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Abstract— With its algorithmic success in many machine
learning tasks and applications, deep convolutional neural net-
works (DCNNs) have been implemented with custom hardware in
a number of prior works. However, such works have not exploited
conditional/approximate computing to the utmost toward elim-
inating redundant computations of CNNs. This article presents
a DCNN accelerator featuring a novel conditional computing
scheme that synergistically combines precision cascading (PC)
with zero skipping (ZS). To reduce many redundant convolu-
tions that are followed by max-pooling operations, we propose
precision cascading, where the input features are divided into a
number of low-precision groups and approximate convolutions
with only the most significant bits (MSBs) are performed first.
Based on this approximate computation, the full-precision con-
volution is performed only on the maximum pooling output that
is found. This way, the total number of bit-wise convolutions
can be reduced by ∼2× with <0.8% degradation in ImageNet
accuracy. PC provides the added benefit of increased sparsity
per low-precision group, which we exploit with ZS to eliminate
the clock cycles and external memory accesses. The proposed
conditional computing scheme has been implemented with custom
architecture in a 40-nm prototype chip, which achieves a peak
energy efficiency of 24.97 TOPS/W at 0.6-V supply and a low
external memory access of 0.0018 access/MAC with VGG-16 CNN
for ImageNet classification and a peak energy efficiency of 28.51
TOPS/W at 0.9-V supply with FlowNet for Flying Chair data set.

Index Terms— Application-specific integrated circuit (ASIC),
approximate computing, conditional computing, deep convolu-
tional neural network (DCNN), deep learning, energy-efficient
accelerator.
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I. INTRODUCTION

DEEP convolutional neural networks (DCNNs) have been
successfully applied for many real-life applications rang-

ing from computer vision [1], speech recognition [2] to
medical diagnosis [3]. However, accurate, high-throughput,
and low-power hardware implementations of DCNNs is still a
challenging task, especially for portable systems such as smart
drones, robots, and mobile/wearable devices [4]–[6]. This is
due to high computational complexity, large storage require-
ment, and costly off-chip communication. For energy-efficient
DCNN accelerators, it is crucial to design a computing scheme
that can suppress redundant computations, exploit data sparsity
statistics, and optimize system-level memory hierarchy that
can reduce the amount of off-chip memory accesses [7].
A number of previous works presented application-specific

integrated circuits (ASICs) hardware accelerator designs for
DCNNs [8]–[16]. Envision [8] presented a voltage-accuracy-
frequency-scaling scheme and variable precision technique
with body bias modulation, which achieved an energy effi-
ciency of 2 TOPS/W for VGG-16 CNN inference. QUEST [9]
proposed a programmable multiple instruction, multiple
data (MIMD) parallel accelerator, which achieved 0.877
TOPS/W for AlexNet CNN inference. However, most prior
works [6]–[12] do not evaluate or optimize off-chip memory
communication, which can largely degrade the system-level
energy efficiency.
A few works have analyzed and demonstrated the off-chip

memory access [13]–[16]. Eyeriss [13] employed run-length
compression to reduce the DRAM communication with zero
data. UNPU [15] proposed bit-serial processing with vari-
able weight precision and achieved an energy efficiency of
4.71 TOPS/W with 87.02-MB DRAM access for VGG-16.
Sim et al. [16] proposed a near-threshold voltage CNN
inference processor based on an enhanced output stationary
dataflow and achieved 1.15 TOPS/W with 45-MB DRAM
access of activations for VGG-16 CNN. Note that the chip
designs in [13]–[16] do not include an on-chip DRAM con-
troller, thereby does not include the energy cost for real-time
off-chip DRAM communication.
In this article, we present an energy-efficient DCNN accel-

erator [17] with a new conditional computing scheme that
enables significant reduction in the amount of unnecessary
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computations and external memory accesses. We prototyped
the proposed DCNN accelerator in 40-nm CMOS, which inte-
grated a custom off-chip DRAM controller. We demonstrate
high-throughput DCNN inference and enhanced system-level
energy efficiency, including the accelerator chip and off-chip
memory. The main contributions of our work are as follows.

1) A new conditional computing scheme termed preci-
sion cascading (PC) reduces the redundant computa-
tions in convolution layers by integrating the subsequent
max-pooling layers.

2) An energy-efficient architecture that performs full zero
skipping (ZS) of zero activations for both convolution
operations and on-/off-chip memory communication.

