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Abstract—Convolutional neural network (CNN) based object
detection has achieved very high accuracy, e.g. single-shot multi-
box detectors (SSD) can efficiently detect and localize various
objects in an input image. However, they require a high amount
of computation and memory storage, which makes it difficult
to perform efficient inference on resource-constrained hardware
devices such as drones or unmanned aerial vehicles (UAVs).
Drone/UAV detection is an important task for applications includ-
ing surveillance, defense, and multi-drone self-localization and
formation control. In this paper, we designed and co-optimized
algorithm and hardware for energy-efficient drone detection
on resource-constrained FPGA devices. We trained SSD object
detection algorithm with a custom drone dataset. For inference,
we employed low-precision quantization and adapted the width of
the SSD CNN model. To improve throughput, we use dual-data
rate operations for DSPs to effectively double the throughput
with limited DSP counts. For different SSD algorithm models,
we analyze accuracy or mean average precision (mAP) and
evaluate the corresponding FPGA hardware utilization, DRAM
communication, throughput optimization. Our proposed design
achieves a high mAP of 88.42% on the multi-drone dataset, with
a high energy-efficiency of 79 GOPS/W and throughput of 158
GOPS using Xilinx Zynq ZU3EG FPGA device on the Open
Vision Computer version 3 (OVC3) platform. Our design achieves
2.7X higher energy efficiency than prior works using the same
FPGA device, at a low-power consumption of 1.98 W.

Index Terms—FPGA accelerator, convolutional neural net-
work, object detection, algorithm-hardware co-design.

I. INTRODUCTION

Convolutional neural networks (CNNs) have been very suc-
cessful for many computer vision applications including image
recognition, object detection and localization. Object detection
is a core computer vision task that is critical for autonomous
driving, smart robotics, unmanned aerial vehicles (UAVs), etc.
Particular to UAVs, drone detection is an important task for
applications including surveillance, defense, and multi-drone
self-localization and formation control. While the state-of-
the-art CNNs for object detection achieve very high mean
average precision (mAP) for datasets such as Pascal VOC and
Microsoft COCO, they still require millions of weights and
billions of operations to obtain high mAP. On the other hand,
UAVs operating on a battery exhibits stringent power/energy
requirements, which prohibits a high degree of parallelism or a
massive amount of storage for the compute hardware on UAVs.

This work is partially supported by NSF grant 1652866, and C-BRIC, one
of six centers in JUMP, a SRC program sponsored by DARPA.

Nevertheless, close to real-time object detection operation is
required for making proper decisions for autonomous flights.

GPU is a popular hardware platform to perform object
detection, benefiting from its massively parallel processing
cores. However, due to high price and low energy efficiency,
GPU is not an ideal solution for CNN inference accelera-
tion, especially for edge devices or customized applications.
ASICs have the highest energy efficiency, but their limited
configurability can introduce a significant risk of premature
obsolescence. With AI algorithms evolving at a fast pace,
ASICs usually lag behind the cutting edge due to the long
design cycle. To that end, FPGAs have a unique advantage
with higher energy efficiency than GPUs, while offering faster
time-to-market and potentially longer life cycle than ASICs.

The Open Vision Computer (OVC) platform was designed
to support high speed, vision guided autonomous drone
flight [1]. The particular objective was to develop a system that
would be suitable for relatively small-scale flying platforms
where size, weight, power consumption and computational
performance were all important considerations. Both the soft-
ware and hardware resources are open sourced [2]. Targeting
drone detection tasks in this work, we employ the OVC
version 3 (OVC3) system that can be attached onto UAVs.
OVC3 includes a Xilinx Zynq Ultrascale+ SoC, with a quad
core ARM application processor and ZU3EG FPGA fabric.
Compared to large-scale FPGAs that have thousands of DSP
slices and hundreds of Mb of block RAM (BRAM), ZU3EG
is a resource-constrained FPGA that includes only 360 DSP
slices, 7.6 Mb BRAM, and 70,560 look-up tables (LUTs).

