
Leveraging Noise and Aggressive Quantization of
In-Memory Computing for Robust DNN Hardware

Against Adversarial Input and Weight Attacks
Sai Kiran Cherupally1, Adnan Siraj Rakin1, Shihui Yin1, Mingoo Seok2, Deliang Fan1, Jae-sun Seo1

1Arizona State University, 2Columbia University

Abstract—In-memory computing (IMC) substantially improves
the energy efficiency of deep neural network (DNNs) hardware by
activating many rows together and performing analog computing.
The noisy analog IMC induces some amount of accuracy drop
in hardware acceleration, which is generally considered as a
negative effect. However, in this work, we discover that such
hardware intrinsic noise can, on the contrary, play a positive
role in enhancing adversarial robustness. To achieve that, we
propose a new DNN training scheme that integrates measured
IMC hardware noise and aggressive partial sum quantization
at the IMC crossbar. We show that this effectively improves the
robustness of IMC DNN hardware against both adversarial input
and weight attacks. Against black-box adversarial input attacks
and bit-flip weight attacks, DNN robustness has improved by up
to 10.5% (CIFAR-10 accuracy) and 33.6% (number of bit-flips),
respectively, compared to conventional DNNs.

Index Terms—in-memory computing, adversarial attack, ad-
versarial robustness, noise injection, low-precision quantization

I. INTRODUCTION

Deep neural networks (DNNs) have shown substantial
success for many practical applications, e.g., image/speech
recognition, autonomous driving, etc., achieving high accuracy
aided by deep and complex network structures. While many
works investigated DNN model size reduction [1], DNNs still
require a very large number of computation and memory
accesses. As a means to address such computation/memory
challenges, in-memory computing has been proposed and has
shown promising energy-efficiency numbers [2]–[6]. While
IMC substantially improves the energy-efficiency of multiply-
and-accumulate (MAC) operations in DNNs, the noise mar-
gin is lower due to the analog nature of computing and
noise/variability, which led to a certain amount of accuracy
degradation in the demonstrated IMC silicon works.

On the other hand, the vulnerability of DNNs against adver-
sarial attacks has been an important issue, where adversaries
can manipulate the inputs/weights of DNNs by small amounts
and significantly lower the inference accuracy. Many prior
works have shown that the performance of DNNs can be
severely degraded by modifying the inputs of DNNs by a small
amount using adversarial algorithms such as PGD [7] and
FGSM [8]. These algorithms iteratively analyze the gradients
at different locations in the network topology and use DNN
optimization functions to identify the suitable magnitude of

change in the input pixels, so that the DNN classifies the
input incorrectly. A few early defense works claimed to be
robust against attacks such as PGD, but it was later reported
that the robustness was obtained mainly due to the presence
of obfuscated gradients [9], e.g., in quantized DNNs. The
issue of obfuscated gradients was circumvented to an extent
using the backward-pass differentiable approximation (BPDA)
technique. Hence, DNNs are vulnerable to adversarial input
attacks, even if they are quantized to low-precision.

In addition, adversarial weight attacks have been reported
[10]–[12], where the attacker iteratively identifies the most
vulnerable bits of the weights in all DNN layers that lead to
large accuracy loss. In [10], the accuracy of 8-bit DNNs was
reduced to below a random guess by only flipping tens of bits
in the entire model. These attacks make the DNN hardware
that stores DNN weights and biases vulnerable.

Several recent works have proposed noise-injection tech-
niques [13]–[16] to defend against adversarial attacks. Para-
metric noise injection [13] involves trainable Gaussian noise
into the activations or weights of each DNN layer to improve
the adversarial robustness. However, most prior works have
employed synthetic or Gaussian noise to perturb the acti-
vations/weights of DNNs to improve robustness. Although
works such as [17] have used specially designed software
modules that emulate different degrees of IMC hardware noise,
involving actual IMC hardware noise has not been performed.
Furthermore, the effect of partial sum quantization at the IMC
crossbar has not been investigated for adversarial robustness.

In this work, we investigate employing the actual measured
hardware noise from IMC prototype chips [3], [5] towards
enhancing the robustness of DNNs against both adversarial
input attacks and weight attacks. Using the input-splitting
technique [18], [19], we also evaluate the effect of aggressively
quantizing the partial sums obtained from IMC crossbars
on the adversarial robustness. For adversarial input attacks,
we performed adversarial training [7] with a continually
differentiable CELU activation function [16], [20] for DNNs
with 1-bit, 2-bit, and 4-bit activation/weight precision values.
We mapped all MAC operations in convolution and fully-
connected layers of such pre-trained DNN models with IMC
hardware designs for inference, and also investigated injecting
IMC hardware noise during the DNN training process and
evaluated the adversarial robustness. For adversarial weight
attacks, we evaluate the effect of IMC hardware noise and

978-1-6654-3274-0/21/$31.00 ©2021 IEEE 559

20
21

 5
8t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
78

-1
-6

65
4-

32
74

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

18
07

4.
20

21
.9

58
62

33

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2022 at 21:37:45 UTC from IEEE Xplore. Restrictions apply.

aggressive partial sum quantization via input-splitting towards
the robustness against bit-flip attacks (BFA) [10], [11].

We achieve up to 10% improvement in the classification
accuracy under black-box adversarial attack when IMC hard-
ware noise and adversarial examples were used to train and
test DNNs against adversarial inputs. We also show that intro-
ducing IMC noise into a conventionally trained DNN during
inference leads to no degradation or even 2% improvement in
adversarial accuracy. Furthermore, the input-split DNNs with
aggressive partial sum quantization improved the robustness
against BFA by up to 30% compared to the conventionally
trained DNNs. The main contributions of this work are:
• Black-box adversarial attacks with IMC noise injection

during training and testing of DNNs.
• Robustness improvement by injecting noise from actual

IMC prototype chips during DNN training.
• Robustness improvement by using CELU activation func-

tion and IMC noise for DNN inference.
• Robustness improvement by using input-splitting and

aggressive partial sum quantization.

II. BACKGROUND AND RELATED WORKS

A. SRAM-based In-Memory Computing Hardware Designs

In IMC systems, DNN weights are stored in a crossbar
structure, and analog computation is performed typically by
applying activations as the voltage from the row side and
accumulating the bitwise multiplication result via analog volt-
age/current on the column side. The analog voltage/current
values are quantized into digital values by analog-to-digital
converters (ADCs) at the crossbar periphery. This way, vector-
matrix multiplication of activation vectors and the stored
weight matrices can be computed in a highly parallel manner
without reading out the weights.

Both SRAM based IMC [2]–[6] and non-volatile memory
(NVM) based IMC [21] have been presented in the literature.
While NVM devices have density advantages compared to
SRAMs, the availability of embedded NVMs in scaled CMOS
technologies is limited, and peripheral circuits such as ADCs
often dominate the area. Also, several device non-idealities
such as low on/off ratio, endurance, relaxation, etc., pose
challenges for robust NVM IMC and large-scale integration.
On the other hand, SRAM has a very high on/off ratio and the
SRAM IMC scheme can be implemented in any latest CMOS
technology. To that end, we focus on SRAM IMC designs in
this paper. SRAM IMC schemes can be broadly categorized
into resistive and capacitive IMC. Resistive IMC uses the
resistive pull-down/pull-up of transistors in the SRAM bit-cell
[2]–[4], while capacitive IMC employs additional capacitors
in the bit-cell to compute MAC operations via capacitive
coupling [5] or charge sharing [6].

Fig. 1 shows the design and operation of representative
resistive SRAM IMC called “XNOR-SRAM” [3] and capaci-
tive SRAM IMC termed “C3SRAM” [5] designs. In XNOR-
SRAM, the binary multiplication (XNOR) between activations
driving the rows and weights stored in 6T SRAM is imple-
mented by the complimentary pull-up/pull-down circuits of

Fig. 1. Design and operation of SRAM-based resistive IMC and capacitive
IMC. Adapted from [3], [5].

four additional transistors. In C3SRAM, an additional metal-
oxide-metal (MOM) capacitor is introduced per bit-cell to
perform MAC operations via capacitive coupling. For resistive
and capacitive IMC designs, each bit-cell’s bitwise multipli-
cation result is accumulated onto the analog bit-line voltage
by forming a resistive and a capacitive divider, respectively.

B. Adversarial Input and Weight Attacks

The security analysis of DNNs is dominated by the ad-
versarial input noise attack popularly known as adversarial
examples attack [7]–[9]. Adversarial input attacks can be
classified into two major categories: white-box and black-box
attacks. In a white-box attack (e.g., PGD [7], FGSM [8]), the
adversary has complete knowledge about DNN inputs, archi-
tectures and gradients. In contrast, the black-box attack (e.g.,
Substitute [22]) gives the adversary no access to the DNN
information; only leveraging input image and output score of
the DNN. Here we briefly introduce the adversarial example
generation techniques we used to evaluate our method:
PGD Attack. Projected gradient descent (PGD) [7] is a
popular white-box adversarial input attack. It is one of the
strongest L∞ norm based attack that iteratively generates
malicious samples x̂ from clean (i.e., no noise) samples x
with label y. At each iteration t, PGD follows the update rule:

x̂t+1 = x̂t + α · sign
(
∇xL̂(f(x̂t;θ), y)

)
, (1)

where f(;) is the DNN inference function parameterized by θ,
α is the step size, and x̂ ∈ [0, 1] for normalized input. PGD
attack [7] generates universal and strong adversary among the
first order approach (i.e., attack relying on only first order
gradient information) by adding the gradient sign of the loss
function L with regard to the input x.
Substitute Model Attack. Prior works [9] have demonstrated
that non-linear function of DNNs causes gradient obfuscation
(i.e., attacker fails to approximate the true gradient), which
render the white-box attacks to perform poorly. One possible
solution to bypass this obfuscation issue is to evaluate defenses
against black-box attacks (e.g., substitute model [22]) that do
not require any gradient information. The adversary can train
a substitute model known as source from the target model
to exactly mimic the functionality of the target model [22].

560

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2022 at 21:37:45 UTC from IEEE Xplore. Restrictions apply.

Subsequently, an attacker can use the source model to generate
a strong adversary using any white-box attack (e.g., PGD) and
transfer the adversary to the target model. This attack is also
illustrated in Fig. 2.

In a related track, the vulnerability of DNNs against ad-
versarial weight attacks [10], [11], [23] have been actively
investigated. Among them, bit flip attack (BFA) [10], [11] has
proven to be the most effective, which demonstrated accuracy
collapse of ResNet-18 for ImageNet from 69% to 0.1% by
modifying only 13 bits out of 88 million bits.
Bit Flip Attack (BFA). BFA integrates progressive search and
gradient ranking to identify the vulnerable bits in quantized
DNNs. For each attack iteration, BFA follows two steps: i)
In-layer search: The attacker picks each layer of the DNN and
flips top nb gradient bits (i.e., nb = 1 typically) to record the
inference loss. After evaluating the loss, the attacker restores
the original bit state [10]. ii) Cross-layer search: In this step,
the attacker picks the layer with maximum inference loss
evaluated at the last step and performs the bit-flip at that layer.
In addition, deep hammer attack [11] has demonstrated that
the vulnerable bits identified by BFA can be flipped in real
hardware through popular fault injection techniques such as
row-hammer [24]. The key advantage of BFA is that quantized
networks were attacked successfully (i.e., lowering accuracy to
random guess), whereas other works [23] showed unsuccessful
weight attack for quantized DNNs.

C. Adversarial Defense with Noise Injection and Quantization

A common approach to address the challenge of adversarial
examples is to train DNNs using adversarial samples, which is
popularly known as Adversarial Training [7]. This optimizes
the network with both clean and malicious samples:

argmin
θ

{
argmax

x′
L
(
f(x̂;θ), y

)}
(2)

Here, the inner maximization generates adversarial samples
x̂ by maximizing the loss with regard to label y and the
outer minimization trains the DNN parameters θ using the
adversarial samples forming a min-max optimization problem.

Several works further improved adversarial training by
injecting noise at both training and inference phases [13],
[25]. Injecting noise during training works as a regularizer
to prevent DNNs from over-fitting [13], [26] and also aids
optimization between clean accuracy (i.e., no attack) and
perturbed accuracy (i.e., under attack) [13]. However, injecting
noise during adversarial training causes gradient obfuscation.
Several works, instead, have quantized the DNN weights [27]
during training to leverage gradient obfuscation only as a
defense tool. On the other hand, aggressive model quantization
(i.e., binary weights) [12] is also proven to be largely effective
in resisting adversarial weight attack (e.g., BFA), but still
cannot completely defend it.

III. PROPOSED ADVERSARIAL ROBUSTNESS SCHEMES
USING IMC-BASED NOISE AND QUANTIZATION

In this section, we present the proposed schemes to enhance
the robustness of DNNs against adversarial attacks, exploiting

Fig. 2. Illustration of the black-box PGD attack method.

the inherent noise/variability of IMC hardware and evaluating
partial sum quantization at the IMC crossbar granularity. Our
framework incorporates the following aspects:
• PGD based adversarial training [7] (Section II.C) with

smooth CELU activation function [20]
• In-training activation and weight quantization [28] for

low-precision DNNs (e.g. 1-bit, 2-bit, 4-bit)
• Involving IMC noise for DNN inference and training

based on actual IMC prototype chip measurements
• Partial sum quantization (e.g. 1-bit, 2-bit, ∼3-bit) consid-

ering IMC crossbar size, ADC, and input-splitting [18]

A. Adversarial Training with CELU

Several adversarial attacks require the gradients of DNNs
to generate adversarial images. Therefore, various functions
used in DNNs must be continuously differentiable. While
ReLU is one of the commonly used activation functions, the
gradient of ReLU has an abrupt change at input of zero.
Such discontinuity lowers the quality of gradients, and weaker
adversarial examples would be used for adversarial training
of DNNs. To make the gradient continuously differentiable,
we employ the CELU activation function [16], [20], which is
defined as:

CELU(x, α) =

{
x, if x ≥ 0

α(exp(xα)− 1) otherwise
(3)

B. Training DNNs with IMC Quantization and Noise

To train DNNs for inference with very low precision such
as 1-bit, 2-bit, and 4-bit, in-training quantization [28] becomes
a necessity. In IMC hardware targeting low-precision DNN
inference, each IMC crossbar performs MAC operations to
obtain the partial sum for a fixed number of inputs (e.g. 256-
input partial sum), and the partial sums are quantized to a
limited number of ADC levels. Due to the hardware noise and
variability (e.g. supply noise, mismatch of transistors, wires,
and capacitors), the partial sums that have the same MAC
value could result in different ADC outputs.

We employ such hardware noise obtained from IMC proto-
type chip measurements in two ways. First, we only involve
noise for DNN inference for pre-trained 1-bit, 2-bit, and 4-bit
DNNs. Second, we inject IMC hardware noise during DNN

561

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2022 at 21:37:45 UTC from IEEE Xplore. Restrictions apply.

training at the partial sum level (as measured from the IMC
prototype chip), so that DNNs become aware of the noisy
quantization of partial sums and adapt the weights accordingly.

C. Aggressive Quantization of Partial Sums in IMC Crossbars

IMC crossbar supports a fixed number of inputs and weights
per dot-product computation and generates intermediate ana-
log partial sums. These partial sums are digitized and accumu-
lated outside the IMC crossbar to represent the final output of
the layer, also known as a full sum. IMC hardware typically
uses multi-bit ADCs to digitize these partial sums performed
by a column of the IMC SRAM array, and additional area and
energy costs need to be spent to accommodate such ADCs.

The input-splitting scheme has been presented in [18], [19]
to address this issue of large ADCs required in IMC hard-
ware. The Input-splitting algorithm divides the convolution
and fully-connected layers into groups, where each group
has the same number of inputs as the IMC crossbar (e.g.,
256) and computes partial sums. During the DNN training
process, the partial sums are aggressively quantized to 1-bit
or 2-bit values, and the DNNs are trained to adapt to such
computations. This helps reducing the high-resolution ADCs
to single comparators or 2-bit ADCs, but we posit that the
small adversarial perturbations on inputs or weights of DNNs
could be masked by such aggressive partial sum quantization,
improving the adversarial robustness. Table I summarizes the
thresholds used in the aggressive partial sum quantization
scheme in this work.

D. Adversarial Input Attack: Black-box Attack and Evaluation

To circumvent the issue of potential gradient obfuscation
[9] present in our low-precision DNNs with IMC noise and
partial sum quantization, we used the black-box adversarial
attack as illustrated in Fig. 2.

We first pre-train the target DNNs with low-precision and
IMC noise (e.g. with gradient obfuscation), and we obtain
the predicted labels for the clean images using the pre-
trained target model. Then, we train a full-precision black-
box DNN (e.g. without gradient obfuscation) using the same
input images and corresponding white-box adversarial images
obtained from the target model. This black-box model is
trained to 100% accuracy with respect to the predicted labels
of the target model, and the PGD adversarial attack is applied.
Then, the adversarial images generated by the black-box model
attack are used to evaluate the adversarial accuracy of the
target DNNs with low-precision and IMC noise.

E. Adversarial Weight Attack: Bit-Flip Attack and Evaluation

We adopt the BFA attack delineated in [10] and performed
on DNNs implemented with IMC hardware. The un-targeted
BFA attack uses progressive search and gradient ranking
to identify vulnerable bits that degrade test accuracy. The
objective of the attacker is to lower the overall test accuracy
by maximizing the loss function:

max L = max
{Ŵ}

EXL(f(x, Ŵ); t), (4)

TABLE I
MAC THRESHOLDS AND OUTPUT LEVELS FOR AGGRESSIVE PARTIAL SUM

QUANTIZATION SCHEMES

ADC Precision MAC Thresholds MAC Output Levels
1 bit 0 -1, +1
2 bits -24, 0, +24 -36, -12, +12, +36

3.5 bits [-54,+54], step = 12 [-60,+60], step = 12

where Ŵ is the weight matrix after flipping the target bits, and
f(.) is the DNN inference function with loss L. To conduct
the attack, we assume the attacker has access to a sample batch
of data x and corresponding true label t.

To progressively search for vulnerable bits, at each attack
iteration, we flip the top nb ranked bits (e.g., typically nb=1)
based on the gradient of every bit in each of the P layers of
the DNN. Similar to [10], we only flip the bits in the direction
of its gradient sign. After flipping the bits at a given layer, we
evaluate the loss L, and restore the flipped bits to the original
state. This way, we generate a loss profile set of {L1,L2, · ·
·,LP }, and identify the layer with maximum loss:

j = argmax
l

{Ll}Pl=1 (5)

Finally, the attacker enters layer j to perform the bit-flip of
the current iteration. The attack iterates until DNN accuracy
degrades to a random guess (i.e., 10% for CIFAR-10).

IV. EXPERIMENT

A. Experiment Setup

Against adversarial attacks, we analyzed both conventional
DNN training and adversarial training. We primarily used the
ResNet-18 DNN as the target model with 1-bit, 2-bit, and 4-bit
precision in activations and weights. We performed adversarial
input and weight attacks, where we used the PGD algorithm
[7] as the main adversarial input attack with ε=0.03, α=2/255,
and iterations=10, and the BFA [10] as the main adversarial
weight attack. All DNNs were trained using either the Adam
or the SGD optimization algorithm in the PyTorch framework.

Starting from the in-training quantization scheme [28], we
made further modifications in the DNN training and inference
process to integrate IMC hardware noise injection and input-
splitting (1-bit and 2-bit) quantization of partial sums. We
performed adversarial training of DNNs by using both the
clean images and corresponding adversarial images obtained
using the white-box PGD attack.

We also trained DNNs with 1-bit and 2-bit partial sum
quantization by expanding the previous input-splitting work
[18]. The ADC comparator thresholds and levels used for 3.5-
bit (11-level) [3], 2-bit, and 1-bit partial sum quantization
are shown in Table I. We experimented with different fixed
threshold values for DNNs with partial sum quantization, and
then tuned the IMC prototype chip [3] using the best threshold
values to extract the IMC hardware noise data.

B. Adversarial Input Attack and Defense Results

Table II shows the clean and black-box adversarial accu-
racies for binary ResNet-18 trained with IMC noise char-
acteristics measured at different supply voltages. Note that

562

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2022 at 21:37:45 UTC from IEEE Xplore. Restrictions apply.

TABLE II
BLACK-BOX PGD ATTACK ACCURACIES FOR BINARY RESNET-18 DNN

WITH NOISE-AWARE TRAINING USING DIFFERENT NOISE MODELS

Noise Model
(Training and

Inference)

Relative
Noise

Intensity

No Adversarial
Training

PGD Adversarial
Training

No
Attack

BB
Attack

No
Attack

BB
Attack

None 1 89.86% 24.20% 86.33% 34.54%
XNOR-SRAM

0.6V [3] 5.99 88.25% 26.97% 86.21% 36.34%

XNOR-SRAM
0.8V [3] 12.92 88.91% 29.20% 85.72% 37.11%

XNOR-SRAM
1.0V [3] 18.63 87.19% 30.12% 83.46% 38.63%

C3SRAM [5] 4.12 88.16% 27.29% 86.03% 35.21%
PNI Noise [13] 1.13 90.12% 26.38% 86.22% 36.21%

(a) Conventional training (b) Adversarial training

Fig. 3. Black-box adversarial accuracy with IMC-noise-aware training based
on IMC measurements at 0.6V [3]. The average results across 5 runs of PGD
attacks are shown for (a) DNNs trained with only clean images and (b) DNNs
trained with clean and adversarial images (i.e., adversarial training).

the noise of XNOR-SRAM IMC chip increased with higher
supply voltages [3], due to larger IR drop on the bit-lines.
With a higher amount of IMC noise, the clean accuracy (no
attack) slightly degrades, but the adversarial accuracy (black-
box attack) notably improved, since injecting a higher amount
of noise during DNN training led to a stronger generalization.

We evaluated the effect of adversarial training and IMC-
noise-aware training on black-box adversarial accuracies for
ResNet-18 DNNs with 1-bit, 2-bit, and 4-bit activation/weight
precision, as shown in Fig. 3. It can be seen that adding
IMC noise to inference and training progressively increases
the PGD attack accuracy. In comparison to the baseline noise-
less model, the accuracy is improved by up to ∼10% by
adding measured IMC noise from [3] to the DNN training
and inference process. Compared to the conventionally trained
DNNs in Fig. 3(a), the DNNs with adversarial training in
Fig. 3(b) shows largely improved robustness across all DNNs.
The noisy partial sum quantization of IMC noise acts as an
inherent regularizer and teaches the DNN to be more tolerant
to fluctuations in the partial sum values. Therefore, with IMC-
noise-aware training, the DNN becomes more robust against
adversarial attacks that perturb the input signal by a small
amount.

Considering the partial sum quantization (PSQ) for IMC in-
ference (e.g. 3.5-bit in [3], we experimented the corresponding

Fig. 4. The effect of ideal vs. noisy partial sum quantization (PSQ) during
adversarial training on black-box adversarial accuracy for ResNet-18 DNNs.

3.5-bit PSQ during the adversarial training of DNNs. In Fig. 4,
the adversarial accuracy results of ideal 3.5-bit PSQ and IMC
chip measurement based noisy 3.5-bit PSQ during adversarial
training are shown for 1-bit, 2-bit, and 4-bit ResNet-18 DNNs.
It can be seen that adding IMC noise during training gives
the best robustness accuracy results. With IMC-noise-aware
training, the black-box adversarial accuracy is improved by
up to 7% on average across 5 runs of PGD attacks, compared
to adversarial training without IMC noise.

We evaluate the effect of aggressive partial sum quantization
(i.e., input splitting) in Fig. 5, where the black-box attack
accuracies are shown for ResNet-18 DNNs without adversarial
training. During training of the same DNNs, we aggressively
quantized the 256-input partial sums (fitting the IMC crossbar
size) to binary values, which resulted in ∼3% clean accuracy
degradation. Aided by input-split DNN training and IMC hard-
ware noise, however, the adversarial attack accuracy improved
by up to 4.77%, 4.28%, and 5.74% for 1-bit, 2-bit, and 4-bit
ResNet-18 DNNs, respectively.

C. Adversarial Weight Attack and Defense Results

We performed BFA for 1-bit, 2-bit, and 4-bit ResNet DNNs
for CIFAR-10, and the results are shown in Fig. 6. Compared
to the baseline BFA (no noise), when we applied the XNOR-
SRAM IMC noise results from 3.5-bit ADC [3], the DNNs
became more vulnerable to BFA (requiring fewer bits to
reach∼10% CIFAR-10 accuracy). However, the input-splitting

Fig. 5. The effect of input-splitting and IMC noise on black-box adversarial
accuracy is shown for ResNet-18 DNNs with 1-bit, 2-bit, and 4-bit weights
and activations. The accuracies are shown for DNNs that are not adversarially
trained, and for XNOR-SRAM IMC noise measured at 0.6V [3].

563

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2022 at 21:37:45 UTC from IEEE Xplore. Restrictions apply.

(a) 1-bit ResNet-18 (b) 2-bit ResNet-18 (c) 4-bit ResNet-18

Fig. 6. BFA performance of different ResNets with no noise, IMC noise
measured using 3.5-bit ADC (“IMC”), binary input-split DNN model (“Bin.
IS”), and measured binary input-split DNN with IMC noise (“Bin. IS IMC”).

TABLE III
COMPARISON TO PRIOR WORKS

Parameter [13] [17] This Work

IMC type N/A NVM
simulation

SRAM chip [3], [5]
measurements

Array size N/A 64x64 256x64

Quantization Activations
Weights

Activation
only

Activations
Weights

Adversarial
Training Yes No Yes

White-box
Adv. Accuracy
Improvement

N/A 2.16% 2.77%

Black-box
Adv. Accuracy
Improvement

9.83% 7.80% 10.52%

scheme with partial sum binarization required BFA to flip
33.57% more bits to reach random guess, showing enhanced
robustness against BFA. When we used IMC chip measure-
ment with partial sum binarization with 1-bit ADC (single
comparator), a similar level of robustness was maintained
against BFA, overall requiring >30% more bit-flips compared
to the baseline BFA. Also, it should be noted that binary DNNs
require ∼6X and ∼50X more bit-flips, compared to 2-bit and
4-bit DNNs, respectively (Fig. 6).

D. Comparison to Prior Works

In Table III, the comparison to two relevant prior works
is shown. Compared to PNI [13], this work can incorporate
arbitrary IMC hardware noise and achieves better black-box
adversarial accuracy improvement. [17] evaluated NVM IMC
for different array sizes, but only used ideal simulation models
and is not based on actual IMC silicon results. By integrat-
ing actual IMC prototype chip results [3], [5] in the DNN
training/inference process, our scheme shows better adversarial
robustness. In addition, ours is the only work that investigated
both adversarial input attacks and weight attacks.

V. CONCLUSION

In this work, we reported a new DNN training scheme
that integrates measured IMC noise and aggressive partial
sum quantization at the IMC crossbar. We show that the
proposed scheme effectively improves the robustness of IMC
DNN hardware against adversarial input and weight attacks.
For PGD input attacks, black-box adversarial accuracy was
improved by up to 10%. Against the bit-flip weight attacks,
our proposed scheme requires >30% additional bit-flips.

ACKNOWLEDGMENT

This work is partially supported by NSF grants 1652866,
1715443, 2005209, and 2019548, and C-BRIC, one of six
centers in JUMP, a SRC program sponsored by DARPA.

REFERENCES

[1] L. Deng et al., “Model Compression and Hardware Acceleration for
Neural Networks: A Comprehensive Survey,” Proc. of the IEEE, vol.
108, no. 4, pp. 485–532, 2020.

[2] X. Si et al., “A Twin-8T SRAM Computation-in-Memory Unit-Macro
for Multibit CNN-Based AI Edge Processors,” IEEE JSSC, vol. 55, 2020.

[3] S. Yin et al., “XNOR-SRAM: In-Memory Computing SRAM Macro for
Binary/Ternary Deep Neural Networks,” IEEE JSSC, vol. 55, no. 6, pp.
1733–1743, 2020.

[4] Q. Dong et al., “A 351TOPS/W and 372.4GOPS Compute-in-Memory
SRAM Macro in 7nm FinFET CMOS for Machine-Learning Applica-
tions,” in IEEE ISSCC, 2020.

[5] Z. Jiang et al., “C3SRAM: An In-Memory-Computing SRAM Macro
Based on Robust Capacitive Coupling Computing Mechanism,” IEEE
JSSC, vol. 55, no. 7, pp. 1888–1897, 2020.

[6] H. Valavi et al., “A 64-Tile 2.4-Mb In-Memory-Computing CNN
Accelerator Employing Charge-Domain Compute,” IEEE JSSC, vol. 54,
no. 6, pp. 1789–1799, 2019.

[7] A. Madry et al., “Towards Deep Learning Models Resistant to Adver-
sarial Attacks,” in ICLR, 2018.

[8] I. J. Goodfellow et al., “Explaining and Harnessing Adversarial Exam-
ples,” arXiv preprint 1412.6572, 2014.

[9] A. Athalye et al., “Obfuscated Gradients Give a False Sense of Security:
Circumventing Defenses to Adversarial Examples,” ICML, 2018.

[10] A. S. Rakin et al., “Bit-Flip Attack: Crushing Neural Network with
Progressive Bit Search,” in IEEE ICCV, 2019, pp. 1211–1220.

[11] F. Yao et al., “Deephammer: Depleting the intelligence of deep neural
networksthrough targeted chain of bit flips,” in USENIX Security Sym-
posium, 2020.

[12] Z. He et al., “Defending and Harnessing the Bit-Flip based Adversarial
Weight Attack,” in IEEE CVPR, 2020.

[13] Z. He et al., “Parametric noise injection: Trainable randomness to
improve deep neural network robustness against adversarial attack,” in
IEEE CVPR, 2019.

[14] X. Liu et al., “Towards Robust Neural Networks via Random Self-
ensemble,” arXiv preprint 1712.00673, 2017.

[15] A. Jeddi et al., “Learn2Perturb: an End-to-end Feature Perturbation
Learning to Improve Adversarial Robustness,” in IEEE CVPR, 2020.

[16] C. Xie et al., “Smooth Adversarial Training,” arXiv:2006.14536, 2020.
[17] D. Roy et al., “Robustness Hidden in Plain Sight: Can Analog Comput-

ing Defend Against Adversarial Attacks?” arXiv:2008.1201, 2020.
[18] Y. Kim et al., “Input-Splitting of Large Neural Networks for Power-

Efficient Accelerator with Resistive Crossbar Memory Array,” in
ACM/IEEE ISLPED, 2018.

[19] S. Yin et al., “Monolithically Integrated RRAM and CMOS based In-
Memory Computing Optimizations for Efficient Deep Learning,” IEEE
Micro, vol. 39, no. 6, pp. 54–63, 2019.

[20] J. T. Barron, “Continuously Differentiable Exponential Linear Units,”
arXiv preprint 1704.07483, 2017.

[21] C. Xue et al., “A 22nm 2Mb ReRAM Compute-in-Memory Macro
with 121-28TOPS/W for Multibit MAC Computing for Tiny AI Edge
Devices,” in IEEE ISSCC, 2020.

[22] N. Papernot et al., “Practical Black-Box Attacks Against Machine
Learning,” in ACM Asia Conf. on Computer and Comm. Security, 2017.

[23] S. Hong et al., “Terminal Brain Damage: Exposing the Graceless
Degradation in Deep Neural Networks Under Hardware Fault Attacks,”
in USENIX Security Symposium, 2019, pp. 497–514.

[24] Y. Kim et al., “Flipping Bits in Memory without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” in ACM ISCA, 2014.

[25] M. Lecuyer et al., “Certified Robustness to Adversarial Examples with
Differential Privacy,” in IEEE Symp. on Security and Privacy, 2019.

[26] N. Srivastava et al., “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting,” JMLR, vol. 15, pp. 1929–1958, 2014.

[27] J. Lin et al., “Defensive Quantization: When Efficiency Meets Robust-
ness,” in ICLR, 2019.

[28] I. Hubara et al., “Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations,” JMLR, 2017.

564

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2022 at 21:37:45 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

