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We show that we can combine the (complex, self-dual) Bondi-Metzner-Sachs (BMS) vector fields with
the recently defined BMS twistors to obtain a new supersymmetric extension of the BMS symmetries at
null infinity. We compare our construction to other supersymmetric extensions of the BMS algebra
proposed in the context of supergravity. Unlike the standard constructions the anticommutator in our
superalgebra generates all the BMS vector fields including the Lorentz transformations. We also show that
there exists a projection from our BMS Lie superalgebra to the global subalgebra of the Neveu-Schwarz
supersymmetries on a 2-sphere, which are commonly considered in string theory and 2-dimensional

conformal field theory.
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I. INTRODUCTION

Following up on the recent construction of Bondi-
Metzner-Sachs (BMS) twistors at null infinity [1], we
describe how these twistors and BMS symmetries can be
unified into a supersymmetric algebra, that is a Lie
superalgebra.

For asymptotically flat spacetimes describing isolated
systems in general relativity, it is well known that at the
asymptotic boundary, null infinity denoted by .#, one
obtains an infinite-dimensional asymptotic symmetry
group—the BMS group—along with the corresponding
charges and fluxes due to gravitational radiation [2-9], see
also Ref. [10] for a recent exposition. We review the
properties of the BMS vector fields in Sec. IIT A.

The BMS twistors in [1] were motivated by obtaining a
twistorial description of the BMS Lie algebra. As is well
known it is not possible to impose even the tangential
components of the twistor equation on general spacetimes
at .Z, unless the News (i.e., any gravitational radiation)
vanishes. The usual strategy in the twistor literature is to
select a fixed cross section of .# and only impose those
components of the twistor equation which are tangent to
this cross section; this defines the 2-surface twistors on a
cross section of .. These 2-surface twistors can be used to
generate a Poincaré algebra at the chosen cross section [11—
13]. The alternative strategy used in [1] is to instead impose
those components of the full twistor equation which are
both tangent and universal on .#. The infinite-dimensional
space of solutions to these equations can be used to
generate (complex) BMS vector fields; this construction
is recalled in Sec. III B.
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Most of the structures to elevate this construction to a Lie
superalgebra have already been defined—the BMS vector
fields form a Lie algebra which will be the even part of our
Lie superalgebra; the symmetric map from the BMS
twistors to a BMS vector field defined in [1] defines a
bracket on the odd part of the Lie superalgebra. The only
missing part is a bracket between the BMS vector fields and
the BMS twistors, i.e., an action of BMS symmetries on the
space of BMS twistors; we will define this action in Sec. IV
using a Lie derivative on spinor fields defined by Penrose
and Rindler [14]. In Sec. V we prove that these brackets
satisfy the Jacobi identities and hence define a Lie super-
algebra 8. We also compare and contrast this Lie super-
algebra with other constructions of supersymmetries at null
infinity. We also describe a curious aspect of the Lie
superalgebra K: the projection of & to the space of null
generators of .# reproduces the (global) Neveu-Schwarz
supersymmetric algebra (see Sec. V A). We conclude with a
short discussion of some interesting new avenues suggested
by this work in Sec. VI.

II. NOTATION AND CONVENTIONS

Abstract indices a, b, ... will be used for tensors in
spacetime while A, B, ... and A’, B’,... will be used for
abstract spinor indices using the conventions in [15]. We
work exclusively in the conformally completed spacetime,
the unphysical spacetime M with a Lorentzian metric g,,.
We use the mostly negative signature (+,—, —, —) for the
Lorentzian 4-dimensional metric tensor g,, on spacetime
and denote the corresponding (antisymmetric) metrics on
the spinor spaces by €45 and €45, see Ref. [15]. We will
use the sign conventions of [15] for the Riemann tensor
(this is the opposite sign compared to the convention in
Wald [16]); so if v, is a I-form we have

© 2022 American Physical Society


https://orcid.org/0000-0001-7192-2190
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.064054&domain=pdf&date_stamp=2022-03-28
https://doi.org/10.1103/PhysRevD.105.064054
https://doi.org/10.1103/PhysRevD.105.064054
https://doi.org/10.1103/PhysRevD.105.064054
https://doi.org/10.1103/PhysRevD.105.064054

KARTIK PRABHU

PHYS. REV. D 105, 064054 (2022)

— d
vavbvc - vbvavc - _Rabc Va. (21)
Since the Riemann tensor is antisymmetric in the last two
indices we also have

Rupca = Rapep€cop + Rapcp€cn- (2.2)

We also use = to denote equality at null infinity.

III. NULL INFINITY, BMS SYMMETRIES, AND
BMS TWISTORS

We will use the definition of asymptotic flatness given by
Penrose’s conformal completion (see Refs. [6,16]), and
denote null infinity as .# ~ R x S2. Let Q be the conformal
factor used to obtain the conformal completion of the
physical spacetime, then it can be shown that V4Q is the
null generator of ., and that one can, without loss of
generality, choose Q so that the Bondi condition
V.V, Q=0 is satisfied at .. For intermediate computa-
tions, we will use the Geroch-Held-Penrose (GHP) for-
malism at null infinity [14,15,17,18]. The GHP weight of
any quantity # will be denoted by 1 = (p, ¢), and its spin
will be s = (p —¢)/2. For this it will be convenient to
make a choice of a null tetrad and spinor basis at .# which
determines a Bondi system, see Ref. [14] for details.