For the object detection algorithm, we employ the widely
used single-shot multi-box detector (SSD) [3], which uses
VGG-16 as the backbone CNN. While recently there have
been variants of the original SSD that uses compact CNN
models such as MobileNet for the backbone CNN, such
compact models inevitably sacrifice mAP. In recent algorithm
works [4], VGG-style CNNs have been revived to show
favorable accuracy-speed trade-off compared to state-of-the-
art CNNs, where the regularity of using only 3×3 convolution
kernels aids faster hardware speed. On the other hand, recent
works on adversarial bit flip attacks [5] have shown that,
large models such as VGG family show higher resilience to
such attacks, compared to compact models such as MobileNet
family. For example, [5] reported that, by flipping just two (tar-
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geted) bits in the MobileNet-V2 model, the baseline accuracy
of 72.01% severely degraded to 0.19% for ImageNet. While
VGG models have a relatively large number of parameters,
the resilience to adversarial attacks remains an advantage,
compared to more compact models.

To that end, we use the SSD model with VGG-16 as the
backbone CNN throughout this paper, while we explore differ-
ent widths of VGG-16 CNN to show the trade-off of model
size, mAP, throughput, and energy-efficiency. We trained a
hardware-friendly variant of the original SSD model using the
drone dataset presented in [6]. For low-precision quantization,
we propose UniPOT, a uniform/unified quantization algorithm
with power-of-two (POT) quantization boundary, which avoids
the use of high-precision scaling factors throughout the CNN
model and simplifies the FPGA hardware implementation.
Considering the SSD model mapping onto the resource-
constrained FPGA, we observed that using 8-bit precision
with UniPOT scheme results in better trade-off in hardware
utilization and mAP, compared to 4-bit or lower quantization
with more complex quantization schemes such as additive-
power-of-two (APOT) [7] that requires high-precision scaling
factors that consume precious hardware resources.

On the hardware side, we also performed a number of opti-
mizations with the resource-constrained Xilinx ZU3EG FPGA
device. We first maximized the utilization of parallel convolu-
tions within the available 360 DSP slices, and employed dual-
data rate DSP design to double the throughput. Subsequently,
across three SSD models with different widths, we optimized
the maximum amount of on-device activation/weight storage
by using both BRAM and LUTs.

Overall, the main contributions of this work are:
• We present an energy-efficient drone detection accelerator

on a resource-constrained FPGA, which is part of the
OVC3 platform built for autonomous drone flight.

• On the algorithm side, we trained VGG-based SSD with
multi-drone dataset, using a uniform/unified quantization
scheme (UniPOT) for efficient FPGA mapping.

• On the hardware side, we optimized the DSP/memory
utilization in resource-constrained FPGA across different
SSD models, employed dual-data rate DSP design to
double the throughput, and reduced DDR latency aided
by DMA descriptor buffer design.

• We demonstrated drone detection on Xilinx ZU3EG
FPGA, and analyzed mAP, throughput, and energy across
three SSD model widths (1.0×, 0.5×, and 0.25×).

• Our 0.5× model implementation achieves 57.8 GOPS/W
energy-efficiency, 150 GOPS throughput and 83.9% mAP,
showing favorable trade-off compared to prior works.

II. MULTI-DRONE DATASET

In this study, we evaluate the performance of our FPGA-
based object detection algorithm on the outdoor, multi-drone
dataset introduced in [6]. This dataset features an Autel X-
Star [8] and an FLA-450 flying in a cluttered, outdoor envi-
ronment. The top row of Fig. 1 shows examples of this dataset.
We follow their experiment settings and also split the data into

three sets: a training set consisting of 1, 000 frames, and a test
set with 800 frames, and a validation set with 200 frames.

We also make use of the synthetic dataset introduced in [6]
to pretrain the model before fine-tuning on the real multi-
drone dataset as it has been shown to be greatly effective [6].
The bottom row of Fig. 1 provides some examples of this
synthetic dataset in comparison with real images (top row). We
use 31, 000 synthetic images for training and 14, 000 synthetic
images for evaluation.

Fig. 1: Example of real images (top row) and synthetic images
(bottom row) under the same surrounding environment [6].

III. ALGORITHM OPTIMIZATION

A. Custom SSD Model Adaptation

In this work, we adopt SSD300-HW [9], a variant of
SSD300x300 [3] with small modifications for hardware
friendly purposes. Particularly, in layer fc6, the dilation value
is changed from 6 to 1 to focus more on small objects which
also account for the majority of objects in our target drone
dataset [6]. At the end of conv4 3 layer, a single scale factor
for the layer normalization step is shared among all channels
to avoid complexity in the hardware implementation. On top of
these modifications, we additionally remove layers conv9 1,
conv9 2, as well as other layers that take only the output of
these two layers as the input because the receptive field after
conv9 2 is 300x300, which is too large for our application.

Although the full size SSD model showed high accuracy,
since the model had a high number of operations (>60 billion
operations), we also investigated shrinking the size of model
by adopting the width multiplier [10] to the VGG CNN,
towards achieving better higher throughput. In particular, we
first trained the narrower VGG-16 model (e.g, 0.5×, 0.25×)
with ImageNet dataset, and subsequently cascaded the pre-
trained CNNs to the full size (1.0×) SSD model.

To obtain optimal prior boxes for the SSD model, we also
use k-nearest neighbor (KNN) clustering as suggested in [3].
We increase the number of clusters from 1 to 20, cluster the
dimension values of ground truth boxes in the training dataset,
and calculate corresponding clustering accuracies. This proce-
dure is stopped when the clustering accuracy starts saturated.
Based on this procedure, we select the set 13 boxes that
achieves 86.60% in clustering accuracy. We further remove
2 boxes whose dimensions are almost identical, resulting in
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11 prior boxes. Unlike the implementation in [3], we do not
flip these prior boxes because it is unnecessary.

B. Low-precision Quantization

The VGG-based SSD model with the ImageNet-trained
convolutional feature extractor has been the best off-the-
shelf SSD model, achieving >77% mAP on Pascal VOC
dataset. Such superior inference performance involves a large
amount of computation and storage (∼60 GOPs and ∼138M
weights), which makes it expensive for hardware deployment.
To bridge this gap, we applied the low-precision quantization
to the entire SSD model to alleviate the hardware resource
consumption while maintaining high inference accuracy.

Generally, given the floating-point weight W , in-training
uniform quantization can be formulated into the steps below:

Wc = min(max(W,−a), a) Clipping (1)

S =
2n−1 − 1

a
Scaling (2)

WQ = round(Wc × S) Quantization (3)

WQF =
WQ

S
De-quantization (4)

Many recent quantization algorithms aggressively reduce
the bit precision (e.g., sub-4-bit) to lower the total storage
and number of operations. However, the low-precision uniform
quantization algorithms in the literature often requires high
precision scaling [11]–[13] or extra pre-processing steps [14],
which causes hardware overhead when such algorithms are
fully implemented onto hardware devices.

In comparison to uniform quantization, the power-of-
two (POT) quantization converts the multiplication into shift-
ing operation and substantially simplifies the hardware. How-
ever, the lopsided resolution of the POT quantization degrades
the accuracy. To address the accuracy degradation, additive-
power-of-two (APOT) [7] has been proposed to quantize
the weight and activation into 2n levels where each level
is the sum of multiple POT terms. Given the number of
additive terms, the digitized levels are deterministic, which
can be saved into look-up tables (LUTs). However, compared
to uniformly quantized weights, representing each summed
APOT level requires higher data precision than n-bit (e.g.,
24=16 APOT levels requires 5-7 bits to store each level in
hardware), and this aggravates the hardware implementation
overhead. Furthermore, layer-wise learnable scaling factors
that require high precision are employed in the APOT scheme.

In this work, we propose UniPOT, a uniform and unified
quantization algorithm with the POT quantization boundary.
Given the pre-trained DNN model, the weight and activa-
tion will be clipped by a tunable POT value, aw, ax ∈
{1/2, 1/4, 1/8, . . . 8, 16}. The selected quantization boundary
will be applied to all the layers of the network. Therefore, the
quantization scaling factor will have limited data precision and
get broadcasted to the entire DNN model (Fig. 2). Constraining
the distribution of weights and activations by the unified
POT value can avoid the high-precision scaling in (2) and
subsequently simplifies the hardware implementation.