3) We integrated a custom off-chip DRAM controller in our
DCNN accelerator, thereby demonstrated real-time off-
chip communication and evaluated the associated energy
cost.

Wu et al. [18] presented a deep learning processor sup-
porting dynamic executions of conditional neural networks,
but this requires generation of new CNNs and has not been
demonstrated for large-scale data sets such as ImageNet.
Adaptive precision scheme has been presented in [19] only for
k-nearest neighbor algorithms, not for large-scale DCNNs. Our
proposed conditional computing scheme can be applied to any
deep CNN that includes max pooling, without any new CNN
generation. We have benchmarked our DCNN accelerator,
including both the chip energy efficiency and off-chip memory
accesses with VGG-16 CNN for ImageNet data set [20] and
FlowNet for Flying Chair data set [28]. In addition to VGG and
FlowNet, DCNNs such as SegNet for image segmentation [31]
and a new DCNN for high-resolution medical imaging [27]
applications feature a relatively large number of max-pooling
layers between convolution layers and will be best suited for
the proposed accelerator with PC and ZS schemes, enabling
large improvements in system-level energy efficiency.
However, many modern DCNNs such as ResNet [32]

and MobileNet-V2 [33] only include a small number of
max-pooling layers and will not be able to fully exploit the
benefits of the proposed PC scheme. On the other hand,
recent works on adversarial bit flip attacks [34] and noise
in processing-in-memory accelerators [35] have shown that
large models such as VGG family show higher resilience to
such attacks and noise, compared to compact models such as
MobileNet family. For example, Rakin et al. [34] reported that,
by flipping just two (targeted) bits in the MobileNet-V2 model,
the baseline accuracy of 72.01% severely degraded to 0.19%
for ImageNet. To that end, while VGG model has redundancy
with a large number of parameters, the resilience to adversarial
attacks and noise remains an advantage, compared to more
compact models.
The remainder of this article is organized as follows.

Section II introduces our proposed conditional computing
scheme including PC and ZS. We introduce the convolution
loop acceleration strategy to reduce the on-/off-chip mem-
ory communication in Section III. Section IV presents the
system architecture and operation of the proposed accelera-
tor based on PC and ZS schemes. Section V describes the

Fig. 1. PC multiplication of the input feature by weight.

chip implementation and evaluation results are described in
Section V. Section VI provides the conclusion.

II. PROPOSED CONDITIONAL COMPUTING SCHEME

A. Precision-Cascading (PC) Scheme

In order to reduce the spatial size of feature maps with-
out losing critical information, pooling layers are typically
employed in DCNNs between successive convolutional layers.
The most common form of pooling is 2 × 2 max pooling,
where a non-overlapping 2 × 2 window selects the maximum
activations out of four activations and discards the other
75% of activations. Considering that these 75% of activations
are results of full convolutions, these convolution results are
redundant and are of waste since they are computed and burn
power but never used. We aim to reduce this redundancy.
As shown in Fig. 1, we propose to split the input activations

into a group of precision values and first perform approximate
convolution computations with only the most significant bits
(MSBs). Based on this approximate convolution, if we can
find the maximum value of convolution outputs with the
MSB group of four activations (for 2 × 2 max pooling),
convolution operations of the other LSB groups on non-
maximum convolution results can be skipped. As shown in
Fig. 2, if the maximum value cannot be found with the
MSB group, the approximate convolutions are computed in the
remaining precision groups in a cascaded manner. The main
advantage of this scheme is that we can reduce the convolution
operations by up to

Reduction Ratio = 1 − p × p × 1
N + N−1

N

p × p
(1)

where p × p is the max-pooling window size, and N is
the number of precision groups. The denominator represents
the total number of convolution operations. (p × p/N) in the
numerator represents the number of convolution operations in
the first group. (N− 1/N) in the numerator represents the
number of the convolution operations in the remaining groups,
in the case when the maximum values are found in the first
group. For example, we can reduce the number of convolution
operations by 50% when p = 2 and N = 3 and by 67% when
p = 3 and N = 4.
However, the latency overhead should be considered, which

can occur due to iterations for finding the maximum pooling
output. We analyzed the latency overhead and the accuracy
degradation of the proposed PC scheme for ImageNet classi-
fication with VGG-16 CNN. For different convolution layers
of VGG-16, Table I shows the statistics of the percentage of
the max-pooling results found in each group for two different
precision group schemes. We can reduce more convolution
operations when applying larger number of precision groups,
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TABLE I

STATISTICS ABOUT THE PERCENTAGE OF THE MAX-POOLING
RESULTS FOUND IN EACH PRECISION GROUP

Fig. 2. Conceptual operation of the PC scheme.

