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We show that we can combine the (complex, self-dual) Bondi-Metzner-Sachs (BMS) vector fields with
the recently defined BMS twistors to obtain a new supersymmetric extension of the BMS symmetries at
null infinity. We compare our construction to other supersymmetric extensions of the BMS algebra
proposed in the context of supergravity. Unlike the standard constructions the anticommutator in our
superalgebra generates all the BMS vector fields including the Lorentz transformations. We also show that
there exists a projection from our BMS Lie superalgebra to the global subalgebra of the Neveu-Schwarz
supersymmetries on a 2-sphere, which are commonly considered in string theory and 2-dimensional
conformal field theory.
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I. INTRODUCTION

Following up on the recent construction of Bondi-
Metzner-Sachs (BMS) twistors at null infinity [1], we
describe how these twistors and BMS symmetries can be
unified into a supersymmetric algebra, that is a Lie
superalgebra.
For asymptotically flat spacetimes describing isolated

systems in general relativity, it is well known that at the
asymptotic boundary, null infinity denoted by I , one
obtains an infinite-dimensional asymptotic symmetry
group—the BMS group—along with the corresponding
charges and fluxes due to gravitational radiation [2–9], see
also Ref. [10] for a recent exposition. We review the
properties of the BMS vector fields in Sec. III A.
The BMS twistors in [1] were motivated by obtaining a

twistorial description of the BMS Lie algebra. As is well
known it is not possible to impose even the tangential
components of the twistor equation on general spacetimes
at I , unless the News (i.e., any gravitational radiation)
vanishes. The usual strategy in the twistor literature is to
select a fixed cross section of I and only impose those
components of the twistor equation which are tangent to
this cross section; this defines the 2-surface twistors on a
cross section ofI . These 2-surface twistors can be used to
generate a Poincaré algebra at the chosen cross section [11–
13]. The alternative strategy used in [1] is to instead impose
those components of the full twistor equation which are
both tangent and universal on I . The infinite-dimensional
space of solutions to these equations can be used to
generate (complex) BMS vector fields; this construction
is recalled in Sec. III B.

Most of the structures to elevate this construction to a Lie
superalgebra have already been defined—the BMS vector
fields form a Lie algebra which will be the even part of our
Lie superalgebra; the symmetric map from the BMS
twistors to a BMS vector field defined in [1] defines a
bracket on the odd part of the Lie superalgebra. The only
missing part is a bracket between the BMS vector fields and
the BMS twistors, i.e., an action of BMS symmetries on the
space of BMS twistors; we will define this action in Sec. IV
using a Lie derivative on spinor fields defined by Penrose
and Rindler [14]. In Sec. V we prove that these brackets
satisfy the Jacobi identities and hence define a Lie super-
algebra K. We also compare and contrast this Lie super-
algebra with other constructions of supersymmetries at null
infinity. We also describe a curious aspect of the Lie
superalgebra K: the projection of K to the space of null
generators of I reproduces the (global) Neveu-Schwarz
supersymmetric algebra (see Sec. VA). We conclude with a
short discussion of some interesting new avenues suggested
by this work in Sec. VI.

II. NOTATION AND CONVENTIONS

Abstract indices a; b;… will be used for tensors in
spacetime while A;B;… and A0; B0;… will be used for
abstract spinor indices using the conventions in [15]. We
work exclusively in the conformally completed spacetime,
the unphysical spacetime M with a Lorentzian metric gab.
We use the mostly negative signature ðþ;−;−;−Þ for the
Lorentzian 4-dimensional metric tensor gab on spacetime
and denote the corresponding (antisymmetric) metrics on
the spinor spaces by ϵAB and ϵA0B0 , see Ref. [15]. We will
use the sign conventions of [15] for the Riemann tensor
(this is the opposite sign compared to the convention in
Wald [16]); so if va is a 1-form we have*kartikprabhu@ucsb.edu
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∇a∇bvc −∇b∇avc ¼ −Rabc
dvd: ð2:1Þ

Since the Riemann tensor is antisymmetric in the last two
indices we also have

Rabcd ¼ RabCDϵC0D0 þ RabC0D0ϵCD: ð2:2Þ

We also use ¼̂ to denote equality at null infinity.

III. NULL INFINITY, BMS SYMMETRIES, AND
BMS TWISTORS

Wewill use the definition of asymptotic flatness given by
Penrose’s conformal completion (see Refs. [6,16]), and
denote null infinity asI ≅ R × S2. LetΩ be the conformal
factor used to obtain the conformal completion of the
physical spacetime, then it can be shown that ∇aΩ is the
null generator of I , and that one can, without loss of
generality, choose Ω so that the Bondi condition
∇a∇bΩ ¼̂ 0 is satisfied at I . For intermediate computa-
tions, we will use the Geroch-Held-Penrose (GHP) for-
malism at null infinity [14,15,17,18]. The GHP weight of
any quantity η will be denoted by η ≗ ðp; qÞ, and its spin
will be s ¼ ðp − qÞ=2. For this it will be convenient to
make a choice of a null tetrad and spinor basis at I which
determines a Bondi system, see Ref. [14] for details.