𝑺𝑾𝑳 𝑺𝑿𝑳 𝑺𝑾𝑳$𝟏 𝑺𝑿𝑳$𝟏

Individual scaling factor for each layer

16-bit

𝑺𝑿 𝑺𝑾
12-bitUnified scaling factors for all the layers 

UniPOT

Quantization with layer-wise scaling

𝑿𝑸𝑭

Quant. ReLU L Quant. ReLU L+1

𝑿𝑸𝑭

Quant. Conv L Quant. Conv L + 1

ReLU 𝑺𝑿
𝑾

Conv
𝑾𝑸𝑭𝑺𝑾 ReLU 𝑺𝑿

𝑾
Conv

𝑾𝑸𝑭𝑺𝑾

𝑿𝑸𝑭

Quant. ReLU L Quant. ReLU L+1

𝑿𝑸𝑭

Quant. Conv L Quant. Conv L + 1

ReLU 𝑺𝑿
𝑾

Conv
𝑾𝑸𝑭𝑺𝑾 ReLU 𝑺𝑿

𝑾
Conv

𝑾𝑸𝑭𝑺𝑾

Weight Quantization module

𝑺𝑾 Quantization scaler for weight
𝑺𝑿 Quantization scaler for activation

Activation Quantization module

Fig. 2: Comparison of other low-precision quantization and
the proposed UniPOT quantization schemes.

TABLE I: mAP evaluation of SSD model (1.0× width) on the multi-
drone dataset with different weight/activation quantization schemes.

Method W/A Precision mAP (%) Scaling
Baseline 32/32 32 bit 89.64 -

PACT [12] 4/4 4 bit 82.37 Layer-wise
APOT [7] 4/4 5-7 bit 87.42 Layer-wise
UniPOT

(This work) 4/4 4 bit 69.47 Unified

UniPOT
(This work) 8/8 8 bit 89.40 Unified

Table I summarizes the software performance of VGG-
based SSD on the multi-drone dataset [6] by applying different
quantization strategies. Uniformly quantizing the model down
to 4-bit [12] leads to significant accuracy degradation. De-
ploying the APOT-quantized model requires layer-wise scaling
and high data precision with noticeable accuracy degradation.
Therefore, we select UniPOT with 8-bit precision for both
weight and activation to guarantee high inference accuracy
while maintaining the hardware simplicity.

As shown in Fig. 2, each quantized-ReLU layer (QReLU)
layer including a regular ReLU function and an activation
quantization module ((2)) to (4)) generates the digitized convo-
lution output [15]. Similar to the offline integer transformation
in the prior works [13], [16], the de-quantization scaling
factors for activations/weigths in (4) can be extracted and
folded into the scaler that belongs to the next layer. This means
that instead of computing (5), we compute (6). We use the
linearity of the QReLU layer and pass the divider operation
of the scaler to the post-QReLU layer side, so that we only
have one scaler multiplication for each convolution layer.

OFClip = QReLU(OF ∗ (1/S)), (5)
OFClip/S = QReLU(OF ), (6)

where OF is the output feature map and OFClip is the
clipped version of the output feature map. Overall, simplifying
the quantization process minimizes the number of multipli-
ers/dividers and reduces the total DSP usage.
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Fig. 3: Overall architecture of FPGA accelerator.

IV. FPGA HARDWARE DESIGN AND OPTIMIZATION

Xilinx Zynq ZU3EG FPGA in the OVC3 system is our
target hardware device. ZU3EG FPGA only has 360 DSP
slices and 7.6 Mb of BRAM, and these resources are less
than those of large-scale FPGAs by an order of magnitude.

A. Overall Hardware Architecture

Fig. 3 shows the overall hardware block diagram and data
flow. To simplify implementation and to separate read DMA
operations from write DMA operations, we are using two
DMA modules with a dedicated DMA descriptor buffer for
each of them. Once read DMA module reads input image tiles
and weights from the memory it will be written to the input
buffer and weight buffer. Before pixels and weights are fed
into MAC arrays, there is a data router that will rearrange
pixels and weights into orders to maximize the reuse of input
feature maps. In our data router design, FIFOs are employed
to reuse pixels that will be fed into registers that are directly
connected to MAC arrays. Each FIFO takes pixels from a
register that holds the next row of the feature map. With this
design, we just need to read pixels from input pixel buffers
at the very first time of MAC array computation. After that,
we shift and load pixels within register arrays until the kernel
screen reaches the end of Poy computation. Then, the FIFO
feeds pixels from the adjacent register arrays without needing
to read these pixels from input pixel buffer. Subsequently, the
MAC array will get these data to perform convolution and
accumulation. Each PE in the MAC array will calculate one
output pixel in an output stationary dataflow.

We adapted the loop unrolling and loop tiling strategy intro-
duced in [17]. Table II describes the terminologies for CNN
algorithm and FPGA design parameters used in this work.

Fig. 4: Loop tiling strategy of our proposed architecture.
Adapted from [17].

Adjusting these hardware design parameters directly affects
the throughput and latency results of our CNN accelerator.

For input buffer tiling, we tile input feature maps in Tiy
dimension only, as shown in Fig. 4. Once MAC operation is
done, output feature map will be stored in output buffer with
Tof and Toy tiling strategy (Fig. 4). In our tiling scheme, Nif
is equal to Tif , which means that we read all the necessary
input feature maps that are required in accumulation and
perform the summation in the DSP without stalling or reading
next batch of input feature maps to continue the accumulation.
Thus, one iteration of MAC operation will calculate and store
Pox × Poy × Pof amount of output feature map pixels
to the output buffer. Since we are not tiling pixels in Nix
dimension, Nox tiling is not used and Nox is equal to Tof .
Once Nox×Tof ×Toy amount of output pixels are ready in
output buffer, the write DMA process will start writing these
pixels into DDR memory.

To maximize the hardware performance in the resource-
constrained FPGA, we investigated the following design
methodologies and strategies, which will be described in detail
in the rest of the section.

• Comprehensive design space exploration
• Dual-data rate DSP design
• Small direct memory access (DMA) descriptor buffers.

B. Design Space Exploration

In this sub-section, we explain how we optimized our
baseline architecture design to reduce the size of design while
getting the best performance out of it. The entire design
process we used in our work is given in the Fig. 5. The steps
we used in our design space exploration is given below:

• Step 1: Increase parallelism by increasing number of
MAC units in the design. This will achieve maximum
DSP counts, which equals to Pox × Poy × Pof from
our design parameters.

TABLE II: Description of CNN algorithm and FPGA design parameters.

Kernel
(width/height)

Input Feature
Map (width/height)

Output Feature
Map (width/height)

# of Input
Feature Maps

# of Output
Feature Maps

Convolution
Dimensions (N**) Nkx, Nky Nix, Niy Nox, Noy Nif Nof

Loop Tiling (T**) Tkx, Tky T ix, T iy Tox, Toy T if Tof
Loop Unrolling (P**) Pxk, Pky Pix, Piy Pox, Poy P if Pof
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Fig. 5: Flow chart of our proposed design space exploration.

• Step 2: With parallelism fixed, test different (Pox, Poy,
Pof ) combinations to find best performance in terms of
total latency. During this phase, we tried to distribute
available FPGA resources evenly throughout our design.

• Step 3: Adjust the loop tiling size of Toy and Tof to
reduce the number of DDR memory accesses.

1) Step 1: Throughput optimization: First, we attempt to
employ the highest Pox × Poy × Pof number, which will
result in the highest parallelism of MAC arrays implemented
by DSP slices in the FPGA. In our target FPGA, 360 DSP
resources are available. Since the largest power of 2 less than
360 is 256, the number of parallelism (loop unrolling) in our
design is 512 (2 × Pox × Poy × Pof ), as we can use up to
256 DDR DSPs.

2) Step 2: Resource utilization optimization: Once we
found the upper limit of the maximum parallelism, we
searched the best combination of Pox, Poy, and Pof that
can result in the lowest total latency among possible choices
of combination. During the search, Pox is considered as a
constant because we are not tiling over the x dimension in
the input feature maps and thus Pox is only dependent on the
DMA bit-width to read as much as data from DDR memory. In
our architecture, we have 4 banks of input buffer which each
of them stores Pox amount of pixels in a row. This means
we need 4× Pox× 8-bit (activation bit-width) of bandwidth,
where our DMA bandwidth is 256-bit. Therefore, the optimal
choice of Pox is 8 in our design. To decide how many
parallelism will be in Poy and Pof , we tried to assign more
parallelism to a design parameter which comes with smaller
buffer size to reduce BRAM resource utilization in FPGA.

In Fig. 4, the input buffer is always larger than the weight
and output buffers, because we are tiling over the Nof
dimension. Even if the input channel and output channel sizes
are identical, Tof tiling reduces the amount of weights and
outputs that needs to be minimally stored in each buffer. On the
other hand, Nif is not tiled and thus input buffer is relatively
larger than the other two buffers. Now, if we increase Toy,
this will increase Tiy and input buffer capacity will increase

Fig. 6: Timing diagram of MAC array operation including
DRAM communication.

to store more tile pixels. Instead of increasing Poy, which
will proportionally increase Toy and the input buffer size, we
first increased Pof (which does not increase the input buffer
size), and then the rest of parallelism was assigned to Poy.
We swept a number of combinations of (Pof , Poy) sets and
(16, 2) was the best design parameter setting that resulted in
the lowest total latency.

During the design search, if any combination of Pox, Poy,
and Pof led to over-utilization of BRAM, we attempted to
replace a part of buffer design with distributed RAM, which
employs LUT plus LUTRAM resources available in the FPGA.
Then the total latency of our FPGA design is estimated and
the design search continues. In our design, the latency for
one convolution layer is comprised of input buffer latency and
MAC array calculation time. The former is the number of
input image tiles in a convolution times the latency that takes
to process a given tile. The latter can be calculated by (Tif ×
Tox/Pox×Toy/Poy×Tof/Pof×# of input image tiles),
which provides a good estimation on the number of cycles
consumed in the MAC array. By summing up the latency of
all layers, we can obtain the total latency. Pox, Poy, and Pof
of our design is optimally chosen as 8, 2, and 16, respectively.

3) Step 3: DDR memory access optimization: Fig. 6 shows
the latency breakdown for one iteration of MAC array compu-
tation. Upon completion of Pox, Poy, and Pof combination
search for the best total latency, we found that our design
has bottleneck in the DDR memory performance. The latency
of (A), (B), and (C) varies for different convolution layers.
In the cases of conv4 2 and conv4 3 layers, our most time
consuming convolution layers, (A) consumed higher latency
than (B) or (C), which was caused by the bottleneck from
DDR memory read speed. In our initial latency measurement,
input buffer write latency (A) consumed >70% of total latency
in conv4 2 layer. During input buffer write, read DMA module
was spending too much time waiting data from the DDR
memory. To alleviate this bottleneck, we tried to reduce
the DDR memory accesses by increasing the tile size of
feature maps. In our CNN accelerator, this can be achieved
by increasing either Toy or Tof design parameter without
increasing the size of input/output/weight buffers. For fine-
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grain optimization, we fine-tuned Toy and Tof for each layer
of the CNN.

C. Dual-Data Rate DSP Design

For DSP count reduction, we use dual-data rate DSP which
can feed two data into one DSP at a time and generates two
outputs at the same time, as shown in Fig. 7a. The DSP
slices in our FPGA design works at 400 MHz of frequency,
twice of the operation frequency (200 MHz) of the main CNN
accelerator. Although DDR DSP is standard in Xilinx’s deep
learning processing unit (DPU) IP [18], how it is configured is
not published. By referring to the IP diagram, we implemented
our own custom design of dual-data rate DSP, by adding time-
matching flip-flops and clock-crossing logics before and after
the DSP48E2 primitive (Fig. 7a). The two sets of registers on
the input side are input pipeline registers. Output data lines
are separated and fed back to DSP again for accumulation.
The number of stages in pipeline registers are determined
based on the information in the Xilinx technical manual. Clock
crossing logics are inserted to the control signals, such as
the accumulator reset signal and multiplexer select signals.
Fig. 7b shows how flip-flops are inserted to prevent signal
meta-stability in the frequency crossing domain. We could
increase the effective DSP counts by 2× using this technique.

D. DMA Descriptor Buffer Design

In prior works with larger FPGAs [9], DMA descriptors
containing DDR addresses are pre-calculated and the entire set
of DMA descriptors required to complete one inference were
stored in the DMA descriptor buffers (Fig. 8a). This improves
the FPGA performance since the delay for calculating DDR
addresses is eliminated. However, when the tile size is very
small due to the capacity limit of on-chip BRAM, DMA needs
to move small tiles more frequently and thus the number
of DMA descriptors for copying those tiles will increase.
DMA buffer size requirement can be calculated from the
number of read/write DMA descriptors multiplied by each
DMA descriptor size, 32-bit. Our 1.0× model required 15.36
Mb of read DMA buffer with conventional DMA architecture.
Using a similar analysis, 1.52 Mb of write DMA buffer
was required to hold the entire write DMA descriptor. Since
ZU3EG only has 7.6 Mb of BRAM, evidently the conventional
DMA scheme cannot be used for our target FPGA.

Fig. 8b shows our proposed DMA system design. In this
system, the entire read/write DMA descriptor will be stored
in DDR memory. To reduce the size of DMA buffers, we
designed small DMA descriptor buffers that can refill DMA
descriptors from DDR memory. The size of read/write DMA
descriptor buffer was decided by the maximum input/output
channel size exists in our SSD model, where one DMA
descriptor corresponds to the one tile in one feature map. To
accumulate Nif pixels from Lth layer in the MAC array with-
out stalling and to prepare Nif pixels from (L+1)th layer for
the ensuing computation, we need 2×Nif DMA descriptors
in the buffer to prevent stalling convolution computations in
consecutive layers.

(a)

(b)

Fig. 7: (a) Dual data rate DSP implementation. (b) Clock
crossing logic used in DDR DSP control signals.

(a)

(b)

Fig. 8: (a) Conventional DMA descriptor buffer design for
large FPGAs with sufficient BRAM. (b) Proposed DMA
design with small descriptor buffer for small FPGAs with
limited BRAM.
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In our 1.0× SSD model, the largest input channel sizes of
two adjacent convolution layers are 1,024 and 1,024. Thus,
we need up to 2,048 DMA descriptor buffers ready in the
DMA buffer. This corresponds to 32-bit × 2048 = 64 Kb of
capacity in the buffer. The same logic applies to the write
DMA descriptor buffer. With our DMA descriptor design,
descriptor buffer size is only 64 Kb for each DMA module
for read and write. By using the proposed DMA scheme with
small DMA descriptor buffer, the capacity requirement of read
DMA descriptor buffer is reduced by 240× (15.36 Mb / 64
Kb), and that of write DMA descriptor buffer is reduced by
23.7× (1.52 Mb / 64 Kb).

V. EXPERIMENT RESULTS

A. Software Experiments

We investigated the SSD model with different width mul-
tipliers (1.0×, 0.5×, 0.25×). We evaluated the model per-
formance on both multi-drone dataset [6] and Pascal VOC
dataset. For multi-drone detection task, we first load the pre-
trained full-precision VGG-16 backbone CNN model trained
by ImageNet dataset, and then fine-tune the entire VGG-based
SSD model with the synthetic multi-drone images [6] while
applying the 8-bit UniPOT quantization. After that, the low-
precision fine-tuning process will be continuously performed
on the real images. We heuristically select 0.125 and 16 as the
quantization boundary for weight and activation, respectively.

We also fine-tuned the SSD model on Pascal VOC dataset
with the 8-bit backbone VGG CNN, to make it comparable
with prior works. Table IV shows that the 1.0× SSD model
with 8-bit precision exhibits no mAP degradation compared
to the full-precision baseline mAP of 77.2% [3].

B. Hardware Experiments

Our system is implemented and tested by using the OVC3
system. The FPGA used in OVC3 is Xilinx Zynq ZU3EG.
The SSD and backbone CNN with 8-bit precision using the
UniPOT quantization scheme are implemented on the FPGA

Fig. 9: Hardware inference results from different network
width multiplier settings.

TABLE III: FPGA resource utilization for implementations of differ-
ent SSD width models.

Resource Utilization Available
in FPGA

SSD Model
Width 1.0× 0.5× 0.25×
LUT 64,128 64,613 64,544 70,560

LUTRAM 14,032 14,155 14,153 20,880
FF 74,759 75,482 75,468 141,120

BRAM 184.5 119 102 216
DSP 263 263 263 360

device, while the non-maximum suppression (NMS) and post-
processing modules are performed by the CPU in OVC3. Our
accelerator runs at 200 MHz and DSPs run at 400 MHz of
frequency, aided by our dual-data rate DSP design.

Fig. 9 shows the performance and mAP values of our FPGA
designs across different SSD width models. With algorithm-
hardware co-design and optimizations, we could achieve up to
34.2 FPS for the 0.25× SSD model. The implementation of
the 0.5× model achieves 9.60 FPS, with only 2% mAP degra-
dation compared to that of 1.0× SSD model. The resource
utilization for FPGA implementations of different SSD width
models is reported in Table III. In our FPGA design, we can
adjust the ratio of distributed RAM and BRAM utilization for

(a)

(b)

Fig. 10: (a) Per-layer optimization of Tof /Pof and Toy/Poy.
(b) Input buffer write latency with/without Toy and Tof
optimization.
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TABLE IV: Comparison with prior object detection works using the same/similar FPGA platform.

[19] [20] [21] [22] Ours (0.25×) Ours (0.5×) Ours (1.0×)

FPGA Platform Zynq
ZU3EG

Zynq
ZU2EG

Zynq
ZU3EG PYNQ-Z1 Zynq

ZU3EG
Zynq

ZU3EG
Zynq

ZU3EG
Frequency (MHz) 215 215 214 143 200 200 200
Backbone CNN MobileNet MobileNet Skynet VGG-16 VGG-16 VGG-16 VGG-16
Input image size 512×512 300×300 360×160 448×252 300×300 300×300 300×300

Precision (Activation/Weight) 4/3 bits 8/8 bits 9/11 bits 8/8 bits 8/8 bits 8/8 bits 8/8 bits
Total # of OPs in CNN 5.50 - - 8.73 4.04 15.65 61.60

Avg. Performance (GOPS) 202.76 - - 104.42 137.97 150.24 157.83
Power (W) 6.9 - 7.26 4.1 2.4 2.6 2.0

Energy-Efficiency (GOPS/W) 29.4 - - 25.5 57.5 57.8 78.9
FPS 18 31.0 25.05 11.96 34.18 9.60 2.56

mAP (Pascal VOC dataset) 66.4 - - - 63.7 73.9 77.2
mAP (multi-drone dataset) - - - - 76.2 83.9 88.4

Fig. 11: Drone detection results by FPGA with bounding boxes
on example images from the multi-drone dataset.

a certain buffer (input/weight/output), which especially aided
the 1.0× implementation to achieve higher resource utilization
and better performance with a limited amount of BRAM.

Furthermore, to fully utilize the buffer capacity in our
accelerator, we fine-tuned and adjusted Toy and Tof values
for each convolution layer. This will enlarge the size of tiles
when necessary, ensuring that the buffers will be filled with
data at all times and that the number DDR memory access
is minimized. Fig. 10b shows the input buffer write latency
reduction achieved by per-layer Toy/Tof adjustment, where
2-4× latency reduction is shown for bottleneck layers such
as conv3 2 and conv4 2. Only the convolution layers for
backbone CNN are shown in Fig. 10a, since the SSD layers
only consume <8% of the overall latency. Fig. 11 shows
several examples of drone detection results by our FPGA.

In Table IV, we compare our proposed hardware imple-
mentation with prior works that use the same or similar

sized FPGAs. Among the prior works in Table IV, [19]
reported the most comprehensive results including through-
put (GOPS), FPS, power consumption, and mAP for Pascal
VOC dataset, while using the same FPGA ZU3EG as our
work. Compared to [19], we achieve 2.0-2.7× better energy-
efficiency (GOPS/W) for all three widths of SSD (1.0×, 0.5×,
and 0.25×). For our 0.25× SSD model implementation that
achieves similar mAP as [19], our FPS/W is 5.5× higher
than that of [19]. Unfortunately, other works [20]–[22] only
reported IoU values, but not the corresponding mAP values for
Pascal VOC or other datsets. While Skynet [21] achieved 3.45
FPS/W for object detection, our 0.25× SSD achieved 14.24
FPS/W (4.1× higher) and 0.5× SSD achieved 3.69 FPS/W
(1.1× higher).

To fully benefit from our proposed implementation, we can
trade-off performance and accuracy to make the hardware best
fit the application’s needs. Where the real-time detection of
objects is more important, we can deploy our 0.25× model
algorithm to hardware to run it over 30 FPS, which is enough
to inference image frames from a video in real-time. On the
other hand, if accuracy is more important, we can use our
0.5× or 1.0× model to get the best accuracy within small
edge FPGA devices such as ZU3EG.

VI. CONCLUSION

In this work, we co-optimized algorithm and hardware for
high-throughput and low-power drone detection on resource-
constrained FPGA devices. On the algorithm side, we em-
ployed an uniform and unified low-precision quantization
scheme termed UniPOT to achieve high mAP and simple
hardware mapping. On the hardware side, we performed
comprehensive design space exploration to fully utilize the
limited FPGA resources and optimize throughput. We also
employed dual-data rate operations for DSPs to double the
throughput. Across three different widths of SSD models,
we optimized and analyzed mAP, FPGA hardware utilization,
throughput, and energy-efficiency. Our FPGA design achieves
a high mAP of 88.42 on the drone dataset, together with a
high energy-efficiency of 79 GOPS/W and throughput of 158
GOPS using Xilinx Zynq ZU3EG FPGA device on the Open
Vision Computer version 3 (OVC3) platform.
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