
20
21

 3
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e 

on
 F

ie
ld

-P
ro

gr
am

m
ab

le
 L

og
ic

 a
nd

 A
pp

lic
at

io
ns

 (F
PL

) |
 9

78
-1

-6
65

4-
37

59
-2

/2
1/

$3
1.

00
 ©

20
21

 I
EE

E 
| D

O
I: 

10
.1

10
9/

FP
L5

37
98

.2
02

1.
00

01
0

2021 31st International Conference on Field-Programmable Logic and Applications (FPL)

FixyFPGA: Efficient FPGA Accelerator for Deep 
Neural Networks with High Element-Wise Sparsity 

and without External Memory Access

Jian Meng*, Shreyas Kolala Venkataramanaiah*, Chuteng Zhou^, Patrick Hansen^, Paul Whatmough^, and Jae-sun Seo* 
* School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA

^Arm ML Research, Boston, MA, USA 
Email: jaesun.seo@asu.edu

Abstract—Convolutional neural networks (CNNs) have become 
very popular in real-time computer vision systems. CNNs involve 
a large amount of computation and storage and typically demand 
a highly efficient computing platform. Researchers have explored 
a diverse range of software and hardware optimizations to 
accelerate CNN inference in recent years. The high power 
consumption of GPUs and the lack of flexibility with ASIC has 
promoted interest in FPGAs as a promising platform to efficiently 
accelerate these CNN inference tasks. Various FPGA-based CNN 
accelerators have been proposed to low precision weights and 
high-sparsity in various forms. However, most of the previous 
work requires off-chip DDR memory to store the parameters 
and expensive DSP blocks to perform the computation. In 
this work, we propose the FixyFPGA, a fully on-chip CNN 
inference accelerator that naturally supports high-sparsity and 
low-precision computation. In our design, the weights of the 
trained CNN network are hard-coded into hardware and used as 
fixed operand for the multiplication. Convolution is performed 
by streaming the input images to the compute engine in a fully- 
paralleled, fully-pipelined manner. We analyzed the performance 
of the proposed scheme with both image classification tasks and 
object detection tasks based on the low precision, sparse compact 
CNN models. Compared to prior works, our design achieved 
2.34x higher GOPS on ImageNet classification and 3.82x higher 
frames per second on Pascal VOC object detection.

Index Terms—Convolution neural networks, hardware accel­
erator, FPGA, low-precision quantization, pruning.

I. In t r o d u c t i o n

Convolutional neural networks (CNNs) have been success­
ful in many practical applications including image classifica­
tion, object detection and segmentation, and various algorithms 
and architectures have been proposed in a very fast pace [1]— 
[4]. GPUs are the de facto hardware platform for DNN training 
workloads, aided by the highly parallel computing with a 
massive number of processing cores. However, due to the high 
price and the lack of reconfigurability, GPU is usually not an 
ideal solution for DNN inference acceleration, especially for 
models with high sparsity or customized architectures. ASICs 
such as the Google TPU [5] typically have the highest energy 
efficiency, but their limited configurability can introduce a 
significant risk of premature obsolescence, as the model ar­
chitectures evolve over time. With DNN algorithms evolving

This work was in part supported NSF grant 1652866 and C-BRIC, one of 
six centers in JUMP, a SRC program sponsored by DARPA.

Fig. 1. (Top) Categorization of DNN accelerators on FPGAs. (Bottom) 
Mapping the entire MobileNet-Vl CNN onto FPGA requires a number of 
techniques employed collectively in this work.

at a fast pace, ASIC designs will always lag behind the cutting 
edge due to the long design cycle. To that end, FPGAs have 
a unique advantage with potentially higher throughput and 
efficiency than GPUs, while offering faster time-to-market and 
potentially longer useful life than ASIC solutions.

