introduced independently by J. Przytycki [Pr] and V. Turaev [Tu1, Tu2]. Relations (A) and (B)
were introduced by Kauffman [Kau] in his study of the Jones polynomial. Relations (C) and (D),
for surface case, appeared in [BW1]. Relation (E) appeared in [Le3].

2.3. Marked surfaces and punctured bordered surfaces. A marked surface is a pair (Σ,P),
where Σ is a compact oriented surface with possibly empty boundary ∂Σ and P ⊂ ∂Σ is a finite
set, called the set of marked points. The associated marked 3-manifold (M,N ) is defined by
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Figure 1. Defining Relations in S (M,N )

M = Σ × [−1, 1] and N = P × [−1, 1]. Although M has corners when ∂Σ 6= ∅, we can smooth
the corner and consider M as a smooth 3-manifold. Define S (Σ,P) = S (M,N ) as an R-module.
Given two stated N -tangles α, α′ define the product αα′ by stacking α above α′. This gives
S (Σ,P) an R-algebra structure, which was first introduced by Turaev [Tu1] for the case P = ∅ in
connection with the quantization of the Atiyah-Bott-Weil-Petersson-Goldman symplectic structure
of the character variety. The algebra S (Σ,P) is closely related to the character variety (see
[Bul, PS1, BFK]) and the quantum Teichmüller space (see [CF, Kas2, BW1]).

The skein algebra S (Σ,P) coincides with the stated skein algebra introduced by the first author
in [Le3], although at first they look different. Let us explain the connection here.

A boundary component of Σ is unmarked if it does not have a marked point. Let S be the result
of removing all marked points and unmarked boundary components from Σ. Such a surface S is
called a punctured bordered surface. Each marked point of Σ is called a boundary ideal point of S,
and each unmarked boundary component of Σ is called an interior ideal point of S. By adding
back the ideal points one can recover (Σ,P) from S. Each connected component c of the boundary
∂S is an open interval, called a boundary edge of S, and c × (−1, 1) is called a boundary wall of

M ′ := S× (−1, 1). The boundary ∂̃S of M ′ is the disjoint union of all the boundary walls.

By a ∂̃S-tangle α in M ′ = S × (−1, 1) we mean a framed 1-dimensional compact non-oriented
submanifold properly embedded in M ′ with vertical framing at each endpoint and distinct heights

for endpoints in each boundary wall. Two ∂̃S-tangles are ∂̃S-isotopic if they are isotopic in the

class of ∂̃S-tangles. Note that the endpoints of α in one boundary wall are linearly ordered by

heights since they have distinct heights, and ∂̃S-isotopy does not change the height order.

Every ∂̃S-tangle can be represented by a ∂S-tangle diagram, which by definition1 is a tangle
diagram on S where

• the endpoints of the tangle diagram are distinct points in ∂S, and

1In this paper a ∂S-tangle diagram is a positively ordered ∂S-tangle diagram of [Le3]
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• on each boundary edge c the height order is given by the positive direction of c (inherited
from the orientation of S).

Every N -tangle in M can be turned into a ∂̃S-tangle in M ′ by slightly moving the endpoints
above a marked point on a boundary component b along the negative direction of b (opposite of

the arrows in Figure 2). This gives a bijection of N -isotopy classes of N -tangles and ∂̃S-isotopy

classes of ∂̃S-tangles. Hence the skein algebra S (Σ,P) is canonically isomorphic to the skein

algebra S (S) defined as the R-module freely generated by ∂̃S-isotopy classes of stated ∂̃S-tangles
modulo the original relations (A) and (B), and the new relations (C-E) of Figure 2, which are the
translations of the relations (C-E) in Figure 2. This is the definition introduced in [CL1].

−
+ = q−1/2

(c) Returning arc relation 1

+
+ = 0 = −

−

(d) Returning arc relation 2

+
− = q2

−
+ + q−1/2

(e) State exchange relation

Figure 2. Boundary relations

2.4. Positive state submodule. The submodule S +(M,N ) of S (M,N ) spanned by N -tangles
with positive states was introduced in [Le2]. The corresponding subalgebra S +(Σ,P) ⊂ S (Σ,P)
in the marked surface was first defined by Muller [Mu] in connection with quantum cluster theory.
The Muller algebra S +(Σ,P) is a quantization of the decorated Teichmüller space of Penner [Pe].

2.5. Category of marked 3-manifolds. The skein module can be considered as a functor from
the category of marked 3-manifolds and (isotopy classes of) embeddings to the category of R-
modules.

An embedding of a marked 3-manifold (M,N ) into (M ′,N ′) is an orientation preserving proper
embedding f : M ↪→M ′ that restricts to an orientation preserving embedding on N . An embedding
f induces an R-module homomorphism f∗ : S (M ′,N ′) → S (M ′,N ′) by f∗[T ] = [f(T )] for any
stated N -tangle T . Clearly f∗ depends only on the isotopy class of f . A morphism from (M,N )
to (M ′,N ′) is an isotopy class of embeddings from (M,N ) to (M ′,N ′).

If (M,N ) = (M1,N1) t (M2,N2), then there is a natural isomorphism

(1) S (M1,N1)⊗R S (M2,N2) ∼= S (M,N )

sending [T1]⊗ [T2] to [T1 ∪ T2] for any N1-tangle T1 and N2-tangle T2.
In the case of marked surfaces, there is a similar picture. The skein algebra is a monoidal functor

from the category of marked surfaces and embeddings to the category of R-algebras. An embedding
of a marked surface (Σ,P) into (Σ′,P ′) is an orientation preserving proper embedding f : Σ ↪→ Σ′

such that f(P) ⊂ P ′. The embedding f induces an R-algebra homomorphism f∗ : S (Σ,P) →
S (Σ′,P ′).
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2.6. Higher rank group SLn. The theory of skein modules/algebras for Lie group SLn has
been developed in joint work of the first author and A. Sikora [LS], where analogs of a splitting
homomorphism (Theorem 3.1) and a quantum group isomorphism of the bigon algebra (Theorem
4.2) are obtained.

3. Splitting homomorphism

A basic property of the skein module of marked 3-manifolds is the existence of the splitting
homomorphism which relates the skein module of a marked 3-manifold to a new, simpler, marked
3-manifold obtained by splitting the original one along an embedded disk. The splitting homomor-
phism has many applications and is one of the most important technical tools. It was in a search
for such a splitting homomorphism that prompted the first author to introduce the stated skein
algebras of marked surfaces.

