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Quantum annealing (QA) was originally intended for accelerating the solution of combinatorial opti-
mization tasks that have natural encodings as Ising models. However, recent experiments on QA-hardware
platforms have demonstrated that, in the operating regime corresponding to weak interactions, the QA
hardware behaves like a noisy Gibbs sampler at a hardware-specific effective temperature. This work
builds on those insights and identifies a class of small hardware-native Ising models that are robust to
noise effects and proposes a procedure for executing these models on QA hardware to maximize Gibbs-
sampling performance. The experimental results indicate that the proposed protocol results in high-quality
Gibbs samples from a hardware-specific effective temperature. Furthermore, we show that this effective
temperature can be adjusted by modulating the annealing time and energy scale. The procedure proposed
in this work provides an approach to using QA hardware for Ising-model sampling presenting potential
opportunities for applications in machine learning and physics simulation.
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I. INTRODUCTION

The computational task of sampling—that is, produc-
ing independent configurations of random variables from
a given distribution—is believed to be among the most
challenging computational problems. In particular, many
sampling tasks cannot be performed in polynomial time,
unless strong and widely accepted conjectures in approx-
imation theory are refuted [1-3]. Consequently, state-of-
the-art algorithms for general-purpose sampling are based
on Monte Carlo methods that require significant computing
resources to sample from distributions of practical interest.

Gibbs distributions, i.e., distributions with the form
P(o) x exp[—pBH (0)], have close ties to the modeling of
many physical systems as they capture the equilibrium
configurations that matter takes at a given inverse temper-
ature B [4]. It has also been observed that Gibbs distribu-
tions provide a powerful foundation for building machine
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learning models and optimization algorithms [5,6]. How-
ever, the computational challenge of sampling from these
distributions is often prohibitive for practical applications
of machine learning and optimization. It has been observed
that a variety of the emerging analog computing devices,
including those based on optical [7] and quantum [8] tech-
nologies, can be used as fast Gibbs samplers because
of the natural connection between probabilistic physi-
cal systems and state sampling. The emergence of these
unconventional computing devices has the potential for a
dramatic impact on state-of-the-art approaches for physics
simulation, machine learning, and optimization.

From its inception, quantum annealing (QA) [9—12]
has been designed for solving optimization tasks and not
sampling tasks. However, in practice, various nonideal
properties of QA-hardware platforms lead to outputs that
are reminiscent of thermal Gibbs distributions [13—16].
Recent experiments have demonstrated that, in the oper-
ating regime corresponding to weak input interactions,
QA hardware behaves like a noisy Gibbs sampler [17]
at a hardware-specific effective temperature, that is, a
sampler from a mixture of Gibbs distributions with fluc-
tuating parameters caused by noise. Furthermore, it has
been shown in Ref. [17] that samples from this noisy mix-
ture of distributions are indistinguishable from a single
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Gibbs distribution with spurious additions to interaction
structure of the programmed model. In applications where
sampling from a specific Gibbs distribution is required,
this distortion of the model parameters may present an
undesirable feature because of this mismatch in model
structure.

Building on the insights of Ref. [17], this work demon-
strates that it is possible to leverage QA hardware to
perform high-quality Gibbs sampling from some types of
input models. In particular, we identify a class of hardware-
native Ising models where the D-Wave 2000Q platform
consistently produces samples with a total variation (Dry)
distance less than 5% from a desired target Gibbs distri-
bution. To this end, this work explores the full range of
operational input parameters, in contrast with Ref. [17],
which focused on quantifying the effect of noise on the
structure of the output distribution and hence considered a
narrow range of weak input couplings. We also show that
changing the annealing time enables the QA hardware to
sample from a range of inverse temperatures between 1.9
and 5.1 in the hardware’s input units, which is an essential
feature in a variety of applications. This work leverages
the combination of three insights to achieve high-quality
Gibbs sampling on the QA hardware: (i) it focuses on the
hardware-native Ising models that are resilient to the noise
in the hardware; (ii) the input models are rescaled to avoid
distortions caused by the transverse field in the compu-
tational model; and (iii) both the annealing time and the
energy scale of the model are leveraged to control the effec-
tive temperature of the target distribution. This results in a
prescriptive procedure for conducting high-quality Ising-
model Gibbs sampling on QA hardware without the need
to tune the input model or perform postprocessing to cor-
rect for distorted output distributions. If required, both of
these procedures can be leveraged to further improve the
results presented in this work, as done in Refs. [13,18,19].
While this work shows that, under specific conditions,
Gibbs sampling is possible using quantum annealing hard-
ware, it does not illustrate how it can be used in specific
sampling applications.

This work begins by reviewing the computational model
of quantum annealing and previous works exploring sam-
pling applications in Sec. II. Building on these previous
works, a procedure for conducting high-quality thermal
Gibbs sampling is proposed in Sec. III and evaluated on
quantum annealing hardware. Section IV explores theo-
retical models to provide insights into the mechanisms
that underpin the proposed sampling approach and Sec. V
concludes with a discussion of future directions.

II. PROBLEM FORMULATION AND RELATED
WORK

The foundational physical system of interest to this
work is the Ising model, a class of graphical models

where the nodes, V, represent classical spins (i.e.,
o; € {—1,1}Vi € V) and the edges, E C N x N, represent
pairwise spin interactions. A local field #;Vi € V is speci-
fied for each spin and an interaction strength J;;Vi,j € E
is specified for each edge. The energy of a given spin
configuration is given by the Hamiltonian:

Hising(0) = — ZJijaicrj - Zhiov. (1)

ij ek eV

This Ising model is widely used to encode challenging
computational problems arising in the study of magnetic
materials, machine learning, and optimization [20-23].
The particular computational task of interest to this work is
to produce independent identically distributed (IID) sam-
ples o from the Gibbs distribution associated with the Ising
model at the inverse temperature [24] «, that is,

u(o) o exp [_aHlsing(G)] . (2)

Throughout this work, we assume that the parameters J, s
are in the range of —1 to 1, to provide a consistent scaling
for . Given the computational challenge of Ising-model
sampling at finite temperature, our objective is to leverage
QA hardware to conduct this task.