We pick a vector field na and a spinor ιA at null infinity
so that

Ana ¼̂ −∇aΩ; na ¼̂ ιAιA
0
; ð3:1Þ

for some function A with GHP weights A ≗ ð1; 1Þ. Next,
we pick a foliation of I so that the cross sections are
parallelly transported along na. This foliation determines a
unique null vector field la at I so that la ¼̂ gablb is the
conormal to the cross sections and nala ¼̂ 1. Finally, we
pick a complex null basisma and m̄a which is tangent to the
cross sections of this foliation and mam̄a ¼̂ − 1. In this
basis,

gab ¼̂ 2nðalbÞ − 2mðam̄bÞ; qab ¼̂ − 2mðam̄bÞ;

εab ¼̂ − 2im½am̄b�; ð3:2Þ

where qab is the pullback of gab to I , and is a (negative
definite) Riemannian metric on the cross sections ofI , and
εab is the area element. We can also define another spinor
oA so that ðoA; ιAÞ and their complex conjugates ðoA0 ; ιA0 Þ
are associated with the tetrads in the usual way (see
Ref. [14] for details) and are normalized so that

oAιA ¼̂ oA0 ιA
0 ¼̂ 1; ð3:3Þ

and all other contractions vanishing. In this choice of basis,
the GHP spin coefficients at I satisfy

κ0 ¼̂ σ0 ¼̂ τ0 ¼̂ ρ0 ¼̂ τ ¼̂ Imρ ¼̂ 0; ð3:4Þ

while the spin coefficients κ; σ;Reρ are arbitrary.
The function A appearing in Eq. (3.1) satisfies (see
Eq. 9.8.26 of Ref. [14])

þ0A ¼̂ ðA ¼̂ 0: ð3:5Þ

Note that the spin coefficients κ and Reρ can also be set to
zero, by appropriate choices of the conformal factor and
tetrad away fromI , but wewill not need to do so. The only
nontrivial spin coefficient at I is σ which encodes the
gravitational radiation through the News tensor, which is
represented by a complex function N with

N̄ ≔ þ0σ ð3:6Þ

In the following we summarize the universal structure
induced on null infinity as the conformal boundary of an
asymptotically-flat spacetime; see Ref. [6,8]. Note we will
retain the function A ≗ ð1; 1Þ introduced in Eq. (3.1) to
keep track of the GHP weights in our choice of tetrad basis;
if one is concerned only with tensorial expressions then A
can be set to 1.
Let us recall the “first-order” structure ofI consists of a

vector field Ana and a degenerate Riemannian metric qab,
such that ðAnaÞqab ¼̂ 0. This structure is universal, in the
sense that na and qab are intrinsically defined on the
manifold I , and are common to all asymptotically flat
spacetimes. Different asymptotically flat spacetimes are
instead distinguished by the “second-order” structure
encoded in equivalence classes of derivative operators on
I ; we recall the essential aspects below and refer to [6,8]
for details.
Let va be a 1-form on I and let ṽa be any extension of

va into the spacetime M, i.e., ṽa is a 1-form in M such that
va ¼ ṽa

←
, where

←
denotes the pullback to I . Then, a

derivative operator Da on I is defined as (see page 46 of
Ref. [6])

Davb ≔ ∇aṽb : ð3:7Þ

Note that Da is well defined since it is independent of the
choice of extension ṽa of va into the spacetime M, i.e.,
replacing ṽa with ṽa þ νAna þΩλa does not affect Davb
on I [6]. Intrinsically on I , this derivative operator
satisfies

DaðAnbÞ ¼̂ 0; Daqbc ¼̂ 0: ð3:8Þ

Two derivative operators D̂a and Da are equivalent (they
represent different conformal completions of the same
physical spacetime) if [8]
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ðD̂a −DaÞvb ¼̂ fqabðAncÞvc ¼̂ − ðρ̂ − ρÞqabðAncÞvc;
ð3:9Þ

for some function f and all vb onI . In our tetrad basis this
function is given by the difference of the spin coefficient ρ
as indicated above. Let us denote by fDga the equivalence
class of the derivative operator Da under the above
equivalence relation.
The difference of equivalence classes of derivatives is

given by a tensor γab

ðfD̂ga − fDgaÞvb ¼̂ γabðAncÞvc; γabðAnbÞ ¼̂ 0;

qabγab ¼̂ 0; ð3:10Þ

for all vb. In our tetrad basis this is

γab ¼̂ ðσ̂ − σÞm̄am̄b þ c:c: ð3:11Þ

where c:c: denotes the complex conjugate of the previous
expression. The shear spin coefficient σ encodes the
different equivalence classes of derivatives and thus the
radiative degrees of freedom at I [8].

