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Shihui Yin!, Bo Zhang?, Minkyu Kim', Jyotishman Saikia', Soonwan Kwon?®, Sungmeen Myung?, Hyunsoo Kim?,
Sang Joon Kim?®, Mingoo Seok?, and Jae-sun Seo!
!Arizona State University, USA, 2Columbia University, USA, Samsung Advanced Institute of Technology, South Korea

Abstract: We present a programmable in-memory computing (IMC)
accelerator integrating 108 capacitive-coupling-based IMC SRAM
macros of a total size of 3.4 Mb, demonstrating one of the largest IMC
hardware to date. We developed a custom ISA featuring IMC and
SIMD functional units with hardware loop to support a range of deep
neural network (DNN) layer types. The 28nm prototype chip achieves
system-level peak energy-efficiency of 437 TOPS/W and peak
throughput of 4.9 TOPS at 40MHz, 1V supply.
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Introduction

DNNs have achieved human-level performance in many recogni-
tion tasks. These DNNs usually require billions of multiply-and-accu-
mulate (MAC) operations, soliciting energy-efficient architecture for
on-chip DNN inference. In-memory computing (IMC) has emerged
as a promising technique owing to high parallelism, reduced data
communication, and energy-efficient analog computation. Recently,
test chips containing a single IMC SRAM macro [1-2] or multiple of
them [3-6] have demonstrated high energy-eftficiency. However, most
prior works still integrated a limited number of IMC macros [3-4].
Also, the dataflow of IMC/non-IMC operations was often hard-wired
[5-6], limiting flexibility to support various layer types. Furthermore,
hardware loop support is critical for scaling instruction-related over-
head, but many prior works do not have it [3-6].

In this work, we present a programmable IMC accelerator (PIMCA)
in 28nm. It integrates 3.4 Mb capacitive IMC SRAM, demonstrating
one of the largest integrations among IMC accelerators to date. Also,
as part of the instruction set architecture (ISA), a flexible single-in-
struction-multiple-data (SIMD) processor is integrated to support a
range of non-MAC vector operations, such as average-/max-pooling,
residual layers, etc. It also features hardware loop support, reducing
instruction count and latency. Leveraging low-precision deep learning
models [7], PIMCA can support DNNs with 1-b and 2-b precision. It
maps the 1-b VGG-9 model with 2.89 Mb weights fully stored on-
chip yet consumes only 2.36 pJ per inference with 47.3 ps latency.

Architecture and Operation

We designed the IMC SRAM macro (256x128) based on the ca-
pacitive-coupling computing mechanism. The bitcell is similar but
different from [1]; first, two transmission gates, not pass gates, are
added to the 6T cell to access a coupling capacitor without any Vt
drop. Also, the coupling capacitor C. (~2.2fF) is implemented as a
MOM (M4-M6) on top of the bitcell for area-efficiency. The binary
multiplication result of each bitcell is accumulated over MBLs via ca-
pacitive coupling. The MBL voltage (VmsL) of each column is con-
verted to 4-b values by an 11-level flash ADC. Fig. 1 depicts the over-
all architecture of PIMCA, which integrates 108 IMC macros orga-
nized in six processing elements (PEs). In each PE, 18 macros are or-
ganized in a 3X6 array. At each cycle, one PE performs matrix-vector
multiplication (MVM) using 1 to 18 macros. The partial sums from
the macros are added up by a configurable adder tree in the PE. A 256-
way SIMD takes the PE output and performs non-MAC vector oper-
ations. The SIMD stores its outputs in the activation memory (AM).

Fig. 2(a) illustrates the six-stage pipeline consisting of one of the
six PEs, the SIMD, the AM, and other common circuits. Every cycle,
an instruction is fetched and decoded in IF and ID stages. Then, it
loads input vectors from AM in LD, performs MAC computation in
IMC and other non-MAC computation in SIMD, and writes the results
back to AM if needed in WB. The custom ISA has two types of in-
structions: regular and loop instructions. A regular instruction (Fig.
2(b)) performs MAC/non-MAC computation. It contains three major
fields: i) read and write (R/W) addresses and AM enable, ii) PE and
macro selection and accumulation mode control, iii) SIMD operands
and operation code. For loop support, each regular instruction con-
tains a 6-b field that defines repetitions (up to 64).
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To support generic for-loops, the ISA has loop instructions (Fig.
2(c)); the loop-setup (LS) and loop-end-check (LE) instructions can
define up to eight levels of nested for-loops by setting special loop
registers and counters (LR, LC). For the case of 1-b VGG-9 DNN in-
ference, exploiting the repetitive computation types, the proposed
hardware loop support reduces the total instruction count by 4X.

PIMCA also integrates 1.54 Mb activation memory (AM) using
off-the-shelf single-port SRAM for storing input image, intermediate
data, batch normalization (BN) parameters, and final outputs. The in-
put and output data of a layer need to simultaneously access the AM.
Thus, we split the AM in two groups: top and bottom such that they
serve as the input and output buffer alternatively across layers. Each
AM group has six banks (1024x128-b) to support flexible and parallel
AM access. The active PE can access any 3x1x256 (heightxwidthx
channel) input patch from those banks in a cycle, simplifying the
streaming process by eliminating the need for extra buffering between
AM and PE. To support this access, we devised the scheme for address
generation and activation rotation (Fig. 3).