A. A brief review of quantum annealing

The central idea of quantum annealing is to use the
transverse-field Ising model combined with an annealing
process to find the low-energy configurations of a classical
Ising model. The elementary unit of this model is a qubit
i € V described by the standard vector of Pauli matrices
{6*, 57,07} along the three spatial directions {x, y,z}. The
hardware platform provides a programmable Ising-model
Hamiltonian on the z axis [9],

ﬁlsing = - Zt]ija'zb\—jz - Zhia-\iz’ (3)

ijeE eV

which encodes the Ising energy function given in Eq. (1)
with a one-to-one mapping of qubits to Ising spins. Note
that the eigenvalues of the Ising Hamiltonian operator
are in bijection with the 2V possible assignments of the
classical Ising model from Eq. (1). The quantum anneal-
ing protocol strives to find the low-energy assignments
to a user-specified ﬁlsing model by conducting an ana-
log interpolation process of the following transverse-field
Ising-model Hamiltonian:

H(s) = —A(5) Y _ &} + B(s)Higing. )
eV

The interpolation process starts with s = 0 and ends with
s = 1. The two interpolation functions A(s) and B(s) are
designed such that 4(0) > B(0) and A(1) « B(1), that

044046-2



GIBBS SAMPLING WITH QUANTUM ANNEALING HARDWARE

PHYS. REV. APPLIED 17, 044046 (2022)

is, starting with a Hamiltonian dominated by — )", , ¢/
and slowly transitioning to a Hamiltonian dominated by
ﬁlsing- In the closed system setting and when this transition
process is sufficiently slow, the quantum annealing is con-
sidered to be adiabatic quantum computing. It is known
that under these conditions, quantum annealing will find
the ground states of Fllsing, therefore minimizing the con-
figurations of Higpng, With high probability [25-29]. To that
end, the length of the annealing process ¢ (in microseconds)
is a user controllable parameter. The outcome of the quan-
tum annealing process is specified by the binary string o,
where each element o; takes a value of +1 or —1 and cor-
responds to the observation of the spin projection of qubit
i in the computational basis denoted by z.

B. Quantum annealing and sampling

Given the energy-minimizing nature of quantum anneal-
ing, it is not immediately clear how it may be applied
to the sampling task posed in Eq. (2). It is reasonable
to postulate that an adiabatic system would behave simi-
larly to Gibbs sampling at the zero-temperature limit (i.e.,
o = 00), that is, drawing IID samples from the ground
states of Hispn,. Interestingly, this is not usually the case,
as the transverse-field component of the Hamiltonian, ¢,
induces biases in the annealing process to prefer some
ground states over others [30-33]. Nevertheless, proto-
cols have been proposed to help increase the fairness of
ground-state sampling using quantum annealing [34,35].
In contrast to previous works, this work is concerned
with sampling from thermal distributions (i.e., @ < 00),
which requires accurate sampling at all of the energy lev-
els of Higng, presenting a formidable challenge in model
accuracy.

Real-world QA hardware is an open quantum system
that is subject to a wide variety of nonideal properties,
including thermal excitations and relaxations that impact
the results of the computation [36—38]. In this regard, the
relevant adiabatic theorem is the open-system adiabatic
theorem [39—41]: if the dynamics is governed by a mas-
ter equation of Lindblad form [42] and if the annealing
is done sufficiently slowly, the system will converge with
high probability to the steady state of the dynamics. This
result is promising because, for certain master equations,
the thermal Gibbs state is the steady-state solution [43,44].

In addition to the fundamental impacts of open quantum
systems, the D-Wave hardware documentation highlights
five other sources of deviations from ideal system oper-
ations called integrated control errors (ICE) [45], which
include background susceptibility, flux noise, digital-
to-analog conversion quantization, input-output system
effects, and variable scale across qubits. Consequently, it
has long been observed that output distributions of the QA
hardware produced by D-Wave Systems are reminiscent of

a Gibbs distribution of the input Hamiltonian Higng [13—
16,18] with a hardware-specific effective temperature of
B ~ 10 [17,46]. The prevailing interpretation of the out-
put distribution of the hardware is the freeze-out model,
which proposes that the output reflects a quantum Gibbs
distribution occurring at an input-dependent point toward
the end of the annealing process, where some small amount
of * remains [47]. This model has been notably success-
ful for training quantum machine learning models [48,49]
and generating statistics for quantum Gibbs distributions
[50-52]. However, these quantum Gibbs distributions are
inaccurate when targeting a desired classical Gibbs distri-
bution for sampling applications [6,18,53,54]. The recent
insight from Ref. [17] is that when this hardware is oper-
ated at a low-energy scale (i.e., ||, |h] < 0.050), it behaves
as a thermalized classical Gibbs sampler from Hgy,, but
suffers from a notable amount of distortion from instanta-
neous noise in the local field parameters, /4, on the order
of 0.036 [46,55], behaving as a so-called noisy Gibbs
sampler.

Inspired by the classical Gibbs-sampling insights of
Ref. [17], this work demonstrates that there exists a class
of Ising Hamiltonians where D-Wave’s 2000Q hardware
produces high-quality Gibbs samples, with minimal dis-
tortions from noise or transverse fields. In particular, we
consider the class of Higng withJ,h € {—1,0,1}, [V] < 16
that are representable on the D-Wave 2000Q hardware
graph. The primary insight of this work is to operate
the QA hardware at an energy scale, «j,, that is large
enough to be noise resilient but small enough to avoid the
degeneracy-breaking properties of the transverse field. It
is not guaranteed that such a “sweet spot” exists but this
work demonstrates that the range of 0.2 < oy, < 0.4 on
the platform considered achieves the desired properties.
Section IV provides a qualitative study postulating why a
sweet spot occurs at this particular energy scale. Addition-
ally, this work shows that in the proposed energy scale the
annealing time has a consistent effect of tuning the effec-
tive temperature (i.e., ) of the Gibbs samples generated by
the hardware. When combined, these observations present
opportunities for leveraging QA hardware for conducting
the Ising-model sampling task described by Eq. (2).

1. EXPLORING GIBBS SAMPLING WITH
QUANTUM ANNEALING HARDWARE

This work is concerned with the following four param-
eters: Higing, the Ising model that one would like to sample
from (restricted to J,h € {—1,0,1}); oy € [0, 1], a scal-
ing factor that will be used when programming the QA
hardware; ¢, the annealing time of the QA protocol; and
Aout € [0, max], @ scaling factor of the distribution output
by the QA hardware, where o, is an estimated upper
bound and is further described in Sec. IIT A 3. Given Higjyg,
the QA hardware is programmed with the rescaled model
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Hf;‘ing = ainfising and executed with an annealing time 7.
Note that rescaling is equivalent to replacing J with o,/
and likewise with 4. The empirical distribution output by
the hardware v is then compared to Gibbs distributions
of Hiing at different effective temperatures, i.e., u(a,0)

exp [—aHising(0) ]. We define oy as

Qout = argmina Drv[v, p(a)], Q)

that is, the effective temperature of the closest Gibbs distri-
bution of Higp, to the results output by the hardware, using
the Dty distance as the measure of closeness. Details of
the Dry metric are provided in Appendix A. The remain-
der of this section explores how changes in the «y, and ¢
parameters impact the output distribution of the D-Wave
2000Q Quantum Annealer located at Los Alamos National
Laboratory, known as DW_2000Q_LANL. The unexpected
finding is that there exists a range of «y, values where the
QA hardware is a high-quality Gibbs sampler.