We pick a vector field n* and a spinor /* at null infinity
so that

An® = - VQ, n® = A, (3.1)
for some function A with GHP weights A = (1, 1). Next,
we pick a foliation of .# so that the cross sections are
parallelly transported along n“. This foliation determines a
unique null vector field [ at .# so that [, = g,,I” is the
conormal to the cross sections and n,/* = 1. Finally, we
pick a complex null basis m* and /m“ which is tangent to the
cross sections of this foliation and m,m? = — 1. In this
basis,

Yab = 2n(alb) - 2m(aﬁ1b)’ 9ab

Eub = — Zl.I’H[aﬁ’lb], (32)
where ¢, is the pullback of g,, to .#, and is a (negative
definite) Riemannian metric on the cross sections of .#, and
&, 18 the area element. We can also define another spinor
o* so that (0*,1*) and their complex conjugates (0”', ")
are associated with the tetrads in the usual way (see
Ref. [14] for details) and are normalized so that

ot Z o =1, (3.3)
and all other contractions vanishing. In this choice of basis,
the GHP spin coefficients at .# satisfy

/

K /

o =7

/

p=r=Imp=0,

>
>

(3.4)

while the spin coefficients k,o,Rep are arbitrary.
The function A appearing in Eq. (3.1) satisfies (see
Eq. 9.8.26 of Ref. [14])
PA=DJA=0. (3.5)
Note that the spin coefficients x and Rep can also be set to
zero, by appropriate choices of the conformal factor and
tetrad away from .#, but we will not need to do so. The only
nontrivial spin coefficient at .# is o which encodes the
gravitational radiation through the News tensor, which is
represented by a complex function N with
N:=)po (3.6)

In the following we summarize the universal structure
induced on null infinity as the conformal boundary of an
asymptotically-flat spacetime; see Ref. [6,8]. Note we will
retain the function A = (1, 1) introduced in Eq. (3.1) to
keep track of the GHP weights in our choice of tetrad basis;
if one is concerned only with tensorial expressions then A
can be set to 1.

Let us recall the “first-order” structure of .# consists of a
vector field An® and a degenerate Riemannian metric ¢,
such that (An?)q,;, = 0. This structure is universal, in the
sense that n“ and ¢, are intrinsically defined on the
manifold ., and are common to all asymptotically flat
spacetimes. Different asymptotically flat spacetimes are
instead distinguished by the “second-order” structure
encoded in equivalence classes of derivative operators on
#; we recall the essential aspects below and refer to [6,8]
for details.

Let v, be a 1-form on .# and let ¥, be any extension of
v, into the spacetime M, i.e., ¥, is a 1-form in M such that
v, = ¥,, Where _ denotes the pullback to .#. Then, a

derivative operator D, on .# is defined as (see page 46 of
Ref. [6])

Da’Ub = Vaf)b. (37)
<~

Note that D, is well defined since it is independent of the
choice of extension 7, of v, into the spacetime M, i.e.,
replacing ¥, with 9, + vAn, + Q4, does not affect D, v,
on . [6]. Intrinsically on .7, this derivative operator
satisfies
D,(An?) =0, D,q,. = 0. (3.8)
Two derivative operators D, and D, are equivalent (they
represent different conformal completions of the same
physical spacetime) if [8]
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A

(Da - Da)vb = fqah(AnC>vc = - (ﬁ _p)Qah(Anc)Um
(3.9)

for some function f and all v;, on .#. In our tetrad basis this
function is given by the difference of the spin coefficient p
as indicated above. Let us denote by {D},, the equivalence
class of the derivative operator D, under the above
equivalence relation.

The difference of equivalence classes of derivatives is
given by a tensor y,,

({D}a - {D}a)vb = 7ab<AnC)’Uc’ yab(Anb> = 07

q“"rar =0, (3.10)
for all v,. In our tetrad basis this is
Yap = (6 — 0)m,m, + c.c. (3.11)

where c.c. denotes the complex conjugate of the previous
expression. The shear spin coefficient ¢ encodes the
different equivalence classes of derivatives and thus the
radiative degrees of freedom at .# [8].

We can extend these considerations to spinor fields
defined on .#. Note that since n¢ = 1A', we can consider
i and its conjugate as part of the universal structure. We
can easily extend the derivative operator D, to act on spinor
fields on . as follows. Let y* be any spinor field on .#. We
can extend y# arbitrarily into the unphysical spacetime to
obtain a spinor field i, then

DbﬂA = VbﬂA. (312)
<«

Note that the action of the derivative D, is well defined
since it is independent of the extension of x* into the
unphysical spacetime.

Consider the “Infeld-van der Waerden symbols” 6%, in
M which are implicitly used to convert between a tensor
index and a pair of spinor indices [15]. At ., we can
express them in our tetrad and spinor basis as
(3.13)

Gf‘A/ = naOAOA/ - m“leA/ - ﬁlaOAlA/ =+ lalAlA/.
Clearly, ¢,/ is not intrinsic to #. However, let us define

a . ~a A a . ~a A
o4 =041, o4 =0 1. (3.14)

Since these quantities are tangent to ., we can consider
them as spinor-valued vector fields intrinsically on .#. By
direct computation, they satisfy the identities

o4 =04, o4t

2 a a, b ~
= n4, qa0405 =0,

Qa0 = lalg, (3.15)

and their conjugates. Now, we use o9 and ¢4, to define the
spinor-valued derivatives

DA = O'f\Da = lA,vAA/, DA’ = Gg/Da = ZAVAA!, (316)

with Dy = (D4) and “Dy = 1A' D .
If D, and D, are equivalent derivative operators on .
then for any spinor u, we have

([)A’ - DA’),“B = (ﬁ - P)lA’lBlCﬂc
(3.17)

(DA - DA),uB =0,

while, the difference of equivalence classes of derivative
operators is given by

({D}A —{D}s)up = (6 - G)IAlBlC,“Cv

(DY = {D}a)us = 0. (3.18)

The corresponding action on primed spinors are obtained
by taking the complex conjugate of the above equations.