We can extend these considerations to spinor fields
defined on I . Note that since na ¼ ιAιA

0
, we can consider

ιA and its conjugate as part of the universal structure. We
can easily extend the derivative operatorDa to act on spinor
fields onI as follows. Let μA be any spinor field onI . We
can extend μA arbitrarily into the unphysical spacetime to
obtain a spinor field μ̃A, then

Dbμ
A ≔ ∇bμ̃

A

 : ð3:12Þ

Note that the action of the derivative Db is well defined
since it is independent of the extension of μA into the
unphysical spacetime.
Consider the “Infeld-van der Waerden symbols” σaAA0 in

M which are implicitly used to convert between a tensor
index and a pair of spinor indices [15]. At I , we can
express them in our tetrad and spinor basis as

σaAA0 ¼̂ naoAoA0 −maιAoA0 − m̄aoAιA0 þ laιAιA0 : ð3:13Þ

Clearly, σaAA0 is not intrinsic to I . However, let us define

σaA ≔ σaAA0 ι
A0 ; σaA0 ≔ σaAA0 ι

A: ð3:14Þ

Since these quantities are tangent to I , we can consider
them as spinor-valued vector fields intrinsically on I . By
direct computation, they satisfy the identities

σaA ¼̂ σaA0 ; σaAι
A ¼̂ na; qabσaAσ

b
B ¼̂ 0;

qabσaAσ
b
B0 ¼̂ ιAιB0 ; ð3:15Þ

and their conjugates. Now, we use σaA and σaA0 to define the
spinor-valued derivatives

DA ≔ σaADa ¼̂ ιA
0∇AA0 ; DA0 ≔ σaA0Da ¼̂ ιA∇AA0 ; ð3:16Þ

with DA0 ¼̂ ðDAÞ and ιADA ¼̂ ιA
0
DA0 .

If D̂a and Da are equivalent derivative operators on I
then for any spinor μA we have

ðD̂A −DAÞμB ¼̂ 0; ðD̂A0 −DA0 ÞμB ¼̂ ðρ̂ − ρÞιA0 ιBιCμC
ð3:17Þ

while, the difference of equivalence classes of derivative
operators is given by

ðfD̂gA − fDgAÞμB ¼̂ ðσ̂ − σÞιAιBιCμC;
ðfD̂gA0 − fDgA0 ÞμB ¼̂ 0: ð3:18Þ

The corresponding action on primed spinors are obtained
by taking the complex conjugate of the above equations.

A. BMS vector fields

In this section we recall the definition and properties of
BMS vector fields. In general, we will work with a complex
BMS vector field ξa; the usual real BMS algebra can be
obtained using the reality condition ξa ¼ ξa.
A BMS vector field ξa at null infinity can be charac-

terized in the following different ways (see Ref. [10]), each
of which will be useful. Intrinsically on I , BMS vector
fields preserve the universal structure on I so that

£ξqab ¼̂ 2αðξÞqab; £ξðAnaÞ ¼̂ − αðξÞðAnaÞ; ð3:19Þ

for some smooth (complex) function αðξÞ which depends on
the chosen vector field ξa. On the other hand, if we viewI
as the boundary of an unphysical spacetime ðM; gabÞ then1

£ξgab ¼̂ αðξÞgab; αðξÞ ¼̂ − Ω−1ðAnaÞξa ¼̂
1

4
∇aξ

a:

ð3:20Þ

Note that since ξa is tangent toI , Anaξa vanishes atI and
so Ω−1ðAnaÞξa is well defined there. Finally, in the GHP
notation using our choice of basis, a BMS vector field is

ξa ¼̂ ðAβÞna þ Xma þ X̃ma;

with þ0ðAβÞ ¼̂ ½ððX þ ð0X̃Þ; þ0X ¼̂ ð0X ¼̂ 0;

þ0X̃ ¼̂ ðX̃ ¼̂ 0; ð3:21Þ

1Note the sign in the second of Eq. (3.20) is opposite to that of
the one used in [10] due to our convention Eq. (3.1).
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and the function αðξÞ is given by

αðξÞ ¼̂ ½ððX þ ð0X̃Þ: ð3:22Þ

In Eq. (3.21) the GHP weights are

β ≗ ð0; 0Þ; X ≗ ð−1; 1Þ; X̃ ≗ ð1;−1Þ: ð3:23Þ

It is easily verified that the BMS vector fields form a Lie
algebra bmsC, under the bracket ½ξ1; ξ2�≡ £ξ1ξ

a
2 ¼ ξa ∈

bmsC. In the GHP notation the Lie brackets can be
explicitly written as [ð1 ↔ 2Þ indicates the previous terms
with the labels 1 and 2 interchanged]

β ¼̂ β1ðX2 − X2ðβ1 þ β1ð0X̃2 − X̃2ð0β1 − ð1 ↔ 2Þ;
X ¼̂ X1ðX2 − X2ðX1;

X̃ ¼̂ X̃1ð0X̃2 − X̃2ð0X̃1: ð3:24Þ

The BMS algebra contains an infinite-dimensional Abelian
invariant subalgebra (i.e., a Lie ideal) of supertranslations
sC formed by vector fields of the form ðAβÞna which are
tangent to the null generators of I , i.e X ¼̂ X̃ ¼̂ 0. The
quotient bmsC=sC is isomorphic to slð2;CÞ × slð2;CÞ ≅
soCð1; 3Þ, the complexified Lorentz algebra—the functions
X and X̃ generate each of the slð2;CÞ factors. There is also
a 4-dimensional Lie ideal of translations tC ⊂ sC where the
additional condition ð2ðAβÞ ¼̂ 0 is satisfied.
The real BMS algebra is bms ⊂ bmsC where ξa ¼ ξa

i.e., β ∈ R and X̃ ¼ X. There are also two complex
subalgebras of bmsC which we call the self-dual and
antiself-dual BMS subalgebras, denoted by bmsþ and
bms− respectively. These can be defined in various
equivalent ways as follows:

ξa ∈ bmsþ ⟺ ðqab þ iεabÞξb ¼̂ 0; ð3:25aÞ

ξa ¼̂ ξAιA
0
; ð3:25bÞ

ξa ¼̂ ðAβÞnaþXma; i:e:; X̃ ¼̂0 ð3:25cÞ

and similarly,

ξa ∈ bms− ⟺ ðqab − iεabÞξb ¼̂ 0; ð3:26aÞ

ξa ¼̂ ξA
0
ιA; ð3:26bÞ

ξa ¼̂ ðAβÞnaþ X̃ma; i:e:; X ¼̂0: ð3:26cÞ

Note that, in the GHP notation, if ξa ∈ bmsþ (or
ξa ∈ bms−) then we have for the spinors ξA (ξA

0
respec-

tively)

ξA ¼̂ ðAβÞιA þ XoA; ξA
0 ¼̂ ðAβÞιA0 þ X̃oA

0
: ð3:27Þ

Further, if ξa ∈ bmsþ, then ξa ∈ bms−, and bmsþ ∩
bms− ¼ sC is the space of supertranslations. It is also
straightforward to check that any ξa ∈ bmsC can be written
as a sum ξa ¼ ξaþ þ ξa− where ξaþ ∈ bmsþ is self-dual and
ξa− ∈ bms− is antiself-dual. Note this splitting is not unique
—one can add any supertranslation to ξaþ and subtract it
from ξa− without affecting the original vector field. Any real
BMS vector field ξa ∈ bms can also be split in this
(nonunique) way with ξa− ¼ ξaþ.
For some computations it will be useful to extend the

BMS vector fields away from I into the unphysical
spacetime. In general, there is no unique way to do this
different choices of extensions of the same BMS symmetry
correspond to different gauge choices inside the spacetime.
However, these extensions are some what restricted as
shown in Proposition 4.1 of [10] which we quote below
without proof.
Proposition 3.1 (Equivalent representatives of a

BMS symmetry).If ξa and ξ0a are vector fields in the
unphysical spacetime M which represent the same BMS
symmetry at null infinity, i.e., ξa ¼̂ ξ0a ∈ bmsC, then
ξ0a ¼ ξa þOðΩ2Þ. ▪
Now, let ξa be any smooth vector field in the unphysical

spacetime so that ξajI ∈ bmsC. Using Eq. (3.20) we have
that there exists a smooth symmetric tensor γðξÞab such that

£ξgab ¼ 2αðξÞgab þ ΩγðξÞab; ð3:28Þ

where αðξÞ is any smooth function away from I subject to
the conditions in Eq. (3.20) at I . Further, it can be shown
that for the Bondi condition ∇a∇bΩ ¼̂ 0 to be preserved
under the diffeomorphism generated by ξa we need (see
Refs. [9,10])

γðξÞabðAnbÞ ¼̂ 0; γðξÞABA0B0 ðAιBιB
0 Þ ¼̂ 0; ð3:29Þ

where the second equation is just the spinor form of the first
one. Note that γðξÞab ¼ 0 if ξa is an exact conformal Killing
field in the unphysical spacetime, which will be the case if
it is an exact Killing field of the physical spacetime. Thus,
BMS vector fields can be viewed as approximate conformal
Killing fields of the unphysical spacetime near I .
Since £ξgab ¼ 2∇ðaξbÞ we have

∇aξb ¼ αðξÞgab þ χðξÞab þ½ΩγðξÞab; χðξÞab ≔ ∇½aξb�:
ð3:30Þ

Note that it follows from Proposition 3.1 that the values of
αðξÞ and χðξÞab at I do not depend on how the BMS vector
field was extended into the unphysical spacetime. The
values of the tensor γðξÞab do depend on the choice of
extension of the BMS vector field.
In the spinor notation, it follows from the antisymmetry

of χðξÞab that
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χðξÞab ¼̂ −χðξÞABϵA0B0 − χ̃ðξÞA0B0ϵAB; χðξÞAB ¼̂ −½∇ðAB0 ξBÞB0 ;
χ̃ðξÞA

0B0 ¼̂ −½∇ðA0B ξB
0ÞB: ð3:31Þ

These spinor forms will be useful later (Sec. IV) to define
the Lie derivatives of spinor fields. In the GHP notation we
have

χðξÞAB ¼̂ ιAιBð−Xσ− ρ̄ X̃þððAβÞÞþ 1

2
oðAιBÞððX− ð0X̃Þ;

χ̃ðξÞA
0B0 ¼̂ ιA

0
ιB
0 ð−X̃ σ̄−ρXþ ð0ðAβÞÞþ 1

2
oðA0 ιB0Þðð0X̃− ðXÞ:

ð3:32Þ

Some other useful identities for the χðξÞab are proven in
Appendix A.