A. Experiment design
1. Ising-model selection

Given the challenges of sampling from embedded Ising
models [53], this work focuses exclusively on Higng
Hamiltonians that have native representation in the QA
hardware. In particular, the D-Wave 2000Q system imple-
ments a Cjs Chimera graph [56], which consists of a
16 x 16 grid of unit cells each containing eight qubits (four
horizontal and four vertical). In each unit cell, every hor-
izontal qubit is connected to every vertical qubit through
couplers and various qubits in adjacent unit cells are also
connected through couplers. The coupling strength J;
between qubits i and j can be programmed to values in
the continuous range [—1, 1] and the local fields /; can
be programmed to values in the range [—2,2]. As part of
the execution process, these unitless quantities are trans-
formed into the energy scales of the hardware, of 0.0-6.36
GHz for A(s)/h and 0.07—14.56 GHz for B(s)/h, where h
is Planck’s constant.

In selecting the Ising models for testing Gibbs sampling
with QA, we strive to design models that exhibit a variety
of sampling difficulties. Previous works have highlighted
that QA will prefer some degenerate ground states over
others as a result of residual effects from the annealing
process [30—33]. As ground states are the most heavily
weighted states in the low-temperature Gibbs distribution,
these asymmetries introduce significant sampling errors.
In this work, we elicit this effect by constructing a set of
13 models with ground-state degeneracies ranging from 1
to 38, to capture both easy and challenging instances to
sample from with a quantum annealer.

In particular, this work considers seven ground-state
degeneracy (GSD) cases with degeneracy values of 2, 4,

6, 8, 10, 24, and 38, without local fields, and six addi-
tional GSD-F models with one, two, three, four, five,
and six ground-state degeneracies including local fields.
Note that the GSD-F models tend to have lower degener-
acy because the inclusion of the fields breaks symmetries
within energy levels. The specific instances are referred
to as GSD-N and GSD-F-N, where the “N” indicates the
amount of ground-state degeneracy. The Hamiltonians of
each instance and a discussion of how they are designed is
provided in Appendix B.

2. Quantum annealing data collection

For each of the GSD models, Higing, a family of hard-
ware inputs is considered by sweeping o, between 0.0 and
1.0 with a step size of 0.0125 below 0.1, 0.025 between
0.1 and 0.5, and 0.1 above 0.5. The increased step size
for low scales is helpful, as the output statistics tend to
be more sensitive to «j, in this regime. For each of these
models and scales, 10° samples are collected from the
QA hardware. After every 100 samples, a gauge trans-
form is applied in order to mitigate the effects of bias.
For each gauge transformation, a randomly generated vec-
tor a € {—1,1}" is used to redefine the Ising parameters
via h; — a;h;,J;; — a;a;J;;. This transformation preserves
the energy eigenvalues of H(s) but it relabels the spin
configurations o by o; — a,0;. The use of gauge transfor-
mations is a well-known technique for eliminating these
field biases, which can add additional unwanted asymme-
tries [17,57,58]. After the samples have been collected, the
empirical probability of each state is recorded. This data-
collection process is repeated for annealing times ¢ of 1 us,
5 us, 25 us, and 125 us.

3. Estimation of the effective output temperature

As discussed at the beginning of this section, we would
like to identify the closest Gibbs distribution of Higjy, to the
empirical distribution output by the QA hardware, i.e., Eq.
(5). However, the exact solution of the optimization task
posed by Eq. (5) presents a significant computational chal-
lenge because of difficulties in computing candidate Gibbs
distributions. The primary reason that this work focuses
on the small-scale Ising models with only 16 spins is to
make this optimization task computationally tractable. In
this work, the optimization problem given in Eq. (5) is
solved by a brute-force calculation of the Dry distance
for a discrete set of o values. The o values are deter-
mined by calculating an optimistic estimate for oy, and
then scaling this value by the same step sizes that are
used for ajy. The o,y value is calculated by executing the
single-qubit protocol proposed in Ref. [46] on each of the
relevant spins and taking the average of the spin-by-spin
effective temperatures recovered by that protocol. There-
fore, the minimum of the range is 0.0 and the maximum
1S amax. The a value from this discrete set that achieves
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the minimum Dry distance between the quantum anneal-
ing data and the Gibbs distribution is selected as aqy. In
the results, we observe that ooy << omax, indicating that
omax 18 a sufficiently optimistic value for this brute-force
optimization procedure in practice.

4. Bounding finite sampling performance

Because the empirical distribution produced by the QA
hardware is calculated from finite samples, there is an
unavoidable error caused by finite sampling (details are
discussed in Appendix A). To understand the impact of
this finite sampling error, a lower bound is calculated by
a simulation procedure that generates 10® samples from
the selected o,y Gibbs distribution and calculates the Dy
distance between this empirical distribution and the exact
distribution. Because the samples are generated from a
known source distribution, the only source of error is a
result of finite sampling. Therefore, this value represents
the best Dty distance that is achievable given the number
of samples that are used in these experiments: 10°. This
lower bound is included in the result figures to provide
a measure of the portion of the Dy distance that can be
attributed solely to the limitations of finite sampling. In
this work, we find that this sampling issue is only signifi-
cant when the input scale is low (o, < 0.1), as this regime
reflects a distribution that is close to uniform and the proba-
bility mass is spread out among exponentially many states.
The presence of errors caused by finite sampling motivates
our use of a large number of samples (i.e., 10° per data
point) and provides an explanation for some of the consis-
tent features in the results that are observed in the low-o;,
regime.

B. Experiment results
1. A typical GSD model

We begin by presenting detailed results on a charac-
teristic GSD model and then provide a summary of the
results across the complete collection of models. The Dyy-
distance results for the GSD-6 model are presented in
Fig. 1. As the value of «j, is increased, the results show
an up-down-up shape in the Dpy metric. At very low
apn < 0.01, the Dyy value is limited by finite sampling
effects. As aj, is increased, it quickly deviates from the
family of Hygine Gibbs distributions and gradually becomes
more Gibbs-like. At some point, while increasing o;,, a
minimum Dty value is reached and it begins to increase
monotonically until the maximum c«;, value. This up-
down-up trend is replicated across a variety of the models
considered in this work and plausible causes for it are dis-
cussed in Sec. IV. The central observation of this analysis
is that there is a band of «j, between approximately 0.2
and 0.4, where the output distribution of the QA hardware
deviates from the target Gibbs distribution by less than
5% in Dty distance, which we designate as high quality.

304
—— finite-sampling error
25 4 ---- accuracy threshold
e 1lus
® 5 us °
209 ¢ 25 us :
S 125 us g
>151 °
g
Q [ ]
[ ]
10 i
e
> s . L
8%%gg 3..
0 — :
0.4 0.6 0.8 1.0
Qin
FIG. 1. The Dty distance between QA-hardware output distri-

bution for various scalings o, and the target Gibbs distribution
with estimated aqy; on the GSD-6 Hamiltonian. This model con-
tains 16 spins and six ground states. The experiment is repeated
for annealing times of 1 us (blue), 5 us (orange), 25 us (green),
and 125 us (red). The finite-sampling lower bound is indicated
by blue curve. The accuracy threshold indicates the statistical
requirement to be considered a high-quality Gibbs sampler in this
work. The surprising finding is the band of «;, between approx-
imately 0.2 and 0.4, where the hardware output does conform to
a Gibbs distribution of the input Hamiltonian.