A. BMS vector fields

In this section we recall the definition and properties of
BMS vector fields. In general, we will work with a complex
BMS vector field £%; the usual real BMS algebra can be
obtained using the reality condition &% = &2,

A BMS vector field &4 at null infinity can be charac-
terized in the following different ways (see Ref. [10]), each
of which will be useful. Intrinsically on ./, BMS vector
fields preserve the universal structure on .# so that
£eqap = 20 Gaps £:(An?) = —ai(Anf), (3.19)
for some smooth (complex) function () which depends on
the chosen vector field £4. On the other hand, if we view .
as the boundary of an unphysical spacetime (M, g,;,) then'

R L R
£edap = Q@) Jap Ay = — Q7 (Ang)E0 = 7 Vet

(3.20)

Note that since £“ is tangent to .#, An,&“ vanishes at .# and
so Q7'(An,)&* is well defined there. Finally, in the GHP
notation using our choice of basis, a BMS vector field is
&= (AB)n® + Xm® + Xm®,
with p/(Ap) = (80X + X)),  pPX =X =0,
PXE=0X =0, (3.21)

'Note the sign in the second of Eq. (3.20) is opposite to that of
the one used in [10] due to our convention Eq. (3.1).
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and the function a( is given by

ae = Y2(0X + 0'X). (3.22)
In Eq. (3.21) the GHP weights are
5 =(0,0), X = (-1,1), X=(1,-1). (3.23)

It is easily verified that the BMS vector fields form a Lie
algebra bms¢, under the bracket [&,&,] = £, &5 =& €
bm3c. In the GHP notation the Lie brackets can be
explicitly written as [(1 <> 2) indicates the previous terms
with the labels 1 and 2 interchanged]

B= 10Xy — Xo0B) + 10Xy — Xo0'p) — (1 < 2),
X = X,0X, — X,0X|,

X2 X,0X,-X,0X,. (3.24)
The BMS algebra contains an infinite-dimensional Abelian
invariant subalgebra (i.e., a Lie ideal) of supertranslations
8¢ formed by vector fields of the form (Af)n® which are
tangent to the null generators of .#, i.e X = X = 0. The
quotient bms¢ /8¢ is isomorphic to 8[(2,C) x 8[(2,C)
8o¢(1, 3), the complexified Lorentz algebra—the functions
X and X generate each of the 8[(2, C) factors. There is also
a 4-dimensional Lie ideal of translations tc C 8¢ where the
additional condition 8*(Af) = 0 is satisfied.

The real BMS algebra is bm3 C bmg: where & = &
ie, pE€R and X =X. There are also two complex
subalgebras of bm3c which we call the self-dual and
antiself-dual BMS subalgebras, denoted by bmg, and
bm3a_ respectively. These can be defined in various
equivalent ways as follows:

£1€bm8, <> (g + itw)E =0, (3.25a)

gz g, (3.25b)
&= (AP +Xm¢, e, X=0 (3.25¢)

and similarly,

£1 € bm3_ <> (quy — iea)E" =0, (3.26a)
eI (3.26b)
£ = (Ap)n“+Xm®, ie., X =0. (3.26¢)

Note that, in the GHP notation, if &* € bm3, (or
& € bms_) then we have for the spinors &4 (&4 respec-
tively)

I (Aﬂ)lA + Xo4,

= (AP + X0, (3.27)

Further, if & € bmg,, then & € bms_, and bms, N
bmg_ = 3¢ is the space of supertranslations. It is also
straightforward to check that any £&* € bm$¢ can be written
as a sum & = &9 + &% where £9 € bm$, is self-dual and
&% € bm3_ is antiself-dual. Note this splitting is not unique
—one can add any supertranslation to £ and subtract it
from &% without affecting the original vector field. Any real
BMS vector field & € bm3 can also be split in this
(nonunique) way with &4 = &4.

For some computations it will be useful to extend the
BMS vector fields away from .# into the unphysical
spacetime. In general, there is no unique way to do this
different choices of extensions of the same BMS symmetry
correspond to different gauge choices inside the spacetime.
However, these extensions are some what restricted as
shown in Proposition 4.1 of [10] which we quote below
without proof.

Proposition 3.1 (Equivalent representatives of a
BMS symmetry).If & and £“ are vector fields in the
unphysical spacetime M which represent the same BMS
symmetry at null infinity, ie., &= & € bmd¢, then
f/a — ga + 0(92) =

Now, let £ be any smooth vector field in the unphysical
spacetime so that £| , € bm8¢. Using Eq. (3.20) we have
that there exists a smooth symmetric tensor yg) , such that

£eGab = 20()9ab T (&) 41 (3.28)
where a; is any smooth function away from .# subject to
the conditions in Eq. (3.20) at .#. Further, it can be shown
that for the Bondi condition V,V,Q = 0 to be preserved
under the diffeomorphism generated by £ we need (see
Refs. [9,10])

7©)ap (A1) = 0.7(6) spurpy (AP#) =0, (3.29)
where the second equation is just the spinor form of the first
one. Note that y(g) , = 0if £ is an exact conformal Killing
field in the unphysical spacetime, which will be the case if
it is an exact Killing field of the physical spacetime. Thus,
BMS vector fields can be viewed as approximate conformal
Killing fields of the unphysical spacetime near .7.

Since £:9,, = 2V (,&;) we have

Valo = ¥ 9ab X @ ap T2 0 0 X@ap = Via)-
(3.30)

Note that it follows from Proposition 3.1 that the values of
ai and (g, at & do not depend on how the BMS vector
field was extended into the unphysical spacetime. The
values of the tensor y( , do depend on the choice of
extension of the BMS vector field.

In the spinor notation, it follows from the antisymmetry
of X ab that
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A

2 5 S (A !

X @ = =X @ aptan —X@ apeas X" ==V PP,
T = vy e, (3.31)
These spinor forms will be useful later (Sec. IV) to define

the Lie derivatives of spinor fields. In the GHP notation we
have

- 1 S
2" = AP (~Xo = p X +3(AB)) + 504 (09X ~ K),

! I opt > 1 P ~
2" = (X5 -pX +3/(AB)) + 50" 1H) (9K - 0X).
(3.32)

Some other useful identities for the y ) , are proven in
Appendix A.

