Luttinger sum rules and spin fractionalization in the SU(/N) Kondo lattice
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We show how Oshikawa’s theorem for the Fermi surface volume of the Kondo lattice can be
extended to the SU(NN) symmetric case. By extending the theorem, we are able to show that the
mechanism of Fermi surface expansion seen in the large N mean-field theory is directly linked to the
expansion of the Fermi surface in a spin-1/2 Kondo lattice. This linkage enables us to interpret the
expansion of the Fermi surface in a Kondo lattice as a fractionalization of the local moments into
heavy electrons. Our method allows extension to a pure U(1) spin liquid, where we find the volume
of the spinon Fermi surface by applying a spin-twist, analogous to Oshikawa’s flux insertion. Lastly,
we discuss the possibility of interpreting the FL* phase characterized by a small Fermi surface in
the absence of symmetry breaking, as a non-topological coexistence of such a U(1) spin liquid and

an electronic Fermi liquid.

I. INTRODUCTION

Two decades ago, Oshikawa|l| applied the Lieb-
Schultz-Mattis approach|[2] to the Kondo lattice, using
its response to a flux insertion to demonstrate that its
Fermi surface volume counts the combined density of
electrons and local moments. Although the expansion
of the Fermi surface in the Kondo lattice had been in-
formally established from arguments of continuity based
on the Anderson lattice model[3], from the large N limit
of the Kondo lattice[4-7|, Oshikawa’s result provided a
rigorous foundation for the Fermi surface expansion in
a strict, S=1/2 system Kondo lattice.

Curiously, in the twenty years that have elapsed since
this hallmark development, Oshikawa’s result has not
been generalized to higher group symmetries. Here we
show that this generalization is readily established for a
family of SU(N) Kondo lattices. The key result, is that
for local moments in an antisymmetric representation
of the group constructed from @ elementary spinons, a
Fermi liquid ground-state will have an expanded Fermi
surface volume Vgg given by
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where n. and Ng are respectively, the number of elec-
trons and number of local moments per unit cell of vol-
ume v.. For all IV, the electronic Fermi surface expands
to incorporate the number of elementary spinons form-
ing the local moments, and by increasing N to arbitrar-
ily large values, we can link Oshikawa’s original result
to the basin of attraction of large N field theoretic ap-
proaches to the Kondo lattice[4, 5, 7]. The importance
of this link, is that the Kondo fractionalization of local
moments into charged heavy fermions, inferred field
theoretically, is rigorously confirmed.

One of the unexpected outcomes of our analysis, is
the discovery that Oshikawa’s flux attachment method
can also be applied to spin liquids [8, 9]. Previously, it
was assumed that since spin liquids are neutral, they are
immune to flux attachment, stimulating an alternative
topological interpretation of spin-liquid ground-states
in co-existence with a Fermi liquid. However, because
the unitary transformation that attaches a flux involves
both a charge and a spin-twist of the wavefunction, a
spin-liquid is sensitive to the flux attachment. This en-
ables us to show that a U(1) spin liquid in an SU(N)
Heisenberg model, will have a Fermi surface volume de-
termined by purely by the number of spinons in the
representation, i.e

Noeghs = NsQ. @

This result suggests that fractionalization in a U(1) spin
liquid and the Kondo lattice does not require a topolog-
ical interpretation, i.e that fractionalization and topol-
ogy are not inevitably tied together.

The outline of this paper is as follows. In Section II,
we derive the Luttinger sum rule for the SU(N) Kondo
Lattice. In Section III, we interpret the result as a sig-
nature of spin fractionalization, cementing an intuition
derived from the large-N mean-field theories as a gen-
eral feature of the Kondo lattice. In Section IV we show
how the method can be extended to a Kondo Heisen-
berg model. In Section V, we discuss the role of spin-
exchange interactions and identify the spinon Fermi sur-
face volume of a U(1) spin liquid. Finally in Section VI
we discuss whether the co-existence of a spin and small
Fermi surface conduction fluid, to form an FL* requires
a topological interpretation.
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Figure 1. Flux insertion strategy: a) Initial state |¥o) with momentum P, b) State |¥s)’ after flux insertion for electrons
with spin component z, has unchanged canonical momentum, c) after gauge transformation, |¥s) = U,|¥s)’ has canonical
momentum P,. The change in momentum AP, = P, — P2 determines the Fermi surface volume.

II. DERIVATION
We consider the SU(N) symmetric Kondo Lattice

Hgp = - Z tr,r’clacr’d + Jx Z X“ ' Kr’ (3)
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where ci_,(c = 1,N) creates an electron at site r,
moving on a D-dimensional toroid with intersite hop-
ping amplitude ¢,,, with dimensions L,,Ly...Lp.
Xr = cloxag/crg/ is the electron spin-density at r,
where the X = (AL,...AN"~1) are the SU(N) Gell-
Mann matrices. The A, = (AL,... Aivgfl) are the
components of the localized moment at site r. We
shall consider local moments composed of @) elementary
spinons, in an antisymmetric representation of SU(N),
01,...00) = (=1)|op, ...0p,). The action of the
spin operator A% a = (1, N2 —1) on these states is then
A01...0Q) = 0y |01 0 0Q) AL .