Outside of this particular range of «;,, the Dry distance
increases considerably, showing how the distribution of
the QA hardware dramatically shifts away from the fam-
ily of Hisng Gibbs distributions. Interestingly, there does
not seem to be any significant dependence of the Dty dis-
tance on annealing time (i.e., each of the colored points in
Fig. 1 follow similar trends). These results suggest that this
middle regime of «j, is favorable for using QA hardware as
a Gibbs sampler at each of the annealing times considered.
Similar results on all of the GSD instances are provided in
Appendix C.

The results from Fig. 1 suggest there are operating
regimes where the QA hardware is an accurate Gibbs
sampler; however, the effective temperature (i.e., &oy) of
that distribution is not presented. Figure 2 explores this
point by presenting the «, values that are found for each
of the high-quality input configurations considered (i.e.,
0.2 < aj, < 0.4). Given the prevailing theories of how QA
hardware operates [46,47], one expects that increasing the
energy scale of the input o, or the annealing time will
increase the effective temperature of the output distribu-
tion, oy Indeed, that trend is observed in Fig. 2, where the
recovered ooy values increase monotonically (or nearly so)
with both «j, and the annealing time. This monotonicity is
a particularly useful result, as it suggest a simple proce-
dure for tuning the effective temperature of the distribution
output by the QA-hardware platform, which is an essential
feature for most practical sampling applications.
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FIG. 2. The values of a,y recovered by operating the QA
hardware at different values of o, and annealing times in the
high-quality regime identified in Fig. 1 for the GSD-6 Hamilto-
nian. Encouragingly, a,, increases monotonically (or nearly so)
with both «j, and annealing time, allowing the hardware gener-
ate distributions at different effective temperatures, which is an
essential feature for practical applications.

The generation of Gibbs samples in the «, range of
from 1.85 to 5.16 as shown in Fig. 2 is an encouraging
result, as the critical points separating high- and low-
temperature regimes of Ising spin glasses on lattices and
random graphs typically occur for values of ooy < 1.0
[22]. Sampling from these low-temperature regimes is
known to present significant computational challenges for
classical algorithms, giving hope that QA hardware may
be able to provide a performance enhancement on these
tasks. However, additional study is needed to determine if
the results presented here can generalize to larger system
sizes with different connectivity layouts and to tempera-
tures below the critical point of natively representable Ising
spin glasses [59].

2. Summary of the GSD models

To test if the observations on the GSD-6 instance gen-
eralize to a broader collection of models, we repeat the
previous experiment on all 13 of the GSD models pro-
posed in this work, seven GRD and six GSD-F cases.
Figure 3 displays the minimum Dry distance with respect
to the ideal Gibbs distribution for each scale of «;, and for
each model. Only the 1 us data is presented but results
with other annealing times are available in Appendix C.
Although one can observe a variety of distinct features
across these instances, the encouraging finding is that the
range of a;, within 0.2 and 0.4 consistently yields statistics
with a low Dy distance, suggesting that the observations
on the GSD-6 model do generalize to a broader class
of models. In particular, o;, =~ 0.3 achieves a low Dy
distance for nearly all of the models considered.

It is important to briefly discuss the GSD-2 and GSD-
F-1 models, as these are the only ones that do not follow
the up-down-up trajectory shown in Fig. 1. In these cases,
the Dty distance is high for low «j, and then drops below
5% for ay, greater than 0.2, as expected. However, the
Dty distance remains low even for o, greater than 0.4.

(a) 200
GSD-38
175
GSD-24
8
& GSD-10 150
i) —
Z X
c CsD8 125%
[0} -
g Q
g Gsp6 100
[
GSD-4
75
GSD-2
50
0.00 025 0.50 0.75 1.00
«

Problem Instance

in
(b) 200
GSD-F-6

175
GSD-F-5

15.0
GSD-F-4 ;\3

125 2
GSD-F-3 Q

10.0
GSD-F-2

75
GSD-F-1

50
0.00 0.25 0.50 0.75 1.00

ain

FIG. 3. The Dty distance between the QA-hardware output
distributions for various scalings «j, and the target Gibbs dis-
tribution with estimated o, on the all (a) GSD instances and
(b) GSD-F instances. A consistent high-quality Gibbs-sampling
band is observed for 0.2 < oy, < 0.4, with oj, & 0.3 achieving a
low Dty distance for nearly all of the GSD models.

This result is because when «j, is large, the probability
distribution is highly concentrated in the ground states
and these instances do not exhibit ground-state degeneracy
breaking. As there is only one ground state in the GSD-
F case and two symmetrical ground states in the GSD
case, the sampling task is relatively easy and effectively
reduces to a ground-state identification task. The QA hard-
ware achieves low Dy in these cases by simply outputting
the ground states with high probability. Although one can
consider these two cases to represent easy sampling tasks,
we include them to highlight the increased challenge that
instances with more ground-state degeneracy pose to using
QA for sampling applications.

The results from Fig. 3 indicate that the proposed high-
quality Gibbs-sampling regime generalizes to a variety of
Ising models; however, the stability of the effective tem-
peratures (i.e., ooy) Of those distributions is an important
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TABLE I. A summary of the smallest and largest o, values
recovered by operating the QA hardware at different values of
ai and annealing times in the high-quality regime across all GSD
models. Although there is some variation in the largest ooy val-
ues, the QA hardware has a fairly consistent behavior across the
GSD models and suggests that samples can be generated effec-
tively in the range of effective temperatures from at least 1.85 to
3.97 for a variety of Hamiltonians.

Instance min ooy max oyt
GSD-2 1.32 3.97
GSD-4 1.85 4.95
GSD-6 1.85 5.16
GSD-8 1.59 4.37
GSD-10 1.32 4.76
GSD-24 1.59 4.58
GSD-38 1.59 4.76
GSD-F-1 1.32 3.97
GSD-F-2 1.32 4.37
GSD-F-3 1.59 4.37
GSD-F-4 1.59 4.58
GSD-F-5 1.59 4.76
GSD-F-6 1.59 4.37

question. Table I provides a summary of this informa-
tion by presenting the minimum and maximum o, values
that can be achieved on each model by varying both «;,
and the annealing time (for more detailed information, see
Appendix D). Although there is some variability in the
largest ooy values, the results indicate that the range of
effective temperatures output by the hardware remains rel-
atively stable and the hardware is suitable for sampling
from all models between 1.85 and 3.97. These results
also suggest that the observations on the GSD-6 model
generalize to a broader class of models.