Fig. 3. Overall latency of the PC scheme compared to the non-PC scheme.

TABLE II

ANALYSIS RESULTS OF ACCURACY FOR THE IMAGENET DATA SET

but the latency overhead increases. Considering a baseline
CNN with 12-b precision, Fig. 3 shows the overall latency
comparison of non-PC scheme and PC scheme with two group
cases (3b/3b/3b/3b and 4b/4b/4b), for VGG-16 convolution
layers that precede max-pooling layers.
On the other hand, the proposed PC scheme can slightly

degrade the classification accuracy, because to reduce the

Fig. 4. Conceptual operation of the full zero-skipping scheme.

Fig. 5. Illustration of integrating PC and ZS.

number of iterations, we decide the maximum value even if
two or three precision-group-wise convolution output values
are identical within 2 × 2 pooling window. As shown in Fig.
3, the overall latency increases by 1.08× when we do not
allow two or three values to be identical, but the accuracy
degradation will not occur in this case. Table II shows the
analysis results of the accuracy with ImageNet data set for two
PC group schemes. The 4b/4b/4b scheme shows both better
latency and accuracy, where the total number of convolution
operations can be reduced by ∼2× with only <0.8% degra-
dation in the final ImageNet classification accuracy. It should
be noted that the PC scheme can only be applied on the
convolution layer right before a max-pooling layer.

B. Full Zero Skipping (ZS) Scheme

Rectified linear unit (ReLU) is a widely used activation
function for DCNNs. For a negative input, ReLU returns an
output of 0, resulting in many zero activations. Several prior
works on DCNN accelerator proposed to skip computation for
zero data [8], [10], [13], but they still wasted clock cycles for
0 data. Only a few prior works [21], [22] employed the ZS
scheme without redundant MACs and any wasted clock cycles.
We employ a full ZS scheme similar to [22], where only
non-zero input features are stored to external memory, stored
to on-chip memory using a sparsity map, and then computed
for convolution operations, as shown in Fig. 4. However,
for the ZS-only scheme [22], limitations exist for executing
parallel computation on the spatial domain such as 3 × 3
kernel window and across the input feature maps. For example,
even if there are eight zero values of nine input feature data in
a 3 × 3 kernel window, the eight zero values cannot be fully
skipped due to one non-zero value when executing parallel
computation on the nine input feature data.

C. Combination of PC Scheme and ZS Scheme

To address the limitation of PC-only and ZS-only schemes,
we propose to synergistically integrate PC and ZS, as shown
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Fig. 6. Analysis results of zero percentage at VGG-16 convolution layers.

Fig. 7. Four levels of convolution loops, where L denotes the index of
convolution layer and S denotes the sliding stride.

in Fig. 5. Compared to the conventional computing scheme,
simply dividing the spatial computation into temporal smaller
low-precision groups does not provide benefits. However,
we exploit the fact that sparsity increases when we divide the
activation into a number of low-precision groups. The analysis
results of VGG-16 CNN in Fig. 6 show that the MSB group
has higher sparsity compared to the baseline non-PC scheme.
Therefore, we can largely reduce the computation time of
convolution operations on the MSB group of PC scheme, as we
jointly employ the ZS scheme. We only use 2 bits of zero
sparsity map data for the MSB and LSB groups that consist of
the 1st group and 2nd/3rd groups, respectively, which reduces
the sparsity map data size by 1.5× with minor degradation
of sparsity, because the zero percentage when the value of
both the 2nd group and 3rd group is 0 is slightly smaller
than the zero percentage of the 2nd group and 3rd group.
In addition, we propose a custom architecture to improve
the aforementioned limitation of ZS-only scheme, which is
described further in Section IV.

III. CONVOLUTION LOOP ACCELERATION STRATEGY

Convolution is the main operation in DCNN algorithms,
which involves 3-D multiply and accumulate (MAC) opera-
tions of input feature maps and kernel weights. Convolution
comprised four levels of loops as shown in the pseudo codes in
Fig. 7. To efficiently map and perform the convolution loops,
three loop optimization techniques [23]–[25] of loop unrolling,
loop tiling, and loop interchange are employed to customize
the computation and communication patterns of the accelerator
with three levels of memory hierarchy.
Loop unrolling determines the parallelism scheme of certain

convolution loops and, thus, the required size of registers and
PEs. Loop tiling determines the required capacity of on-chip
buffers. It divides the loops into multiple blocks, and the data
of the executing block are read from external memory and
stored in on-chip buffers. Loop interchange determines the

Fig. 8. Illustration of the inter-tiling loop order.

