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Abstract—In this work, the retention characteristics of multilevel 
HfO2 resistive random access memory (RRAM) based synaptic 
array was statistically measured from a 90 nm test chip and 
modeled at different temperatures. We found that not only the 
average conductance (especially at the intermediate states) drifts 
but also the variance of conductance exacerbates at elevated 
temperatures. To investigate the impact of the synaptic weight 
drift on deep neural network, the experimental data are modeled 
into the ResNet-18 simulation with 1-4 weight bit precisions. The 
result shows that the inference accuracy drops significantly at 
55ºC or above, which implies further engineering on RRAM 
retention or circuit/algorithmic techniques are yet to be applied.

Index Terms--multilevel RRAM, neural network, data retention.

I. INTRODUCTION 

Deep neural networks (DNNs) have achieved significant 
success to various tasks such as image classification, speech 
recognition, and object detection. State-of-the-art deep learning 
algorithms are aggressively increasing the depth and size of the 
network to achieve the accuracy enhancement, which demands 
tremendous amount of computation. Consequently, the data 
movement between the microprocessor and off-chip memory 
suffers from excessive power consumption and memory 
bandwidth limitation in conventional von-Neumann computing 
architecture such as CPU and GPU. Several CMOS-based 
application specific integrated circuits (ASIC) accelerators such 
as Google TPU [1] are proposed as an alternative. However, the 
memory wall still becomes the bottleneck, where the weight 
parameters are stored in global buffer and computation is 
performed in separate digital multiply-and-accumulate (MAC) 
arrays. Frequent DRAM access is still required because of the 
limited global buffer capacity.  

To overcome these challenges, compute-in-memory (CIM) 
is proposed as a promising paradigm where the weights are 
stored in the memory cells and the MAC operation is embedded
in memory itself by the weighted sum of analog current along 
the columns.

Various type of NVMs have been investigated as the
synaptic device for CIM application, such as resistive random 
access memory (RRAM) [2-3], phase change memory (PCM) 
[4-5], Flash memory [6-7] and ferroelectric field effect 

transistor (FeFET) [8]. RRAM has attracted great interest to 
represent the multilevel synaptic weights for accelerating 
DNNs [9]. Furthermore, multilevel RRAM enables larger MAC 
throughput with higher memory density [10]. However, 
multilevel RRAM based CIM for inference applications suffer 
from the non-ideal characteristics such as read disturb [11]. It 
should be noted that the requirement on the retention of 
synaptic weight memory for CIM is more stringent than the 
conventional multilevel cell (MLC) storage, because any 
conductance drift of the devices is summed up along the column 
so that the error bits can be induced at the analog-to-digital
converter (ADC) quantized result, as shown in Fig. 1. 

In this work, we tested the HfO2 based 1T1R 64kb array 
fabricated at 90 nm process [12]. The retention characteristics 
of 2-bit RRAM cells are statistically measured and modeled. 
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Figure 1. The requirement for multilevel RRAM cells for (a) storage 
memory and (b) compute-in-memory applications.
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The retention model is incorporated into the inference accuracy 
simulation of ResNet-18 model [13] on CIFAR-10 dataset.   

II. RETENTION MEASUREMENT AND MODELING

Fig. 2(a) shows the die photo of the 256×256 1T1R HfO2
based RRAM test chip with peripheral circuits. We realized the 
2-bit per cell distribution with the RRAM test chip
measurements. For inference operation, the weight is 
proportional to the conductance, thus we designed four states as 
follows. Fig. 2(b) shows the cumulative probability distribution 
of the initial conductance of multilevel states measured at room 
temperature (25ºC). The resistances of the State 1 cells are in 
high resistance state (HRS), while the resistances of the State 
2/3/4 cells are in low resistance state (LRS) where each of the 
states’ conductances are linearly spaced to represent the 2-bit 
weight. The initial conductance distributions were tightened 
with the two-step write-verify scheme [14]. The conductance of 
each state was controlled by SET and RESET current during 
the iterative SET and RESET loops. The bias conditions (VG
and VD) are optimized respectively for each state. 