IV. DISCUSSION

The use of quantum annealing for Gibbs sampling has
been proposed as early as 2010 [13]. Since then, several

FIG. 4. A diagram of three-spin Ising chain experiment. The
solid lines for J}, and J,3 indicate couplings that are programmed
in the input Hamiltonian. The dashed line for J;3 indicates that
this coupling is not programmed in the input Hamiltonian even
though it is reconstructed from the output statistics and is thus a
“spurious coupling.”
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FIG. 5. (a) Reconstructed coupling values for a three-spin

Ising chain sampled at various coupling strengths. Only J),
(coupling between o7 and o,, represented by green in the
figure) and Jp3 (coupling between o, and o3, represented by
red in the figure) are programmed in the input Hamiltonian.
Ji3 (blue) is not included in the input Hamiltonian and rep-
resents a spurious coupling between o; and o3. The blue
and purple bars represent the intervals of the input coupling
strength Ji, that produce negative and positive spurious cou-
plings, respectively. (b) Results from the model simulation that
replicates the three-spin Ising chain experiment. Jj; and Jo3
are identical and only the green line is visible. Jj3 is spuri-
ous coupling and is represented in blue. The blue and pur-
ple bars represent the intervals of the input coupling strength
Jin that produce negative and positive spurious couplings,
respectively. Note how in both of these cases Jj3 is recon-
structed as negative for low-input couplings and then transitions
to positive as input coupling increases beyond 0.275. As this cou-
pling is not programmed in the input Hamiltonian, this nonzero
reconstruction marks a disruption to the desired distribution.
The negative and positive regions indicate the scaling regimes
where noise and quantum effects distort the output distribu-
tion, respectively. We observe that the optimal scaling regime
to use for Gibbs sampling is when J;3 is small relative to Ji,
and J23.
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studies have indicated that the output distribution of a
quantum annealer does not sample from the input Hamil-
tonian’s Gibbs distribution [6,18,32,33]. However, many
of these works use an input scaling that is outside of the
range identified by this work and are therefore subject to
the distortions that we see in Figs. 1 and 3. These figures
show that if oy, is too small (< 0.2) or too large (> 0.4),
then the output distribution of the QA hardware will dif-
fer greatly from that of a corresponding Gibbs distribution.
Additionally, the observation that the QA operating pro-
tocol proposed by this work yields high-quality Gibbs
samples in a variety of Ising models suggests a systematic
phenomenon that produces this behavior.

To investigate what might account for the distortions in
these Gibbs distributions and the unique features that occur
in the 0.2 < oy, < 0.4 range, we conduct a detailed study
of the output statistics of a very small Ising Hamiltonian,
i.e., a three-spin Ising chain. With such a small system, we
are able to create a theoretical model that reproduces the
experimental data. This theoretical model suggests local
field noise and residual transverse-field effects as potential
explanations for the observed distortions. The theoretical
model finds that the three-spin system sampled from an
Ising Hamiltonian with extraneous couplings when «j, is
in the low- or high-scaling regime. Only when ¢, remains
in the range identified by this work does the system pro-
duce the desired Gibbs distribution. This result provides
additional evidence that this restricted scaling regime is
optimal for conducting Gibbs sampling with QA hardware.

A. Three-spin Ising chain statistics

In this experiment, three spins denoted by o}, 0,, and
o3 are linked together in a ferromagnetic chain, with o
coupled to o, and o3 coupled to o3 as shown in Fig. 4.
Note that o3 is not coupled to o). Formally, the input
Hamiltonian is defined as follows:

~z~z

Hlsing = _Jin (/0'\12/0'\22 + 0,03 )9 (6)

where Ji, is the value of the coupling. Note that J;, is
equivalent to «j, from the 16-spin experiments. J;, is
swept between 0.0 and 1.0 with step sizes matching the
discretization of aj, [60]. For each value of Ji,, 5 x 10°
samples are collected from the QA hardware and the out-
put statistics are recorded. Once again, in order to mitigate
bias, a spin-reversal transform is applied after every 100
samples.

The output distribution is analyzed by solving the
inverse-Ising problem using the Interaction screening esti-
mation algorithm [22,61]. This algorithm takes the empir-
ical distribution produced by the hardware and estimates
the Ising Hamiltonian that most likely produces the given
output statistics. The estimated values for each of the cou-
plings are denoted as J,,¢ and, more specifically, as Ji», J»3,
and J1; to indicate the specific edge in the three-spin chain.

These estimated values are compared to the correspond-
ing input values Ji, in Fig. 5(a). This procedure provides
an understanding of the effective Hamiltonian output by
the QA hardware, which may differ from the Ising Hamil-
tonian that has been programmed. The entire protocol is
repeated for annealing times of 1 us, 5 us, 25 us, and
125 s, with similar results. Only the data for a 1-us
annealing time are presented in Fig. 5(a) (for results for
the other annealing times, see Appendix E).

Because o) and o3 are not coupled together in the
input Hamiltonian, one expects Ji3 from the reconstruc-
tion to be close to zero. However, as shown in Fig. 5(a),
J13 appears to be negative and, hence, antiferromagnetic
below Jj, = 0.275 and positive above that point. In Ref.
[17], this effect is referred to as a “spurious coupling,”
because it appears in the output distribution despite not
being programmed in the input Hamiltonian. It is strik-
ing that this spurious coupling exactly cancels out when
Jin = 0.275, which coincides with the optimal input scal-
ing for ajy,, for which almost all GSD models in Fig. 3 are
shown to have low Dy distance. Furthermore, the regime
where the spurious coupling strength is low relative to the
intended coupling strengths can be expanded to approx-
imately include Ji, between 0.2 and 0.35, which again
closely matches the optimal range for «j, that is found
for the 16-spin experiments. This provides additional sup-
port for the observation that the QA hardware considered
here is an effective Gibbs sampler in this specific scaling
range.

B. A three-qubit Ising chain effective model

To further explore a connection between these experi-
mental observations and the spurious couplings observed
in the output of the hardware [i.e., Fig. 5(a)], we propose
an extension of the effective single-qubit quantum model
developed in Ref. [17] to the three-qubit context. The
single-qubit model considered in Refs. [17,46] includes
a transverse field with an intensity proportional to the
input local field parameter, /4. This transverse-field com-
ponent is able to reproduce an observed saturation of the
output field for large input values. Another important fea-
ture proposed in Ref. [17] is qubit noise perturbing the
input parameters of the model, which explains the spu-
rious couplings in the regime of low input parameters.
Building on these characteristics, we consider the fol-
lowing toy model on three qubits, controlled by a single
parameter Ji, in the absence of local fields. We assume
that the output distribution is a noise-averaged thermal
distribution,

exp (=pH)

Trexp (—BH)’ ™

1
Pzg Z

$1,82,83==%1
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TABLE II. Input coupling values for GSD models before scaling by «aj,. The D-Wave programming convention is used, where
negative couplings indicate ferromagnetic and positive couplings indicate antiferromagnetic.
GSD-2 GSD-4 GSD-6 GSD-8 GSD-10 GSD-24 GSD-38