B. BMS twistors

In the section we recall the construction of BMS twistors
at null infinity from [1]. The BMS twistors are spinor field
solutions @ on .# of the BMS twistor equations which can
be expressed in any of the following forms®

15D @B 2 0, 13DV WP =0, (3.33a)
11 VA BB =0, 1415 VA A @B) 2 0, (3.33b)
0?20, Pa®=0, po'Z00,  (3.33¢)

where in the last expression we have written @ = %0 +
@'1* in our spinor basis. As explained in [1] these equations
have an infinite-dimensional space of solutions which we
denote by <. We will show in Theorem 1 that the space of
BMS twistors < is invariant under BMS transformations.

Now let 0 = (0°,@') and @* = (@°,®') be any two
BMS twistors. Then, we define a self-dual vector field £ €
bm3, on .# by

&= 2iAc% 1301 P) (3.34a)
2 (2iAig@P)) Y (3.34Db)
= (AB)n® + Xm?, = —i(0d' + 0'@),

Xz —2iAa’@°. (3.34c¢)

Using Eq. (3.33) it follows by a direct computation that &
as defined in Eq. (3.34) is indeed a self-dual BMS vector
field in bm3, (see Ref. [1]).

We point out here that Eq. (3.34) defines a symmetric
map from BMS twistors T to the self-dual BMS vector

*Similar equations have been used before in [19] but were only
imposed on a single null generator of .#.

fields bmg,. This structure is very reminiscent of an
anticommutator in a superalgebra; we will shown in
Sec. V. that this is indeed the case.

IV. LIE DERIVATIVE OF SPINORS ALONG
BMS VECTOR FIELDS

Since our ultimate goal is to obtain a superalgebra
combining the BMS vector fields and the BMS twistors,
we need to define an action of the BMS symmetries on
spinor fields. In general, the Lie derivative of a spinor field
along a given vector field is not uniquely defined; the
reason being that spinor fields depend not only on the
spacetime manifold but also on a choice of local frames,
that is they sections of a vector bundle associated to the
frame bundle [20-26]. It was shown by Habermann [27]
that there is a good notion of Lie derivative of a spinor field
along conformal Killing fields which interacts nicely with
the (full) twistor equation—this Lie derivative is the same
as the one defined by Penrose and Rindler in Sec. 6.6 of
[14]. Since at .#, the BMS vector fields are indeed
conformal Killing fields [see Eq. (3.20)], we will use the
Penrose-Rindler definition of the Lie derivative along BMS
vector fields.

For any £* € bm3g, define the Lie derivative of spinor
fields y* and 14" on .7 by

_ o 1
£t =V + B s Bty Fae a9 es”s
’ A / ) ! A ! 1 !
£ =V A +E Y VP Bt S B/—QO‘(:)GB’A :
(4.1)

This Lie derivative can be extended to spinor fields with
many indices, primed or unprimed, in the usual way. By
direct computation we have (see also Ref. [25], with
w=-1)

£§€AB = a(@eAB, £§€A'B' = a@eA/B/, £§0aAA/ =0. (42)
The first two equations imply that we can raise and lower
spinor indices inside a £; by compensating with appropriate
terms involving (g, while the last equation implies that we
are allowed to convert from spinor indices AA’ to the tensor
index a inside a £;.

It will be useful to have the following identities at hand.
Writing the second condition in Eq. (3.19) in terms of
n* = M we get
(£A)NY + A(£a2)Y + AP EaY = — ai (AAY), (4.3)
which implies

A

£t o, £V ot (4.4)
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Similarly,

£:(Ack1p) = £:(AcS 1" 15) = ££(AcS 0, gn®) = 0.
(4.5)

Finally, for £ € bmg¢ and any spinor field y*, we have
(see Ref. [25], with w = —1)

. 1
[£2. Vil 2 ER o 1€ = (Viy(e) M IuE + 2 (Vpa g )ut

= 1/2(€Bcv2/a<§) —|— (;‘BAVCB/a(é)),uC

+Y(Vapae )t + Y%A Gcr e pop
+ lA}’(-f) CBC’B’)lC//lC’ (4.6)

where the second line uses Eq. (Alb).

In the GHP notation the Lie derivative of a spinor field
ut = o + u'1*  takes the following form [using
Eq. (3.21)]

1 ~
£t = 0" [(Aﬂ)ﬁ/ﬂo + X0 = S pP0X + X'’

o [(Amw _ J03(AB) + Xou!

- 1 -
+ Xo'u! —iula’X} (4.7)

One can also compute a similar expression for primed
spinor fields. When u* =w* € ¥ is a BMS twistor
Eq. (4.7) simplifies to [using Eq. (3.33¢)]

1
£:0t = o [Xéa)o - Ea)oéX] + [(Aﬂ)éa’o - ’3(Ap)

- 1 -
+ X0w' + X0 o' —Ea)lé’X]. (4.8)

Now, note that since &£ € bm3c is tangent to .#, in
Eq. (4.1) we can replace V, by its pullback, the intrinsic
derivative operator D, on .#. Next we notice that the
nonuniversal spin coefficients Rep and ¢ do not appear in
Eq. (4.7)—the terms containing these spin coefficients
exactly cancel between £V, and the X&), 0 Eq. (4.1).
Thus, we have the following result

Lemma 4.1. For any & € bm3¢ the Lie derivative of
spinor fields on .# defined in Eq. (4.1) is intrinsic and
universal, i.e., independent of the choice of derivative
operator D, on .#. m

Next, we show that the Lie derivative Eq. (4.1) gives a
well-defined action of the BMS Lie algebra on spinor
fields.