The SU(N) Kondo lattice has a global U(1)xSU(N)
symmetry, associated with the conserved electron num-
ber N, and magnetization M* = > A¢+A?. Of partic-
ular interest, are the diagonal components of the mag-
netization, M*, (i € [1, N —1]), which form the Cartan
sub-algebra of the SU(N) group, with Gell-Mann ma-
trices AL, = (0" — 1/N)dyqr.

Oshikawa’s strategy (see Fig. 1) is to introduce a unit
magnetic flux quantum ®,, = % that couples to the uth

spin component of the Fermi sea, giving rise to a induc-
tive current which increases the mechanical momentum
by an AP, = 2r/L, x V/(2m)P x VEg, directly pro-
portional to the Fermi surface volume. Since the flux
insertion does not change the many-body energy eigen-
states, it is equivalent to a unitary transformation U,
of the original Hamiltonian, H[®,] = U ;EH [0]U,. This
enables a direct calculation of the change in the me-
chanical momentum due to flux insertion in terms of
microscopic quantities. Equating the direct calculation
with the Fermi liquid result determines the Fermi sur-
face volume.

We now apply this strategy to the SU(N) Kondo
lattice. Flux insertion is achieved by a Peierls substi-
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tion tp . — tp e A0 where AT = 510 (%i) %
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(Note, we are using natural units in which e = h =1
and the dimensions of the unit cell are rescaled to be
unity, so that the unit cell volume v, = 1.) This addi-
tional gauge field is generated by a large gauge trans-
formation of the electron fields U);CIUU L, = cl e AT

. 2mi Z Tpnt
The obvious guess, U, = eZ= ~r*"r does not leave
the Kondo interaction invariant, but a modified trans-
formation

U, = e Xk or(ny +ATHQ/N) (4)
satisfies this requirement. This is a generalization of
Oshikawa’s original transformation, in which we have
replaced the SU(2) generator SZ by A¥. We have also



added an additional gauge transformation which mul-
tiplies the wavefunction by a factor eTa QN at each
site, which ensures that the unitary transformation pre-
serves the periodic boundary conditions. U,({z:}) =
U,{zr+ Ly}). Uy, is actually a product of a U(1) and
an SU(N) gauge transformation: in other words, to se-
lectively impart momentum to the pth Fermi surface we
must “twist” the wavefunction in charge and spin space.

To see that U,, commutes with the Kondo interaction
we write n¥ = A 4+ n, /N so that

ME = M+ A which both commute with the Kondo
interaction. To confirm that the transformation also
preserves periodic boundary conditions, we note that
if we shift the x-component of the site at ro by L,
ie 2y, = @p, + Ly, the unitary transformation picks
up an additional factor €2 ("o thrtd) = 2milAr,+a)
where ¢ = @Q/N and we have used the fact that the n#
are integers. But under a 27 rotation, an SU(N) spin,
picks up a phase factor i.e ¥y = e~ 2™ g0 that the
factor ¢ "%*9 = 1 and the unitary transformation
U, preserves periodic boundary conditions.

U, = eta Lo el Q/N+M] (5)

involves the electron density n, and local magnetization

J

Written in full, the Hamiltonian with flux inserted is

H[(I)M] = - Z tr,r’e_iAa'(r_rl)CI-gcr’a + Ji Z Xr : Kra
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The process of flux insertion involves adiabatically increasing A%(t) = A%e~ /™ from zero at t = —oo to its full

value at t = 0, taking 7 > (1/Tk) to be much longer than the inverse Kondo temperature, so that the initial
eigenstate |)") evolves smoothly into an excited eigenstate |¢¢)’ of Hpr[®,] (see Fig. 1).

Since translational symmetry is preserved by flux insertion, and since the exponential of the canonical momentum
e~tP: is the eigenstate of translation, it follows that the state retains a fixed canonical momentum P,(t) = P? so
that under a translation,

Toliba) = e % |yha). (7)

We can obtain the mechanical momentum P, of the final state |)¢)’ by noting that since this quantity is gauge in-
variant, it is unchanged when we gauge transform back into the original gauge. Now since Hg 1[0 = U, Hg 1[®,]U, ):,
it follows that |¢s) = U,|¥bs)’ is the corresponding transform of |¢g) back into the original gauge. But since the
vector potential is now absent, the mechanical and canonical momentum coincide and can be determined from a
translation,

Tplve) = e i), (8)

Since Ty|ve) = (ToU, T, 1) Ty|ve), it follows that
e Prlpe) = (TLULT; e [y (9)

Now T, U, T, ! describes the effect of translating the operator U, . by one lattice spacing in the & direction, so that

(T,U,T; ') = exp (10)

2m i
Lixlzr:xr (npys +Afys +0) | =exp [g;xrm (n + A+ q) |,

where inside the sum, we have shifted the x-coordinate of the position vectors r, r — r — Z. Now naively we
might expect x,_; = x, — 1. However this is not the case with sites on the first layer of the crystal, for in this
case T1_1 = Zg, but the periodic boundary conditions mean that xo =, = Ly, = x1 — 1+ L,. Thus in general,
Ty—z = Ty — 1 + Lz, 1. Substituting this into (10) we obtain

o
(TzU#Tz_l) = exp [;Z Z (r =14+ Lybr, 1) (nE + AL+ ¢q)

xT

r
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The first term derives from the crystal boundary at x, = 1, derived from the shift of the x-coordinates by L,.
However, since we have chosen a gauge where U,, is invariant under such co-ordinate shifts, this pre-factor is unity

- I
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(TULT, ") = exp

We note that this answer is also obtained with Oshikawa’s original choice of U, = eZ=
case, the g-dependence derives from the boundary term.

From (9) it then follows that

=P hg) = o= 1P o T S (nk+ A +q) o), (13)

i.e, flux insertion changes the mechanical momentum by

2
AP, =253 (k + Al +q). (14)
For N, spins per unit cell,
2
AP, = —V [v" + Ny (m" +q)] mod 27, (15)

Ly

where V' = L,L,...Lp is the system volume, while
v = (1/V) > . nt and m* = (1/V) > A are the p-th
filling fraction and magnetization respectively.
Alternatively, if we assume a Fermi liquid ground
state, we can compute the change in momentum by
observing that coupling to the gauge potential shifts
the momentum of each p-quasiparticle by 27/L,, so
that AP, = %N}i where N7 is the number of u-
quasiparticles. The quasiparticle number operator 7y,
is conserved in a Fermi liquid and jumps from 1 to 0
across the Fermi surface. This allows us to relate the

shift in momentum to the volume of the p-Fermi surface
Vi = Np(2m)P /v

2m VE
AP, = =V | £S5 |, 1
i 1o
Comparing Eq. (15) and Eq. (16) we find
Vis =V (" + Ny(m" +q)) + ny Ly (17)
(27T)D S THTH

with n, € Z. Now since the remainder term n,L, can
be calculated for a flux threading in any of the D di-
rections, the remainder is also equal to nyL,,...npLp,
where the n; (i = 1, D) are distinct integers for each

TNt + A2+ q)

L,

e T = 1). Our final answer for the translated U, is then

U,. (12)

r

27i
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direction. But since integer remainder is independent
of direction, nyL,; = nyLy = ...npLp. If we choose
the Ly, L,...Lp to be coprime (no common denom-
inators), it follows that n, is proportional to each of
the nyLy,...npLp, so that the it follows that the re-
mainder is a multiple of the full product, i.e the volume
V =1L,...Lp. Factoring out the volume V', we obtain

Ves
(2m)P

Since the Fermi surface volume is an intensive quantity,
the remainder n is independent of the convenient choice
of mutually coprime boundary lengths, and Eq. (19) is
valid in the thermodynamic limit.

Finally, if we trace over all N Fermi surfaces, since
the members of the Cartan sub-algebra are traceless, it
follows that 3 m* =0 so that

=vF 4+ Ny(m' +q)+n (18)

y Vrs
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wheren, = > wVn and we have restored the engineering
dimensions of the unit cell volume v., and have dropped
the integer remainder p = nN, with the understand-

ing that the Fermi surface volume is only defined mod
(2m)P.

=n, + NsQ (19)

III. THE LINK WITH FRACTIONALIZATION

Traditionally, the localized spins of a Kondo lattice
are written in terms of an Abrikosov pseudo-fermion
representation

AZ = i

ro Ua"fro'” (a = 1’N2 - 1) (20)

with a constraint on the local f-fermion (spinon) den-

sity nt) = o f;f“ fey = @ which determines the num-
ber of spinons contained in the Qth antisymmetric rep-
resentation of SU(N). With hindsight, we now see that



since the constraint commutes with evey operator in-
volved in the proof, we could have used this representa-
tion from the outset, but by tacitly avoiding doing so,
we avoided any lingering concerns about the constraint.

In the Abrikosov representation, the Kondo Lattice
Hamiltonian takes the form [4]

Jk
Ztr r/Cra-Cr o W

rr’/

:r‘ofraf:a/cra/
(21)

which explicitly commutes with the constraint nyg, = @
and the number of conduction electrons n., at site r.
With the normalization Tr[A*A’] = (1 — 37)6°® set by
the Cartan sub-algebra, the coupling constants of the
Read-Newns form and the original model (3) are related
by Jg = Jx(N — 1).

The Cartan elements are now represented by Al =
', — Q/N, so that the gauge transformation (4) that
imposes the flux insertion is given by

2
U = exp l i Zxr nl, +nk,)

(22) is literally, a large gauge transformation that
counts the f—spinons as quasiparticles. The conduc-
tion electrons and spinons transform identically under
the flux insertion,

uf (; )U — AT (;%)

In other words, the structure of the unitary transfor-
mation, forced upon us by the Kondo coupling, means
that the spinons behave exactly as charged particles un-
der the flux attachment, consistent with a fractional-
ization of spins into heavy electrons in the Fermi liquid
phase. Remarkably then, the seeds of fractionalization
are present in the original Oshikawa gauge transforma-
tion.
The final form of the Luttinger sum rule

(22)

(23)

o
FS
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where v = 3= 37 = Ny(m" + q) is the number of
spinons with spm mdex w1 per unit cell, is not a surprise,
because the U(1) x SU(N) gauge transformation (22)
audits every spinon entangled into the Fermi sea.
Traditionally, the Kondo Fermi surface expansion is
interpreted by identifying the Kondo Hamiltonian as
the strong coupling renormalization of a periodic An-
derson model with the same filling[3]. However, a
Kondo lattice Hamiltonian has no knowledge of its high
energy origins. From a renormalization group perspec-
tive, the Kondo lattice lies on the common scaling tra-
jectory of many high energy “microscopic” Hamiltoni-
ans. Indeed, the model is entirely agnostic as to the

=vh 4y, mod(1) (24)

origin of the local moments, and they need not have an
electronic origin at all, for instance, they equally could
be nuclear spins, with a Kondo interaction derived from
hyperfine interactions. The main point is that since the
Kondo lattice has no knowledge of its high energy ori-
gins, fractionalization in the Kondo lattice is an emer-
gent property. This alternate interpretation allows us
to contemplate the possibility that different kinds of
spin fractionalization may develop in the approach to
magnetism, or spin liquid behavior.

IV. KONDO HEISENBERG MODEL

We now consider an extension of our results to a
Kondo Heisenberg model: a Kondo lattice with addi-
tional Heisenberg interactions, Hxy = Hgp + Hpy,
where now

Hp =Y Jewhe Ay (25)

(rr’)

From Doniach’s original arguments|[10], we know that
for large enough Tk, the Kondo interaction will stabi-
lize a Fermi liquid, in which case, we expect Oshikawa’s
result to generalize to the Kondo Heisenberg model.
We are particularly interested in the case of frustrated
Kondo lattices, where in the limit of small Tk, rather
than forming a state of long-range magnetic order, the
system develops into spin liquid, preserving the Fermi
surface of the underlying spinons. We shall show that
Oshikawa’s theorem can be extended to this case.

Naively, one might expect flux insertion to only af-
fect charge particles, leaving the Heisenberg term alone.
However, the unitary tranbformation that accomplishes
flux insertion (4), U, = ety Leor(nr Ay 9 adds a
charge and a spin-flux to the system, thus affecting
the Heisenberg interaction terms. Under the gauge
transformation, the local moments transform under
the adjoint representation of SU(N). To keep track of
these transformations, its simpler to switch to a Co-
thn Schrieffer representation of the local moments,
A"” = fl fror — ~0o0/, s0 that the Heisenberg inter-
action takes the form

Z J r’AUG

(rr’

(26)

where j“/ = Jyr (N —1). Under the flux insertion,
fro — €A77 fry so that under the gauge transforma-
tion (23),

A7 = USAZ7U, = e ATTATITAZY (o)

which describes the transformation of the spin operator
under the adjoint representation of SU(N), correspond-
ing to a slow twist of the local moments about the “u”
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Figure 2. (a) Flux attachment in the Kondo Heisenberg model. Threading a flux results in a twist in the U(1) gauge
potential and a twist in the spin orientations, imparting momentum to the electrons and the spinons. (b) The total
momentum is proportional to the combined Fermi surface volume of the electrons and spinons (red). In the FL* phase
the spinons decouple from the electrons to form a U(1) spin liquid, resulting in a smaller Fermi surface (purple) that only
counts the electrons.

axis, created by the spin component of Uy, through an  angle 2n(x/L,) that increases from 0 to 27 across the

sample.
J

Using these results, we can write Heisenberg Kondo model with a flux insertion in the y spin channel as

At J 1 . (AT A N oot o
HKH[(I)M] — _Ztl’,l"eizA -(r—r )CI‘UCY/O' + WKZCIUCTU'A;“U + N Z Jr,r’eil(A —A7 ) (r—r )Agd A:’/a. (28)

rr’ (rr’)

The gauge field inside the Heisenberg term

e—iA~(r—r/)(6aH—6azu) — e—iA-(r—r')J(,,,,eiA»(r—r’)ﬁ[,/u’

(r =)

o’

(29)

can be interpreted as the product of two Peierls’ insertions associated with a spinon exchange: an ¢ spinon moving
from r’ to r, and a ¢’ spinon moving in the opposite direction. The derivation and final form of the Luttinger
sum rule for the Fermi liquid now follows precisely the same route as in the Kondo model. In particular, the key
identity (12) still holds, allowing us to generalize the Oshikawa result(1) to the Fermi liquid phases of the SU(N)

Kondo Heisenberg model.

Since our flux insertion works for arbitrary N, it al-
lows us to explicitly examine how the wavefunction |¥q)
evolves at large N, allowing us to the explicit evolution
under the flux attachment and subsequent gauge trans-
formation,

100) 2% | ) 225 W), (30)

At large N, the ground-state wavefunction is accurately
determined by a Gutzwiller wavefunction

Wo) =Po [ (oxcl, + Bichi,)10)
keFS,o

(31)

where the product runs over all wavevectors enclosed by
the Fermi surface, and Pg = [], n;(r),@ Projects out
the component of the wavefunction with n;(r) = Q at
each site, while the hybridized operators ay, ch—i— Ok flto,
define the quasiparticles of the mean-field Hamiltonian.
In fact, the Gutzwiller projection Pg can be replaced

(

by an average constraint in the large N limit, but here
we shall keep it for greater generality.

In the large N limit, the dynamics of the wave-
function are determined by evolution under a time-
dependent, translationally invariant mean-field Hamil-
tonian which preserves the momenta of the quasiparticle
states, leaving the Fermi surface unchanged. After the
flux insertion, the mean-field wavefunction then has the
form

We) =Pa [] (owol®lcf, + Brol®IfL,)I0)  (32)
keFS,o

where the coefficients oy, [®] and Py, [P] differ from
their zero field value by terms of order O(1/L). Now
if we Fourier transform (23) the transformation of the
electron and spinon fields under U,, in momentum



space is given by

T T
U C U C
® ( kU) T - l¥+AUU ’
flia : fk+A"cr

so that under the unitary transformation U,,, U, |¢s)" =
|te) is given by

[ve) = Pa H (aka Jels Aco +Bko[‘1’]fi+mg) 10),
keF'S,o

(33)

(34)
If we translate this state in the x direction, then since

i i
T, <Ck0) T, =ik (%") :
fkg fko’

it follows that the momentum of the final state P, is
given by

(35)

Telvbe) = e ¢s), (36)
where
2V
P = Aa’ _ O)
keF'S,o

so we see that the shift in momentum per quasiparticle
7T

is precisely AZ = #* in the p band.

V. U(1) SPIN LIQUID

The fascinating aspect of this result, is that it also
allows us to apply the flux attachment idea to a pure
Heisenberg model Hy. The Heisenberg model with a
spin twist, HH[ ol = U HyU, is written

~ . o o! ’ ’ ’
- Z Jr’rlefz(A —A% ) (r—r )Aga g,a’
(rr’)

2
—I

Hpy [(I)u} -

A7 =51 (38)

x

and the corresponding gauge transformation is then

U, = exp l Zxr (AL +q) (39)

In this case, the translated gauge transformation takes
the form

(T,UST, ') = exp Us.  (40)

2mi
I Z (Af +q)

r

so the change in momentum associated with the flux
insertion is then

2
AP, = 3 (M +a)

r

27

where V. = L,L,...Lp is the volume and m* =
% > A¥ is the magnetization, and we have assumed
ng = 1 local moment per unit cell. Using Abrikosov
fermions, AY + ¢ = ntﬁr is the number of p- spinons at
site r, so we can interprete V(m* + ¢) as the number of
spinon with spin component p. In other words, under
a flux attachment, each spinon with spin component u
in the ground-state acquires a momentum 2%

A U(1) spin liquid can be thought of as an incom-
pressible neutral Fermi liquid. In Appendix A, we
demonstrate that such a state is energetically favored
in the large N limit over the dimer phase and the 7 flux
phase on a square lattice over a range of q. To see how
its momentum changes under a flux attachment, con-
sider the model ground-state provided by a Gutzwiller
wavefunction

mod 27, (41)

o) = Pe [[ £L,10). (42)

keFS,o

where, as in the Kondo lattice, Po = [], 5nf(r),Q is
a Gutzwiller projection onto states with ) elementary
spinons at each site. Now the translation operator
commutes with Pg, and since waliUT;I = e tha ff;w
it follows that this state has the initial momentum

= D kers.o ko In the large N limit (see Ap-
pendix B), the time-evolution of the state is given by a
time-dependent mean-field Hamiltonian that is explic-
itly translationally invariant, so that under a flux at-
tachment, the canonical momenta of the spinons are
entirely unchanged. In a one-band fluid of spinons, the
corresponding Gutziller ground-state is then unchanged
after the flux attachment |Ug)’ = |¥y). If we now revert

back to the original gauge, since UMJ";LUUM_1 = flhAayU,
it follows that
Vo) = UulVa) = Po [] floarol0)  (43)

keFS,o

corresponding to a Fermi sea in which the spinon mo-
menta are shifted by A? = 27/L, 0"z, i.e
2r Vi

L, (2m)P

AP, = (44)

By comparing this result with (41), we then obtain

Vi
(2m)P

= (my+gq), modl, (45)

We emphasize that this result remains valid at arbitrary
N as long as the ground state is smoothly connected to

the U(1) spin liquid state in (43). For SU(2) a similar
result was also obtained in Ref. [11].



VI. DISCUSSION

It is interesting to comsider the implications of our
results for the FL* phase of the Kondo lattice model,
in which decoupled spin liquid and conduction electrons
co-exist in a state of unbroken symmetry. Earlier work
on S = 1/2 Kondo systems [12, 13] has interpreted this
phase as a Z, spin liquid coexisting with a Fermi lig-
uid. Flux insertion then drives a transition between two
topologically degenerate ground-states characterized by
the presence or absence of vizon states that carry Zs
flux. But is the the FL* phase necessarily topologically
ordered?

Our result on the Kondo Heisenberg model suggests
an alternate interpretation of the FL* phase as the co-
existence of a U(1) spin liquid with an electronic Fermi
liquid. There are in principle, two phases:

e the heavy Fermi liquid, a Higgs phase in which
the U(1) gauge field of the spinons is locked to
the electromagnetic U(1) fields of the conduction
electrons, giving rise to a single unified Fermi sur-
face of heavy electrons.

e the FL* in which the U(1) gauge fields of the con-
duction electrons and spinons are decoupled, so
that one is neutral, the other charged

Oshikawa’s theorem, extended to the Kondo Heisen-
berg model makes no judgement on which phase one
is in, simply predicting that the combined volume of
the Fermi surfaces

Vis Vi W

(2m)P - + = Ny(my +q) +v*

(2m)P  (2m)P
If the spin liquid decouples from the electronic fluid,
then assuming that the U(1) spin liquid is isomorphic
to that of the pure Heisenberg model in Section V, the

. . A VS
volume of the spinon Fermi surface is given by % =

(46)

Ns(my +¢q). In this case, the remaining electronic fluid
has a Fermi surface volume

VE©
(2;313 = (47)

From this perspective, the FL* is understood simply
as two decoupled fluids, both of which respond to the
flux attachment. One of the interesting aspects of this
line of reasoning, is that it goes against a commonly
held view-point that fractionalization in higher dimen-
sional systems is intimately associated with a topolog-
ical ground-state. It suggests instead that fractional-
ization does not require such inevitable linkage, and it
opens the way for an interpretation of the Kondo effect
as a non-topological fractionalization of local moments.

Such U(1) spin liquids are expected from large N
treatments [9, 14-17] and found in variational studies

of Heisenberg-related models [18]. The breakdown of
the Kondo effect, and the the resulting decoupling be-
tween between spinons and electrons in these spin lig-
uids would have sharp experimental signatures owing
to the coexistence of a charge-neutral spinon Fermi sur-
face. Such spin liquids are among the prime candidates
to account for the anomalous signatures in thermal
conductivity [19], spin susceptibility [18] and anoma-
lous quantum oscillations [20-22] that have been ob-
served in various experiments. While this work makes
no claim on the resolution of these experimental puz-
zles, an exact result on the volume of the spinon Fermi
surface in a U(1) spin liquid is a valuable benchmark
to compare against. Indeed, in a two-fluid picture [23],
Fermi surface volumes intermediate between the large
and small Fermi surface may be fit to a heuristic form
Vs = Nsq + fr to estimate f, the fraction of the spins
that are gauge-coupled to the electrons.

One of the unsolved questions, is whether Oshikawa’s
approach can be extended to other models? Central
to the current derivation of the Luttinger sum rule is
the identification of a U(1) gauge symmetry associated
with each of the IV spin components, and the presence
of translational symmetry. There are two models that
fail these requirements:

e the Kondo impurity model, where fractionaliza-
tion, and the large N limit tell us that the scat-
tering phase shift is given by § = 7Q/N [7].

e the family of symplectic SP(2N) symmetric
Kondo lattices, important for extending the no-
tion of pairing to the large N limit [24, 25].

At first sight, the absence of a conserved momentum
would seem to preclude using flux attachment on the
impurity Kondo model, however however, by represent-
ing the impurities as left moving particles in a fluid of
right-moving electrons, as in Bethe-Ansatz solutions of
this problem [14], it may be possible to restore transla-
tional invariance required for flux attachment.

Likewise, the absence of a large number of U(1) sub-
groups in SP(2N) appears to sabotage the application
of Oshikawa’s theorem to this case. However, here too,
there may be a way out, for the total number of “up”
electrons and spinons is still a conserved U(1) invariant,
so that if we attach a flux to all the up electrons and
spinons, a Fermi surface sum rule may still be possible.
These topics can be considered in future work.
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Appendix A: Stability of the U(1) spin liquid in
the large N limit

The nearest-neighbor Heisenberg model is described
by the path integral

Z:/D[ff,f ’A]exp[_/oﬁdTE(T)}

L= Z (f!"ra(aT + )‘l‘)fro - ATQ) + HH) (Al)

with a summation convention over spin indices o =
(1, N). The Heisenberg Hamiltonian Hp represented
in terms of the Abrikosov fermi fields fT, f as

J
HHzfiH (fl]tofr’a)(f:’g’fr/a")’

(rr’)

(A2)

while the constraint on the local fermion number is im-
plemented by an integral over the chemical potential
Ar [7]. Decoupling the four-fermion term by a Hubbard-
Stratonovich transformation to the resonating valence
bond fields x, and approximating the integral by the
saddle point action leads to the mean-field Hamiltonian

N
Hyp=— Z er’fjgfwg + = Z ‘er'|2
(rr’) Ju |

+ Z)\r(fjofra - Q)a

rr’)

(A3)

which becomes exact in the limit of large N. We com-
pare the energies of the spin-liquid (SL), dimer, and
m-flux phases of this Hamiltonian on a square lattice in
two dimensions with linear dimension L in units of the
lattice constant. Each of these phases has A\, = A.

For the dimer or Peierls phase [26], xyr = 0 on all but
one of the nearest-neighbor bonds to each site, as shown
in Fig. 3(a). For the 7-flux phase [9], X = |x|e!™/* if
r — 1’ is oriented along the arrows in Fig. 3(b). For
the uniform U(1) spin liquid, xp = x € R for all
bonds (Fig. 3(c)). Table I summarizes the results of
the large N mean-field analysis for these states when
g = Q/N < 1/2 and the ground state energies are com-
pared in Fig. 3(d). Near half-filling, the Peierls phase
has the lowest energy. However, for low filling upto
q ~ 0.3, the lowest energy state is the uniform U(1)
spin liquid. For intermediate filling 0.3 < ¢ < 0.48, the
flux phase is most stable.

When ¢ <« 1, the dispersion of the filled states is
approximately quadratic and we obtain the following

0.00 ]
-0.02 4
-0.04 | 4
E_
NV TH,06) h
~0.08f ] 8
P
—— Dimer phase
-o.10p —— m-flux phase 1
_o2k —— U(1) spin liquid 11
L L L L L L 8
0.0 0.1 0.2 0.3 0.4 0.5
q
U(1) spin liquid m-flux phase  Dimer phase
L 1
[— I I q
dc1 Gc2
Figure 3. (a) m-flux phase: the phase of the bond order

parameter x is positive along the direction of the arrows.
The unit cell (yellow) is expanded to include two inequiv-
alent sites A and B, corresponding to a reduced Brillouin
zone. (b) Peierls phase in which the spin on each site forms
a dimer with its nearest-neighbor and decouples from the
lattice. (c) Comparison of ground state energies for the spin
liquid (red), flux phase (purple) and dimer phase (blue). The
dashed curve is an analytical approximation for the spin lig-
uid ground state energy valid at small q. For a range of
filling ¢ < ge1 ~ 0.3 the uniform U(1) spin liquid is stable
with respect to the flux and dimer phases.

analytical expressions for the ground state energy

2
— [71_(1_31@)3/2} ~ —¢%, m-Flux

E

NV Jg

—q%/2, Dimer

—2¢* (1 — %)2 ~ —2¢2, SL
so for small ¢, the uniform spin liquid is the most
energetically favorable state. We note that while the
dimer phase is stable only near ¢ = 1/2, similar phases
may be present and favorable at other rational fillings.
For instance, 7-site ring polymer states have energy
E/(NVJy) = —¢* at ¢ = 1/r. At q = 1/4, the 4-
site plaquette states have lower energy than the uni-
form U(1) spin liquid. As ¢ becomes smaller, the likely
ground state involves larger and larger decoupled clus-
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Table I. Summary of large N mean-field results

State ‘Fermionic excitations ‘Gap equation ‘Ground state energy
Dimer |e+ =XFx X = JHq jH2]€L2 =—q¢
2
m-Flux |ex+ = A £ 2xy/cos? ky + cos? ky f (2Tr>2 nk—+/cos? ky + cos? ky ﬁ = — (f (SQTI)‘an, \/cos? k; + cos? k‘y>
2
U(1) SLjex = A — 2x(cos ks + cos ky) =[4 (2 )2 (cos ks + cosky) ni. szfff?LQ =— (f (‘;QT')‘Z(COS ke + cosky) n{i)

ters with vanishing energy differences AE from the U(1)
spin liquid. Above temperatures of the order of AF,
the system behaves like a spin liquid. Additionally,
on finite-sized systems, incommensuration between the
cluster size and the system size may frustrate the va-
lence bond crystal and favor the spin liquid.

Appendix B: Flux insertion in the large-N limit of
Heisenberg model

In this section, we explicitly demonstrate the flux in-
sertion and concomittant change in momentum in the
Heisenberg model on a square lattice in the limit of
large N, in terms of the mean-field Hamiltonian (A3).
We discuss the response of the global U(1) gauge cor-
responding to the phase of the bond order parameters
to the insertion of the flux, and explicitly show that
the volume of the spinon Fermi surface is given by (2).
As opposed to the main text, we consider a flux that
couples to P of the N spin degrees of freedom, so that
the effect of the flux threading on the relative change in
the ground state energy, for instance, is non-vanishing
in the large- N limit.

The Heisenberg model in presence of such a flux is
given by

JH
Hul®,] =~ (Ho foro) (Frgr frror)
(l‘f’>
% e i(AT=AT)-(r-1) (B1)
where A7 = (27/Ly)2 3, 0o with the sum over

P spin-channels to which the flux is coupled, where
{n} = {p1...,pp},. In the large N limit, this is ex-
actly captured by the mean-field Hamiltonian

ZX“"G A= r)f gfr/cr
(“‘/>

Z |X1‘I" + ZA ra ra - )

TH (o)

Hypl @] =

(B2)

The saddle point condition for a uniform order param-

eter leads to the self-consistency equation

) , J I /
—iA-(r—r') _ _“YH iA7-(r—r')
2NV <f ofrale

(rr’)

Xrr' = ‘X|€
(B3)

where A is the global (spin-independent) U(1) gauge
potential, V' is the volume of the system (with the unit
cell volume set to unity). With this, the mean-field
Hamiltonian is diagonal in momentum space

2NV |[x|?
Hyr (I){u} Z €k+A+A”fkafka "'i —AQV
H
(B4)
where ex = —2x(cosk; + cosk,) + X is the disper-

sion of the f-fermions. Recall that the ground state is
the same as before the flux insertion, since momentum
is conserved throughout the process. The final state
[Ve) = erps,gﬁiam) and the canonical x-momentum

Y = Y kers,o k = 0 as before the flux insertion. The
gauge transformation that removes the flux is now given
by

il SENCY ) (B5)

“or{p}

Uy = exp
To transform back to the original gauge we note that
1 A
Us fJf UST _ Z Us er UST elk~l‘
{n}/ ko {u}Jro
' {n} \/1V - F {n}
- W Z ft:rael(k+A )r = fk—i—A”a'

(B6)

We transform the ground state to this gauge |¢¢) =
U‘{“H}|w¢>’ = HkEFS,UfII+AU,a|O> and evaluate the phys-
ical momentum

- - VFS 2
Po= ) (k+A%)= Y A"= P L
keFS,o keFS,o
(B7)

when P out of N spin-components are coupled to the
flux. In this case, the change in momentum on flux



insertion can be independently computed following the
arguments in the main text ((38)-(41)) to yield

AP, =V (27T) Pq (B8)
L,

when the ground state is unpolarized. Comparing with

(B7), we find the volume of the Fermi surface to be

Vrs = (2m)%q consistent with (45).

As the flux is inserted, the global U(1) gauge poten-
tial A adjusts in response to preserve a zero total spinon
current. Symmetry dictates that A || & and the new
self-consistent value of A is determined by the saddle
point condition d4 F = 0 leading to

> (Oacicrarar)ng,

ko

= —2|x] % Z cos(A+ A7) cos kmnfi
ko

= 2|x| <Z coskzn1{> (Z sin(.A+A”)> =0 (B9)
k o

= Psin(A ?) +(N—P)sinA=0

(B10)
Since L, > 1, we find that the saddle point value of A
is

2

-A = _pra

(B11)

where p = £ The global U(1) gauge potential adjusts
to oppose the inserted flux and is proportional to the
fraction of spin-components coupled to the flux. In fact,
this keeps the net charge current fixed at 0, as expected
for a response to a spin-twist. The flux imparts mo-
mentum to the u-fermions and elicits a diamagnetic re-
sponse from all the fermions. This can be seen explicitly
by calculating the ground state energy in presence of the
flux

2
g_ 2NVIX
Ju
= —2|x| Z (cos(kz + A+ A7) + cosky) nﬁ
ko

= =2x[IoV > (cos(A+ A7) +1) (B12)
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where Iy = (1/V) >, cos kx”;{ When P of the N spin-
components couple to the flux,

E
7= —2|x|Io (P cos(A + A,)

2
+(N7P)cosAfN)+2]Y]¢

H

With A ~ —pA,, the saddle point condition 0|, E =
0 yields |x| = (1/2)IoJu(pcos((l —p)As) + (1 —
p)cos(pAz) +1). As a result, the ground state energy

1S

(B13)

E .
— — _9|y|?
v = 2T

_ _%jH 12 (p(cos((1 — p) Aq)

+ (1= p)cos(pAs) +1)°
- 1 2
~=2Julg (1= 2 (p(1 = p)* + (1= p)p?) A

Ey

1 ~
= W + §pD{M}Ai + O(Ai)

(B14)

where Fy = —2NVJHI§ is the energy in absence of
the flux and b{u} = 2JyI3(1 — p). The quantity
Jjz = —(1/V)OE/0A; = be{M}Am can be interpreted
as the diamagnetic spin current response of the P-spin
channels to the flux insertion, while 15{ ) is their spin
stiffness.
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