B. BMS twistors

In the section we recall the construction of BMS twistors
at null infinity from [1]. The BMS twistors are spinor field
solutions ωA onI of the BMS twistor equations which can
be expressed in any of the following forms2

ιBDðAωBÞ ¼̂ 0; ιBDA0ωB ¼̂ 0; ð3:33aÞ

ιA0 ιB∇A0ðAωBÞ ¼̂ 0; ιAιB∇A0ðAωBÞ ¼̂ 0; ð3:33bÞ

ð0ω0 ¼̂ 0; þ0ω0 ¼̂ 0; þ0ω1 ¼̂ ðω0; ð3:33cÞ

where in the last expression we have written ωA ¼ ω0oA þ
ω1ιA in our spinor basis. As explained in [1] these equations
have an infinite-dimensional space of solutions which we
denote by T. We will show in Theorem 1 that the space of
BMS twistors T is invariant under BMS transformations.
Now let ωA ≡ ðω0;ω1Þ and ω̃A ≡ ðω̃0; ω̃1Þ be any two

BMS twistors. Then, we define a self-dual vector field ξa ∈
bmsþ on I by

ξa ¼̂ 2iAσaAιBω
ðAω̃BÞ ð3:34aÞ

¼̂ ð2iAιBωðAω̃BÞÞιA0 ð3:34bÞ

¼̂ ðAβÞna þ Xma; β ¼̂ − iðω0ω̃1 þ ω1ω̃0Þ;
X ¼̂ − 2iAω0ω̃0: ð3:34cÞ

Using Eq. (3.33) it follows by a direct computation that ξa

as defined in Eq. (3.34) is indeed a self-dual BMS vector
field in bmsþ (see Ref. [1]).
We point out here that Eq. (3.34) defines a symmetric

map from BMS twistors T to the self-dual BMS vector

fields bmsþ. This structure is very reminiscent of an
anticommutator in a superalgebra; we will shown in
Sec. V. that this is indeed the case.

IV. LIE DERIVATIVE OF SPINORS ALONG
BMS VECTOR FIELDS

Since our ultimate goal is to obtain a superalgebra
combining the BMS vector fields and the BMS twistors,
we need to define an action of the BMS symmetries on
spinor fields. In general, the Lie derivative of a spinor field
along a given vector field is not uniquely defined; the
reason being that spinor fields depend not only on the
spacetime manifold but also on a choice of local frames,
that is they sections of a vector bundle associated to the
frame bundle [20–26]. It was shown by Habermann [27]
that there is a good notion of Lie derivative of a spinor field
along conformal Killing fields which interacts nicely with
the (full) twistor equation—this Lie derivative is the same
as the one defined by Penrose and Rindler in Sec. 6.6 of
[14]. Since at I , the BMS vector fields are indeed
conformal Killing fields [see Eq. (3.20)], we will use the
Penrose-Rindler definition of the Lie derivative along BMS
vector fields.
For any ξa ∈ bmsC, define the Lie derivative of spinor

fields μA and νA
0
on I by

£ξμA≔ξb∇bμ
AþΞðξÞABμB; ΞðξÞAB ¼̂χðξÞAB−

1

2
αðξÞϵBA;

£ξνA
0≔ξb∇bν

A0 þΞ̃ðξÞA0B0νB
0
; Ξ̃ðξÞA

0
B0 ¼̂ χ̃ðξÞA

0
B0−

1

2
αðξÞϵB0A

0
:

ð4:1Þ

This Lie derivative can be extended to spinor fields with
many indices, primed or unprimed, in the usual way. By
direct computation we have (see also Ref. [25], with
w ¼ −1)

£ξϵAB ¼̂ αðξÞϵAB; £ξϵA0B0 ¼̂ αðξÞϵA0B0 ; £ξσaAA0 ¼̂ 0: ð4:2Þ

The first two equations imply that we can raise and lower
spinor indices inside a £ξ by compensating with appropriate
terms involving αðξÞ, while the last equation implies that we
are allowed to convert from spinor indices AA0 to the tensor
index a inside a £ξ.
It will be useful to have the following identities at hand.

Writing the second condition in Eq. (3.19) in terms of
na ¼̂ ιAιA

0
we get

ð£ξAÞιAιA0 þ Að£ξιAÞιA0 þ AιA£ξιA
0 ¼̂ − αðξÞðAιAιA0 Þ; ð4:3Þ

which implies

£ξιA ∝ ιA; £ξιA
0 ∝ ιA

0
: ð4:4Þ

2Similar equations have been used before in [19] but were only
imposed on a single null generator of I .
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Similarly,

£ξðAσaAιBÞ ¼̂ £ξðAσaAA0 ιA
0
ιBÞ ¼̂ £ξðAσaAA0σbA

0
BnbÞ ¼̂ 0:

ð4:5Þ

Finally, for ξa ∈ bmsC and any spinor field μA, we have
(see Ref. [25], with w ¼ −1)

½£ξ;∇b�μA ¼̂ ξdRdbC
AμC − ð∇bχðξÞC

AÞμC þ 1

2
ð∇bαðξÞÞμA

¼̂ ½ðϵBC∇A
B0αðξÞ þ ϵB

A∇CB0αðξÞÞμC
þ½ð∇BB0αðξÞÞμA þ¼AðιCγðξÞABC0B0
þ ιAγðξÞCBC0B0 ÞιC

0
μC; ð4:6Þ

where the second line uses Eq. (A1b).
In the GHP notation the Lie derivative of a spinor field

μA ¼ μ0oA þ μ1ιA takes the following form [using
Eq. (3.21)]