Fig. 1 (top) shows the categorization of different FPGA- 
based CNN accelerator schemes. Most of the conventional 
FPGA-based CNN accelerators [6]—[10] in the literature use 
off-chip DRAM to store the weights, and the FPGA accel­
erator performs computation for a single-layer (or a subset 
of a single-layer) in a time-multiplexed manner. However, the 
throughput of such designs is often limited by the DRAM 
bandwidth and the number of multipliers constructed by DSPs. 
Furthermore, frequently accessing the off-chip memory also 
introduces high energy consumption [11].

To eliminate DRAM access for DNN inference using a 
single FPGA, the entire DNN model including weights and 
activations must be mapped onto the on-chip memory on the 
FPGA. One of the most well-known compact DNN models
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for the ImageNet dataset is MobileNet [3], which achieves 
a similar accuracy compared to the conventional VGG-16 [1] 
(138M weights) or ResNet-18 [2] (11M weights) architectures 
with significantly less parameters (4.2M weights) and MAC 
operations. A  few prior FPGA designs have fully mapped 
the compact MobileNet-VI CNN to a single FPGA without 
DRAM access [12], [13]. This is possible because recent large- 
scale FPGAs such as Intel Stratix-10 GX2800 or 10M [14] 
integrates up to >200M b of on-chip memory (M20K), which 
can comfortably hold all MobileNet-Vl weights (4.2M) either 
in 8-bit or 16-bit precision. Both works [12], [13] store 
M obileNet-Vl weights in on-chip M20K memory, and load 
the weights into time-multiplexed multiply-and-accumulate 
(MAC) units to perform layer-by-layer inference in a pipelined 
manner.

To fully map MobileNet-Vl onto existing FPGAs and max­
imize throughput, one MAC unit per weight (i.e. 4.2M MAC 
units) will be required. Typically DSP blocks are employed for 
parallel MAC computation, but only thousands o f DSP slices 
exist in large FPGAs (e.g. 1,728 in Intel Stratix-10 10M), and 
all o f these could be used up for the high-precision channel- 
wise scaling factor computation (Section IH-B), which is 
necessary in 8-bit or lower precision CNNs for better gradient 
estimation and lower quantization error. This means that all 
4.2M MAC units need to be implemented with Adaptive Logic 
Modules (ALM). Since the mapping o f one 8-bit MAC needs 
36 ALMs, a total o f 151M ALMs are needed for the fully- 
parallel baseline, which represents a ~ 9 0 x  gap with the FPGA 
that has a large number of ALMs (1.73M), as shown in Fig. 1 
(bottom).

To bridge this gap, lower precision quantization or pruning 
can be performed, but previous work [12], [13] did not con­
sider pruning and only lowered the activation/weight precision 
down to 8-bit. For compact models such as MobileNet, it has 
been difficult to quantize the activation/weight precision below 
8-bit without considerable accuracy loss. A  recent algorithm 
work [15] presented new quantization techniques that lower 
the precision of MobileNets to 4-bit with minimal accuracy 
degradation, but did not integrate pruning.

With respect to pruning, element-wise pruning achieves 
higher sparsity, but the irregular memory access and the 
index storage overheads, especially for low-precision DNNs, 
have hindered efficient hardware implementation [16], [17]. 
Structured pruning schemes [18]—[20] generate sparsity in a 
hardware-friendly manner by removing a group of parameters 
in row-/column-wise, block-wise, filter-wise, or channel-wise 
manner. This leads to efficient hardware acceleration, but the 
amount of sparsity in structured pruning schemes is typically 
much lower than element-wise pruning schemes [21].

On the other hand, FixyNN [22] proposed a fixed-weight 
feature extractor (FFE) design, where the weights are hard­
coded in the datapath logic and do not need to be stored in 
memory. LogicNets [23] also proposed a similar technique 
to implement neural networks with look-up tables in FPGAs, 
but the hardware design is only benchmarked for small neural 
networks with unconventional datasets for jet substructure

classification and network intrusion detection.
While FixyNN [22] only employed an FFE for the early 

