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Abstract. The discrete Wasserstein barycenter problem is a minimum-cost mass
transport problem for a set of discrete probability measures. Although an exact
barycenter is computable through linear programming, the underlying linear pro-
gram can be extremely large. For worst-case input, a best known linear programming
formulation is exponential in the number of variables, but has a low number of con-
straints, making it an interesting candidate for column generation.

In this paper, we devise and study two column generation strategies: a natural one
based on a simplified computation of reduced costs, and one through a Dantzig-Wolfe
decomposition. For the latter, we produce efficiently solvable subproblems, namely, a
pricing problem in the form of a classical transportation problem. The two strategies
begin with an efficient computation of an initial feasible solution. While the structure
of the constraints leads to the computation of the reduced costs of all remaining
variables for setup, both approaches may outperform a computation using the full
program in speed, and dramatically so in memory requirement. In our computational
experiments, we exhibit that, depending on the input, either strategy can become a
best choice.
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1 Introduction

Optimal transport problems involving joint transport to a set of probability measures appear
in a variety of fields, including recent work in image processing [16,23], machine learning
[15,22,29], and graph theory [27], to name but a few. The so-called Wasserstein barycenters
take a central role in many of these applications: a barycenter is another probability measure
which minimizes the total distance to all input measures (i.e, images) and acts as an average
distribution in the probability space; the squared Wasserstein distance is of particular con-
sideration due to the preservation of the geometric structure of the input. The wide scope of
optimal transport problems makes challenging even a reasonably comprehensive summary;
for recent monographs on the Wasserstein distance and computational optimal transport,
we refer the reader to [14] and [20], in addition to the seminal work of Villani [28].

In almost all applications, the probability measures have discrete support, i.e., a finite
number of points to which positive mass is associated. This leads to the so-called discrete
barycenter problem, defined as follows: Given a set of probability measures P1, . . . , Pn, each
with a finite set supp(Pi) of support points in R

d and associated masses, and a set of n
nonnegative weights λi ∈ R with

∑n

i=1 λi = 1, find a probability measure P̄ on R
d, that is,
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a (Wasserstein) barycenter, satisfying

φ(P̄ ) :=

n
∑

i=1

λiW2(P̄ , Pi)
2 = inf

P∈P2(Rd)

n
∑

i=1

λiW2(P, Pi)
2, (1)

where W2 is the quadratic Wasserstein distance and P2(Rd) is the set of all probability
measures on R

d with finite second moments [1]. Since P1, . . . , Pn have finite sets of support
points, we call the measures discrete. As the Pi are measures, the total mass of their support
points sums up to 1. With di representing the mass of xi ∈ supp(Pi), this can be denoted
as

∑

xi∈supp(Pi)
di = 1. Because P1, . . . Pn are discrete, the solution measure P̄ also has a

finite set of support points, and the Wasserstein distance is the squared Euclidean distance
[3,8,28].

The discrete barycenter problem is a multi-marginal optimal transport problem, and
as such is significantly more challenging than the classical two-marginal optimal transport
problem referenced later in Section 2. In fact, multi-marginal optimal transport is no longer
a network flow problem [18], and a variant of the problem – finding optimal solutions with a
bound on the size of the support set – has recently been shown to be NP-hard [7]. Further,
there is current work on NP-hardness in all situations [2].

Therefore, considerable activity continues on exact, approximate and heuristic meth-
ods of computation, such as alternating minimization algorithms [21,26,30]. State-of-the art
approximation methods solve the entropy regularized optimal mass transport problem intro-
duced in [9]. Entropic regularization leads to a strongly convex program, and its smoothing
effects give qualitatively different solutions from exact barycenters [4]. Entropy regularized
transport problems can be solved efficiently, with a linear-in-n complexity bound, using it-
erative Bregman projection algorithms [4,10,25], although work continues on the stability
and complexity of these algorithms, e.g., [17]. In contrast, exact solutions to the discrete
barycenter problem are commonly used for benchmarking purposes and only possible for
small input; one of their advantages is that they find a barycenter of provably sparse support
and associated transport that is non-mass splitting (see Definition 1). Exact barycenters can
be computed by linear programming [1,3,8], but all known LP formulations scale exponen-
tially.

The vast majority of algorithms in the literature, including the above examples, are
based on an explicit specification of a discrete set S ⊂ R

d of support points that may be
allocated mass; see, e.g., [4,5,6,8,10,17,24]. The search for an optimal P ∈ P2(Rd) in Eq. 1
is replaced by a search over P2(S). The size of S typically is the main bottleneck for the
practical performance of algorithms [2].

Different types of input lead to a different level of challenge. In image processing, for
example, the probability measures are supported on the same structured set (a pixel grid).
This highly structured support is a best-case input. In this setting, a barycenter can be
computed exactly in polynomial time [6]. In practice, the cost is still prohibitive: an exact
barycenter lies in an n-times finer grid. It is common practice to use a coarser grid to find
an approximate barycenter. The original grid already contains a 2-approximation [5].

By contrast, a worst-case input occurs for measures with no known structure, such as in
wildfire ignition points or crime locations [6]. Then it becomes difficult to specify a small set S
of possible support points for a ‘good’ approximation or one that allows for the computation
of an exact barycenter. However, the existence of sparse solutions to the problem [3] for any
input indicates that strategies which dynamically introduce support points, or collections of
support points, would be promising to approach these difficult instances.
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In this paper, we use linear programming theory and column generation techniques to
take a step in this direction. We will advance the state-of-the-art on the computation of
exact barycenters for such worst-case input. These computations will still remain costly.

1.1 Linear Programming for The Discrete Barycenter Problem

The discrete barycenter problem can be solved exactly by linear programming [1,3,6,8],
but all known LP formulations may require an exponential number of variables, scaling by
the product of the sizes of the support sets of the input measures [6]. Some formulations
also have an exponential number of constraints, but for any input there exists one with
an extremely low number of constraints. These dimensions indicate the linear program is a
promising candidate for column generation.

The so-called non-mass-splitting property, satisfied by all exact barycenters, is a crucial
tool for the linear programming approach to the problem that we use in this paper. It
states that any optimal transport plan (the support points in each P1, . . . , Pn to which each
support point in P transports mass, and the amount of mass transported) of a barycenter
may not send mass to more than one support point in each measure [1,3]. This property
is fundamental to the modeling of many physical applications where a mass split would be
infeasible.

Definition 1 (The Non-mass-splitting Property). The mass of each barycenter sup-
port point is transported fully to a single support point in each measure; that is, for each
xk ∈ supp(P̄ ) with corresponding mass zk, k = 1, . . . , |supp(P̄ )|, there exists exactly one
xi ∈ supp(Pi), i = 1, . . . , n to which the entire mass zk is transported in any optimal trans-
port plan.

Since the non-mass-splitting property holds for all barycenters, each support point in
a barycenter is associated with a single combination of input support points, consisting
of the points to which its mass is transported. The set of combinations of input support
points is denoted S∗ = {(x1, . . . ,xn) : xi ∈ supp(Pi) for i = 1, . . . , n}, with elements
sh = (xh

1 ,x
h
2 , . . . ,x

h
n), h = 1, . . . , |S∗|. Each combination sh has an associated weighted mean

xh =
∑n

i=1 λix
h
i . The weighted mean xh is the optimal location for joint mass transport

to the points in the combination sh. Therefore, specifying the set S to contain all distinct
weighted means makes it the set of all possible support points for the barycenter.

This notation allows us to formally describe the worst-case setting to which our algorithm
will be tailored: when each combination sh produces a different weighted mean xh. Then
we say the measures P1, . . . , Pn are in general position, and using |Pi| to denote the size
of the support set of Pi, the number of distinct xh is |S∗| =

∏n

i=1 |Pi|. Thus the number
of weighted means is exponential in the number of input measures n – without additional
knowledge, the set of possible support points S would be of size |S| = |S∗|.

We provide an example of a discrete measure in R
2 in Figure 1 (left), and three measures

in general position in Figure 1 (right). For this tiny example, verifying that the measures
are in general position is elementary but somewhat tedious, as the weighted means of all
27 combinations of support points must be computed and verified as unique; in general,
verifying whether a particular set contains the correct possible support points is NP-hard
[6]. A barycenter for these measures is displayed in Figure 2 (left), shown with associated
transport in Figure 2 (right).

In this paper, we build on an LP formulation from [6] that, among known formulations,
requires the fewest variables and constraints for general position measures. In this formula-
tion, which we call LP (general), a variable is introduced for each combination sh of support
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Fig. 1. (left) A discrete probability measure in R
2 with three support points. The size of

the points indicates their associated mass. (right) Three measures in R
2 each with three

support points. All combinations (x1,x2,x3) produce a different weighted mean; therefore
these measures are in general position.

P

P

P

P

Fig. 2. (left) Assuming λi =
1
3 for i = 1, 2, 3, a barycenter P̄ for the three measures from

Figure 1. Each support point has mass 1
4 . (right) The mass transport from each barycenter

support point to the original measures. Each barycenter support point is the weighted mean
of the points to which it transports.

points from S∗: each sh has a corresponding variable wh representing the mass assigned to
xh and transported fully to each xh

i , i = 1, . . . , n. The total transport cost of a unit of mass
from xh is given by ch =

∑n

i=1 ||x
h − xh

i ||
2.

Constraints arise from the requirement that the total transport to each support point
xi in each measure is exactly equal to its mass di. This produces one equality constraint for
each xi in each measure; that is,

∑

h:xh

i
=xi

wh = di, ∀i = 1, . . . , n, ∀xi ∈ supp(Pi).

Recall that
∑

xi∈supp(Pi)
di = 1 for each Pi. Thus there exists a feasible solution to the

union of all these constraints, and it has to satisfy
∑|S∗|

h=1 wh = 1. The constraints can be
represented as a real

∑n

i=1 |Pi| ×
∏n

i=1 |Pi| matrix A times a vector w, equal to right-hand
side d. In A, column h contains ones in the n rows where xh

i = xi, and zeroes otherwise.
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The matrix A is highly structured, which will be both good and bad for our purposes; we
take a closer look at it in Section 2. With w as the vector of variable masses wh, c as the
vector of associated costs ch, and d as the vector of masses di of the support points xi in
the input, a full formulation of LP (general) is as follows:

min cTw
s.t. Aw = d

w ≥ 0.
(general)

The number of constraints
∑n

i=1 |Pi| scales linearly, equal to the total number of support
points in the input measures. Meanwhile, the number of variables

∏n

i=1 |Pi| scales exponen-
tially in the number of input measures. This extreme difference in the scaling of number of
rows and columns further motivates our interest in a column generation approach.

1.2 Outline

In Section 2, we develop two column generation algorithms and discuss how to exploit
the structure of the problem for efficient pricing and a memory-efficient implementation.
In Section 3, we devise a simple greedy algorithm to find an initial feasible solution to
start these algorithms. Section 4 contains some computational experiments. The results
demonstrate the practical advantages of the algorithms over direct computations using LP
(general), and exhibit that the different algorithms become a best choice depending on the
input. We finish with some concluding remarks in Section 5.

2 Column Generation

We briefly recall the basics of a column generation strategy for solving a linear program;
for additional details see for instance [12]. Column generation is the process of dynamically
adding variables to any linear program, and begins with a version of the linear program
containing a small subset of the variables. This (reduced) linear program is called the master
problem. Additional variables are chosen using a sub-problem, which we call the pricing
problem, in which the current optimum of the restricted master problem is used to produce
a new, potentially improving column. Column generation terminates when the optimal value
of the pricing problem is no longer negative.

The pricing problem must contain enough information for its solution to be meaningful,
but also remain sufficiently simple to be efficiently solvable. In our first column generation
algorithm, we apply column generation naturally to LP (general), described in Section 2.1.
In our second column generation algorithm, we apply column generation to an alternative
linear program, described in Section 2.2. We produce an efficiently solvable pricing problem
for the alternative LP by exploiting the structure of the constraint matrix; this structure is
described in Section 2.3.

2.1 Column Generation for LP (general)

We first devise a strategy to apply column generation directly to LP (general). At any
iteration of the column generation process, the master problem contains variables which
correspond to a subset of the possible combinations of support points S∗, and because the
measures are assumed to be in general position, each variable corresponds to a unique point
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in the set of all possible support points S. Thus an improving column produced by column
generation is precisely a new support point to include in S, and column generation for LP
(general) corresponds directly to the stated goal of the dynamic generation of S.

We produce a pricing problem as follows. Let y be the vector containing the dual values
associated with the mass transport constraints of any master problem based on LP (general).
Then a pricing problem using the vector of reduced costs c− yTA is:

min
h

{ch − yTAh} (2)

where h = 1, . . . ,
∏n

i=1 |Pi| and Ah is the hth column of A. Since the vectors y and Ah contain
∑n

i=1 |Pi| elements, each individual evaluation of ch − yTAh is efficient, even if ch has not
yet been computed. For instance, as in [6], ch can be computed directly and efficiently from
the combination sh = (xh

1 , . . . ,x
h
n) ∈ S∗ using

ch =

n−1
∑

i=1

λi

n
∑

k=i+1

λk||x
h
k − xh

i ||
2.

Therefore the exponential scaling of c with the number of measures n is the sole source of
inefficiency for using Equation (2) in column generation. The structure of A, described in
Section 2.3, allows a memory-efficient evaluation of the product yTAh.

Equation (2) produces one column to introduce to the master problem each iteration
of column generation: the variable with index h where ch − yTAh is minimal. To reduce
the number of times the exponential vector must be processed, in our computational ex-
periments, we also consider two alternative pricing problems: one where we introduce all
columns h where ch − yTAh is negative, and one where we introduce the best n columns to
the master problem at each iteration.

2.2 Dantzig-Wolfe Reformulation

In this section, we present a linear program based on the convex hull of vertices of a
polyhedron. If the polyhedron is generated by the constraints of LP (general), that is,
{w ∈ R

d : Aw = d,w ≥ 0}, then the linear program is an alternative to LP (general).
Vertex-form linear programs are not generally considered for computation, since the ma-
jority of such polyhedra have exponentially many vertices. However, for general position
measures, LP (general) already scales exponentially, so computations using a vertex formu-
lation face the same challenges, and as we will see, have the same potential benefits from
column generation with a low number of constraints and large number of variables.

In our second column generation algorithm, in addition to reformulating LP (general)
for a new vertex-form master problem, we also perform a decomposition of the constraints.
A decomposition of a vertex-form linear program is called a Dantzig-Wolfe reformulation,
presented in [11]. The decomposition begins by partitioning the constraint matrix as A =
[

Ap

Am

]

and right-hand side d =

(

dp
dm

)

. A preselected number of rows are assigned to the

matrix Ap for use in the separate pricing problem. Note that reordering the rows of Aw = d

does not affect the underlying polytope, so the matrix Ap does not need to be precisely the
first rows of A; however, in our analysis in Section 2.3 we will assume that the measures
have been ordered such that those chosen for the pricing problem are first. The remaining
rows of A are assigned to the matrix Am and remain in the master problem.
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The pricing problem produces vectors p that are vertices of the polyhedron {p ∈ R
d :

App = dp,p ≥ 0}). These vectors represent potential distributions of mass to each possible
combination in S∗, but are typically not (individually) feasible for the full problem Aw = d.
They are added to the master problem through the products cTp and Amp in the objective
and constraints, respectively. These products for all produced p are then combined in a
convex combination with weights in the new variable vector µ to produce fully feasible
solutions. The resulting master problem has both a limited number J of variables due to the
column generation, and a slightly reduced number of constraints due to the decomposition,
and is now called the restricted master problem.

min
J
∑

j=1

(cTpj)µj

s.t.
J
∑

j=1

(Ampj)µj = dm

J
∑

j=1

µj = 1

µj ≥ 0, ∀j = 1, . . . , J

(RM)

We confirm that the structure that makes LP (general) a prime candidate for column gen-
eration is preserved in LP (RM): the number of constraints is bounded above by

∑n

i=1 |Pi|+1,
as LP (RM) has just one additional constraint for convexity and a (possibly improper) sub-
set of the rows. Ideally, only a fraction of the total number of vertices are used in LP (RM),
so that the number of columns remains low, as well.

Recall that the pricing problem uses the current optimum of the restricted master prob-
lem to produce a new column to introduce to LP (RM). Specifically, the objective function
of the pricing problem requires the dual solution to LP (RM), where y was the dual solution
corresponding to the constraints Aw = d in LP (general). We will now denote the dual
solution to (RM) by (ym, σ), where ym contains the dual values associated with the mass
transport constraints Amp = dm, and σ ∈ R is the dual value associated with the convexity
constraint in LP (RM). Then the base form of the pricing problem is:

min (cT− yT
mAm)p− σ

s.t. App = dp
p ≥ 0.

(price)

LP (price) is still an exponential-sized linear program: The constraint matrix Ap has
an exponential number of columns, as does the matrix Am, and the cost vector c has an
exponential number of elements. In fact, LP (price) contains the same number of variables
as LP (general). We now develop an improved pricing problem using information specific to
the barycenter problem.

2.3 The Structure of the Coefficient Matrix A

Recall that A contains only elements 1 and 0: in column h, there is a 1 when xi is in the
tuple sh, that is, x

h
i = xi, and 0 otherwise. In fact, each column contains exactly n nonzero

coefficients. The pattern created within the matrix A is displayed in Example 1: each row has
consecutive ones alternating with consecutive zeros. For each measure, the consecutive ones
start in the first column for the first constraint in each measure, then start in the second row
immediately after the end of the previous consecutive ones, continuing to the last constraint
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of the measure, forming a block. The width of the block depends on the measure Pi with
which the constraints are associated. The number of consecutive ones equals the product of
the sizes of the measures with a higher index: the rows of A associated with Pi, 1 ≤ i < n,
contain

∏n

l=i+1 |Pl| consecutive ones. The block for the final measure is the identity matrix.

Example 1. The matrix A for four measures with sizes |P1| = |P3| = 2 and |P2| = |P4| = 3
contains blocks of ones and zeros. The width of block structure for particular constraints
depends on the index i of the corresponding measure Pi. Here there are 36 total columns,
and the number of consecutive ones for each measure is 18, 6, 3, and 1, respectively.

A =

































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

































P1

P2

P3

P4

⊓⊔

Since the number of consecutive ones for each row of A can be generated from the sizes
of the support sets |Pi|, the columns of A are easily generated solely from the problem input.
Formulas for generating a given column h are provided in Algorithm 1. While Algorithm
1 is written with the sums and products in their respective formulas, recalculating these
values on repeated runs can be avoided by storing the number of consecutive ones and the
width of a full block for each measure.

Because A is easily generated, the matrix Am is not required in memory. Instead, in the
objective function, yT

mAm is calculated using the |Pi| to determine which dual values should
be added. For further computational efficiency, updates to elements of (cT − yT

mAm) are
only required for those values of ym which have changed from the previous iteration; due
to the sparse nature of Am, many elements may remain unchanged.

Algorithm 1 Generation of Column h

Input:
– Column Index h, assuming the index of the first column is 0
– |Pi| for i = 1, . . . , n

Output: Column h of matrix A, denoted Ah

1: Let Ah be a column of zeros with length (
∑n

i=1 |Pi|)
2: j = ⌊ h∏

n

l=2
|Pl|

⌋

3: Ah(j) = 1
4: for i = 2, . . . , n− 1 do

5: j =
∑i−1

l=1 |Pl|+ ⌊
h (mod

∏
n

l=i
|Pl|)∏

n

l=i+1
|Pl|

⌋

6: Ah(j) = 1

7: j =
∑n−1

l=1 |Pl|+ h (mod |Pn|)
8: Ah(j) = 1

8



By taking Ap as the first rows of A, the pattern of consecutive ones also guarantees
that Ap always has many duplicate columns. Continuing with the matrix A from Example
1, in Example 2, we assign the constraints for the first two measures to Ap, resulting in a
matrix with six unique columns, each repeated six times. For any number of measures n,
partitioning the constraints for k measures, 1 ≤ k < n, to Ap results in nu =

∏k

i=1 |Pi|
unique columns, while the number of times each column is duplicated is nd =

∏n

i=k+1 |Pi|.
For a fixed k, the number of unique columns is no longer exponential; we justify the choice
k = 2 momentarily.

Example 2. Using the matrix A from Example 1, a decomposition of all constraints associ-
ated with the first two measures into the pricing problem gives this matrix Ap.

Ap =













1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1













P1

P2

Every column is repeated six times: |P3| · |P4|. The matrix of unique columns is Up.

Up =













1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1













⊓⊔

Replacing the constraint matrix Ap in LP (price) with the matrix of unique columns
Up requires a corresponding change to the objective function. Noting that LP (price) is the
minimization of a linear objective, only the most negative coefficient for each unique column
is required: in an optimal solution, all mass is assigned to such a column. Thus, it suffices
to keep a best-cost vector b for the unique columns. These two substitutions produce LP
(Uprice).

min bTq +σ

s.t. Upq = dp
q ≥ 0.

(Uprice)

Using LP (Uprice) improves solvability and memory requirements in two major ways:
when k = 2, LP (Uprice) requires just |P1| · |P2| variables, a tremendous reduction from
∏n

i=1 |Pi|. The number of variables does not depend on n. When the input measures have
support sets of equal size |P |, this eliminates |P |n−2 variables. Additionally, the constraint
matrix is stored in memory, so the benefit of replacing Ap with Up is significant.

Using LP (Uprice) instead of LP (price) requires additional preprocessing each iteration
to construct the best-cost vector b, which does use the exponential-sized vector (cT −yTAm).
The preprocessing for LP (Uprice), repeated each iteration, is given in Algorithm 2. In
particular, Algorithm 2 highlights the important selection of which indices h correspond to
the unique columns used in LP (Uprice).
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Algorithm 2 Setup of LP (Uprice)

Intialize the vector of indices I of length nu

Update a = cT − yT
mAm

for j = 1, . . . , nu do

for h = 1 + nd · (j − 1), . . . , nd · j do

if h = 1 + nd · (j − 1) then
bj = ah

I(j) = h

else if ah < bj then

bj = ah

I(j) = h

Update objective of LP (Uprice)

2.4 Decomposition of Constraints for Exactly Two Measures

As in Example 2, we partition A with k = 2; that is, we always partition A where Ap, and
subsequently the matrix of unique columns Up, contains all rows of constraints associated
with exactly two measures. LP (Uprice) has a linear objective function bTq+ σ; because of
the linear objective and the structure of the constraints for two measures, LP (Uprice) is
a classical transportation problem [13,19], a special case of a minimum-cost flow problem.
Therefore, LP (Uprice) can be solved in strongly polynomial time [3,6].

Theorem 1. Let Upq = dp be the constraints associated with exactly two measures. Then
LP (Uprice) is a classical transportation problem and can be solved in strongly polynomial
time.

We conclude this discussion with an examination of the efficiency of adding a column
produced by LP (Uprice) to LP (RM). Once the column generation process has begun, the
previous pricing problem LP (Uprice) produces a solution q containing the nonzero elements
of a new pJ to be introduced to LP (RM). This q has, trivially, at most |P1| · |P2| nonzero
elements, and in fact, there must exist a smaller solution of size |P1|+ |P2| − 1. Recall from
Section 2 that Am is easily generated, so the pricing problem does not require Am to be
stored in memory. The restricted master problem also does not require Am to be stored;
instead, Algorithm 1 is used to calculate the new column AmpJ . Combined with the small
number of nonzero elements of pJ , a computation of AmpJ , as well as of c

TpJ , can be done
efficiently. For additional efficiency, the solver for LP (RM) uses the previous solution as a
warm start. Using the primal simplex method then typically finds a new optimal solution
in just a few simplex steps for each update of LP (RM).

Next, we turn to the master problem and describe a method for generating an initial
feasible start for both column generation algorithms.

3 Constructing a Feasible Solution

To initialize column generation, both algorithms require enough variables such that an initial
feasible solution exists, along with a feasible solution.

For LP (general), a feasible solution is any w which solves the full system Aw = d, and
a feasible master problem is produced by the variables associated with a positive value in
w. A feasible solution for LP (RM) is related to the feasible solution w as follows. First,
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consider the introduction of a single initial column (so J begins at 1). Then the convexity
constraint requires µ1 = 1, and the remaining constraints subsequently require Amp1 = dm.
Furthermore, all p need to satisfy App = dp, and thus p1 should also be a solution to the
full system Aw = d.

We considered two methods for constructing a vertex: a greedy construction and the
2-approximation algorithm from [5]. The appeal of the 2-approximation algorithm lies in its
ability to efficiently provide a good potential optimum. However, we found in experiments
that initialization with a 2-approximation vertex is consistently outperformed by initializa-
tion with a greedily constructed vertex (this was not due to increased time to generate the
vertex but because additional iterations were required before strictly improving columns
were found). Therefore, we present just the greedy construction algorithm, a generalization
of the north-west corner rule.

The following algorithm greedily constructs a solution to Aw = d. The process begins
by generating a combination sh = (xh

1 ,x
h
2 , . . . ,x

h
n) ∈ S∗. In the first step, each xh

i has
corresponding mass dhi , and the maximum mass that can be assigned to sh without violating
the non-mass-splitting property is the minimum mass among dh1 , . . . , d

h
n. That minimum

mass is placed at index h in w, denoting that mass wh is transported to xh
1 , . . . ,x

h
n from

the optimal location for such mass assignment (the corresponding weighted mean xh). The
algorithm than computes the remaining mass d each of the points xh

1 , . . . ,x
h
n still needs

to receive full mass dhi . Then the combination is updated; for each measure, if the current
support point has not yet received full mass (d > 0), the support point remains in the
combination. However, at least one measure’s support point has been fully supplied by the
greedy mass assignment; for these measures a new support point is chosen, guaranteeing a
new combination. The process then repeats, assigning the minimum mass not yet received
at each support point to new combinations until all mass has been supplied.

This process is given in Algorithm 3. Note that in the first step of each repeat of the
algorithm, a combination of support points is formed before the corresponding index h.
Therefore Algorithm 3 uses the double indexed notation xiji as the jthi support point in
measure Pi with corresponding mass diji , and computes the index h for the combination.

Algorithm 3 Greedy Construction of w: Aw = d

Input: vector no containing number of consecutive ones for each i

Output: vector w
For each Pi, and for ji = 1, . . . , |Pi|, initialize diji = diji
Let L = 1, m1 = 0, w = 0, and ji = 1 ∀i = 1, . . . , n

1: while
∑L

l=1 ml < 1 do

2: mL = min{diji}
3: h =

∑n

i=1((ji − 1)no(i))
4: wh = mL

5: for i = 1, . . . , n do

6: diji = diji −mL

7: if diji = 0 then

8: ji = ji + 1

9: L = L+ 1

Theorem 2. Let P1, . . . , Pn be discrete probability measures. Then Algorithm 3 runs in
O(n

∑n

i=1 |Pi|) in the arithmetic model of computation.
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Proof. First, we show that the number of nonzero elements produced by Algorithm 3, which
is also the number of repetitions of the outer loop of Algorithm 3, is between max1≤i≤n{|Pi|}
and

∑n

i=1 |Pi|−n+1. The lower bound, max1≤i≤n{|Pi|}, is an immediate consequence of the
non-mass-splitting property maintained by Algorithm 3. For the upper bound,

∑n

i=1 |Pi| −
n+1, note that the last iteration must fully supply the mass to n points, one xi from all Pi,
because the total mass for each Pi is the same (one). In each previous iteration, the minimum
number of support points whose index ji changes is one, for a total of

∑n

i=1(|Pi| − 1) + 1 =
∑n

i=1 |Pi| − n+ 1 iterations.
Thus the outer loop runs in

∑n

i=1 |Pi| time. Since each step inside the loop of Algorithm
3 requires at most linear-in-n elementary operations, we obtain Theorem 2. ⊓⊔

Corollary 1. For n probability measures with support sets of size at most |P |, Algorithm 3
runs in O(n2) in the arithmetic model of computation.

Proof. Let P1, . . . , Pn be discrete probability measures with a bound |P | on the size of their
support sets. Then

∑n

i=1 |Pi| ≤ n|P |, and O(n
∑n

i=1 |Pi|) becomes O(n2). ⊓⊔

As an additional consequence of the iteration bound
∑n

i=1 |Pi| − n + 1, the number of
nonzero mass elements of w are bounded. Therefore the setup of the master problem LP
(RM) using a result produced by Algorithm 3 is efficient.

We now show that Algorithm 3 produces a vertex of the polytope generated by the
constraints Aw = d.

Theorem 3. Algorithm 3 generates a vertex of the polytope {w ∈ R
d : Aw = d,w ≥ 0}.

Proof. Let A, d be given and let w be generated using Algorithm 3. We show there exists
a c such that w is the unique optimal solution to:

min cTw
s.t. Aw = d

w ≥ 0.

Let M be the set of nonzero elements of w, with size |M | = L. Order the elements of
M in order of construction by Algorithm 3, m1, . . . ,mL. Also order the associated indices
h1, . . . , hL as calculated by Algorithm 3.

First, we show that w is a feasible solution to the above system. For each support point
xji in each measure Pi, the current value diji is initialized as its full mass diji = diji .
The algorithm begins with a combination h of support points from each measure, identifies
the smallest mass mL among them (line 2) and sets the mass for this combination wh to
wh = mL (line 3 to get the correct index of the combination; line 4 for the assignment).
Then the current masses diji of all support points in the combination are reduced by mL

(line 6). The current mass of at least one of the support points must have dropped to 0;
then a new support point is picked from the respective measure (lines 7 and 8) and the
process is repeated. To see why this yields a feasible solution, recall that the total mass
in each measure Pi is precisely 1 and note that, in line 6, the total current mass in each
measure is dropped by the same value mL. The algorithm runs until

∑L

l=1 ml = 1 (line 1),
i.e., until the total mass of each support point in each measure is fully accounted for. This
gives feasibility of w.

Next, we construct a c such that w is a unique optimal solution. Let ch1
= 1, ch2

= 2, . . . ,
and chL

= L. Let all other ch, those whose h-index is not in h1, . . . , hL, be
∑n

i=1 |Pi|−n+2
(Recall: |M | ≤

∑n

i=1 |Pi| − n+ 1).
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Fig. 3. (left) Three measures in general position with 10 or 11 support points and equally
distributed mass. (right) A greedily constructed feasible solution. Transport from three
sample points – those constructed first, fifth, and seventeenth – is shown (arrows). Each
support point is the weighted mean of its three destination points.

By construction, removing mass from a combination with a lower index and assigning it
to a combination with higher index in M , that is, from mj to mk with j ≤ k, will strictly
increase the value of cTw. This includes moving mass to a combination with no mass in w,
that is, with an index not in M .

So it suffices to show that mass cannot be reassigned from mk to mj , j ≤ k. The mass
mj is chosen such that for at least one xji , the mass dji has been fully supplied. Therefore
mj cannot be increased without violating the constraints Aw = d.

Therefore w minimizes cTw subject to Aw = d, since the maximum mass allowable is
assigned to the cheapest costs. Furthermore, w does so uniquely, since any change in its
elements will strictly increase the value of cTw due to the construction of c. Therefore w is
a vertex. ⊓⊔

In Figure 3 (left), we display an example with three measures, two with 10 support
points and one with 11 support points. Each measure has equally distributed mass. Applying
Algorithm 3 results in a feasible solution supported on 20 weighted means of varying mass,
displayed in Figure 3 (right), along with the transport for three sample points.

4 Computations

The primary goal of these experiments is to demonstrate, for general position measures,
the computational benefits of column generation algorithms over the full linear program. To
this end, we construct measures from a real-world data set containing event locations given
in longitude and latitude. Because the events occur without known structure, probability
measures with these support points are in general position. The generated measures have
varying numbers of support points with uniformly distributed mass, and the weight of each
measure is inversely proportional to the number of support points. All computations have
been run on a laptop (MacBook Pro, 2.4 GHz Intel Core i9, 32 GB of RAM, SSD). Data
processing and the setup of the LPs were implemented in C++ and the LPs were solved
using Gurobi 8.0. The source code is available at https://github.com/StephanPatterson/
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Barycenter-Formulations. For a meaningful comparison, we set Gurobi to run without
presolvers and using the same algorithm (primal simplex method) in all experiments.

We want comparisons to exact computations, which as previously discussed, are hard
[2,7]. Even when the measures contain a small number of support points, LP (general)
may contain millions of variables. Therefore, the following analysis focuses primarily on
measures with small support sets (2-12 support points per measure); the improved scaling
on our column generation algorithms would allow for measures of more moderate size, but
not orders of magnitude larger. Throughout this section, we use the number of variables in
LP (general) as a reference label for a particular instance.

The second goal of these experiments is to examine the practical behavior of variations
in implementation. To this end, we compare three variants of column generation applied
directly to LP (general) and two versions using Dantzig-Wolfe decomposition. The two
variants for the Dantzig-Wolfe reformulation differ only in the choice of which two measures
are moved to the pricing problem. In the “DW-L” variant, the two measures with the
largest number of support points are moved to the pricing problem, while the “DW-A”
variant makes an arbitrary choice of two measures.

The three variants for column generation directly on LP (general) vary on the number of
columns introduced per iteration; “1-col” refers to the standard column generation strategy
of introducing the variable with the greatest reduced cost, thus introducing one variable per
iteration. We have also included the strategy introducing all variables with improved cost,
labeled “all-col”, and a heuristic compromise between the strategies, introducing the best
n columns per iteration, labeled “n-col”. We also considered, but ultimately discarded, a
variant introducing the first n columns each iteration; while this has the benefit of avoiding
the processing of the full exponential-sized cost vector each iteration, several times more
variables were introduced, leading to slower solution times and larger problem sizes than
the best n variant in all but one of our experiments. We believe this is due to the highly
structured nature of A.

LP (general) Column Generation
1-col n-col all-col DW-L DW-A

n Var Time Var Time Var Time Var Time Var Time Var Time
12 2,177,280 5.22 270 22.96 825 7.01 1,199,800 10.60 646 18.78 478 14.67
14 4,976,640 13.68 234 50.42 634 11.73 2,688,032 35.39 581 39.70 638 41.35
14 5,971,968 56.68 232 60.31 669 14.51 3,272,679 29.11 684 56.50 422 49.91
12 25,288,704 235.17 322 354.28 903 90.70 12,727,161 344.33 489 162.41 625 218.18
14 28,449,792 358.84 308 423.30 1,004 109.97 14,572,552 215.50 803 302.01 545 252.43
15 31,850,496 378.90 309 480.10 961 106.10 17,992,481 258.98 1,604 689.25 779 303.90
17 63,700,992 1754.08 364 1,559.79 1,395 404.12 33,848,981 1,129.83 2,403 3,174.96 2,081 1,980.67
17 84,934,656 1858.22 348 2,225.41 1,209 364.50 44,303,632 1,945.65 2,023 2,882.76 1,209 1,538.60
18 127,401,984 3588.32 386 3,145.88 1,189 699.37 62,383,222 2,467.41 2,121 4,402.53 2,924 5,105.93
17 148,635,648 * 341 3,498.02 1,155 844.44 83,870,587 4,001.37 1,119 3,204.85 724 1,621.57
18 191,102,976 * 364 3,507.80 1,376 807.66 100,681,949 10,015.66 2,019 5,588.05 899 4,477.56

Table 1. Comparison of column generation algorithms for n measures per experiment,
including the number of variables (Var) introduced by each algorithm. Times, including
setup, are given in seconds with fastest times in bold. Each measure has a small number
(between 2 and 12) of points in general position. For larger instances, a direct solution was
not possible due to memory limitations (*).
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The total running times for these experiments are shown in Table 1. All of the column
generation algorithms are able to find solutions to experiments for which LP (general) is
too large for the laptop (*). The classic column generation algorithm, 1-col, typically does
not show an improvement in solving speed over a direct computation using LP (general) for
these experiments, which was our motivation for considering the other, heuristic strategies
for introducing columns. The Dantzig-Wolfe reformulation algorithms, DW-L and DW-A,
usually show minor improvements over LP (general), though one variant does not reliably
outperform the other. The fastest run times consistently come from the approach that intro-
duces the best n columns per iteration. The all-columns approach also typically outperforms
a direct solve; the size of the problem is approximately half of the full linear program and
the algorithm completes in a handful of iterations (at most 4).

All column generation algorithms dramatically reduce the number of variables intro-
duced, which results in significantly lower memory requirements. The maximum memory
used during the execution of each experiment is shown in Table 2; the Dantzig-Wolfe re-
formulation is the most memory efficient algorithm due to its compact restricted master
problem LP (RM) and condensed pricing problem LP (Uprice).

LP (general) 1-col n-col all-col DW-L DW-A

2,177,280 2,380 42 44 1,330 33 30

4,976,640 6,080 85 86 1,530 63 56

5,971,968 7,360 100 102 2,820 70 72

25,288,704 28,210 398 399 12,690 212 223

28,449,792 36,040 447 450 10,720 244 267

31,850,496 42,820 499 501 20,790 286 274

63,700,992 94,310 990 995 28,810 542 564

84,934,656 125,740 1,290 1,290 57,220 691 751

127,401,984 199,450 1,920 1,930 84,130 1,020 1,060

148,635,648 * 2,240 2,250 67,200 1,150 1,260

191,102,976 * 2,880 2,880 86,810 1,520 1,920

Table 2. Maximum memory used by column generation algorithms for each instance from
Table 1, given in MB.

Since the fastest running times came from column generation on LP (general), but the
best memory efficiency from the Dantzig-Wolfe reformulation, we re-ran the experiments
with columns deletion – the removal of columns in the master problem when they leave the
basis during the simplex method – to see if the memory requirements of column generation
on LP (general) could be further reduced. The results of these experiments is given in Table
3; however, column deletion resulted in a very minor reduction in maximum memory usage
while dramatically increasing running times. The memory reduction was not sufficient for
the algorithms on LP (general) to be as efficient as a Dantzig-Wolfe implementation.

In the column generation algorithms on LP (general), the bottleneck for faster running
times is the explicit choosing of new columns, which is dependent on the exponential-sized
cost vector c. The efficiency of each step of the Dantzig-Wolfe reformulation algorithm is
somewhat less apparent; we examine the breakdown of running times each iteration in
Table 4. The processing of c to produce the updated, unique best-cost vector b for the
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1-col n-col DW-L

None With None With None

2,177,280 42 41 44 42 33

4,976,640 85 84 86 84 63

5,971,968 100 100 102 100 70

25,288,704 398 398 399 399 212

28,449,792 447 446 450 446 244

31,850,496 499 499 501 500 286

63,700,992 990 988 995 989 542

84,934,656 1,290 1,280 1,290 1,280 691

127,401,984 1,920 1,920 1,930 1,920 1,020

148,635,648 2,240 2,240 2,250 2,240 1,150

191,102,976 2,880 2,880 2,870 2,870 1,520

Table 3. Maximum memory used by the 1-col and n-col column generation algorithms,
without deletion (None) and with column deletion (With), given in MB. The reduction in
memory requirements is negligible. The memory use for DW-L is repeated from Table 2 for
comparison.

Step Percentage of Computation Time

Setup LP (RM) < 0.1%

Solve LP (RM) 1.1%

Update (cT − yTAm) 72.5%

Calculate b 26.2%

Solve LP (Uprice) < 0.1%

Table 4. Percentage computation time per step of an average iteration of column generation.
Most of the effort is spent on the setup of LP (Uprice); the computation times for solving
LP (Uprice) and the setup of the next LP (RM) contribute negligibly to the total.

pricing problem is the majority of computational effort, while solving the pricing problem
and subsequent master problem are efficient.

5 Concluding Remarks

The computation of an exact barycenter is costly in practice, and provably hard for data
in general position [2,7]. In this paper, we studied two column generation strategies - one
on a suitable linear programming formulation for such data, one based on a Dantzig-Wolfe
reformulation. While both of these provide significant improvements in scalability, especially
though a memory-efficient implementation, computations remain hard. In this work, we used
a couple of standard column generation techniques to improve the practical performance,
such as the generation of multiple columns in each iteration, simple deletion strategies,
or the generation of any (not necessarily best) improving columns. They typically have a
positive impact, and we believe further refinements of the presented approach are interesting
direction of future work, but they cannot overcome the underlying hardness of the problem.

As most barycenter algorithms require an explicit specification of a set of possible sup-
port points, and the size of this set is a bottleneck to computations, the direct and efficient
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generation of support points remains a key interest in the community. It translates to an
efficient generation of columns for LP (general). It remains open whether it is possible to
efficiently generate a (single) improving column; hardness of an exact barycenter compu-
tation implies that either the generation of a column itself or the number of columns that
have to be generated cannot be polynomial.

The methods to do so will require a quite different approach: while we showed that it is
efficient to evaluate the reduced cost for any given combination sh ∈ S∗, the challenge lies in
finding an improving one without an explicit evaluation of each combination in S∗. We see
potential for a competitive algorithm through an approximation of the data going into the
reduced cost vector computation, which may lead to a heuristic algorithm, or through the
setup and solution of an integer program for pricing, which may lead to further improvements
for an exact computation.
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