TABLE III

ANALYSIS RESULTS OF DRAM ACCESS ON DIFFERENT CASES
OF INTER-TILING STRATEGY

computation order of the four loops and, thus, affects the
dataflow between adjacent levels of memory hierarchy. There
are two kinds of loop interchange, namely, intra-tiling and
inter-tiling loop orders. Intra-tiling loop order determines the
pattern of data movements from on-chip buffer to register files
or PEs.
To effectively reduce the latency of the proposed PC and

ZS scheme, we optimized to unroll loop-1 and loop-3, by the
factor of the kernel window size (e.g., 9 = 3 × 3), and
unrolled loop-4 by the factor of up to 18. In order to minimize
the partial sum storage, we fully tiled loop-1 and loop-2 and
decided the intra-tiling order to be loop-1 → loop-2 → loop-4
→ loop-3.
Fig. 8 illustrates different inter-tiling loop orders. Since

inter-tiling loop order determines the data movement from
external memory to on-chip buffer, we analyzed five cases
of inter-tiling loop order in VGG-16 convolution layers.

1) Case-1: All tiles in loop-4 are computed first and the
tiles in loop-3 are computed at the end.

2) Case-2: All tiles in loop-3 are computed first and the
tiles in loop-4 are computed at the end.

3) Case-3 and Case-4: Applying PC with ZS technique on
Case-1 and Case-2, respectively.

4) Case-5: Applying Case-3 and Case-4 on each layer
adaptively.

In Case-1, the number of DRAM accesses per pixel of input
features can be 1 since input features are loaded only once
from off-chip memory, but the number of DRAM accesses per
pixel of weights can be the number of tiles for input features.
On the other hand, in Case-2, the number of DRAM accesses
per pixel of weights can be 1, but the number of DRAM
accesses per pixel of input features can be the number of tiles
for weights. Table III shows that the total DRAM accesses
can be saved by 2.12× for Case-5, which we selected as the
inter-tiling loop order strategy for our chip design.

IV. ENERGY-EFFICIENT ARCHITECTURE BASED ON PC
AND ZS SCHEMES

For the integrated PC and ZS scheme, we implemented an
efficient computation and data flow, as illustrated in Fig. 9.
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Fig. 9. Proposed computation and data flow for integrated PC/ZS scheme.
(a) Example of computation at (x, y). (b) Computation of the next input pixel
(x, y+ 1) is accumulated with previous partial sums (x, y) that are shifted.

Input feature data are loaded across the channel and convo-
lution operations are computed with kernel features. We can
load only non-zero values of input channel feature at each pixel
from external DRAM/on-chip SRAM and transfer them to the
PE array. These non-zero input feature data can be re-used to
generate nine output features in parallel.
In addition, we hold and shift partial sums in order to

maximize the input feature re-use. As shown in Fig. 9, when
input features at (x, y) are loaded to the PE array, each
PE computes MAC operation for different output features at
different pixel locations. Then, when the next input features
at (x, y + 1) are loaded to the PE array, each PE computes
MAC operation with the previous partial sums that are shifted.
Some partial sums are held in on-chip buffers until they can
be accumulated with MAC operation in PEs.
Fig. 10 shows how different parallel computing methods

can affect the total latency for the ZS scheme, using a simple
example of three input channels, nine output channels, and
nine MAC units. For the case of parallel computing across
nine pixels of input data [see Fig. 10(b)], the MAC operations
can be skipped for zero input data. However, this case still
wastes clock cycles for zero data, leading to total latency
of 27 clocks and a low MAC utilization of 52%. On the
other hand, when we compute one pixel of input data across
the nine output channels [see Fig. 10(c)], we not only can
skip the MAC operations but also can reduce the total latency
to 14 clocks compared to Fig. 10(b). Because only non-zero
input data are loaded into MAC units and computed, the MAC
utilization can be 100%. While non-zero input features are
loaded from on-chip memory for activations, we can solely
load the kernel features that pertain to non-zero input features
from on-chip buffer for weights. Therefore, we not only can
fully skip zero values of input features but also can skip kernel
features corresponding to the zero input features.