J296.300 1.0 -1.0 1.0 1.0 -1.0 1.0 1.0
J296301 1.0 1.0 -1.0 -1.0 1.0 1.0 1.0
J296.302 -1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0
J296,303 -1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0
J297.300 1.0 1.0 1.0 -1.0 —-1.0 —1.0 1.0
J297301 1.0 1.0 1.0 1.0 -1.0 1.0 1.0
J297302 -1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0
J297.303 1.0 -1.0 -1.0 1.0 -1.0 —1.0 -1.0
J298.300 -1.0 1.0 -1.0 1.0 -1.0 -1.0 -1.0
J298 301 1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0
J298.302 1.0 1.0 -1.0 1.0 1.0 —-1.0 —-1.0
J298.303 1.0 1.0 1.0 -1.0 -1.0 1.0 -1.0
J299.300 1.0 1.0 1.0 -1.0 -1.0 1.0 -1.0
J299301 1.0 -1.0 -1.0 -1.0 1.0 1.0 —1.0
J299302 -1.0 1.0 -1.0 -1.0 1.0 -1.0 1.0
J299.303 -1.0 1.0 1.0 -1.0 1.0 —-1.0 -1.0
J300.308 1.0 -1.0 -1.0 -1.0 —-1.0 1.0 1.0
J301.300 1.0 1.0 -1.0 -1.0 -1.0 1.0 1.0
J302.310 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0
J303311 -1.0 1.0 1.0 -1.0 —-1.0 —1.0 1.0
J304308 1.0 -1.0 1.0 -1.0 1.0 1.0 1.0
J304.309 1.0 -1.0 1.0 -1.0 -1.0 —-1.0 -1.0
J304310 1.0 1.0 -1.0 1.0 —-1.0 1.0 —-1.0
J304311 -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0
J305.308 -1.0 1.0 1.0 1.0 -1.0 -1.0 —-1.0
J305.309 -1.0 -1.0 1.0 1.0 -1.0 -1.0 -1.0
J305310 -1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0
J305311 —-1.0 -1.0 1.0 1.0 1.0 —-1.0 —-1.0
J306.308 1.0 1.0 -1.0 -1.0 -1.0 -1.0 1.0
J306.309 -1.0 -1.0 1.0 1.0 -1.0 1.0 1.0
J306.310 1.0 1.0 -1.0 1.0 -1.0 -1.0 1.0
J306311 1.0 1.0 1.0 1.0 1.0 1.0 1.0
J307308 1.0 1.0 -1.0 -1.0 -1.0 -1.0 1.0
J307.309 1.0 1.0 1.0 1.0 -1.0 1.0 —1.0
J307310 -1.0 -1.0 -1.0 1.0 -1.0 1.0 -1.0
J307311 1.0 -1.0 -1.0 -1.0 1.0 -1.0 1.0

where H is a three-qubit Hamiltonian with independent
binary qubit noise realized through binary random vari-
ables s;:

3 3
H = —Jin(G05 +0503) — ) _ viJu0; — Y _nisio;. (8)
i=1 i=1

Equation (8) describes a three-qubit Ising chain, where
Jin 18 a single-input parameter controlling the strength of
interactions, while y; and n; are constants rescaling the
strength of the transverse field and qubit noise. Leveraging
the parameters estimated in Ref. [17], we select 8 = 11,
y; = 0.013 and n; = 0.04 as typical values for these param-
eters. We would like to highlight that the model from Eq.
(8) is very different quantitatively and qualitatively from

what is known as the background-susceptibility model, as
discussed in Appendix F.

It has been shown in Ref. [17] that for small values
of the input parameter J;,, the negative spurious coupling
can be explained by field noise on the involved qubits.
In fact, it is information-theoretically impossible to distin-
guish between a model with field noise and a model with
the corresponding antiferromagnetic coupling. As seen in
Fig. 5(b), the toy model in Eq. (7) indeed predicts that
when Jj, is small and thus field noise is significant relative
to Jin, a negative spurious coupling is preset. We there-
fore designate this low-scaling regime where Ji, < 0.2
as the noisy regime. When Jj, increases, the field noise
becomes less pronounced relative to Ji,. In this regime of
higher input values, the model given in Eq. (7) predicts
an emergence of a positive spurious coupling—an effect
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TABLE III.  Input coupling and field values for GSD-F models before scaling by «;i,. The D-Wave programming convention is used,
where negative couplings indicate ferromagnetic and positive couplings indicate antiferromagnetic.

GSD-F-1 GSD-F-2 GSD-F-3 GSD-F-4 GSD-F-5 GSD-F-6

hage 1.0 1.0 1.0 -1.0 1.0 -1.0
hag7 1.0 —-1.0 1.0 1.0 —-1.0 —-1.0
Naog 1.0 1.0 -1.0 1.0 —-1.0 1.0
hage 1.0 —-1.0 -1.0 1.0 —-1.0 1.0
h300 —-1.0 —-1.0 -1.0 -1.0 —-1.0 1.0
h301 —-1.0 1.0 -1.0 1.0 1.0 1.0
h302 1.0 1.0 1.0 1.0 —-1.0 1.0
h3o3 —-1.0 1.0 1.0 -1.0 1.0 -1.0
N304 —-1.0 —-1.0 1.0 -1.0 —1.0 1.0
h30s —-1.0 1.0 -1.0 1.0 1.0 1.0
h306 1.0 -1.0 -1.0 -1.0 —-1.0 1.0
h307 1.0 1.0 -1.0 1.0 1.0 -1.0
h308 —-1.0 1.0 -1.0 -1.0 1.0 1.0
h309 1.0 —-1.0 1.0 -1.0 1.0 1.0
h310 —-1.0 1.0 -1.0 -1.0 —-1.0 -1.0
h311 -1.0 -1.0 1.0 -1.0 -1.0 -1.0
J296,301 —-1.0 1.0 1.0 -1.0 —-1.0 1.0
J296,302 1.0 —-1.0 -1.0 1.0 1.0 1.0
J296,303 -1.0 -1.0 -1.0 1.0 -1.0 -1.0
J297.300 1.0 1.0 1.0 -1.0 1.0 —-1.0
J297.301 —-1.0 -1.0 -1.0 1.0 —-1.0 1.0
J297302 1.0 1.0 1.0 1.0 1.0 -1.0
J297303 —-1.0 1.0 -1.0 -1.0 1.0 —-1.0
J298.300 1.0 1.0 1.0 -1.0 —-1.0 -1.0
J298301 —-1.0 1.0 —-1.0 -1.0 —-1.0 1.0
J298 302 —1.0 —-1.0 -1.0 1.0 —1.0 —-1.0
J298.303 —-1.0 —-1.0 1.0 -1.0 —1.0 -1.0
J299.300 —-1.0 1.0 1.0 1.0 1.0 -1.0
J299.301 —-1.0 1.0 -1.0 -1.0 1.0 1.0
J299.302 1.0 —-1.0 -1.0 -1.0 —-1.0 1.0
J299.303 1.0 1.0 1.0 1.0 1.0 1.0
J300,308 —-1.0 —-1.0 1.0 -1.0 1.0 1.0
J301,300 —-1.0 —-1.0 -1.0 -1.0 1.0 1.0
J302,310 1.0 1.0 1.0 1.0 —-1.0 —-1.0
J303311 —-1.0 —-1.0 -1.0 -1.0 —-1.0 1.0
J304,308 —-1.0 1.0 1.0 1.0 —-1.0 —-1.0
J304,309 —-1.0 1.0 1.0 1.0 1.0 —-1.0
JS304310 1.0 1.0 1.0 -1.0 —-1.0 1.0
J304311 1.0 1.0 1.0 -1.0 —-1.0 1.0
J305,308 —-1.0 —-1.0 1.0 -1.0 1.0 -1.0
J305.300 1.0 —-1.0 -1.0 1.0 —-1.0 —-1.0
J305.310 —-1.0 —-1.0 -1.0 -1.0 1.0 1.0
J305,311 1.0 —-1.0 1.0 1.0 —-1.0 —-1.0
J306,308 —-1.0 1.0 1.0 -1.0 1.0 —-1.0
J306.309 1.0 1.0 -1.0 -1.0 —-1.0 1.0
J306,310 1.0 1.0 1.0 1.0 1.0 —-1.0
J306,311 1.0 —-1.0 -1.0 1.0 1.0 1.0
J307.308 1.0 1.0 1.0 -1.0 —-1.0 1.0
J307,309 —-1.0 —-1.0 -1.0 -1.0 —-1.0 1.0
JS307.310 —-1.0 1.0 1.0 -1.0 1.0 1.0
J307311 —-1.0 —-1.0 —-1.0 —1.0 1.0 -1.0
that is also observed in the experimental data. This sug-  spurious link and the saturation of that link for large inputs.