Lemma 4.2. For &, £ € bm3c, and any spinor field p#
on . we have

[£e, £ Ju = £, e (4.9)

Proof. Let & = [&1,&,]. Then we have from Eq. (4.1)

[ffl ’ £§2]ﬂA = ébvbﬂA + £§1E(52)AB'MB + §l27 [£§1 ’ vb]'uA'
(4.10)

Then using Egs. (4.1) and (4.6) we get

TEe) (Biey 5By (Bien pHEIE Reas WE. (4.11)

From Proposition A.2 the right-hand side vanishes, and we
have the desired result. m

Next we prove one of our main results—the space ¥ of
BMS twistors is invariant under the action of the complex
BMS algebra bm3c. One can prove this directly using the
GHP expressions Egs. (3.33c) and (4.8), but this obscures
the crucial role played by the properties of BMS vector
fields and the BMS twistor equations. So in the following
we provide a covariant proof and the GHP computation is
collected in Remark 4.1.

Theorem 1. Let & € bm3c be a complex BMS vector
field and @ € T be a BMS twistor then £§wA € Tisalsoa
BMS twistor.

Proof. For a BMS vector field & € bm3c, using
Eq. (4.6), we have

[£e, Vot = Ya(egc Vipae) + 5 Vepagy)o©
+ 1%(Vggae)ot + %A (icr o yop
+ tAy(‘s)CBC,B,)lC/a)C. (4.12)

Next, raise b index, convert it to BB’ and symmetrize in the
indices A and B to get

/ , 1 ,
£, VE Bl 2 — 2, VEBeh) 4 ZA oM e

+ l(Ay(g)B)B/CC,)lC/aJC, (4.13)
where the first term on the right-hand side comes from
raising the b index using the metric. Next, we contract the

above equation with 14 and 1, and use Eq. (3.29) to get

1atg [£2. VEBloN) = = 2001415 VE Bt

1atgl£e, VE Blot) = — 204141, VE Bop). (4.14)
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Then, using the fact that £21* o« 1* (Eq. (4.4)) we have that
£§wA satisfies the BMS twistor equations [in the form
Eq. (3.33b)] whenever o" does, that is, the BMS twistor
equations are preserved under the action of bm3g. u

Note that if £ is an exact conformal Killing vector then
Y(&q = 0 and so Eq. (4.13) implies that the solution space
of the full twistor equation is preserved, reproducing the
result of Habermann [27]. But, for a general BMS vector
field y(),, #0 and so the full twistor equation is not
preserved under BMS symmetries; it is only the BMS
twistor equations which are preserved.

Remark 4.1 (GHP proof of theorem 1).Let @* = £:0",
from Eq. (4.8), we have

1
@ = Xdw° — EwoéX,

- 1 -
@' = (4p)30 — d(Ap) + X0 + XY ' -5 0'IX.

(4.15)
|

Now we would like to verify that @ satisfies the BMS
twistor equations [in the GHP form Eq. (3.33c)] whenever
@ does. For this we use the following commutators of the
GHP derivatives at .%

[P, &N =1[p,dln =0, 0,0'ln = —s%n.  (4.16)

where s is the spin of the field  and % is the Ricci scalar of
the induced metric ¢,;,. Then, using Egs. (3.21) and (3.33c¢),
one can easily check p'@” = 0. Next, we have

1
@ = X0'00° — 5co”&yax = X(-%%Za")

—%a)o(—%X) —0, (4.17)

where we have used @ is spin s = =% and & @” = 0, and
X is spin s = —1 and &'X = 0. Finally, we compute

P@' = P (A)3a° — w®dp (AP) + XOp'w' + XIpw' - % Po'd'X

= X30° + %3X30° — Va3 X — Va3 X + X&' 3

= 00" — Yaw? (—%X) + X (2% ") = d&°,

where in the second line we have used Eq. (3.21). The third
line uses Eq. (4.16) and that " is spin s = Y2 and & 0° = 0,
and X is spin s = 1 and 30X = 0.

V. The BMS Lie superalgebra &

In this section we combine the self-dual BMS vector
fields and the BMS twistors into a Lie superalgebra which
we denote by [

We note here that our construction differs from other
supersymmetric extensions of the BMS algebra considered
previously in the context of supergravity—we explain these
differences in Remark 5.1.

We consider the supervector space, i.e., a Z,-graded
vector space

K:=bm3, &I, (5.1)

where bmg, is assigned an even grading and ¥ is assigned
an odd grading. Next we define a graded bracket on & by

[51752] = _[52’51] Efglzjtzl (S bm§+,

[0, @, = [0, 0] = 2iA6f§lBa)§Aa)§) € bms_,

(5.2a)
(5.2b)

3A similar construction can be carried out with the antiself-
dual BMS vector fields bmg_ and the complex conjugate BMS
twistors T to get the Lie superalgebra & = bms_ @ <.

(4.18)

o] = —[w.f =fo' €. (5.2¢)

Equation (5.2a) is just the Lie bracket of the bmg,
algebra, Eq. (5.2b) defines a symmetric bracket on &
which returns the self-dual BMS vector field formed from
the two BMS twistors according to Eqs. (3.34a), and (5.2¢)
is the Lie derivative along a BMS vector field of the twistor
@® which returns another BMS twistor as shown in
Theorem 1.

Taking the brackets defined in Eq. (5.2) as a graded
product gives the supervector space & the structure of a
superalgebra. However, for & to be a Lie superalgebra
the graded Jacobi identities must be satisfied which we
prove in the following theorem. We emphasize that the
satisfaction of the Jacobi identities is quite nontrivial. For
instance, if we replace bmg, by the algebra of exact
conformal Killing fields and T by solutions of the full
twistor equation, then the Jacobi identities are not
satisfied in general as shown by Habermann [27].

Theorem 2. The supervector space & =bms, @ I,
with bmg_ the even subspace and T the odd subspace,
equipped with graded brackets defined by Eq. (5.2), is a Lie
superalgebra.

Proof. For our case, the four linearly-independent
Jacobi identities, which we need to verify, are
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0= +[&1, [52, &) + [&2, 63, &1l + (&3, [61, &l

0= +[¢1, [&, @] + [&, [0, &1]] + [, [&1, &)l

0 (@1, [0, E]] = @y, [§, 01]] + [&, [01, ],

0= —[0), [@, w3]] = [0, [@3, 0\]] = [@3, [@, @5]]. (5.3)
|

o B
(01, [03,¢]] = —|wy, £:0,] = “2iAcS 10 £:0,

The first of these is just the Jacobi identity for the Lie

algebra bmg, , while the second follows from Lemma 4.2.

Thus, we only need to check the last two Jacobi identities,

which we prove by direct computation as follows.
Consider

(A )

(A

= £:(-2iAc5 130, o) + 2iAale£§w§Aw§)

= —[&, [oy, @5]] + [[E, @], @],

(5.4)

where the second line uses the Leibniz rule and Eq. (4.5). Rearranging the above equation proves the third Jacobi identity.
Next, let [y, m3] = &* = (AB)n? + Xm® € bm3_ and consider

—[wy, [@;, w5]] = fz:a’?

1
=0 {Xéa}? - Ew(féX} + A [X0w] + (AP)de) — w)B(AP)]

= iAo [-2(00) ) + (00 + ww)(0a))]

+ A [-2(dw!}) 0w —

where in the second line we have used Eq. (4.8) (and X=0
for a self-dual BMS vector field) and in the third line we use
Eq. (3.34c¢) to write the vector field £ in terms of the BMS
twistors @4 and w4 . Substituting this, and similar equations
obtained by a cyclic permutation of the three BMS twistors,
into the last Jacobi identity we see that all the terms cancel,
and the last Jacobi identity is satisfied. [

Remark 5.1 (Other supersymmetric extensions of BMS)
In the context of supergravity, supersymmetric extensions
of the BMS algebra have been investigated at null infinity
by Awada, Gibbons, and Shaw [28] (see also Ref. [29] for
an analysis at spatial infinity). The construction of [28] can
be summarized as follows. One attempts to impose all the
components of the twistor equation which are tangent to .#;
these are
Pa’=0, d’=0, po'=00’, d0'=0ca’. (5.6)
Note that the first three are the BMS twistor equations
[Eq. (3.33c)], but the last one depends on the shear ¢ and is
not universal. It is well-known that this set of equations has
no nontrivial solution unless N =0 (i.e., there is no
radiation), or @” = 0 [1,12,28]. Since we definitely want
to consider spacetimes with radiation at .#, we choose to
impose @’ = 0. Then using @' and its complex conjugate
@" we can form a BMS vector field

& = —i(w'@" )ne. (5.7)

In general this is a BMS supertranslation, and if we impose
dw' =0 we get a BMS translation. Note one can also

(30) ()5 + @,05) + 0B (@jes + @05)],

(5.5)

generate complex supertranslations by replacing @' by a
second solution @"". Then, one can construct a superalgebra
by defining graded brackets similar to Eq. (5.2) but the
bracket of two twistors is replaced by [, @] = & where £
is the BMS supertranslation in Eq. (5.7). The differences
with our construction of the superalgebra & are quite
apparent. As detailed in [1] we only impose the compo-
nents of the twistor equation which are intrinsic and
universal, i.e., we do not impose dw' = 6w, and con-
sequently have a nonzero . It is precisely this nonzero o°
which helps us generate the entire (self-dual) BMS algebra
including Lorentz vector fields, unlike the construction of
[28,29] which only generates supertranslations. As we will
describe in Sec. VA, this @ can be viewed as generating
Neveu-Schwarz-type supersymmetries on S, which do not
appear in the construction of [28,29].

A. Projection to the Neveu-Schwarz
superalgebra on S?

In this section we show how the BMS Lie superalgebra
K projects to the global Neveu-Schwarz (NS) superalgebra
on a 2-sphere. The NS superalgebra is a supersymmetric
extension of the Virasoro algebra of local conformal
Killing fields of the 2-sphere metric, and it is only the
Lorentz subalgebra of the Virasoro algebra which extends
to globally smooth conformal Killing fields on a 2-sphere.
Since we want the smoothness structure of null infinity to
be preserved we restrict to the Lorentz subalgebra of the
full Virasoro algebra, and correspondingly restrict to the
globally smooth supersymmetric extension.
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To obtain the desired projection map we note that there is
a projection .# — S? which maps every point p on .# to a
unique point on S? representing the null generator which
contains p. The pushforward of this projection maps vector
fields on .7 to vector fields on S?, in particular, it maps
bms, to the quotient algebra bm3, /3. =~ 3[(2,C).
Explictly, the projection acts on {* € bm3, as
&= (Ap)n” + Xm* — Xm*, (5.8)
where we recall that X is a function on S? with spin s = —1
and &X = 0. On the space of BMS twistors the projection
map acts as

A A 0

o = 0’0 + ' > —1p0" = o, (5.9)

where @” is a function on S?> with spin s = —% and
O =0. Applying the projection to the brackets
[Eq. (5.2)] we get

1
(X1, X5] = X,0X, — X,0X,, [X,0°] = X0a® — 5coOaX,

(@9, @] = =2ial . (5.10)

We have set the function A = 1 since we do not have to
consider GHP weights on S?; only the spin weights will be
important which are unaffected by the function A. It can be
checked that the Jacobi identities are still satisfied after the
projection. Note that the projection maps an infinite-
dimensional superalgebra on .# into a finite-dimensional
one on S?, just like it maps the BMS algebra into the
Lorentz algebra.

We claim that the Lie superalgebra defined by Eq. (5.10) is
precisely the global subalgebra of the NS supersymrnetries.4

Since, the NS superalgebra is usually presented in a
choice of basis, we need to pick a basis for the functions X
and ©° on S? to show this equivalence. In 2-dimensional
conformal field theory and string theory it is conventional
to work on the complex plane which maps conformally to a
2-sphere using complex stereographic coordinates (z,Z).
However, the topology of the space of generators of .#
being a 2-sphere is crucial for asymptotic flatness. One can
still work in the stereographic coordinates, if desired, but
then one needs to impose suitable regularity conditions on
the fields at the “point at infinity” z = oo to ensure that they
define smooth fields on SZ2. Instead, it is convenient to
choose a conformal factor so that the metric on the space of
generators of .# is the standard unit metric on S?, and use
spin-weighted spherical harmonics Y}, (which are smooth

everywhere on S?) to define the required basis. We detail

*“The restriction to the global NS subalgebra arises because we
want all the fields to be smooth on S2, which is dictated by the
smoothness of .#. We also note that the central extension plays no
role when restricted to the global NS subalgebra.

the computation in Appendix B, and summarize the main
results below.

Note that X being s = —1 and & X = 0 implies that X is
¢ = 1. Similarly, ®° being s = =% and & @° = 0 implies
a® is £ = V4. Thus, we define a basis L, and G,, for the
space of X and w° respectively, by

n4ﬂ' Y —— . Vayrs=—1h
L, ’:_<2 ?> Yoo, Gr=(=i2V21) Y5y,

=Va,m=r’
(5.11)

where n € {—1,0, 1} and r € {-Y2, ¥2}. The overall factors
have been chosen to bring the final brackets into the same
form as the standard NS superalgebra. Next, we substitute
the Xs and s in Eq. (5.10) by the corresponding basis
elements L, and G,. A straightforward computation using
the properties of the spin-weighted spherical harmonics
(see Appendix B) gives the following brackets on the basis
elements

Lo L= -y, [LnGl=(2=r)G,..
+ 2 +

G,,G.|=2L,,,. (5.12)
These are precisely the brackets of the global NS super-
algebra, see Sec 4.2 of Ref. [30] or [31].

VI. DISCUSSION

Lets us point out there there are three distinct kinds of
“superness” involved in the Lie superalgebra &: the first is
the usual extension of the Poincaré algebra to the infinite-
dimensional BMS algebra, the second is a similar extension
of the 2-surface twistors [11-13] to the infinite-dimensional
space of BMS twistors defined in [1], and lastly, we have
the supersymmetric structure which combines both the
BMS algebra and the BMS twistor space described in
this paper.

While we have defined the supersymmetric algebra & on
null infinity, we have not specified the action of these
supersymmetries on physical fields. It would be of interest
to define an action of these supersymmetries on the
asymptotic radiative fields, for instance the News tensor
which characterizes the asymptotic gravitational radiation.
In particular, the relation of the superalgebra & to bulk
supersymmetries in supergravity (if there is any) is unclear
at present—as noted in Remark 5.1 any such relation to
bulk supersymmetries cannot be the same as the one used
in [28,29].

It would also be of interest to obtain a superspace
formulation of the superalgebra K. In this context we note
that the projection of & to the 2-sphere, that is, the global
NS superalgebra (as described in Sec. VA) does have a
superspace formulation [31]. A suitable lift of this super-
manifold structure from S? to .# should give a superspace
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description of the algebra &. We also note that the universal
geometric structure of null infinity is a conformal Carroll
structure on ., which is an “ultrarelativistic” limit (speed
of light tends to zero) of conformal Lorentzian structures
[32—-37]. In this sense, the appropriate superspace structure
on . could be a “conformal super-Carrollian space”
which, as far as we know, has not been investigated.
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APPENDIX A: SOME USEFUL COMPUTATIONS
WITH BMS VECTOR FIELDS

In the following we collect some side computations with
the tensors a( and y(g),, for BMS vector fields. Since
BMS vector fields are approximate conformal Killing fields
on the unphysical spacetime [see Eq. (3.28)] the derivative
of ¥(g),,,» can be written in terms of the Riemann tensor at
#. The proof is very similar to the case of Killing vector
fields given in Sec. C.3 of [16]; and for exact conformal
Killing fields one can just set 7, = 0 in the following
results without any need to evaluate at null infinity.

Proposition A.1.

vax(f)bc = - édeahc 2gu bvc]a —+ A}/ ) c]v
(Ala)
_Va)((éf)gc = - dedaBC + €A(Bvc)A/(X(§)
+YAICY () yeoaslo) (Alb)

Proof. We start with the definition of the Riemann
tensor [Eq. (2.1)]:
vuvh‘:‘?c

- vhvaéc =-R

abcdgd' (A2)

In the second term on the left-hand side we replace V&,
by -V &, +2V( &, and then replace 2V (&) using
Eq. (3.28). Evaluating the resulting expression at .# we get

vavbfc + vbvcga = - Rabcdéd + 2vba(§)gac + vbe(é)

(A3)
Taking cyclic permutations of the indices a, b, ¢ we get two

more equations. Adding two of these equations and
subtracting the third we get

vavbgc = Rbcadéd + (vaa(f)gbc + vba(f)gca - vca(f)gba)
1
- EA(n“y(@bc + nby(‘f)ca - ncy(f)ba)' (A4)

Then, replacing V£, using Eq. (3.30) we have Eq. (Ala),
and using the spinor decompositions Egs. (2.2), (3.1), and
(3.31) we get Eq. (AlD). m

Proposition A.2. For any two &{, &5 € bmg¢, let &% =
£: &5 be their Lie bracket. Then,

g = EVae,) — S Via,), (A5a)
X&) gc (&) Z-’:2 X (&) ap Z(fl)ac)((‘fz)bc

+ X&) g XE)pe — 1 52 cdab- (ASb)

Proof. Taking the divergence of & = £ & = &V ,& —

bV,E¢ and commuting the derivatives, we see that the
resulting Riemann tensor terms cancel out. The remainder
of the expression directly yields Eq. (A5a).
Similarly, we have (where 1 <> 2 indicates the preceding
terms with the labels 1 and 2 interchanged, and a <> b,
similarly indicates exchange of the abstract indices)

K& ap = Viabe) = 2V[EiV oy — (1 © 2)] = (a < b)
=1V, &V &, + Y26V, V &, — (1 2) = (a < D).
(A6)

Using Eq. (3.30) to replace V, £, in the first term in
Eq. (A6) gives

YV iV Ly — (1 2) = (a < D)
= X @) A Epe TXE) A E e (AT)
The second term in Eq. (A6) can we written as
&V Vel = EV Vabap = & Rucpals (A8)
so that
ViV V.bo, — (1 2) = (a < b)
=&V A (&) ab - &V A (ED ab 5152 cdab+ (A9)
Combining Egs. (A6), (A7), and (A9) we get the desired
result, Eq. (A.5b). n

APPENDIX B: COMPUTATION OF THE
K-BRACKETS PROJECTED TO $?

In this appendix we collect the computations showing
that the projected brackets Eq. (5.10) of the BMS super-
algebra & are the same as the brackets of the global NS
supersymmetries on a 2-sphere, as claimed in Sec. VA.
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We recall the following properties of the spin-weighted
spherical harmonics [15,41]. A spin-weighted spherical
harmonic Y} is a smooth function on S? satisfying

Z—s)(¢ 1) .
S = caE

91y, =[N st Dy

(B1)

The harmonic Y%, is nonzero if and only if |s| < and
|m| < ¢. For a given spin s the harmonics Y}, form a
complete basis for the space of smooth functions with spin
s. An explicit expression for these harmonics in terms of the
stereographic coordinates on S? can be found in [41].
Further, under complex conjugation we have

m — (_)m+x Y>S

£—-m*

(B2)

The product of two harmonics can be written as a sum over
other harmonics as

v =3 ((25, +1)(26, +1)(2¢ + 1))'/2

Cimy " Eymy A

s,0.m

(fl ‘, f) < 4 b, >
X

my my m -8 -8 —S

X (—1)mHy s (B3)

,—m’

where (Z'} 5’72 f; ) is the Wigner 3 j-symbol which is nonzero if

and only if (Sec. 34 of [42])

|6, =l <0<+,
£+ €, + ¢ is an integer.

m]+m2+m:0a

(B4)

The 3j-symbols can be explicitly computed using
Egs. (34.24) and (34.2.5) in Sec. 34.2 of [42], or using
the function ThreedSymbol in Mathematica [38].

Using the above properties of the spin-weighted har-
monics we can show that the brackets Eq. (5.10) reproduce
those of the global NS supersymmetries Eq. (5.12) as
claimed. The basic strategy is as follows. We will substitute
the basis elements Eq. (5.11) into the brackets Eq. (5.10),
and express the right-hand sides in terms of products of
spin-weighted spherical harmonics. These products can
then be expressed in terms of sums of other spherical
harmonics using Egs. (B3) and (B4). In each case of interest
only one term in the general sum will be nonzero which can
again be reexpressed in terms of the basis elements L, and
G,. Finally, we explicitly compute the 3 j-symbols for each
case with n € {—1,0, 1} and r € {-Y2,2} and show that
the brackets match the NS brackets Eq. (5.12).

Lets start substituting L,, and L, into the first bracket in
Eq. (5.10). Using Eqgs. (5.11) and (B1) we get

4\ " BT ARG
(L, L] = —(2" {) <2In | ?”) (YihY0,, = (n < n')).
(B5)
Now using Egs. (B3) and (B4) we get

2 L
. 3Ix320+1)\4/1 1 ¢
R (L

!/
/=1 non

1 1 7
% -1 —n—n'+ly—1 .
( 1 O _1 ) ( ) Z,n+n

Note that the £ = 0 contribution vanishes since the har-
monic on the right-hand side has spin s = —1. Further,
evaluating the 3j-symbols one can verify that the £ = 2
contribution also vanishes once antisymmetrized over n
and n’. So we are only left with the # = 1 contribution
which gives

4\ " 4r\ " dr\ "
L.L./=|(2"= oln' 22 2ntn'] 22
<3x3x3>‘/1<1 1 1 >
X2 ——
4r n n —(n+n)

11 1 ,
x (_1>—n—n +1Ln+n’

(B6)

I 0 -1

- (l’l - nl)Ln+n’7 (B7)

where in the final step we evaluate the 3 j-symbols for the
values n,n' € {-1,0, 1}.

Similarly, we substitute two basis elements G, and G,
[Eq. (5.11)] into the last bracket in Eq. (5.10) to get

[G,.G,] = —4V2rY; Y}, (B8)

Again using Eqgs. (B3) and (B4) we get a harmonic of spin
s =—1 and only a £ = 1 term. This gives

Vo Var 4z ror —(r+7r)

Y 1 1
—1)-r-r+ly-l . B9
X<1/2 173 _1>( ) Lr+7 ( )
So
_1/2 1/2
G, G,] = 4v/an(2rn 4\ 7 (223
3 dr

<1/2 Ya 1 ><1/2 Ya 1)
X

r v —(r+7r)/\2 V% -1
X (_1)_r_r/+1Lr+r’

=2L,p,
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where to get the last line we evaluate the 3j-symbols
for r,r € {-Y2,Y2}.

Lastly, we substitute an L, and a G, into the second
bracket in Eq. (5.10), and use Eq. (B1) to obtain

47\ % \
L,.G,]=—- <2n ?”) (—i2V2x)"

1 , 1,
X [—YI‘.LYQ’,—FY;/ZY?’H . (B11)

\/E 2 2,1

Evaluating both products using Eqgs. (B3) and (B4) gives a

Y;%. , and the sum over # € {¥2,3/2}. An explicit com-

putation shows that the 3 j-symbols in the square brackets

cancel for £ = 3/2, so we are only left with £ = %2 which
gives

161 - - (%) (D22

4z
1 12 %)
% -1 —n—r+1/an .
<n r —(n—i—r))( ) *

[ 1<1 Vs 1/2>+1<11/2 1/2)}
X R — —

V2\1 =¥ =) 2\0 % —%
= (n/2=7r)Gpy, (B12)

where the last line follows from evaluating the 3 j-symbols
for n € {—1,0,1} and r € {-Y%,%}.
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