As shown in Fig. 3, the conductance drift of the RRAM cells 
in the test chip are measured up to 80,000 seconds at the 
temperature from 25ºC to 120ºC. The average conductance 
values are displayed for every state. The average conductance 
of the cells decreases over the baking time where the 
conductance drift rate is significant in State 2 and State 3. The 
State 2 and State 3 cells are the intermediate states which have 
relatively low stability in the viewpoint of weak filament. 

The conductance not only drifts but also fluctuates over 
time. The ratio
conductance (μ) of the State 2 cells also increases significantly 

over time and is accelerated by high temperature as shown in 
Fig. 4. State 1 cells are very high and 
fluctuate over time, the conductance of the State 1 cells is 
several tens of times lower than that of the cells of other states. 

Figure 2. (a) Die photo of the measured 64kb HfO2 based 1T1R RRAM 
chip. (b) Initial multilevel cell conductance distribution after write verify.  

(a)

(b)

Figure 3. Measured average of conductance over time for each state at 
different temperatures.
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Therefore,  ratio of State 1 cells does not 
significantly affect the total weighted sum current.  

We modeled the measured retention characteristics in the 

time as (1), where Aavg is the average conductance drift rate that 

with sigma conductance drift rate (Bvar). 
 μ = μ( ) μ = ×       (1) = ( ) = ×        (2) 

Fig. 5 shows the temperature dependency of the average and 
sigma of conductance drift rate (Aavg and Bvar). Because the cells 
of State 2 and State 3 are the intermediate states which have 
relatively low stability in the viewpoint of a weak filament, the 
activation energy on filament deformation is low. 

III. INFERENCE ACCURACY SIMULATION 
We incorporated such 2-bit RRAM retention model into the 

ResNet-18 network to simulate the DNN inference accuracy on 
CIFAR-10 dataset. We adopted the PACT quantizer [15] for 2-
bit/4-bit training and the BNN training [16] method to generate 
the pre-trained models in this work. 

To implement the 4-bit weight into the RRAM array, we 
mapped two 2-bit per cell RRAM cells to one weight. The 
actual 4-bit weight has non-ideally quantized distribution as 
shown in Fig. 6, where the retention baking especially degrades 
the distribution of the quantized levels mapped with State 2 and 
3. Fig. 7(a) implies that the inference accuracy drops 
significantly even when only the average drift model is 
considered. Considering the degradation of variation 
aggravates the accuracy further as shown in Fig.7(b).  

We also simulated ResNet-18 network with 2-bit/1-bit 
weights as shown in Fig. 8. DNNs with lower weight precision 
show higher robustness and alleviate the accuracy loss, while 
trading off lower initial accuracy. It should be noted that the 
inference accuracy simulation results heavily depend on the 
training algorithm techniques including the neural network 

 

each state at different temperatures. 
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Figure 5. Temperature dependency of the conductance drift rate and fitting 
result on 1/kT plot for each state. 
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Figure 6. Weight distribution dispersion with retention model at (a) initial 
condition and (b) after 104 sec at 85ºC for 4-bit weight precision. 
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topology. Different quantization schemes will also impact the 
distributions of the conductance states.  

IV. CONCLUSIONS 
The retention characteristics of multilevel resistive random 

access memory (RRAM) are measured and modeled, then the 
effects on inference accuracy degradation are investigated. 
Different from the conventional MLC storage, multi-bit RRAM 
based inference engine requires more stringent retention 
characteristics to maintain the inference accuracy. While we 
assumed the reference voltage of ADCs are fixed in this work, 
reference voltage generation using dummy columns with 
additional RRAM cells may compensate the retention induced 
conductance drift (but cannot fully compensate the temporal 
fluctuation). Further algorithmic techniques or refresh schemes 
at circuit-level are also required to mitigate the accuracy drop 
of the CIM DNN accelerators.  
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Figure 7. Simulated inference accuracy of ResNet-18 with (a) average 
conductance drift model only and (b) after adding temporal fluctuation model 
incorporated for 4-bit weight (two 2-bit per RRAM cells). 
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Figure 8. Simulated inference accuracy on ResNet-18 with (a) 2-bit weight 
(one 2-bit per cell) and (b) binary weight (one 1-bit per cell using only State 
1 and 4). 
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