gests that a J-dependent residual transverse field on each ~ Similarly to how we designate the low-scaling regime
of the qubits can account for the positive response in the  as noise-dominated, we can designate the high-scaling
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FIG. 6. Input and spurious coupling values as a function

of the input coupling intensity according to the background-
susceptibility model.

regime as dominated by the effect of residual transverse
fields.

An interesting intermediate regime predicted by the toy
model as shown in Fig. 5 happens around J;, = 0.275,
where the noise and transverse-field influences cancel each
other, leading to an effective absence of spurious cou-
plings, which also occurs experimentally. This observation
suggests that the optimal sampling parameter range for oy,
referred to as the sweet spot previously in this work, may
be explained by the interacting effects of noise and residual
fields in the system.

V. CONCLUSION

Inspired by recent work indicating that quantum anneal-
ing hardware behaves as a noisy Gibbs sampler in very
low energy scales [17], this work identifies an approach
for mitigating the impacts of noise and conducting high-
quality Gibbs sampling in a range of effective temperatures
for a class of small hardware-native Ising models. This
approach to using quantum annealing hardware for Gibbs
sampling opens opportunities for applications in machine
learning and exploring the physics of condensed matter
systems.

More broadly, the computational task of Gibbs sam-
pling and the protocol developed in this work could pro-
vide an avenue for exploring the potential for quantum
advantage in quantum annealing hardware. To that end,
two follow-on works would be required. First, a class of
Ising models needs to be identified that are challenging to
sample from with classical algorithms (e.g., spin glasses)
that also adhere to the criteria proposed in this work,
i.e., naively representable on the hardware with J, 4 €
{—1,0,1}. Such examples seem unlikely in the Chimera
hardware architecture [59,62]; however, the recent

Pegasus hardware architecture [63] will likely provide
opportunities for identifying such models. Second, sig-
nificant additional research is required to verify that the
protocol proposed by this work will scale to larger systems,
ideally with hundreds to thousands of qubits, so that more
of the quantum annealing hardware can be used. This type
of verification requires an amazing amount of computation
and tuning of sophisticated Monte Carlo methods, as there
are no known efficient algorithms for generating Gibbs
samples of the target distributions that would be required
as a baseline for comparison. Another practical challenge
is that scaling to larger systems may also yield unexpected
side effects in practice, such as amplifying the role of hard-
ware programming errors [64,65], putting an implicit limit
on sampling accuracy at larger scales. Although significant
follow-on investigation is required to more deeply under-
stand the potential for performing thermal Gibbs sampling
with quantum annealing hardware, this work provides a
foundation for maximizing the performance of available
hardware platforms when conducting these computational
tasks.
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APPENDIX A: COMPARING DISTRIBUTIONS
WITH Dty DISTANCE

Given two distributions p and v over a binary string of
size N, i.e., 0 € {—1, 1}V, the Dry distance between them
is defined as

1
Drv(wv) == Y |n@) = v(@)l, (A1)

oe{—1,1}V

that is, the absolute difference between the probability of
each state is added together and divided by 2, to normalize
the metric to the range of 0 to 1. Given that the metric is
in the range of 0 to 1, it is often presented as a percentage
between 0 and 100.

The Dry distance can be interpreted as the maximum
discrepancy between the probability of an event computed
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FIG. 7. The dependence of the Dty distance on a4, for GSD models. Recall from Fig. 1 the color notation for various anneal times
(1 us, blue; 5 us, orange; 25 us, green; 125 us, red). The Dy lower bound is a result of finite sampling is indicated by the blue line.
(a) GSD-2, (b) GSD-4, (c) GSD-6, (d) GSD-8, (¢) GSD-10, (f) GSD-24, and (g) GSD-38.
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Dependence of the Dty distance on «j, for GSD-F models. Recall from Figs. 1 and 7 the color notation for various anneal

times (1 us, blue; 5 us, orange; 25 us, green; 125 us, red). The Dy lower bound resulting from finite sampling is indicated by the
blue line. (a) GSD-F-1, (b) GSD-F-2, (c) GSD-F-3, (d) GSD-F-4, (¢) GSD-F-5, and (f) GSD-F-6.

with the distribution u instead of v, that is,

sup Py (4) =Py ()| = Drv(u,v), (A2)

where 4 € P ({—1,1}") is an element of the power set of
{—1, 1}V, Therefore, it becomes the distance of choice to

measure the error that can be made by estimating probabil-
ities using a surrogate distribution v of a target distribution
. However, note that this sets a very strong quality crite-
ria for estimating the reliability of a surrogate distribution,
as the Dty is equal to the worse-case estimation error. It is
important to note that if ¢ or v are only accessible through
a set of finite samples, there is an unavoidable error caused
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FIG. 9. A heat-map summary of the dependence of the Dy distance on «j, and the annealing time for all GSD models. (a) 1 us, (b)

5 us, (¢) 25 us, and (d) 125 us.

by sampling that will be captured by the Dy distance. To
avoid finite sampling error in the Dty estimate, one needs
to use a number of samples that is on the order of the
typical support of p and v. This is required to estimate
the absolute difference in Eq. (A1) accurately for each
state . Typically, the number of samples required grows
exponentially in N and is maximal for distribution p and
v that are close to a uniform distribution, where it is in the
order of 2V,

It is fairly common to consider Kullback-Leibler (Dgr)
divergence as an alternative to the Dry distance, espe-
cially when the nonconvexity of the latter becomes a
computational bottleneck. However, the Dy divergence
does not share the same meaning as the Dry distance: the
Dy divergence estimates the inefficiency in compress-
ing a source u using a code optimized for v. In general,
it is not suitable for measuring the quality of probability
estimates between a target distribution and its surrogate.
A simple situation that illustrates this last point is when
the distribution v is almost identical to u except that it
has an infinitesimally small probability mass that lies out-
side of the support of u. The Dty distance between these

distribution is infinitesimally small, while the Dg; diver-
gence becomes infinite.

APPENDIX B: THE
GROUND-STATE-DEGENERACY MODELS

The Ising-model instances used in this work are gen-
erated by the following procedure. First, 16 spins (two
unit cells) on the D-Wave 2000Q Quantum Annealer
DW_2000Q_LANL hardware graph are selected, with
qubits 296303 making up one unit cell and qubits
304-311 making up an adjacent unit cell in the Chimera
graph architecture. Then the values for J; incident to these
qubits are assigned randomly from the set {—1, 1} for each
coupler in the hardware graph. Second, a brute-force cal-
culation is used to compute the ground-state degeneracy
for a given instance [66]. This procedure is repeated many
times and a subset of cases are selected to highlight a
smooth range of ground-state degeneracies. This yields a
total of seven GSD cases with degeneracy values of 2, 4,
6, 8, 10, 24, and 38, which are presented in Table II. The
same procedure is repeated while also assigning random
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FIG. 10. A heat-map summary of the dependence of the Dty distance on ¢, and the annealing time for all GSD-F models. (a) 1 us,

(b) 5 us, (c) 25 us, and 125 us.

values to the local fields #; to {—1, 1}, yielding six addi-
tional independently generated GSD-F models with one,
two, three, four, five, and six ground-state degeneracies,
which are presented in Table III. The specific instances
are referred to as GSD-N and GSD-F-N, where the “N”
indicates the amount of ground-state degeneracy. Note that
the GSD-F models tend to have lower degeneracy because
the inclusion of the fields breaks symmetries within energy
levels.

It is worth noting that these models are reminiscent of
the random (RAN) and random with fields (RANF) mod-
els that have been used to benchmark earlier generations of
QA processors [67,68]. The RAN-model class on Chimera
graphs has been shown to exhibit a zero-temperature phase
transition [59,62], indicating that sampling from this model
class at finite temperature is not expected to be compu-
tationally hard. Here, however, instances are hand-picked
from this class to exhibit varying degrees of ground-
state degeneracy. In this sense, we do not expect that the
instances of this work to be representative samples from
the RAN class, and instead expect the high-degeneracy
instances to be challenging for a quantum annealer to

sample from due to the degeneracy-breaking effect of the
transverse field.

APPENDIX C: Dty DISTANCE AT DIFFERENT
SCALES AND ANNEALING TIMES

In this appendix, we present additional figures for each
of the experiments in the main text. Figures 7 and 8 dis-
play the Dry-distance results for every GSD model as a
function of aj,. As in Fig. 1, where only GSD-6 is shown,
the results for each of the annealing times are overlaid
with different colors. Note how GSD-2 and GSD-F-1 are
the only instances where the D1y distance decreases as iy
increases. This is because models with low degeneracy are
easier to sample from in the high-scale regime, which has
been previously explained in Sec. I1I B 2. For the rest of the
instances, the consistent U-shaped trend supports our claim
that the most effective oy, for achieving high accuracy is in
the medium-scale regime. This optimal band between «jy
of 0.2 and 0.4 remains consistent across all GSD models.
In addition, these figures show that varying the anneal-
ing time does not shift the optimal region by a significant
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(c) GSD-6, (d) GSD-8, (¢) GSD-10, (f) GSD-24, and (g) GSD-38.

amount, with the exception of GSD-10. However, there is a
slight yet noticeable shift to the left in almost all instances
as the anneal times increase.

Figures 9 and 10 communicate the same information as
Figs. 7 and 8, but more directly compares various GSD
models by stacking their Dry-distance values in a heat
map. Only the 1 us plot is presented in Fig. 3 in the main
text but here the results for all anneal times are shown.
Once again, it is evident that the optimal region for o,
remains the same for various anneal times.
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APPENDIX D: EFFECTIVE TEMPERATURES AT
DIFFERENT SCALES AND ANNEALING TIMES

Figures 11 and 12 present the o, values that corre-
spond to the optimal aj, range between 0.2 and 0.4. The
minimum and maximum value in each heat map is used
to construct Table I. These figures show how a4, and the
anneal time can be used to smoothly tune o, and that
the effect is consistent across all GSD models. Although
the exact oy values vary slightly from model to model,
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the trend is predictable and so these figures suggest a
straightforward approach for producing Gibbs samples at
desired aqy value.

APPENDIX E: THREE-SPIN ISING CHAIN
ANNEALING TIMES

Finally, Fig. 13 shows results for the three-spin Ising
chain experiment for various anneal times. The most
important feature of these plots is the point at which the
spurious coupling reduces to zero, as we hypothesize that
this is the optimal input scale for sampling. From the plots,
this optimal Jj, value slightly decreases from 0.275 to a
low of 0.2 as the anneal time increases. However, this value
still remains within the optimal region seen in the 16-spin
scaling experiments. As the anneal time increases, both
programmed and spurious couplings appear to increase
more rapidly with the increase of J;,. This increase results
in the spurious coupling almost saturating by the time Ji,
reaches 0.4 for anneal times of 25 us and 125 us. How-
ever, the majority of our claimed optimal region between
0.2 and 0.4 remains in the regime where the spurious
coupling is small compared to the programmed couplings.

APPENDIX F: BACKGROUND-SUSCEPTIBILITY
MODEL FOR THE THREE-SPIN ISING CHAIN

It is believed that physically neighboring qubits are
not perfectly isolated from each other and give rise to
uncontrolled interactions. These spurious couplings are
described by the background-susceptibility model [45]
and take the form of an interaction that is proportional
to the coupling intensities emanating from neighboring
qubits. For the three-spin Ising chain discussed in Sec. IV,
it results in the following Hamiltonian with background
susceptibility:

~zA ~z~z

o~ 2
Hps = —Jin010; — Jin0505 — xJno105,  (F1)

where x > 0 is the background-susceptibility constant
between qubits one and three. (Note that in Ref. [45], x
is a negative quantity, following the D-Wave program-
ming convention that ferromagnetic couplings are nega-
tive.) Note that the intensity of the spurious link between
o1 and o3 is quadratic in the input coupling intensity
Jin and is of ferromagnetic nature when Ji, is positive.
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Because the Hamiltonian in Eq. (F1) is diagonal, we imme-
diately see that this model behaves very differently than the
effective Hamiltonian found experimentally (see Fig. 5).
The background-susceptibility model predicts no satura-
tion in the input coupling or spurious coupling intensity,
as the former grows linearly and the latter grows quadrati-
cally. Moreover, the spurious coupling of the background-
susceptibility model remains ferromagnetic, unlike what
is measured experimentally for small values of Ji,. This
behavior is depicted in Fig. 6 for the typically encountered
values of 8 = 11 and x = 0.05.
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