£ξμA ¼̂ oA
�
ðAβÞþ0μ0 þ Xðμ0 −

1

2
μ0ðX þ X̃ð0μ0

�

þ ιA
�
ðAβÞþ0μ1 − μ0ððAβÞ þ Xðμ1

þ X̃ð0μ1 −
1

2
μ1ð0X̃

�
: ð4:7Þ

One can also compute a similar expression for primed
spinor fields. When μA ¼ ωA ∈ T is a BMS twistor
Eq. (4.7) simplifies to [using Eq. (3.33c)]

£ξωA ¼̂ oA
�
Xðω0 −

1

2
ω0ðX

�
þ ιA

�
ðAβÞðω0 − ω0ððAβÞ

þ Xðω1 þ X̃ð0ω1 −
1

2
ω1ð0X̃

�
: ð4:8Þ

Now, note that since ξa ∈ bmsC is tangent to I , in
Eq. (4.1) we can replace ∇a by its pullback, the intrinsic
derivative operator Da on I . Next we notice that the
nonuniversal spin coefficients Reρ and σ do not appear in
Eq. (4.7)—the terms containing these spin coefficients
exactly cancel between ξb∇bμ

A and the χðξÞab in Eq. (4.1).
Thus, we have the following result
Lemma 4.1. For any ξa ∈ bmsC the Lie derivative of

spinor fields on I defined in Eq. (4.1) is intrinsic and
universal, i.e., independent of the choice of derivative
operator Da on I . ▪
Next, we show that the Lie derivative Eq. (4.1) gives a

well-defined action of the BMS Lie algebra on spinor
fields.

Lemma 4.2. For ξa1; ξ
a
2 ∈ bmsC, and any spinor field μA

on I we have

½£ξ1 ; £ξ2 �μA ¼̂ £½ξ1;ξ2�μ
A: ð4:9Þ

Proof. Let ξa ≡ ½ξ1; ξ2�. Then we have from Eq. (4.1)

½£ξ1 ; £ξ2 �μA ¼̂ ξb∇bμ
A þ £ξ1Ξðξ2Þ

A
Bμ

B þ ξb2½£ξ1 ;∇b�μA:
ð4:10Þ

Then using Eqs. (4.1) and (4.6) we get

ð½£ξ1 ;£ξ2 �−£ξÞμA
¼̂−ΞðξÞABμ

Bþ£ξ1Ξðξ2ÞABμBþξb2ðξc1RcbD
A−∇bΞðξ1Þ

A
DÞμD

¼̂ ½−ΞðξÞABþξc1∇cΞðξ2Þ
A
B−ξc2∇cΞðξ1Þ

A
B

þΞðξ1ÞACΞðξ2ÞCB−Ξðξ2Þ
A
CΞðξ1Þ

C
Bþξc1ξd2RcdB

A�μB: ð4:11Þ

From Proposition A.2 the right-hand side vanishes, and we
have the desired result. ▪
Next we prove one of our main results—the space T of

BMS twistors is invariant under the action of the complex
BMS algebra bmsC. One can prove this directly using the
GHP expressions Eqs. (3.33c) and (4.8), but this obscures
the crucial role played by the properties of BMS vector
fields and the BMS twistor equations. So in the following
we provide a covariant proof and the GHP computation is
collected in Remark 4.1.
Theorem 1. Let ξa ∈ bmsC be a complex BMS vector

field and ωA ∈ T be a BMS twistor then £ξωA ∈ T is also a
BMS twistor.
Proof. For a BMS vector field ξa ∈ bmsC, using

Eq. (4.6), we have

½£ξ;∇b�ωA ¼̂ ½ðϵBC∇A
B0αðξÞ þ ϵB

A∇CB0αðξÞÞωC

þ½ð∇BB0αðξÞÞωA þ¼AðιCγðξÞABC0B0
þ ιAγðξÞCBC0B0 ÞιC

0
ωC: ð4:12Þ

Next, raise b index, convert it to BB0 and symmetrize in the
indices A and B to get

½£ξ;∇B0ðB�ωAÞ ¼̂ − 2αðξÞ∇B0ðBωAÞ þ 1

4
AðγðξÞABB0C0 ιC

þ ιðAγðξÞBÞB
0
CC0 ÞιC

0
ωC; ð4:13Þ

where the first term on the right-hand side comes from
raising the b index using the metric. Next, we contract the
above equation with ιA and ιA0 , and use Eq. (3.29) to get

ιAιB0 ½£ξ;∇B0ðB�ωAÞ ¼̂ − 2αðξÞιAιB0∇B0ðBωAÞ;

ιAιB½£ξ;∇B0ðB�ωAÞ ¼̂ − 2αðξÞιAιB∇B0ðBωAÞ: ð4:14Þ
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Then, using the fact that £ξιA ∝ ιA (Eq. (4.4)) we have that
£ξωA satisfies the BMS twistor equations [in the form
Eq. (3.33b)] whenever ωA does, that is, the BMS twistor
equations are preserved under the action of bmsC. ▪
Note that if ξa is an exact conformal Killing vector then

γðξÞab ¼ 0, and so Eq. (4.13) implies that the solution space
of the full twistor equation is preserved, reproducing the
result of Habermann [27]. But, for a general BMS vector
field γðξÞab ≠ 0 and so the full twistor equation is not
preserved under BMS symmetries; it is only the BMS
twistor equations which are preserved.
Remark 4.1 (GHP proof of theorem 1).Let ω̃A ¼ £ξωA,

from Eq. (4.8), we have

ω̃0 ¼ Xðω0 −
1

2
ω0ðX;