3.1. Splitting homomorphism for 3-manifolds. Suppose (M,N ) is a marked 3-manifold and
a1, a2 are two connected components of the marking set N . We do not assume M is connected.

For each i = 1, 2, choose a closed disk Di ⊂ ∂M whose interior contains ai such that D1 and
D2 are disjoint and disjoint from any other connected component of N . Each disk Di inherits an
orientation from M . Choose an orientation reversing diffeomorphism h : D1 → D2 such that h
restricts to an orientation preserving diffeomorphism a1 → a2. Let M ′ = M/(D1 ≡h D2) be the
3-manifold obtained from M by identifying D1 with D2 via h, and let N ′ = N \ (a1 ∪ a2) ⊂ ∂M ′.
Then (M ′,N ′) is a marked 3-manifold (after smoothing the corner).

There is a natural projection p : M →M ′. Let a = p(a1) = p(a2) and D = p(D1) = p(D2). Then
D is a disk properly embedded in M ′, disjoint from N ′, and containing the arc a in its interior.
We will say (M,N ) is the result of splitting (M ′,N ′) along (D, a).

An N ′-tangle α in M ′ is said to be (D, a)-transversal if p−1(α) is an N -tangle, i.e.

• α is transversal to D, and α ∩D = α ∩ a, and
• the framing at every point of α ∩ a is a positive tangent vector of a.

Then α̃ := p−1(α) is an N -tangle in M . If in addition α is stated, then α̃ is stated at every endpoint
except for the endpoints on a1 ∪ a2. Given a map

s : α ∩ a→ {±},
let (α̃, s) be the stated N -tangle whose state at a point x ∈ α̃ ∩ (a1 ∪ a2) is given by s(p(x)).

Theorem 3.1. Assume (M,N ) is the result of splitting (M ′,N ′) along (D, a), with the above
notations. There is a unique R-module homomorphism

Θ : S (M ′,N ′)→ S (M,N )

such that if α is an N ′-tangle α in M ′ which is (D, a)-transversal, then

Θ(α) =
∑

s:α∩a→{±}

(α̃, s).

Remark 3.2. If the splitting is applied to multiple disks, it can be done in different orders. It is
clear from definition that the splitting homomorphism is independent of the order.

Proof. We sketch a proof here. For details, see [BL]. The majority of the work is done in [Le3].
Let T (D) denote the R-module freely generated by (D, a)-transversal N ′-tangles (not isotopy

classes). The formula above defines a map

Θ̃ : T (D)→ S (M,N ).
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We need to show that Θ̃ is invariant under isotopy and all moves given by the defining relations
(A-E) of Figure 1. We can assume that the supports of the isotopy and the moves are small. If the

support is disjoint from D then clearly Θ̃ is invariant. On the other hand, if the support is small
and intersects D, the invariance of Θ̃ is verified in the proof of Theorem 3.1 of [Le3]. �

The spitting homomorphism gives the skein theory of marked 3-manifolds some flavor of a topo-
logical quantum field theory. We will explore this direction in the upcoming work [CL2].

3.2. Splitting homomorphism for surfaces. Suppose p1 and p2 are two marked points of a
marked surface (Σ,P) which might be disconnected. For i = 1, 2 choose a closed interval bi ⊂ ∂Σ
which contains pi in its interior. By identifying b1 with b2 via an orientation reversing diffeomor-
phism which maps p1 to p2, from Σ we get a new surface Σ′. Let P ′ = P \ {p1, p2}, considered as
a subset of ∂Σ′. The splitting homomorphism gives an R-linear homomorphism

(2) Θ : S (Σ′,P ′)→ S (Σ,P).

For surfaces, we get a stronger result.

Theorem 3.3. [CL1] The splitting homomorphism in (2) is an injective R-algebra homomorphism.

Originally, the splitting homomorphism is defined for punctured bordered surfaces. In this case,
splitting a punctured bordered surface S′ along an ideal arc e gives a new punctured bordered
surface S with new boundary edges e1, e2 (among all boundary edges) such that after gluing e1 with
e2 one recovers S′. The splitting homomorphism gives an algebra embedding Θ : S (S′)→ S (S).

4. Surfaces

We discuss general properties of the skein algebra of a marked surface and its relations to known
algebras, including the quantum groups associated to SL2(C) and their canonical bases.

Throughout (Σ,P) is a marked surface, with corresponding punctured bordered surface S. Let

(3) r(Σ,P) = r(S) :=


0, if S is the sphere with no or one ideal point,

1, if S is the sphere with two ideal points,

2, if S is the closed torus,

3m− 3χ(S), otherwise.

Here m = |P| is the number of marked points or the number of boundary edges of S, and χ(Σ) =
χ(S) is the Euler characteristic.

4.1. Basis, domain, Gelfand-Kirillov dimension. Unlike the 3-manifold case, the skein module
S (S) of a punctured bordered surface is always a free R-module, with a basis described below.

A ∂S-tangle diagram α is simple if it has no crossing, no trivial loop, and no trivial arc. Here
a trivial loop is a simple closed curve bounding a disk in S, and a trivial arc is one which can be
homotoped relative to its endpoints into a boundary edge.

We order the set {±} so that + is greater than −. The state s : ∂α → {±} of a ∂S-tangle
diagram α is increasing if when traversing any boundary edge along its positive direction, the state
values are never decreasing, i.e. one never encounters a − immediately after a +.

Let B(S) be the set of all isotopy classes of increasingly stated, simple ∂S-tangle diagrams,
including the empty set, which by convention is considered as a simple ∂S-tangle diagram.
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Theorem 4.1. (a) [Le3] As an R-module, S (S) is free with basis B(S).
(b) [LY1] As an R-algebra, S (S) is orderly finitely generated by arcs and loops. This means,

there are one-component ∂S-tangle diagrams x1, . . . , xn ∈ B(S) such that the set {xk11 . . . xknn | ki ∈
N} spans S (S) over R.

(c) [LY1] S (S) is a Noetherian domain.
(d) [LY1] The Gelfand-Kirillov dimension of S (S) is r(S).

When S has no boundary, parts (a), (b), (c) were known, see respectively [Pr, AF, PS2]. The
finite generation (without order, and for no boundary S) was first proved in [Bul]. When S has at
least one ideal point and no boundary, the fact that S (S) is a domain follows from [BW1] where
it is proved that the quantum trace map embeds S (S) into a quantum torus, which is a domain.
Part (d) follows from Theorems 5.1(b) and 5.4 below.

4.2. Bigon, co-braided quantum group, and canonical basis. The bigon D2 is the disk with
two marked points on the boundary; its corresponding punctured bordered surface, denoted by D2,
is the disk with two boundary ideal points, see Figure 3.

Figure 3. Bigons: D2, D2, and arcs αµν in D2 with µ, ν ∈ {±}.

The topology of the bigon D2 is very special, which allows us to define many interesting operations
on S (D2). For example, by splitting the bigon D2 along an ideal arc connecting the two ideal points,
we get a disjoint union of two bigons. The corresponding splitting algebra homomorphism

∆ : S (D2)→ S (D2)⊗R S (D2)

defines a coproduct on S (D2). Similarly both a counit and an antipode may be geometrically
defined, making S (D2) a Hopf algebra, see [CL1]. Moreover, the Hopf algebra S (D2) is cobraided,
i.e. it has a co-R-matrix ρ : S (D2)⊗RS (D2)→ R which turns the category of S (D2)-comodules
into a braided category. For an overview of the theory of cobraided Hopf algebra see [Maj]. The co-
R-matrix is given by the following nice geometric formula, where x and y are ∂D2-tangle diagrams
and ε is the counit.

ρ

(
⊗

)
= ε

( )
.

It turns out that S (D2) is isomorphic to the well-known cobraided Hopf algebra Oq2(sl2), which
is the Hopf dual of the quantized enveloping algebra Uq2(sl2) (see for example [Maj]). As an
R-algebra Oq2(sl2) is generated by a, b, c, d modulo the relations

ca = q2ac, db = q2bd, ba = q2ab, dc = q2cd, bc = cb,

ad− q−2bc = da− q2bc = 1.

Theorem 4.2. [Le3, CL1] The four elements α±,± ∈ S (D2) in Figure 3 generate the R-algebra
S (D2). The map given by

α+,+ 7→ a, α+,− 7→ b, α−,+ 7→ c, α−,− 7→ d
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is an isomorphism from S (D2) to Oq2(sl2) as cobraided Hopf algebras. The basis B(D2), up to
powers of q, maps to Kashiwara’s canonical basis of Oq2(sl2).

Kashiwara’s canonical basis of Oq2(sl2) was one of the first constructed canonical bases of quan-
tum groups [Kaa]. The canonical basis has many nice properties, including the positivity. We will
explore positivity of the basis B(S) for other surfaces such as polygons, in a future work.

4.3. Comodule algebras over Oq2(sl2). Let c be a boundary edge of a punctured border surface
S. By gluing c to the left edge of D2, we get a back S. The splitting homomorphism gives a map

∆c : S (S)→ S (S)⊗R S (D2).

It turns out that ∆c gives S (S) a right S (D2)-comodule structure. Moreover the comodule
structure is compatible with algebra structure of S (S) and makes S (S) a right S (D2)-comodule
algebra, as defined in [Kasl, Maj].

Any comodule over Oq2(sl2) is a module over Uq2(sl2). The structure of integrable Uq2(sl2)-
modules for generic q is well-known. In [CL1] it was proved that S (S) is an integrable Uq2(sl2)-
module with an explicit description of the highest weight vectors. The S (D2)-comodule struc-
ture allows us to characterize the image of the splitting homomorphism (2) in terms of the 0-th
Hochschild homology, a result obtained independently by [CL1] and [KQ].

More generally given a marked 3-manifold (M,N ) and a component c of the marking N , the
splitting homomorphism also gives S (M,N ) a comodule structure over S (D2), and its image is
closely related to the 0-th Hochschild homology.

4.4. Attaching an ideal triangle. Let D3 be the ideal triangle with boundary edges c1, c2, c3 as
in Figure 4.

Figure 4. Ideal triangle, attaching an ideal triangle to Σ, and the map τ

Suppose e1, e2 are two boundary edges of a bordered puncture surface S. Let S′ be the result of
attaching D3 to S by identifying c1 with e1 and c2 with e2. For a ∂S-tangle diagram α ∈ B(S) let
τ(α) be the ∂S′-tangle diagram obtained by extending the arcs ending in c1∪c2 to arcs ending in c3

as in Figure 4. Since B(S) is anR-basis of S (S), the map τ extends to anR-linear homomorphism
τ : S (S)→ S (S′), which is not an algebra homomorphism in general.

Theorem 4.3. [CL1] The map τ : S (S)→ S (S′) is bijective.

The algebra structure of S (S′) can be described explicitly using that of S (S) via the co-braiding
structure of S (D2). Let us only mention two special cases, both are taken from [CL1].

First suppose S = S1 tS2 with e1 ⊂ S1 and e2 ⊂ S2. Then each S (Si), with boundary edge
ei, is a Oq2(sl2)-comodule-algebra. Given any two Oq2(sl2)-comodule-algebras, their braided tensor
product is defined, which is also a Oq2(sl2)-comodule-algebra, see [Maj]. The explicit description
of the algebra structure shows that S (S′) is the braided tensor product of S (S1) and S (S2).
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In the second example S = D2, the bigon, which has two boundary edges. Attaching an ideal
triangle gives M1, which is the once-punctured monogon, see Figure 5. The above consideration
gives a proof that S (M1) is isomorphic to the braided version (or transmutation) of Oq2(sl2),
defined in [Maj, Examples 4.3.4 and 10.3.3].

Figure 5. Once-punctured monogon M1 (left) as the result of attaching an ideal
triangle to a bigon (shaded).

More generally, by attaching ideal triangles we can convert the n-gon Dn to an (n−1)-punctured
monogon. The above procedure describes a relation between the two skein algebras.

4.5. Quantum moduli algebra, factorization homology. The results of the previous subsec-
tions allow to build S (S) from a few simple algebras. In the special case when there is exactly
one marked point this helps to identify S (S) with known algebras. Assume the ground ring R is
a field.

Suppose Σg,n is the compact surface of genus g having n boundary components. For each braided
Hopf algebra H, Alekseev, Grosse, and Schomerus [AGS] and Buffenoir and P. Roche [BR] define
the quantum moduli algebra A(Σg,n;H) which is a quantization (of Fock-Rosly’s Poisson structure
[FR]) of the moduli space of flat G-connections of Σg,n when H is the quantum group associated
with the simply-connected Lie group G. The algebra A(Σg,n;H) later appeared in the work of
Ben-Zvi, Brochier, and Jordan [BBJ], where they showed that the factorization homology of Σg,n

with value in the category of H-modules is the category of A(Σg,n;H)-modules in an appropriate
sense.

Theorem 4.4. [LY2] For H = Uq2(sl2) the quantum moduli algebra A(Σg,n;H) is isomorphic to
the skein algebra S (Σ′g,n), where Σ′g,n is the result of removing an open disk from Σg,n and marking
a point on the newly created boundary component.

We learned that Theorem 4.4 was also independently proved by M. Faitg [Fa].

5. Embedding into quantum tori

Quantum tori are a class of simple algebras with nice properties. In this section we discuss
embeddings of skein algebras of marked surfaces into quantum tori.

5.1. Quantum tori. Informally, a quantum torus is an algebra of Laurent polynomials in several
variables which q-commute, i.e. ab = qkba for some integer k. By definition, the quantum torus
associated to an anti-symmetric r × r integral matrix Q is

T(Q) := R〈x±1
1 , . . . , x±1

r 〉/〈xixj = qQijxjxi〉.
A quantum torus is a Noetherian domain [GW]. In particular, it has a ring of fractions, which

is a division algebra. The Gelfand-Kirillov dimension of T(Q) is r.
For k = (k1, . . . , kr) ∈ Zr let

xk = q−
1
2

∑
i<j Qijkikjxk11 x

k2
2 . . . xkrr .
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Then {xk | k ∈ Zr} is a free R-basis of T(Q), and

(4) xkxk
′

= q
1
2
〈k,k′〉Qxk+k′

,

where

〈k,k′〉Q =
∑

1≤i,j≤r
Qijkik

′
j .

If Λ ⊂ Zr is a submonoid, then the R-submodule A(Q; Λ) ⊂ T(Q) spanned by {xk,k ∈ Λ} is an
R-subalgebra of T(Q), called a monomial subalgebra. When Λ = Nr, the corresponding subalgebra
is denoted by T+(Q).

For any positive integer N it is easy to check that there is an algebra embedding, called N -th
Frobenius homomorphism,

(5) ΦN : T(N2Q)→ T(Q), given by ΦN (xi) = xNi .

More generally, suppose Q′ is another anti-symmetric r′×r′ integral matrix such that HQ′HT =
Q, where H is an r × r′ matrix and HT is its transpose. Then the R-linear map T(Q) → T(Q′)
given on the basis by xk → xkH , where kH is the product of the horizontal vector k and the matrix
H, is an algebra homomorphism, called a multiplicatively linear homomorphism.

5.2. Non-closed surfaces. For a punctured bordered surface S the number r(S) is defined by (3).
Recall that if S has an ideal triangulation, then r(S) = 3m−3χ, where χ is the Euler characteristic
and m is the number of boundary components.

Theorem 5.1. [LY1] Suppose S is a punctured bordered surface which has at least one ideal point
(interior or on the boundary).

(a) There exists an R-algebra embedding ϕ : S (S) ↪→ T(Q̄), where Q̄ is an anti-symmetric
integral matrix of size r(S)× r(S). Moreover, there is an N-filtration of S (S) compatible with the
algebra structure such that the associated graded algebra is isomorphic to a monomial subalgebra
A(Q̄; Λ), where Λ ⊂ Zr(S) is a submonoid of rank r(S).

(b) Suppose in addition ∂S 6= ∅. There is an anti-symmetric integral matrix P̄ of size r(S)×r(S)
and an R-algebra embedding φ : S (S) ↪→ T(P̄ ) such that T+(P̄ ) ⊂ φ(S (S)) ⊂ T(P̄ ).

We give the definitions of Q̄ and P̄ below, which depend on ideal (quasi-)triangulations of S.
We also give a sketch of a proof of part (b).

The relation between ϕ and φ is as follows. There is a bigger quantum torus T(P̄ ′) containing
T(P̄ ) as a monomial subalgebra and a multiplicatively linear algebra homomorphism Ψ : T(Q̄) →
T(P̄ ′) which maps ϕ to φ. Loosely speaking, when ∂S = ∅, the quantum torus T(P̄ ) can be
considered as a quantization of the decorated Teichmüller space [Pe] using Penner’s lambda length
coordinates, while T(Q̄) can be considered as a quantization of the enhanced Teichmüller space
[BW1] (or holed Teichmüller space of [FGe]) using shear coordinates. The map Ψ is a quantization
of the map changing Penner’s coordinates to shear coordinates. The quantum Teichmüller spaces
was first defined in [CF, Kas2].

One has rk(Q̄) = rk(P̄ ) = r(Σ,P)− bev, where bev is the number of boundary components of Σ
having an even number (including 0) of marked points.

Remark 5.2. (i) When S has no boundary, Theorem 5.1(a) was first proved by Bonahon and
Wong [BW1], and was an important development in the theory. Later other proofs were given in
[Le2, Le3]. The map ϕ is called the quantum trace map.

(ii) When there are no interior ideal points, the restriction of φ to the subalgebra S +(S) was
first constructed by Muller [Mu]. The extension to the case when S has interior ideal points, again
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for the subalgebra S +(S), was done in [LP]. When S has no boundary edges the connection map
Ψ was first constructed by the first author [Le2].

5.3. Description of the matrix Q̄ of Theorem 5.1. Let us describe the matrix Q̄ (of Theorem
5.1) when S is not the sphere with one or two ideal points. This matrix depends on an ideal
triangulation of S, which we recall first.

An ideal arc of S is a proper embedding of (0, 1) into S. Under a proper embedding, the ideal
points of (0, 1) map to (not necessarily distinct) ideal points of S. An ideal triangulation ∆ of S is
a maximal collection of disjoint, pairwise non-isotopic essential ideal arcs. Here an arc is essential
if it does not bounds a disk in S. Then ∆ must contain the set ∆∂ of all boundary edges (up to
isotopy). By splitting S along the non-boundary arcs in ∆ we get a collection of ideal triangles.

Let ∆′∂ = {e′ | e ∈ ∆∂} be another copy of ∆∂ , and ∆̄ = ∆ t∆′∂ . Then |∆̄| = r(S). Define the
anti-symmetric matrix Q̄ : ∆̄× ∆̄→ Z by

Q̄(a′, a) = 2 = −Q̄(a, a′), if a ∈ ∆∂ ,

Q̄(a, b) = #

( )
−#

( )
, if a, b ∈ ∆,(6)

Q̄(a, b) = 0, otherwise.

Here each shaded part is a corner of an ideal triangle. Thus, the right hand side of (6) is the
number of corners where b is clockwise to a minus the number of corners where a is clockwise to b.
The restriction of Q̄ to ∆, denoted by Q, is a well-known matrix in the theory of Teichmüller space,
describing the Poisson structure of the enhanced (or holed) Teichmüller space in shear coordinates,
see e.g. [FGe].

5.4. Matrix P̄ and sketch of a proof of Theorem 5.1(b). Let us sketch a proof of Theo-
rem 5.1(b). Assume (Σ,P) is not the monogon or the bigon. First we describe the matrix P̄ , which
is defined only when (Σ,P) has at least one marked point.

A P-arc is a map e : [0, 1] → Σ which embeds (0, 1) into Σ \ P, and e(0), e(1) ∈ P . A P-arc e
defines an element, also denoted by e, of the skein algebra S (Σ,P) by assigning + states to both
endpoints and using the vertical framing. This is well defined if the arc has two distinct endpoints.
If the endpoints coincide, we fix the relative heights of the endpoints so that the right strand is
higher as in Figure 6a.

If a P-arc e is contained in the boundary, it defines another element ê in the skein algebra
S (Σ,P) by assigning states as in Figure 6b. The element ê is called a bad arc in [CL1].

+ +

(a) e with identical endpoints

ê+ −

(b) States of ê

Figure 6. Height convention, states of boundary arcs ê

A quasitriangulation E is a maximal collection of disjoint, pairwise non-isotopic essential P-arcs.
The non-boundary arcs in a quasitriangulation cut the surface into triangles and once-punctured
monogons. Here a once-puncture monogon is an annulus with exactly one marked point. The

collection E must contain the set E∂ of all boundary P-arcs. Denote Ê∂ = {ê | e ∈ E∂}.
Let Ē = E t Ê∂ t H, where H is the set of all non-marked components of ∂Σ. One can check

that |E| = r(S) = 3|P| − 3χ(Σ). Note that Ē is a subset of the R-basis B(S) of the skein algebra
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S (S) = S (Σ,P), see Theorem 4.1(a). It is easy to verify that elements of Ē are q-commuting, i.e.

there is an anti-symmetric function P̄ : Ē × Ē → Z such that xy = qP̄ (x,y)yx for x, y ∈ Ē . Using the
defining relations of S (Σ,P), P̄ can be described combinatorially. The result is (undefined entries
are inferred by anti-symmetry)

P̄ (a, b) = 0, if a ∈ H, b ∈ Ē ,

P̄ (a, b) = #

( )
−#

( )
, if a, b ∈ E ,(7)

P̄ (a, b̂) = −#

( )
−#

( )
, if a ∈ E , b ∈ E∂ ,(8)

P̄ (â, b̂) = −P̄ (a, b), if a, b ∈ E∂ .
Here the shaded parts are parts of Σ, with boundary the horizontal lines. The P-arcs a and b

are isotoped so that their interiors are in the interior of Σ (even when one or both of them are
boundary P-arcs). They are not necessarily distinct or edges of the same triangle, i.e. between
them there might be other P-arcs.

A monomial in the elements of Ē is an element of the basis set B(S) up to a scalar. Hence one
sees that T+(P̄ ) ↪→ S (Σ,P) = S (S). One can show further that each monomial is a non-zero
divisor, and for each x ∈ S (Σ,P) there is a monomial a such that ax ∈ T+. From here one can
prove that there is an embedding of S (Σ,P) into T(P̄ ).

The restriction P of P̄ on the set E ∪ H was defined by Muller.

5.5. Reduced skein algebra and quantum cluster algebra. Let I be the ideal generated by
all the elements ê of Subsection 5.4. The quotient S rd(Σ,P) = S (Σ,P)/I is called the reduced
skein algebra in [CL1], where it is proved that there is an embedding

(9) ϕrd : S rd(S) ↪→ T(Q).

This embedding is essentially a quotient of ϕ : S (S) ↪→ T(Q̄) given by Theorem 5.1(a). In turn,
the more general embedding ϕ can be constructed through the embedding ϕrd of a bigger surface.

In [Le3], it is proved that there is an embedding S +(Σ,P) ↪→ T(Q). As both S rd(S) and
S +(Σ,P) embed into the same quantum torus T(Q), one might want to compare them. It turns
out that S rd(Σ,P) is an Ore localization of S +(Σ,P), which in turn is equal to the quantum
cluster algebra of (Σ,P) when each boundary component has at least two marked points.

Let M be the multiplicative set generated by all boundary P-arcs (with + states) in S +(Σ,P).
Muller showed in [Mu] that M is a two sided Ore set and the Ore localization S +(Σ,P)M−1

is equal to the quantum cluster algebra (as defined in [BZ]) which quantizes the cluster algebra
associated with the marked surface (Σ,P).

Theorem 5.3. [LY1] The quantum cluster algebra S +(Σ,P)M−1 is naturally isomorphic to the
reduced skein algebra S rd(Σ,P).

Thus the reduced skein algebra gives a geometric model for the quantum cluster algebra.
When P 6= ∅, S rd(Σ,P) and S +(Σ,P) embed into T(P ). Both matrices P and Q have size

2m− 3χ(Σ) and nullity equal to the number of boundary components of Σ.

5.6. Closed surfaces. Suppose S = Σg is a closed surface of genus g (no boundary, no ideal
points). These surfaces are exactly the ones not covered by Theorem 5.1.

When g = 1 the algebra S (Σ1) embeds into a quantum torus [FGe]. However for g ≥ 2 there is
no known embedding of S (Σg) into a quantum torus. The best we have so far is the following.
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Theorem 5.4. [KL] Suppose g ≥ 2. There is a (6g − 6)× (6g − 6) anti-symmetric integral matrix
Q with determinant 26g−6 and an N-filtration of the algebra S (Σg) such that the associated algebra
embeds into the quantum torus T(Q). Moreover, there is an N×Z-filtration of the algebra S (Σg),
where N × Z is given the lexicographic order, and a (6g − 6) × (6g − 6) anti-symmetric integral
matrix Q′ such that the associated algebra is isomorphic to T+(Q′).

Here is an explicit description of Q. Let Σg′,n′ be a surface of genus g′ with n′ ideal points, where
n′ ≥ 1 and 2g′ + n′ − 1 = g. (Then the double of Σg′,n′ along its ideal points gives Σg.) An ideal
triangulation of Σg′,n′ will have 3g − 3 edges, and gives rise to an anti-symmetric matrix Q(Σg′,n′)
of size 3g − 3 as described in Subsection 5.3. Let Q be anti-symmetric of size 6g − 6 given by

Q =

(
Q(Σg′,n′) 2I
−2I 0

)
,

where each block is a square matrix of size 3g − 3, and I is the identity matrix. The matrix Q
depends on a triangulation of Σg′,n′ . The doubles of the edges of the ideal triangulation of Σg′,n′

give a pair of pants decomposition of Σg. The N-filtration of S (Σg) of Theorem 5.4 is based on
this pair of pants decomposition, and is closely related to the one in [PS2].

A. Sikora also announced that he found a degeneration of S (Σg) related to a quantum torus.

6. The Frobenius homomorphism

6.1. Roots of 1. When R = C and q = ξ, a non-zero complex number, we denote S (M,N ) by
Sξ(M,N ). Technically we have to fix also a square root of ξ, but the choice of such a square root
does not play an important role in what follows.

For a root ξ of 1 let ord(ξ) be the least positive integer n such that ξn = 1.

6.2. The 3-dimensional manifold case. Let (M,N ) be a marked 3-manifold. A 1-component
N -tangle α is diffeomorphic to either the circle S1 or the closed interval [0, 1]; we call α an N -knot
in the first case and N -arc in the second case. For a 1-component N -tangle α and an integer k ≥ 0,
write α(k) ∈ Sξ(M) for the kth framed power of α obtained by stacking k copies of α in a small
neighborhood of α along the direction of the framing of α. Given a polynomial P (z) =

∑
ciz

i ∈ Z[z],

the threading of α by P is given by P fr(α) =
∑
ciα

(i) ∈ Sξ(M).
The Chebyshev polynomials of type one Tn(z) ∈ Z[z] are defined recursively as

(10) T0(z) = 2, T1(z) = z, Tn(z) = zTn−1(z)− Tn−2(z), ∀n ≥ 2.

Theorem 6.1 (See [BL]). Suppose (M,N ) is a marked 3-manifold and ξ is a complex root of unity.

Let N = ord(ξ4) and ε = ξN
2
.

There exists a unique C-linear map Φξ : Sε(M,N ) → Sξ(M,N ) such that for any N -tangle
T = a1 ∪ · · · ∪ ak ∪ α1 ∪ · · · ∪ αl where the ai are N -arcs and the αi are N -knots,

Φξ(T ) = a
(N)
1 ∪ · · · ∪ a(N)

k ∪ (TN )fr(α1) ∪ · · · ∪ (TN )fr(αl) in Sξ(M,N )

:=
∑

0≤j1,...,jl≤N
cj1 . . . cjla

(N)
1 ∪ · · · ∪ a(N)

k ∪ α(j1)
1 ∪ · · · ∪ α(jl)

l in Sξ(M,N ),

where TN (z) =
∑N

j=0 cjz
j.

The map Φξ is functorial and commutes with all the splitting homomorphisms.

We call Φξ the Chebyshev-Frobenius homomorphism.

Note that if ord(ξ4) = N then ξ2N = 1 or ξ2N = −1. More precisely, ξ2N = (−1)N
′+1, where

N ′ = ord(ξ2). An addendum of Theorem 6.1 is the following fact, which says the image of Φξ is
“almost transparent” in the following sense.
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Theorem 6.2. Suppose (M,N ) is a marked 3-manifold, ξ is a root of unity, N ′ = ord(ξ2). Then
the image of Φξ is almost transparent in Sξ(M,N ) in the sense that

= (−1)N
′+1 .

Here the box enclosing Φξ means one applies Φξ to the component of the N -tangle containing the
horizontal line, while the vertical line belongs to another component of the N -tangle.

6.3. The case of surfaces. For surfaces, the above results can be strengthened.

Theorem 6.3. [BL] Suppose S is a punctured bordered surface and ξ is a root of unity. Let

N = ord(ξ4) and ε = ξN
2
.

(a) There exists an algebra embedding Φξ : Sε(S) → Sξ(S) characterized by Φξ(a) = a(N) for
all stated arcs a on S, and Φξ(α) = TN (α) for all knots α on S.

(b) Assume S has at least one ideal point. Let Q and ϕ be as in Theorem 5.1(a). The following
diagram is commutative

(11)

Sε(Σ,P) T(N2Q)

Sξ(Σ,P) T(Q)

ϕ

Φξ ΦN

ϕ

Here T(Q) and T(N2Q) are quantum tori defined over C with q = ζ, and ΦN is the Frobenius
homomorphism between quantum tori defined by (5). The upper right corner of the diagram should

be the quantum torus of Q defined with q = ε, but it is equal to T(N2Q) since ε = ξN
2
. Diagram

(11) shows that under the embeddings ϕ into quantum tori, the Chebyshev-Frobenius becomes the
usual Frobenius algebra homomorphism between quantum tori.

It should be noted that in general, if a is a stated arc on S, we have

(12) Φξ(a) = a(N) 6= aN ,

even when N is odd.
From Theorem 6.2 one can deduce the following.

Corollary 6.4. Suppose S is a punctured bordered surface and ξ is a root of unity, with N =
ord(ξ4). If α is a simple closed curve on S, then T2N (α) is in the center of S (S). If a ⊂ S is a

stated ∂S-arc, then a(4N) is in the center of S (S).

Remark 6.5. (i) When ∂S = ∅, Theorem 6.3 was first proved by [BW2], using the quantum trace
map. Another proof using skein modules was later given in [Le1].

(ii) For the submodule S + of positive states, Theorems 6.1-6.3 were proved in [LP].
(iii) For the case when ord(ξ) is odd, part (a) of Theorem 6.3 was proved in [KQ]. But even in

this case, the definition of Φξ in [KQ] is different from ours: if a is an arc, then in [KQ] one has

Φξ(a) = aN , whereas we have Φξ(a) = a(N), which is different, see (12).
(iv) Suppose ξ is an arbitrary non-zero complex number, N is an arbitrary positive integer, and

ε = ξN
2
. In Diagram (11) all the maps are defined except for Φξ. One might ask for what values of

ξ and N can the Frobenius map ΦN restrict to a map Φξ so that Diagram (11) commutes, and in
addition, that Φξ is functorial. The answer is that this happens exactly when ξ is a root of 1 and
N = ord(ξ4). The proof for the similar statement for S +(S) was given in [LP], and this result can
be used to prove the statement in our case.
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6.4. Relation with Lusztig’s quantum Frobenius homomorphism. For the bigon Sξ(D2) =
Oξ2(sl2), which is the Hopf dual of (Lusztig’s version of) the quantum group Uξ2(sl2). Our
Chebyshev-Frobenius homomorphism Φξ : Sε(D2) → Sξ(D2), a Hopf algebra homomorphism,
gives rise to a dual map, also a Hopf algebra homomorphism,

(13) Φ∗ξ : Uξ2(sl2)→ Uε2(sl2).

Note that ε2 = ±1. When ε2 = 1, a simple check (see [BL]) on generators shows that Φ∗ξ is

exactly the quantum Frobenius homomorphism of Lusztig [Lus1, Lus2]. (Lusztig also mentioned
the existence of a quantum Frobenius homomorphism for the case ε2 = −1 although he did not
write it down explicitly.) Thus our Chebyshev-Frobenius homomorphism can be interpreted as
an extension of Lusztig’s quantum Frobenius homomorphism from the bigon to all surfaces and
marked 3-manifolds.

7. Skein algebra at root of 1

The center of an algebra is important, for example, in questions about the representations of
the algebra, see a review in Subsection 7.1. We discuss the structure of skein algebra at roots of 1,
describing its center, its PI dimension, and its representations. For the punctured torus, we give
a full description of the Azumaya locus. We also extend a result of [GJS], which states that the
Azumaya locus of the skein algebra of a closed surface in the case at odd roots of 1 contains the
smooth locus, to all cases of roots of 1.

When q = ξ is a root of unity and there is no marked point, i.e. P = ∅, the center of Sξ(Σ, ∅) is
determined in [FKL1] and is instrumental in proving the main result there, the unicity conjecture
of Bonahon and Wong. Representations of skein algebras of non-marked surfaces at roots of 1 were
initiated in [BW1]–[BW4].

Throughout (Σ,P) is a marked surface which is not Σ0,0,Σ0,1,Σ0,2 and Σ1,0 (with no marked
points). As in Subsection 5.4, we consider each P-arc e as an element of S (Σ,P) by assigning
state + to both endpoints. When e is a boundary P-arc we also defined ê as in Figure 6a.

7.1. Representations of algebras and Azumaya locus, a review. Let A be an associative
C-algebra such that its center Z is a domain with field of fractions Z̃. Let Ã := Z̃ ⊗Z A. The
dimension of A over Z, denoted by dimZ A, is the dimension of the vector space Ã over the field
Z̃.

We make the following assumptions:

(*1) A is finitely generated as a C-algebra and A is a domain.
(*2) A is finitely generated as a module over its center Z.

By the Artin-Tate lemma, Z is finitely generated as a C-algebra. Hence its maximal spectrum
MaxSpec(Z) is an irreducible affine variety. It is known that Ã is a division algebra with center Z̃.

It follows that dimZ̃ Ã is a perfect square, dimZ A = d2. The number d is known as the PI degree
of A.

Let Irreps(A) denote the set of all equivalence classes of irreducible finite dimensional representa-
tions of A over C. Since Z is commutative, Irreps(Z) is the set of all 1-dimensional representations,

Irreps(Z) = HomC−alg(Z,C)
κ≡ MaxSpec(Z),

where HomC−alg(Z,C) is the set of all C-algebra homomorphisms from A to C, and κ(f) = ker f .
By Schur’s lemma, the restriction of an irreducible representation of A to its center Z gives a
1-dimensional representation of Z. Hence we have the central character map

(14) C : Irreps(A)→ Irreps(Z) ≡ MaxSpec(Z).
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The following summarizes some of the main facts about representations of A.

Theorem 7.1. (See e. g. [BG, BY, DP]) (a) Every irreducible representation of A has dimension
≤ d, the PI dimension of A.

(b) The image under C of all irreducible representations of dimension d is a Zariski open dense
subset U of MaxSpec(Z). Moreover, every point of U has exactly one preimage. Every point of
MaxSpec(Z) has a non-zero finite number of preimages.

The set U is known as the Azumaya locus of A.

7.2. Center at generic q. Let H be the set of all non marked boundary components of Σ. Each
element ofH is a central element of S (Σ,P), and the polynomial algebra C[H] embeds into S (Σ,P)
because the monomials in elements of H are part of the basis B given by Theorem 4.1.

For each marked boundary component β of Σ consider the product
∏
e⊂β e of all boundary P-arcs

on β. These stated arcs q-commute, so the product is well defined up to a scalar. Let G be the set
of such elements.

The following theorem says that the center of the skein algebra, when ξ is not a root of 1, is the
obvious one.

Theorem 7.2. Suppose ξ is not a root of unity.
(a) [LY2] The center of Sξ(Σ,P) is C[H].

(b) [LP] The center of S +
ξ (Σ,P) is C[H,G].

When there is no marked point, part (a) was already proved in [PS2].

7.3. Roots of 1: dimension. We already saw that when ξ is not a root of 1, the center of
S (Σ,P) is small. At a root of unity, the center of S (Σ,P) is considerably bigger. From the
orderly finite generation of Theorem 4.1(b) and Corollary 6.4 one can easily show that Sξ(Σ,P) is
a finitely-generated module over its center. Hence Theorem 7.1 applies to Sξ(Σ,P). It is important
to calculate the PI dimension of Sξ(Σ,P), its center, and the Azumaya locus.

Recall that r = 3m − 3χ is the Gelfand-Kirillov dimension of Sξ(Σ,P), where m = |P| is the
number of marked points and χ is the Euler characteristic of Σ.

Theorem 7.3. Let (Σ,P) be a connected marked surface of genus g and ξ be a root of 1 with
N = ord(ξ4). The dimension of S (Σ,P) over its center is

Dξ(Σ,P) =


NE , if ord(ξ) is odd,

22bm
′

2
cNE , if ord(ξ) ≡ 2 (mod 4),

22g+2m′
NE , if ord(ξ) ≡ 0 (mod 4).

Here m′ = max(0,m−1) and E = r−bev = 3|P|−3χ(Σ)−bev, where bev is the number of boundary
components of Σ having an even number (including 0) of marked points.

One can show that E is the rank of the matrix Q in Theorem 5.1 and 5.4 (or rank of P in Theorem
5.1 whenever P is defined), which means bev is the nullity of Q (or P ). By PI algebra theory, E is
even since Dξ is a perfect square, though this is not immediately obvious from E = r − bev.

When (Σ,P) has no marked points, Theorem 7.3 was first proved in [FKL2].

7.4. Roots of 1: center. Let (Σ,P) be a marked surface and ξ be a root of unity of order n, with

N = ord(ξ4) and ε = ξN
2
. The following are some special central elements.
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Lemma 7.4. Let ξ be a root of unity of order n, with N = ord(ξ4). Suppose e1, . . . , es are the
boundary P-arcs on a boundary component β with s marked points, ordered consecutively with an
arbitrary starting arc.

(1) If s is odd, the element eN1 e
N
2 . . . eNs is central.

(2) If s is even, the element êk1 ê
n−k
2 . . . êks−1ê

n−k
s is central for 0 ≤ k ≤ n.

A tangle diagram on Σ with endpoints at P on (Σ,P) is matching if the parity of the number of
end points at every marked point is the same. The matching subalgebra Sma(Σ,P) is the span of
matching elements.

A stated tangle diagram α is even if α represents 0 in H1(Σ̄,P;Z/2), and at each marked point,
the difference between the number of + and − states of α is divisible by 4. Here Σ̄ is the surface
obtained by capping off all unmarked boundary components. The even subalgebra S ev(Σ,P) is the
span of even elements.

From Theorem 6.2 it is not difficult to show that the subalgebra

(15) Z0 :=


Φξ(Sε(Σ,P))[H], if ord(ξ) is odd,

Φξ(S
ma
ε (Σ,P))[H], if ord(ξ) ≡ 2 (mod 4),

Φξ(S
ev
ε (Σ,P))[H], if ord(ξ) ≡ 0 (mod 4)

is in the center of Sξ(Σ,P).

Theorem 7.5. The center Z(Sξ(Σ,P)) of Sξ(Σ,P) is Z0[C−1
ξ ], where Cξ is the set of central

elements given by Lemma 7.4. The affine variety MaxSpec(Z(Sξ(Σ,P))) is a normal variety of
dimension r(Σ,P) = 3|P| − 3χ(Σ).

Elements in Cξ are not invertible in S (Σ,P). Instead, what the theorem means is that the
center is spanned by elements x such that xc is in Z0 for some product c of elements in Cξ.

When (Σ,P) has no marked point, there is no Cξ and Theorem 7.5 simply says that the center
Z(Sξ(Σ,P)) is Z0. This case was proved in [FKL1].

7.5. Cayley-Hamilton algebra, maximal order, Poisson order. Let A be a C-algebra with
assumptions as in Subsection 7.1. By left multiplication, every a ∈ A acts Z̃-linearly on Ã, a
finite-dimensional Z̃-vector space. Denote by Tr(a) ∈ Z̃ the trace of this action. If Tr(a) ∈ Z for
all a ∈ A, then A is a Cayley-Hamilton algebra in the sense of [DP], where the definition of more
general Cayley-Hamilton algebras is given. For this class of algebras, there are finer results about
the Azumaya locus than Theorem 7.1. For example [BY] shows that the Azumaya locus is the
complement of the zero set of the determinant ideal, defined there.

The class of maximal orders [MR, DP] is even finer than the class of Cayley-Hamilton algebras.
Examples of maximal orders are quantum groups at roots of 1, see e.g. [DP, BG].

Theorem 7.6. [LY2] Let (Σ,P) be a marked surface and ξ be a root of 1.
(a) For every a ∈ Sξ(Σ,P) one has Tr(a) ∈ Z(S (Σ,P)). In particular, Sξ(Σ,P) is Cayley-

Hamilton and the Azumaya locus is the complement of the zero locus of the determinant ideal.
(b) If (Σ,P) is not a closed surface Σg, then S (Σ,P) is a maximal order.

For the case when (Σ,P) has no marked points, part (a) was proved in [FKL2], with partial
results in [AF]. Also in this case, part (b) was proved by the first author and J. Paprocki, see [Pa].
Let us sketch a proof of (b) for general marked surfaces. It is known that [MR] if the associated
graded algebra of A with respect to an N-filtration is a maximal order, then A is a maximal order.
Theorem 5.1(b) says an associated graded algebra of S (Σ,P) with respect to an N-filtration is a
monomial algebra A(Q; Λ) for a certain submonoid Λ ⊂ Zr. Explicit calculation shows that this
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submonoid is primitive in the sense that if kλ ∈ Λ where λ ∈ Zr and k is a positive integer, then
λ ∈ Λ. It then follows from [Pa] that A(Q; Λ) is a maximal order at roots of 1.

Besides, in all cases, Sξ(Σ,P) is a Poisson order over its center in the sense of [BG], which allows
us to use the Poisson geometry of its center to study the Azumaya locus.

7.6. Azumaya locus: Punctured torus. For the punctured torus we have a full description of
the Azumaya locus.

Theorem 7.7. [LY2] Let Σ1,1 be the compact oriented surface of genus 1 and having one boundary
component and no marked points, and ξ be a root of 1. The Azumaya locus of Sξ(Σ1,1) is the set of
smooth (or regular) points of the affine variety MaxSpec(Z(Sξ(Σ1,1))), which is a finite branched
covering of C3 and has a finite number of non-smooth points.

In [LY2] we give an explicit description of the branch covering and the singular set.

7.7. Azumaya locus: Closed surfaces. Recall that Σg is the closed surface of genus g.

Theorem 7.8. [LY2] Let ξ be a root of 1 and g ≥ 2.
(a) The Azumaya locus of S (Σg) contains the smooth locus of MaxSpec(Z(Sξ(Σg))).
(b) The variety MaxSpec(Z(Sξ(Σg))) is isomorphic to the SL2(C)-character variety X (Σg) if

ord(ξ) 6= 0 (mod 4), and is isomorphic to the connected component of the PSL2(C)-character
variety which contains the character of the trivial representation, if ord(ξ) = 0 (mod 4).

When ord(ξ) is odd, part (a) was proved in [GJS]. The extension to all roots of 1 will be
considered in [LY2]. Part (b) was proved in [FKL1]. It is known that the smooth part of X (Σg)
consists exactly of the characters of irreducible SL2(C)-representations of the π1(Σg).

We conjecture that the Azumaya locus is equal to the smooth locus, for Σg.
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[LP] T. T. Q. Lê and J. Paprocki, On Kauffman bracket skein modules of marked 3-manifolds and the

Chebyshev-Frobenius homomorphism, Algebr. Geom. Topol. 19 (2019), no. 7, 3453–3509. See also preprint

arXiv:1804.09303, 2018.

[Lus1] G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), no. 1-3, 89–113.

[Lus2] G. Lusztig, Introduction to quantum groups. Progress in Mathematics, 110. Birkhäuser, 1993. xii+341 pp.
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