layers o f CNNs for an ASIC design, in this work, we employ 
such fixed-weight scalers for the entire CNN layers for an 
FPGA design. By mapping hard-coded weights in the ALMs 
of the FPGA, we perform CNN inference o f all layers in a 
fully-parallel, fully-pipelined manner. Contrary to the notion 
that element-wise sparsity is inefficient for hardware design, 
one important advantage o f the fixed-weight FPGA design 
(FixyFPGA) is that, element-wise pruning o f DNNs can be 
seamlessly integrated with FixyFPGA design with very high 
efficiency. This is because pruning out weight elements is 
equivalent to removing the corresponding hardware operands 
without introducing any index overhead. This enables us to 
exploit the high amount of sparsity achievable by the element­
wise pruning algorithms [17].

Overall, the main contributions of this work are:
• We present FixyFPGA, a fully-parallel, fully-pipelined, 

and pruning-friendly FPGA-based CNN accelerator de­
sign based on fixed hard-coded weights.

• We optimize the model using aggressive low-precision 
quantization (e.g. 4-bit) and a high degree o f element­
wise pruning (e.g. >95%) to achieve heavily-compressed 
compact DNN models (e.g. MobileNet) for edge comput­
ing with limited hardware resources.

• We investigate implementing a number of DNN models 
with different widths and compression ratios with the 
fixed-weight scheme onto a single Intel Stratix-10 FPGA 
chip without any DRAM access.

• We analyze the algorithm and hardware results o f DNNs 
for both image classification tasks (ImageNet, Tinylma- 
geNet, and CIFAR-10 datasets) and object detection tasks 
(Pascal VOC dataset).

The remainder of this paper is organized as follows. Sec­
tion II describes the fixed-weight FPGA accelerator (FixyF­
PGA) design. Section in  presents the proposed 4-bit Mo­
bileNet quantization and high sparsity schemes. In Section IV, 
we present the experiment results o f the FixyFPGA for various 
CNNs and datasets. The paper is concluded in Section V.

II. F i x e d  W e i g h t  A c c e l e r a t o r  D e s i g n

FixyFPGA implements CNN models in a layer-parallel 
fashion, where every non-zero parameter is encoded in the 
hardware design as a fixed-weight multiplier (scaler). This 
layer-parallel approach leads to very large improvements in 
latency and energy, by 1) removing the energy and BW  
limitations o f DRAM, and 2) increasing the number of MACs 
that can be implemented on an FPGA by ~ 1 .7 x  using fixed- 
weight scalers.

A. Fixed-Weight CNN Datapath
Fixed-weight scalers are significantly smaller, faster and 

lower energy than full multipliers. Fixed scalers are imple­
mented with a series o f hardwired shifts, which are essentially 
free in hardware, and an adder. The hardware cost is essentially 
a function o f the input operand (activation) bitwidth, and the
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Fig. 2. Hardware implementation of layer-parallel fixed-weight convolution.

Hamming weight (i.e. the number o f non-zero bits) o f the 
multiplier (weight), which determines the number o f partial 
products. The adder tree needed to process the flattened 
output feature map is highly pipelined to achieve high clock 
frequency. The fixed-weight datapaths are implemented in RTL 
by embedding the weights into the Verilog as literals. The 
synthesis tool then generates highly optimized deep sum-of- 
product datapaths using techniques such as Booth encoding 
and carry-save addition [24]. Zero weights are simply ignored 
and do not generate any hardware.

Based on our actual implementation of 4-bit MobileNet- 
V l on Intel Stratix 10 FPGA (Section IV), the FixyFPGA 
scheme consumes 5.87 ALMs per 4-bit scaler on average 
(i.e. total ALM usage divided by the number o f non-zero 
weights). In comparison, by mapping a 4-bit MAC unit with 
real multipliers and accumulaters onto the same FPGA, we 
found that one single non-fixed-weight 4-bit MAC consumes 
10.0 ALMs. Therefore, this shows that the fixed design can 
at least achieve 1.7x reduction in ALMs for each MAC 
implementation.