ω̃1 ¼ ðAβÞðω0 − ω0ððAβÞ þ Xðω1 þ X̃ð0ω1 −
1

2
ω1ð0X̃:

ð4:15Þ

Now we would like to verify that ω̃A satisfies the BMS
twistor equations [in the GHP form Eq. (3.33c)] whenever
ωA does. For this we use the following commutators of the
GHP derivatives at I

½þ0; ð0�η ¼ ½þ0; ð�η ¼ 0; ½ð; ð0�η ¼ −sRη; ð4:16Þ

where s is the spin of the field η andR is the Ricci scalar of
the induced metric qab. Then, using Eqs. (3.21) and (3.33c),
one can easily check þ0ω̃0 ¼ 0. Next, we have

ð0ω̃0 ¼ Xð0ðω0 −
1

2
ω0ð0ðX ¼ Xð−½Rω0Þ

−
1

2
ω0ð−RXÞ ¼ 0; ð4:17Þ

where we have used ω0 is spin s ¼ −½ and ð0ω0 ¼ 0, and
X is spin s ¼ −1 and ð0X ¼ 0. Finally, we compute

þ0ω̃1 ¼ þ0ðAβÞðω0 − ω0ðþ0ðAβÞ þ Xðþ0ω1 þ X̃ð0þ0ω1 −
1

2
þ0ω1ð0X̃

¼ Xð2ω0 þ½ðXðω0 −½ω0ð2X −½ω0ðð0X̃ þ X̃ð0ðω0

¼ ðω̃0 −½ω0ð−RX̃Þ þ X̃ð−½Rω0Þ ¼ ðω̃0; ð4:18Þ

where in the second line we have used Eq. (3.21). The third
line uses Eq. (4.16) and that ω0 is spin s ¼ ½ and ð0ω0 ¼ 0,
and X̃ is spin s ¼ 1 and ðX̃ ¼ 0.

V. The BMS Lie superalgebra K

In this section we combine the self-dual BMS vector
fields and the BMS twistors into a Lie superalgebra which
we denote by K.3

We note here that our construction differs from other
supersymmetric extensions of the BMS algebra considered
previously in the context of supergravity—we explain these
differences in Remark 5.1.
We consider the supervector space, i.e., a Z2-graded

vector space

K ≔ bmsþ ⊕ T; ð5:1Þ
where bmsþ is assigned an even grading andT is assigned
an odd grading. Next we define a graded bracket on K by

½ξ1; ξ2� ¼ −½ξ2; ξ1�≡ £ξ1ξ
a
2 ∈ bmsþ; ð5:2aÞ

½ω1;ω2� ¼ ½ω2;ω1�≡ 2iAσaAιBω
ðA
1 ωBÞ

2 ∈ bmsþ; ð5:2bÞ

½ξ;ω� ¼ −½ω; ξ�≡ £ξωA ∈ T: ð5:2cÞ

Equation (5.2a) is just the Lie bracket of the bmsþ
algebra, Eq. (5.2b) defines a symmetric bracket on T
which returns the self-dual BMS vector field formed from
the two BMS twistors according to Eqs. (3.34a), and (5.2c)
is the Lie derivative along a BMS vector field of the twistor
ωA which returns another BMS twistor as shown in
Theorem 1.
Taking the brackets defined in Eq. (5.2) as a graded

product gives the supervector space K the structure of a
superalgebra. However, for K to be a Lie superalgebra
the graded Jacobi identities must be satisfied which we
prove in the following theorem. We emphasize that the
satisfaction of the Jacobi identities is quite nontrivial. For
instance, if we replace bmsþ by the algebra of exact
conformal Killing fields and T by solutions of the full
twistor equation, then the Jacobi identities are not
satisfied in general as shown by Habermann [27].
Theorem 2. The supervector space K ¼ bmsþ ⊕ T,

with bmsþ the even subspace and T the odd subspace,
equipped with graded brackets defined by Eq. (5.2), is a Lie
superalgebra.
Proof. For our case, the four linearly-independent

Jacobi identities, which we need to verify, are

3A similar construction can be carried out with the antiself-
dual BMS vector fields bms− and the complex conjugate BMS
twistors T̄ to get the Lie superalgebra K̄ ¼ bms− ⊕ T̄.
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0 ¼ þ½ξ1; ½ξ2; ξ3�� þ ½ξ2; ½ξ3; ξ1�� þ ½ξ3; ½ξ1; ξ2��;
0 ¼ þ½ξ1; ½ξ2;ω�� þ ½ξ2; ½ω; ξ1�� þ ½ω; ½ξ1; ξ2��;
0 ¼ þ½ω1; ½ω2; ξ�� − ½ω2; ½ξ;ω1�� þ ½ξ; ½ω1;ω2��;
0 ¼ −½ω1; ½ω2;ω3�� − ½ω2; ½ω3;ω1�� − ½ω3; ½ω1;ω2��: ð5:3Þ