Fig. 10. Illustration of how different parallel computing methods for ZS
scheme can result in different latency, using (a) example of MAC operation
with three input channels including zero/non-zero data, nine output channels,
and nine MAC units. This example demonstrates timing diagrams for two
different parallel computing across. (b) Nine pixels of input data and (c) nine
output channels.

Fig. 11 shows the top-level block diagram and architecture
including the on-chip DRAM controller, on-chip SRAMs,
and PE arrays. Non-zero values of all input features and
the sparsity map data are stored in the external synchronous
DRAM (SDRAM) chip [26]. All weights are also stored into
SDRAM. Then, input features and weights are loaded from the
SDRAMs within the size of tile through SDRAM controller
to be stored in the on-chip memory.
Fig. 12 shows the block diagram of ZS control module in

the custom SDRAM controller that we designed. To process
store operations, sparsity map (2 bits) and non-zero value
of output feature (12 bits) from ReLU/pooling module are
transferred into ZS control module. Since we use SDRAM
with 16-bit width, there are buffers to hold 16 bits of each
group of non-zero output feature data (4 bits) and sparsity map
(1 bit). Then, 16 bits of output feature and sparsity map can be
transferred to external SDRAM. The write addresses for output
feature and sparsity map data are generated by the equations in
the write address generator block based on the total activation
size and the current pixel location. This way, we decode the
coordinate information of the input feature data loaded from
the SDRAM. To process load operations, the sparsity map
data (16 bits) are loaded from the SDRAM and 64 bits of the
sparsity map data are written to on-chip SRAM. The input
feature data can be loaded from the SDRAM when the counter
number of “1” in the sparsity map data is over 4. Then, 16
bits of input feature data are stored into on-chip SRAM. Read
addresses for both sparsity map and input feature data increase
by 1 for every read cycle. Since the clock frequencies for
our proposed system and the external SDRAM are different,
we use an FIFO that synchronizes the data with two different
clocks.
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Fig. 11. Top-level block diagram and data flow of the proposed DCNN accelerator.

Fig. 12. Block diagram of ZS control in the custom SDRAM controller.

After finishing the storage, PE array starts to compute MAC
operations with input features and weights that are loaded
from SRAM by input and kernel feature data controller. Our
proposed accelerator (see Fig. 11) employs nine main PEs to
efficiently compute 3 × 3 convolution operation, and each
main PE includes 36 sub-PEs to compute up to 18 output
channels in parallel. A sub-PE consists of MAC unit, reg-
ister, and control unit. The register holds partial sums and
the control unit shifts partial sums to adjacent PE, external
register, or SRAM. Communications of partial sums among
PEs, registers, and SRAM are governed by the partial sum
controller.

Fig. 13. Detailed block diagram of a PE module.

To achieve 100% MAC utilization for convolution layer
with a 3 × 3 kernel window, PE array consists of
9 (3 × 3) PEs. Fig. 13 shows the detailed block diagram of
a PE module. Each PE has 36 (6 × 6) sub-PEs to support
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three precision-cascaded groups and compute up to 18 output
channels in parallel. Group 1/2/3 of input feature (4 bits) from
on-chip SRAM is transferred to each sub-PE. Weights (12 bits
each) of up to 18 output channels data from SRAM are also
transferred into the sub-PE. The 36 sub-PEs compute 12 output
feature data in parallel when not applying the PC scheme.
With PC sub-PEs compute 18 output features of group1 in
parallel, while other 18 sub-PEs are not working to reduce
the power consumption. After finding max-pooling values,
36 sub-PEs compute 18 output features of the rest groups
in parallel. Although the utilization of sub-PEs can be 50%
when maximum values are not found, the total utilization is
over 90% since most computation in the group1 of input
feature are skipped by ZS scheme and most max-pooling
values are revealed at the first iteration as we analyzed in
Table I and Fig. 6. Table IV shows the analysis results of the
MAC utilization at VGG-16 convolution layers.
After some initial latency, the ninth PE (PE3-3 in Fig. 11)

generates the final output features every cycle. The final output
features go through ReLU/pooling module and subsequently
stored into external memory by the SDRAM controller. All
operations are fully pipelined. Fig. 14 shows the timing dia-
gram for processing a convolution with PC and ZS schemes.
In the first cycle, input feature i(x − 1, y − 1) is transferred
to all PEs. Each PE produces partial sums with input feature
and the corresponding kernel feature. Then, the partial sums
go through other PEs, partial sum SRAM, or external register.
Since p(x, y) from the first cycle can be added to the partial
sums in PE2_2 in the second cycle, the partial sum data are
transferred into PE2_2. In a similar manner, PE3_3 produces
the final output feature data at (x, y) at the fourth cycle and the
output feature data are transferred to ReLU/pooling module.
The partial sums that are not consumed right away are stored
in the partial sum SRAM. Since the partial sums of PE3_1 and
PE3_2 at the fourth cycle can be used after several cycles, the
partial sums are transferred to an external register to be held
for a short time.
It should be noted that our proposed scheme is best

suited for DCNNs with many max-pooling layer such as
VGG-16 [20], FlowNet [28], and SegNet [31]. The proposed
accelerator can be applied to any convolution layers with
3 × 3, 5 × 5, and 7 × 7 kernel windows, but the proposed
scheme cannot support other shapes of kernel window such
as 1 × 1. In addition, we should note that our proposed
accelerator has limitations to the networks that only have a few
max-pooling layers such as ResNet [32] or MobileNet [33].

V. MEASUREMENT RESULTS

The proposed DCNN accelerator was implemented in
a 40-nm CMOS technology, and the chip micrograph is
shown in Fig. 15(a). The total area is 3 × 3 mm2, includ-
ing 324 MAC units, 339.5 kB of on-chip SRAMs, and a
custom SDRAM controller. The chip specifications are sum-
marized in Fig. 15(b).
Fig. 16 shows the prototype chip testing board and system,

which includes the custom PCB mounting the 40-nm prototype
chip, 256-Mb SDRAMs, and PCIe connectors to communi-
cate with National Instrument LabView testing system. Our

TABLE IV

ANALYSIS RESULTS OF MAC UTILIZATION AT VGG-16
CONVOLUTION LAYERS

prototype chip performs DCNN inference, where it takes an
input image data and outputs the final output feature data
of convolution layer. All the processing for loading/storing
data from/to external SDRAMs are done in the prototype
chip. LabView testing system can configure the chip and read
output feature data through the PCIe interface to evaluate the
accuracy.
We implemented a custom SDRAM controller on-chip

to demonstrate energy-efficient data movement in real time
between external SDRAM and our proposed accelerator. Aided
by our full ZS scheme that only stores non-zero activations,
we achieved 5.8×, 1.57×, and 1.44× reduction of DRAM
access in VGG-16 convolution layers compared to [13], [15],
and [16], respectively, as shown in Fig. 17. For all convo-
lution layers of VGG-16, the total DRAM accesses for our
accelerator are 31.3 and 24 MB for activation and weight,
respectively, or 0.0018 access/MAC in average. Note that we
have measured 13 convolution layers of VGG-16 excluding
the fully connected layers.
The measured chip performance (frames/s) and total/leakage

power consumption with dynamic voltage scaling are shown
in Fig. 18. The proposed accelerator chip was fully functional
down to 0.6 V where the chip demonstrated 1.9 frames/s
with 28.2-mW power for VGG-16 CNN. Fig. 19 shows the
area and measured power breakdown of the prototype chip.
Twenty-seven percentage of the total chip area is occupied
by on-chip SRAM arrays, which store the kernel weights,
input/output feature maps, and partial sums. On the other hand,
10% of the total chip power was consumed by the SRAM
arrays since the proposed PC with fully ZS scheme signifi-
cantly reduces the power consumption of memory access. The
partial sum controller consumes ∼30% of the total area and
power, because it includes many registers to keep the partial
sums.
Table V provides a detailed comparison with recent

works on DCNN inference accelerator. Among the prior
works, Lee et al. [15] achieved the highest throughput of
18.3 frames/s with the energy efficiency of 4.71 TOPS/W
for VGG-16, but the accelerator in [15] did not include
any evaluation of external memory and off-chip communica-
tion energy. We achieved a peak energy efficiency of 24.97
TOPS/W in convolution layers 5–3 and 3.49 TOPS/W in
average for VGG-16 convolution layers, including off-chip
memory access. Note that we achieved 6.17 TOPS/W in
average for VGG-16 convolution layers that are followed
directly by max-pooling layers, where we jointly applied the
PC and ZS schemes. Aided by the benefits of the proposed
PC and ZS scheme, we achieved 8.25 frames/s throughput
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TABLE V

COMPARISONWITH PRIOR ASIC ACCELERATORS FOR DCNN

Fig. 14. Example of timing diagram for processing a convolution with PC and ZS schemes.

Fig. 15. (a) Prototype chip micrograph. (b) Chip specifications.

at 1.2 V, which is 3.75× higher compared to [16] which
evaluated off-chip memory access.
We compared the energy efficiency for the baseline scheme

and the proposed conditional computing scheme with PC and
ZS, for VGG-16 CNN with ImageNet data set. As shown in

Fig. 16. Chip testing board and system.

Fig. 20, when only ZS scheme is applied in the convolution
layers that are not followed by max pooling, we achieve
2.1× higher energy efficiency in average. If only PC scheme
is applied in the convolution layers that are followed by
max pooling, the energy efficiency improvement is limited
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Fig. 17. DRAM access comparison to (a) [13] and [15] at each convolution
layer and (b) [13] and [15], [16] in the total convolution layers for VGG-16.

Fig. 18. Measured frame rate and total/leakage power with voltage scaling.

to 1.7× in average, due to the latency overhead can occur
due to iterations for finding the max-pooling output (see Fig.
3). When we synergistically integrate PC and ZS schemes,
we achieve significantly higher improvement in energy effi-
ciency (7.7× in average) for convolution layers followed by
max pooling.
FlowNet [28], [29] is well known for optical flow estima-

tion and has six out of nine convolution layers followed by
max pooling. We have benchmarked the proposed accelerator
with FlowNet convolution layers which include max-pooling
layers for Flying Chair data set [28]. Table VI shows the
performance breakdown of the five convolution layers in
FlowNet benchmark. As shown in Fig. 21, we achieve not
only 70.7× higher energy efficiency in average for convolution
layers followed by max pooling but also significantly higher

Fig. 19. (a) Power and (b) area breakdown of the DCNN accelerator chip.

TABLE VI

PERFORMANCE BREAKDOWN OF THE FIVE CONVOLUTION

LAYERS IN FLOWNET

improvement in energy efficiency (11.3× in average) when
only ZS scheme is applied in all five convolution layers
because the five convolution layers of FlowNet for Flying
Chair data set have more zero sparsity compared to VGG-16
network for ImageNet data set. We achieve 13× higher energy
efficiency in average for five convolution layers in FlowNet
compared to the baseline non-PC/ZS schemes.
Note that ImageNet data set has a relatively small input

image size of 224 × 224, which limits the number of
max-pooling layers that can be employed throughout the
DCNN, since each max-pooling layer reduces both the width
and height of the feature map by 2×. This also limits
the overall network level energy improvement (4.4×) of
our proposed scheme. However, for real-world applications
such as autonomous driving and medical imaging that have
high-resolution input images (e.g., full HD or higher), CNNs
could have many convolution layers followed by max-pooling
layers. In [27], a new DCNN algorithm was presented for
tuberculosis screening from high-resolution medical images,
where four out of six convolution layers were followed by
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Fig. 20. Energy efficiency comparison between schemes without PC + ZS, with only ZS, with only PC, and with PC + ZS for VGG-16 with ImageNet
data set.

Fig. 21. Energy efficiency comparison between schemes without PC + ZS,
with only ZS, with only PC, and with PC + ZS for FlowNet [28] with Flying
Chair data set.

max-pooling layers. SegNet [31] is a popular DCNN model
used for semantic pixel-wise segmentation. The encoder net-
work in SegNet is topologically identical to the 13 convolu-
tional layers in the VGG-16 that has 5 out of 13 convolution
layers followed by max pooling.
For such DCNNs, the proposed PC and ZS schemes

are anticipated to enable much higher improvements in
system-level energy efficiency.

VI. CONCLUSION

In this article, we presented an energy-efficient DCNN
inference accelerator in 40-nm CMOS. We proposed PC
scheme to reduce the redundant convolutional operations when
max-pooling operations are combined. In addition, by inte-
grating the PC with ZS, we achieved significant reduction of
energy and external memory accesses. For VGG-16 CNN,
our accelerator achieved peak/average energy efficiency of
24.97/12.39 TOPS/W while consuming 40.8 mW at 0.6 V and
low external memory access of 0.0018 access/MAC in average.

In addition, we achieved the peak/average energy efficiency of
28.51/4.64 TOPS/W at 0.9-V supply with FlowNet for Flying
Chair data set.
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