B. Fully-Pipelined. Activation Buffering
Implementing direct convolution in a layer-parallel config­

uration requires buffering o f activation data flowing through 
the datapaths. A  typical 3 x 3 x C  convolution, where C is the 
number of channels, consumes a 3 x 3 x C  input pixel tensor 
per cycle, but generates only a single small l x l x C  output 
tensor. Hence, we must buffer several l x l x C  outputs into 
a larger 3 x 3 x C  input for the next layer. Fig. 2 shows how 
this is implemented using a tine buffer to store activations 
at each layer row by row until the required tensor size has 
been buffered up. Due to the mismatch in input and output 
tensor dimensions, we need to buffer three full rows before we 
can start generating the larger output tensors for the following 
layer. The fine buffer itself is implemented on FPGA using 
on-chip M20K memory and ALMs, and therefore actually 
requires four independent SRAM banks, so that we can write 
a single-row patch to one bank per cycle, and read the three- 
row patch from three banks per cycle, concurrently. After 
reading/writing the last pixel in a row, the four banks are 
rotated to overwrite the data associated with the oldest row. 
Following the SRAM line buffer, a shift-register shifts the 
convolution window over the feature map, without re-reading 
data. The shift-register consumes 1 x 3 x C  pixels per cycle 
from the SRAM fine buffer and outputs a 3 x 3 x C  volume.

C. Deep Freeze Tool Flow
We implemented a tool called Deep Freeze [25] to automat­

ically generate a fixed-weight CNN accelerator in Verilog RTL

directly from a simple model description in a high-level API. 
A direct code generation step reads the integer model weights 
and emits Verilog HDL logic with the weights embedded 
as immediate constants. Zero weights are skipped entirely. 
The precision for the intermediate activations is specified 
as a hardware parameter, along with the accumulator width. 
The final Verilog is constructed by connecting consecutive 
combinational datapath stages with buffer stages, which are 
instantiated from a parameterized Verilog template. The gen­
erated Verilog can be directly read in by any synthesis tool 
for ASIC or FPGA implementation. The generated code is 
optimized for size and helps reduce compile time, which can 
be long for such a dense datapath dominated design. During 
the datapath generation, the bit-widths of the fixed scalers are 
optimized individually. Deep Freeze also generates a validation 
suite with testbench for simulation.

III. A g g r e s s i v e  C N N  M o d e l  C o m p r e s s i o n

A. Low-Precision Quantization

As we discussed in Section I, 8-bit models consume a 
large amount of resources and can exceed the capability of 
many FPGA devices. Therefore, in this work we aim to fully 
quantize the model to 4-bit for less memory consumption 
and better resource utilization. Most o f the 4-bit quantization 
schemes focus on the conventional large models such as VGG 
or ResNet, while we explicitly target compact models such 
as MobileNet, due to the FPGA hardware constraints. We 
adopted the progressive quantization method (PROFIT) [15] as 
the quantization algorithm for MobileNet. By minimizing the 
output activation instability caused by the quantization level 
shifting, we quantized the MobileNet-Vl to 4-bit without no­
ticeable accuracy degradation. Such low-precision quantization 
requires layer-wise adaptive parameters for accurate gradient 
estimation and quantization error minimization. Generally, the 
quantization can be formulated into the following steps:

Wc — min(max(W , —a), a)
2n—1 -  1 

S = -------------

Wq =  round (1VC x S)

w  WQ c 
WQF =  ~ S - X a

Clipping (1)

Scaling (2)

Quantization (3)

De-quantization (4)

Given the input activation X i_1 and weight W l o f layer l, 
The leamable high-precision parameters a and c are involved 
in both weight and activation quantization. Such floating-point 
parameters can be multiplied altogether after the convolution 
operation [26]:

Y q  =  M  x X 1q X * W lQ

where M  =
a,x

2"  -  1
(2n—1 -  1) (2"  -  1)

(5)

(6)

The only non-integer value is the channel-wise scaling 
factor M. Depending on the hardware capability, it can be 
expressed as a high-precision fixed-point coefficient.
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Fig. 3. (a) Inference graph after the batch normalization fusion, (b) Scaling 
factor precision vs. accuracy for sparse 4-bit MobileNet-Vl 1.0 model.

B. Batch Normalization Fusion
The integer-only inference shown in Eq. (5) assumes the 

batch normalization (BN) parameters are “fused” into the 
weights before the quantization:

7 Wwfused = JL—  (7)
y a 1 + e

Wq  = Q u a n t i z e aw, cw) (8)

In Eq. (7), 7 is the BN weight and cr2 is the running variance 
across the batch. Quantizing the fused weights along the output 
channel dimension can maintain the overall accuracy with 
high precision quantization [26]. However, it has been shown 
that such conventional fusion-quantization scheme is difficult 
to converge with low-precision quantization [15]. Instead of 
folding BN as part of the weights, we consider it as an 
adaptive high-precision scaling and shifting process, which can 
be merged into M. Similarly, the BN bias (3 will be added after 
the convolution, as follows.

M
alx+1 Võ^Tê (2"_1 -  l)(2n -  1)

b = l? - 7M
Vo-2 + '

(9)

(10)

Merging the BN scaling into high-precision multiplication 
enables us to avoid the complex BN hardware modules without 
hurting the pre-trained CNN model accuracy. Fig. 3 shows 
the inference graph of the trained low-precision sparse model. 
The scaling factor M  and bias b can be computed offline 
before the FPGA hardware deployment. Such channel-wise 
parallel with MACs with M  and bias b are expansive for FPGA 
implementation but it is required for accurate low-precision 
quantization. Given the limited amount of FPGA resources, 
we swept the precision of the high-precision scaling factors 
and the results are shown in Fig. 3(b). Based on this, we 
quantized the high-precision scaling and bias factors to 12-bit 
fixed-point precision. To recover any accuracy loss, the fused 
model is fine-tuned with the selected multiplier precision.

90

o
2
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Fig. 4.
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Sparsity vs. accuracy for 4-bit MobileNet-Vl 1.0 model.

Layers

Fig. 5. Percentage of non-zero weights in each layer of 4-bit MobileNet-Vl 
0.75 after element-wise pruning (total number of non-zero weights is 161K).

C. High Sparsity Element-wise Pruning
FixyFPGA can naturally support element-wise pruning 

without having random-sparsity index, which is an important 
advantage that prior pruning works did not exhibit. To achieve 
high element-wise sparsity, we evaluate the importance of 
weights by considering the relative magnitude among all the 
surviving weights in the same layer [17]. We first sort the 
magnitude of the weights in the ascending order in layer Z, 
and the relative importance of each weight is measured by:

Iw !  - I2I 2.7 I /1 1 \score; a = ———— ———̂ -----— j—— ( l l )£(|W*|2 = |W*| > IW^I} v >

Based on the importance scores of the weights, we globally 
prune the weights with the smallest scores and gradually 
increase sparsity, until the targeted sparsity is met.

IV. E x p e r im e n t  R e s u l t s

A. Experiment Setup
All algorithm experiments are completed with Pytorch API, 

and the FPGA accelerator generated by the compiler was 
synthesized using Intel Quartus 20.3. We used Stratix IO GX 
10M FPGA as the target FPGA device, which includes 132 
Mb of M20K memory, 1,728 DSP blocks, and 1.73M ALMs. 
Given the pre-trained 4-bit sparse PyTorch-trained model, we 
first extract the fixed-point parameters and then generate the 
corresponding RTL files with the Deep Freeze tool.

B. Algorithm Results
We benchmarked two model architectures on four different 

datasets. We evaluated the compressed MobileNet-Vl for
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TABLE I
Evaluation of CNN accelerators on Stratix 10 10M FPGA with various CNN models and datasets.

M odels
#  o f  

Param s
Top-5 

A ce. (% )
Input
Size

D SP A L M M 20K
Freq.

(M H z) FPS TO PS
Pow er

(W )

M ob ileN et-V l 165K 73.32 224 x 224 2 1.73K (100%) 1335.9K (77%) 1.39K (21%) 132.85 2.65K 3.01 30.36
1.0 W idth 1 71.59 64 x 64 2 1.73K (100%) 1015.4K (59%) 1.32K (20%) 163.11 39.8K 3.74 27.30

M ob ileN et-V l 161K 72.87 224 x 224 2 1.73K (100%) 1099.IK (63%) 1.11K (17%) 172.92 3.45K 2.27 27.43
0.75 W idth 1 68.41 64 x 64 * 1.73K (100%) 1024.6K (59%) 1.11K (17%) 177.43 43.3K 2.32 26.62
M ob ileN et-V l 161K 71.47 224 x 224 2 1.73K (100%) 824.43K (48%) 0.75K (12%) 163.91 3.27K 1.24 26.90

0.5 W idth 1 68.26 64 x 64 * 1.73K (100%) 802.5IK (46%) 0.75K (12%) 169.41 41.4K 1.02 26.10

V G G 7-C 198K 99.58
(CIFAR-10) 32 x 32 0.36K (21%) 814.98K (47%) 0.29K (4%) 137.29 134.07K 90.95 22.03

1 Widths of 1.0/0.75/0.5 represent that the number of channels in MobileNet-Vl models are scaled accordingly.
2 Input image size of 224x224 is for ImageNet dataset, and 64x64 is for TinylmageNet dataset.

Fig. 6. For fully-parallel implementation of MobileNet-Vl on FPGA, ALM 
usage is reduced by 107 x collectively by pruning, low-precision quantization, 
and fixed-weight scalers.

Layers .
Total cycles per ou tput = 80675 cycles

Image 1: 50716 cycles
Conv01 Image 1: 224 x 224 Image 2: 224 x 224

Conv02 DW336
Conv02 PW çgg
Conv03 DW 672
Conv03 PW 672

Conv04 DW 840
: i :
: i •

Conv13 PW 1428 __________________________________ i______
Conv14 DW 1449 '
Conv14 PW 1449

Pool 1463 ' r
FC r*------- 1477 d _______________________________________

Fig. 7. Layer-wise timing analysis of MobileNet-Vl generated by RTL 
simulation with 224 x 224 x 3 input image for ImageNet.

ImageNet-224, TinyImageNet-64, and Pascal VOC datasets 
for image classification and object detection tasks. We con­
structed a customized VGG model VGG-C with the structure 
of 64C3-P-128C3-P-256C3-P-512C3-P-512C3-FC for CIFAR- 
10 dataset. The customized 4-bit VGG-C achieved 90.11% 
accuracy with 198K non-zero weights. To fully map these 
models onto the target FPGA without any DRAM access, we 
need to quantize the models down to 4-bit while removing 
>90% of the weights. It is difficult to simultaneously achieve 
such aggressive low-precision quantization and high sparsity 
with one-time training. Therefore, we first performed the 
aggressive pruning with the full precision model and then 
progressively quantized the pruned model down to 4-bit. Using 
the proposed sparsity scheme, Fig. 4 shows the sparsity and 
accuracy trade-off of the 4-bit MobileNet-Vl 1.0 model.

Fig. 5 shows the percentage of the non-zero weights of 
each layer of MobileNet-Vl 0.75 model after pruning. Notably 
there exists a large sparsity difference between the depth-wise 
layers and the point-wise layers. According to Eq. (11), such 
difference indicates that the weights of depth-wise layers have 
overall higher importance compared to the weights of point- 
wise layers.

C. FPGA Implementation Results and Analysis
1) Image classification: Fig. 6 shows the how the ~90x 

gap pointed out in Section I is addressed in this work, by 
a series of techniques including pruning with high sparsity

(~20x), 4-bit quantization, and the usage of fixed-point 
scalers for the entire MobileNet-Vl model. After applying all 
techniques, the total ALM usage of the proposed FixyFPGA 
design for MobileNet-Vl model falls under the 1.73M avail­
able ALMs in the target FPGA device. The elimination of the 
DRAM communication also leads to large savings in energy 
and latency.

Fig. 7 shows the timing diagram for the overall MobileNet- 
Vl inference, based on RTL simulation. The fully-pipelined 
activation buffering maximized the computation efficiency by 
sending the basic 3 x 3  x C volume to the next layer rather 
than waiting for the previous computation to complete.

Table I summarizes the resource utilization, throughput, 
operating frequency, and power consumption with the various 
CNN models that are trained for different datasets. Every 
layer of all implemented CNNs are quantized down to 4- 
bit precision and fully hard-coded into the data logic on 
FPGA, without any DRAM access. Using the Intel Early 
Power Estimator, we obtained the power consumption at the 
junction temperature of 75°C. With the fully-pipelined and 
fully-parallel FixyFPGA scheme, the latency per image was 
computed as: T  — Xh *Xw  , where X h  and X w  represents 
the height and width of the input image. Given the different in­
put sizes of various datasets, the proposed FixyFPGA achieves 
3.01, 3.74, and 90.95 GOPS for ImageNet, TinylmageNet, and 
CIFAR-10 classifications, respectively.
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TABLE II
Pa s c a l  VOC o b je c t  d e t e c t io n  r e s u l t s  w it h  d if f e r e n t  f r o n t -e n d  CNN m o d e l s .

Models
# o f

Params
mAP
(%>

Input 
Image size DSP ALM M20K

Freq.
(MHz) FPS TOPS

Power
(W)

M obileNet-Vl 1.0 152K 54.99 300 x 300 1.73K (100%) 1078.8K (62%) 1.31K (20%) 169.20 1.88K 3.99 28.06
M obileNet-Vl 0.75 147K 52.18 300 X 300 1.73K (100%) 993.8K (57%) 1.11K (17%) 196.89 2.19K 2.65 27.41
M obileNet-Vl 0.5 148K 51.27 300 X 300 1.73K (100%) 804.5K (42%) 0.75K (12%) 200.76 2.23K 1.24 27.08

TABLE III
C o m p a r is o n  to  d if f e r e n t  F P G A  a c c e l e r a t o r s  f o r  M o b il e N e t s  f o r  Im a g e N e t .

Implementations Model W  /  A Platform DRAM Frequency
(MHz)

Latency
(ms) GOPS

Frame 
rate (fps) Sparsity

DPU [7] MobileNet-V2 8 /  8 Xilinx Zynq US+ Yes 333 1.23 922 430 Dense
Sparse DLA [27] MobileNet-Vl FP32 Intel Stratix 10 Yes 257 1.7 0.62 280 71%

HPIPE [13] MobileNet-Vl 1 6 / 1 6 Intel Stratix 10 No 430 0.65 - 5157 Dense
TuRF [28] MobileNet-Vl 8 / 8 Intel Stratix V No 150 4.33 264 231 Dense
TuRF [29] MobileNet-Vl 1 6 / 1 6 Intel Stratix V No 200 0.88 1287 1131 Dense

Tomato [12] MobileNet-Vl Mixed /  8 Intel Stratix 10 No 156 0.32 3536 3109 Dense
This work MobileNet-Vl 4 / 4 Intel Stratix 10 No 133 0.37 3013 2648 96%

TABLE IV
C o m p a r iso n  w it h  o th er  o b je c t  d e t e c t io n  a c c e l e r a t o r s  b a s e d  

ON V O C  d a t a se t  w it h  b a tc h  siz e  =  1

Models W/A Frame
rate GOPS DRAM mAP

(%)
Customized 

MobileNet-SSD [30] 3/4 18 fps - Yes 66.40

YOLO-V2 [31] 1/6 60.72 fps 1043 Yes 64.16
Lite-YOLO-V2 [32] 1/1 40.81 fps - Yes 67.60
M obileNet-Vl SSD  

(This work) 4/4 1880 fits 3985 No 54.99

2) Object Detection: We use the compressed MobileNet- 
V l CNN model from Table I as the feature extractor for 
object detection. Table II summarizes the algorithm and 
hardware results with 300x300 input image size. Similar to 
prior works [30]—[32], we processed the back-end single­
shot detector [33] and non-maximum suppression modules 
through software simulation and did not implement them in 
FPGA hardware. The pre-trained 4-bit sparse MobileNet-Vl 
for ImageNet was fine-tuned by re-training with the Pascal 
VOC 2007+2012 dataset and tested with VOC 2007. With the 
focus of high-throughput hardware design, we achieved 3.99 
TOPS with the cost o f ~10%  mAP degradation (compared 
with the full precision, unpruned baseline model).

3) Comparison to Prior Works: We compared the hard­
ware performance with previous fully on-chip FPGA-based 
CNN accelerators with regards to operating frequency, latency, 
throughput, etc. Unlike the prior works that used on-chip 
memory to store the weights, our design fully embedded the 
CNN parameters onto the logic units, which enables us to 
apply the element-wise pruning without any sparsity index. 
Therefore, compared with the previous memory-based 8-bit 
[12], [28] or 16-bit [29] implementations, our design with 
4-bit precision and high sparsity w ill have a large potential 
for energy-efficiency improvements. Table III shows the com­

parison results between our design and other recent works. 
TuRF [29] performed the computation in a layer-by-layer 
fashion, where the next layer has to wait until the current 
layer’s computation completes. In contrast, with the fully- 
pipelined and fully-parallel design, our FixyFPGA achieved 
3.01 TOPS, which is 2 .34x higher than TuRF [29] along 
with 2 .37x latency improvements. Similar to TuRF [29], 
Tomato [12] stores the power-of-two (POT) weights inside 
the on-chip memory, streams into the compute engines in 
a pipelined manner then keeps rolling the output channel 
to perform the BN multiplications with the given factor. To 
support such computation, the MAC units should be time- 
multiplexed. Also, restricting the weights to POT values can 
lead to considerable accuracy loss in general, due to the rigid 
resolution o f POT quantization [34]. Our proposed design 
achieved similar hardware performance in a fully-parallel man­
ner, which could be more beneficial to the practical scenarios 
with high throughput and low-power demands.

Table IV shows the object detection improvements that 
achieved by our proposed FixyFPGA accelerator. Compared 
to a prior MobileNet-based VOC object detection acceler­
ator [30], our design achieved over lOOx frame rate im­
provement without using any DRAM. Compared to YOLO- 
based accelerators [31], [32], our proposed scheme improved 
the throughput by 3.82 x . In addition to the highly-efificient 
hardware design, our deployed model is also highly sparse, 
and such high sparsity w ill improve the power efficiency even 
further. On the other hand, it is true that such aggressive 
compression scheme will improve the hardware efficiency with 
the cost o f accuracy degradation. The latest version of Intel 
Stratix-10 10M FPGA exhibits 2 x  more ALMs (3.46M) and 
DSPs (3,456) than the version that we currently used. Using 
this larger FPGA platform, the proposed FixyFPGA scheme 
will be able to fit ~ 3  x more parameters, which will improve 
the ImageNet inference accuracy by ~10%  (Fig. 3).
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V. C o n c l u s i o n

In this paper, we presented FixyFPGA, a fully-parallel and 
fully pipelined FPGA-based CNN accelerator design with the 
objective o f compact and high-throughput hardware accelera­
tion. For MobileNet and VGG models for ImageNet, Tinylm­
ageNet, CIFAR-10, and Pascal VOC datasets, we performed 
low-precision quantization down to 4-bit, together with high 
sparsity o f >95%, towards mapping the entire CNN models 
onto the target FPGA device and eliminating DRAM access. 
We achieved 3.01 TOPS for ImageNet classification with a 
low end-to-end latency of 0.37ms, and 3.99 TOPS for Pascal 
VOC object detection. Compared to prior works, our design 
achieved 2 .34x  higher GOPS on ImageNet classification and 
3.82 x higher frames per second on Pascal VOC object detec­
tion.
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