In each PE, we organize the macros in the 3x6 matrix to efficiently
support convolutions with three popular kernel sizes, 3%3, 5x5, and
1x1. For 3x3, we split the 3x6 macros into two 3x3 groups, and we
can map a 1-b convolution layer of 256x256 input and output channels
or 2-b of 256x128 in a PE (Fig. 4(a)). Note that the two 3x3 groups
share the input vectors. Within each 3x3 macro group, the inputs are
pipelined horizontally (from left to right), exploiting the convolutional
data reuse (same weights convolved with different inputs). Also, for
5x5, we can map a 1-b convolution layer of 128x128 by connecting
the output of input registers of the left group to the input of the right
group (Fig. 4(c)). Note that inactive macros are designed to produce
zero outputs. Therefore, for zero padded inputs, by disabling corre-
sponding macros, we can save MVM computation energy (Fig. 4(d)).

The 256-way SIMD processor performs all non-MAC computa-
tions. It supports eight types of operations: ‘LOAD’ offers data trans-
fer; ‘ADD’ performs partial sum addition (Z=X+Y); ‘ADD2’ per-
forms shift-and-add (Z=2X+Y), which efficiently supports i) bit-serial
scheme for 2-b input (X and Y from the same SIMD lane) and ii) bit-
parallel scheme (Fig. 4(b)) for 2-b weight (X/Y from left/right lanes);
‘CMP’ and ‘CMP2’ do comparison (Z=(X>Y)) for computing 1-b and
2-b activation results; ‘MAX’ selects the maximum value during max-
pooling; ‘LSHIFT’/‘RSHIFT” shift data left/right, critical to support
simple multiplication/division.

Measurement Results

We prototyped the PIMCA in 28nm (Fig. 5). At 40 MHz and 1V
supply, the peak throughput is 4.9 TOPS (1-b). The binary VGG-9
DNN for CIFAR-10 with 2.89 Mb weights can fully fit in PIMCA,
and on-chip inference results in 289 TOPS/W average system-level
energy-efficiency and consumes 47.3 us latency and 2.36 pJ energy
per inference, where the latter is 2.25X lower than [5]. When a 1-b/2-
b DNN uses 18 macros per PE, the PIMCA achieves 437/62 TOPS/W
peak energy-efficiency. We also evaluated the test chip with respect
to variability, system power, DNN accuracy, and energy-efficiency in
macro-level and peak/average system-level (Fig. 6). Due to the nature
of analog computation, the IMC SRAM macros exhibit variations in
their ADC outputs. Therefore, we developed a measurement-based
variation model and included it in the DNN training framework. Table
I shows the comparison to prior works. PIMCA achieves among the
largest integration and highest energy-efficiency while providing sig-
nificantly enhanced flexibility and programmability.
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IMC Measurements and Variability
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1. VGG-9 can be fit entirely on chip (no off-chip DRAM needed) and its energy efficiency evaluated on the full network,
2. ResNet-18 needs time-multplexing use of IMC macros, and its energy is evaluated on the 6% basic block (off-chip

DRAM

notincluded in reported energy).

Fig. 6: Measurement results on IMC operations, variability, PE utilization,
and system power breakdown.
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Fig. 5: 28nm
PIMCA chip

micrograph.
5.90 mm
Table I: Comparison to prior system-level IMC SRAM designs.
VLSI"9 [3]] ISSCC'20 [4] [ JSSC’19 [5][JSSC’20 [6][ This Work
Technology 65nm 65nm 65nm 65nm 28nm
DNN Model RNN CNN/FC CNN CNN/FC CNN/FC
Supported CNN Kernel N/A 3x3 3x3 3x3 3x3, 5x5, 1x1
Flexible Non-MAC
Operation Support No No No Yes Yes
Supply Voltage (V) 0.9-1.1 0.9-1.05 0.94-1.2 | 0.85-1.2 1.0
Area (mm?) 9.6 5.66 12.6 135 20.9
Clock Frequency (MHz) 6-75 50-100 100 40-100 40
IMC Bitcell 6T 6T 10T1C 10T1C 10T1C
Digital SRAM (kb) 80 1,312 64 256 1,608
IMC SRAM (kb) 64 4 2,304 576 3,456
X — 2/4/6/8b (Act.) ; ;
Bit Precision 1b 4/8b (Weight) 1b 1b-8b 1b-2b
ADC Precision 3b 5b 1b 8b 4b
Performance (TOPS) 0.61 0.17-2.0 18.9 2.2 (1b) 4.9 (1b)
Power (mW) N/A 31.8-65.2 N/A N/A 124 (1b)
IMC-macro-level
Peak Energy-Eff. (TOPS/W) 51.6 158.7 866 400 (1b) 588 (1b)
System-level
Peak Energy-Eff. (TOPS/W) 1.7 35.8 658 N/A 437 (1b)
System-level 136 (1b)
Avg. Energy Eff. (TOPS/W) 51.6 158.7 866 N/A 35 (2b)
for ResNet-18
Energy per Inference
for VOG-0 () 1.7 35.8 658 5.31 (1b) 2.36 (1b)
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