The first of these is just the Jacobi identity for the Lie
algebra bmsþ, while the second follows from Lemma 4.2.
Thus, we only need to check the last two Jacobi identities,
which we prove by direct computation as follows.
Consider

½ω1; ½ω2; ξ�� ¼ −½ω1; £ξω2�≡ −2iAσaAιBω
ðA
1 £ξω

BÞ
2

¼ £ξð−2iAσaAιBωðA1 ωBÞ
2 Þ þ 2iAσaAιB£ξω

ðA
1 ωBÞ

2

≡ −½ξ; ½ω1;ω2�� þ ½½ξ;ω1�;ω2�; ð5:4Þ

where the second line uses the Leibniz rule and Eq. (4.5). Rearranging the above equation proves the third Jacobi identity.
Next, let ½ω2;ω3�≡ ξa ¼ ðAβÞna þ Xma ∈ bmsþ and consider

−½ω1; ½ω2;ω3��≡ £ξωA
1

¼ oA
�
Xðω0

1 −
1

2
ω0
1ðX

�
þ ιA½Xðω1

1 þ ðAβÞðω0
1 − ω0

1ððAβÞ�

¼ iAoA½−2ððω0
1Þω0

2ω
0
3 þ ω0

1ððω0
2Þω0

3 þ ω0
1ω

0
2ððω0

3Þ�
þ iAιA½−2ððω1

1Þω0
2ω

0
3 − ððω0

1Þðω0
2ω

1
3 þ ω1

2ω
0
3Þ þ ω0

1ððω0
2ω

1
3 þ ω1

2ω
0
3Þ�; ð5:5Þ

where in the second line we have used Eq. (4.8) (and X̃ ¼ 0
for a self-dual BMS vector field) and in the third line we use
Eq. (3.34c) to write the vector field ξa in terms of the BMS
twistors ωA

2 and ωA
3 . Substituting this, and similar equations

obtained by a cyclic permutation of the three BMS twistors,
into the last Jacobi identity we see that all the terms cancel,
and the last Jacobi identity is satisfied. ▪
Remark 5.1 (Other supersymmetric extensions of BMS)

In the context of supergravity, supersymmetric extensions
of the BMS algebra have been investigated at null infinity
by Awada, Gibbons, and Shaw [28] (see also Ref. [29] for
an analysis at spatial infinity). The construction of [28] can
be summarized as follows. One attempts to impose all the
components of the twistor equation which are tangent toI ;
these are

þ0ω0¼0; ð0ω0¼0; þ0ω1¼ðω0; ðω1¼σω0: ð5:6Þ
Note that the first three are the BMS twistor equations
[Eq. (3.33c)], but the last one depends on the shear σ and is
not universal. It is well-known that this set of equations has
no nontrivial solution unless N̄ ¼ 0 (i.e., there is no
radiation), or ω0 ¼ 0 [1,12,28]. Since we definitely want
to consider spacetimes with radiation at I , we choose to
impose ω0 ¼ 0. Then using ω1 and its complex conjugate
ω̄10 we can form a BMS vector field

ξa ¼ −iðω1ω̄10 Þna: ð5:7Þ
In general this is a BMS supertranslation, and if we impose
ðω1 ¼ 0 we get a BMS translation. Note one can also

generate complex supertranslations by replacing ω̄10 by a
second solution ¯̃ω10 . Then, one can construct a superalgebra
by defining graded brackets similar to Eq. (5.2) but the
bracket of two twistors is replaced by ½ω; ω̄�≡ ξa where ξa

is the BMS supertranslation in Eq. (5.7). The differences
with our construction of the superalgebra K are quite
apparent. As detailed in [1] we only impose the compo-
nents of the twistor equation which are intrinsic and
universal, i.e., we do not impose ðω1 ¼ σω0, and con-
sequently have a nonzero ω0. It is precisely this nonzero ω0

which helps us generate the entire (self-dual) BMS algebra
including Lorentz vector fields, unlike the construction of
[28,29] which only generates supertranslations. As we will
describe in Sec. VA, this ω0 can be viewed as generating
Neveu-Schwarz-type supersymmetries on S2, which do not
appear in the construction of [28,29].

A. Projection to the Neveu-Schwarz
superalgebra on S2

In this section we show how the BMS Lie superalgebra
K projects to the global Neveu-Schwarz (NS) superalgebra
on a 2-sphere. The NS superalgebra is a supersymmetric
extension of the Virasoro algebra of local conformal
Killing fields of the 2-sphere metric, and it is only the
Lorentz subalgebra of the Virasoro algebra which extends
to globally smooth conformal Killing fields on a 2-sphere.
Since we want the smoothness structure of null infinity to
be preserved we restrict to the Lorentz subalgebra of the
full Virasoro algebra, and correspondingly restrict to the
globally smooth supersymmetric extension.
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To obtain the desired projection map we note that there is
a projection I → S2 which maps every point p on I to a
unique point on S2 representing the null generator which
contains p. The pushforward of this projection maps vector
fields on I to vector fields on S2, in particular, it maps
bmsþ to the quotient algebra bmsþ=sC ≅ slð2;CÞ.
Explictly, the projection acts on ξa ∈ bmsþ as

ξa ¼ ðAβÞna þ Xma ↦ Xma; ð5:8Þ

where we recall that X is a function on S2 with spin s ