

1 Corrigendum to: Anomalously low radiocarbon content of modern *n*-alkanes

2 Chad S. Lane^{a*}, Elizabeth A. Yanuskiewicz^a, Ralph N. Mead^b, Sally P. Horn^c

3 ^a*Department of Earth and Ocean Sciences, University of North Carolina Wilmington, Wilmington, NC*

4 *28403, U.S.A. *e-mail: lanec@uncw.edu; phone: +1 910 962 3466*

5 ^b*Department of Chemistry and Biochemistry, University of North Carolina Wilmington, NC 28403, U.S.A.*

6 ^c*Department of Geography, University of Tennessee, Knoxville, TN 37996, U.S.A.*

7 In our recent paper (Lane et al., 2021), we documented an anomalously low ^{14}C content of

8 mixed *n*-alkanes isolated from modern leaves of terrestrial trees and grasses relative to bulk leaf

9 tissue and suggested that these results indicate a potentially strong fractionation against ^{14}C

10 during lipid biosynthesis in plants, as documented for ^{13}C and ^2H . In this corrigendum, we

11 present new evidence of possible contamination of our samples as determined by ^{14}C analysis of

12 the process (hexane) blank sample and correct our omission of the relevant work of Cisneros-

13 Dozal et al. (2016). The hexane blank yielded insufficient CO_2 for ^{14}C measurement, but did

14 yield a small quantity of CO_2 of unknown origin. Regardless, while this contamination may have

15 inflated the age offsets between isolated *n*-alkane mixtures and bulk leaf tissue, it does not fully

16 explain the apparent age offsets between isolated *n*-alkane mixtures and bulk leaf tissue.

17 Cisneros Dozal et al. (2016) analyzed the compound-specific ^{14}C content of individual and

18 combined *n*-alkane homologues isolated from a modern plant specimen. They used preparative

20 capillary gas chromatography (PCGC) to isolate individual *n*-alkane homologues and homologue

21 mixtures prior to ^{14}C analysis, in contrast to our approach of using urea adduction to purify *n*-

22 alkane homologue mixtures for ^{14}C analysis. Cisneros-Dozal et al. (2016) reported consistently

23 lower ^{14}C content in their *n*-alkane homologues compared to bulk tissue (mean bulk tissue F^{14}C

24 = 1.224 ± 0.006), but with fraction modern (F^{14}C) values within $1\text{--}2\sigma$ of the F^{14}C value of the

25 bulk tissue for some of their isolated C₂₉ and C₃₁ homologues. However, their mixed homologue
26 samples had F¹⁴C values that consistently fell outside of the 2 σ range of the bulk tissues (F¹⁴C
27 values from 1.131 to 1.221).

28 Our mixed *n*-alkane homologue samples yielded F¹⁴C offsets relative to bulk tissue (Lane
29 et al., 2021) that were greater on average than those reported by Cisneros-Dozal et al. (2016)
30 (Table 1). One possible explanation for this difference is contamination of our *n*-alkane mixtures
31 with fossil-fuel derived urea during *n*-alkane purification. We noted this possibility in our
32 original paper, but found it unlikely that urea or other contaminants could be present in quantities
33 sufficient to account for the full ¹⁴C offsets and yet not be detectable during sample purity checks
34 via gas chromatograph flame ionization detector (GC-FID) analyses.

35 In light of the contamination assessment approaches of Cisneros-Dozal et al. (2016), we
36 obtained and present here the gas yields for our samples and the process (hexane) blank also
37 subjected to urea adduction as measured by the NOSAMS facility during graphite conversion.
38 The hexane blank did not yield adequate CO₂ for radiocarbon measurement, but did yield 1.287
39 μ mol of CO₂ as reported by NOSAMS (Table 1). Conservatively assuming this CO₂ is derived
40 purely from urea contamination containing no ¹⁴C, and that contamination of all sample-derived
41 CO₂ was equivalent to that of the hexane blank, we back calculated corrected ages of our *n*-
42 alkane samples using the mass balance equation:

$$43 F^{14}C_{theoretical} = f_{alkane_CO2} \times F^{14}C_{alkane} + f_{urea_CO2} \times F^{14}C_{urea} \quad (\text{Eqn 1})$$

44 where F¹⁴C_{theoretical} represents the modern fraction ¹⁴C in the analyzed sample containing lipids
45 and presumed urea contamination, f_{alkane_CO2} represents the molar fraction of CO₂ derived from
46 the *n*-alkanes assuming urea contamination is equivalent to that of the hexane blank, F¹⁴C_{alkane}
47 represents the assumed modern fraction ¹⁴C of the lipids is equivalent to the bulk tissues, f_{urea_CO2}

48 represents the molar fraction of CO₂ derived from the urea contamination assumed to be
49 equivalent to that of the hexane blank, and F¹⁴C_{urea} is assumed to be zero representing the fossil-
50 fuel origin of the urea.

51 The process (hexane) blank approach, also known as the direct method, is common
52 practice in radiocarbon analyses to quantify potential contamination of sample batches processed
53 in parallel (Santos et al., 2010; Zolikowski and Druffel, 2009). The results of our calculations
54 (Table 1) show that urea contamination quantities equivalent to that of the blank does lead to
55 corrected values but cannot explain the full magnitude of all of the ¹⁴C offsets between the *n*-
56 alkane mixtures and bulk leaf tissue. The theoretical F¹⁴C_{sample} values that account for urea
57 contamination are still consistently lower than that of the measured F¹⁴C values for all but the
58 *Digitaria sanguinalis* (L.) Scop. sample. This result indicates potentially large differences in
59 biosynthetic ¹⁴C fractionation between species or that urea contamination may not be consistent
60 among samples. However, the process blank approach is the most common approach used by
61 researchers and radiocarbon facilities to assess potential radiocarbon contamination and hence
62 we have applied it here. This evidence of potential contamination means the quantitative
63 magnitude of our F¹⁴C offsets between *n*-alkane mixtures and bulk leaf tissues may not be
64 accurate, but our data still indicate considerable offsets between bulk tissues and *n*-alkane
65 homologue ¹⁴C content in multiple cases even after conservatively accounting for potential
66 contamination using the process blank approach.

67 Some of the F¹⁴C offsets between *n*-alkane mixtures reported by Cisneros-Dozal et al.
68 (2016) that are free from possible urea contamination are still quite large when converted to
69 radiocarbon age offsets and are of similar magnitude to the age offsets we reported for our
70 modern plant samples. For example, Cisneros-Dozal (2016) reported a corrected F¹⁴C value for

71 their mixed C₂₃–C₂₇, C₃₃ sample of 1.131 ± 0.052 . Using the radiocarbon age conversion
72 equations of Stuiver and Polach (1977), this represents a ~635 year radiocarbon age offset from
73 their bulk leaf tissue ($F^{14}\text{C} = 1.224 \pm 0.006$). Similarly, the $F^{14}\text{C}$ value reported for their total *n*-
74 alkane sample ($F^{14}\text{C} = 1.154 \pm 0.017$) equates to a ~470 year radiocarbon year offset from the
75 bulk leaf tissue ($F^{14}\text{C} = 1.224 \pm 0.006$). These centennial-scale offsets are of similar magnitude
76 to those we report for our modern plant samples and represent potentially large sources of error
77 in compound-specific radiocarbon chronologies or carbon residence time estimates. We also note
78 that Cisneros-Dozal et al. (2016) document significant column contamination in their samples,
79 indicating that the PCGC approach they used is also prone to radiocarbon contamination that
80 must be corrected for, preferably using standards of known ^{14}C content processed in an identical
81 manner to samples.

82 Our overarching conclusion remains unchanged: minor contamination of our samples is
83 possible (Lane et al., 2021), but this contamination seems unlikely to explain the full magnitude
84 of the age offsets between *n*-alkanes and bulk leaf tissue or the variation in offsets between
85 species. The data presented by Cisnero-Dozal et al. (2016) also point to potential homologue-
86 specific variations in ^{14}C incorporation during biosynthesis and evidence of significant column
87 bleed contamination of *n*-alkanes using the PCGC approach. Our results, and those of Cisneros-
88 Dozal et al. (2016), demonstrate that potential fractionations of radiocarbon during biosynthesis
89 of lipids and other biomarkers deserve further attention. Such fractionation could result in
90 misinterpretations of compound-specific radiocarbon ages and their environmental contexts.
91 Additional methodological assessments are also needed of potential contamination introduced
92 during sample purification and analysis of compound-specific radiocarbon samples.

93

94 **References**

95 Cisneros-Dozal, L.M., Xu, X., Bryant, C., Pearson, E.J. and Dungait, J.A.J., 2016. Grass material
96 as a modern process standard for C-14 analysis of n-alkanes. Radiocarbon 58, 445–458.
97

98 Lane, C.S., Yanuskiewicz, E.A., Mead, R. and Horn, S.P., 2021. Anomalously low radiocarbon
99 content of modern n-alkanes. Organic Geochemistry 152,
100 <https://doi.org/10.1016/j.orggeochem.2020.104170>.

101

102 Santos, G.M., Southon, J.R., Drenzek, N.J., Ziolkowski, L.A., Druffel, E., Xu, X.M., Zhang,
103 D.C., Trumbore, S., Eglinton, T.I. and Hughen, K.A., 2010. Blank assessment for ultra-small
104 radiocarbon samples: Chemical extraction and separation versus AMS. Radiocarbon 52, 1322–
105 1335.

106

107 Stuiver, M. and Polach, H.A., 1977. Reporting of 14C data. Radiocarbon 19, 355–363.

108

109 Ziolkowski, L.A. and Druffel, E.R.M., 2009. Quantification of extraneous carbon during
110 compound specific radiocarbon analysis of black carbon. Analytical Chemistry 81, 156–161.

Table 1. Calculation of theoretical F^{14}C values for *n*-alkane samples assuming consistent urea contamination among *n*-alkane ^{14}C samples.

Sample	Plant Type	$\text{F}^{14}\text{C}_{\text{Bulk Tissue}}$	$\text{F}^{14}\text{C}_{\text{Alkane}}$	CO_2 (μmol)	$f_{\text{alkane CO}_2}$	$f_{\text{urea CO}_2}$	$\text{F}^{14}\text{C}_{\text{theoretical}}$	$\text{F}^{14}\text{C}_{\text{Alkane -}}\text{F}^{14}\text{C}_{\text{theoretical}}$
<i>Liquidambar styraciflua</i> L.	Angiosperm Tree (C ₃)	Not Measured	0.8681	43.29	0.97	0.03	—	—
<i>Magnolia virginiana</i> L.	Angiosperm Tree (C ₃)	1.0131	0.8156	20.67	0.94	0.06	0.9537	-0.1381
<i>Quercus nigra</i> L.	Angiosperm Tree (C ₃)	Not Measured	0.8105	5.46	0.81	0.19	—	—
<i>Quercus virginiana</i> Mill.	Angiosperm Tree (C ₃)	1.0138	0.9235	43.75	0.97	0.03	0.9848	-0.0613
<i>Aristida stricta</i> Michx	Graminoid (C ₄)	1.0121	0.8658	48.79	0.97	0.03	0.9948	-0.1290
<i>Digitaria sanguinalis</i> (L.) Scop.	Graminoid (C ₃)	1.0080	0.9373	12.28	0.91	0.09	0.9124	0.0249
Hexane blank ¹	N/A	0.0000	0.0000	1.287	—	—	—	—

¹Hexane sample exposed to urea purification procedure.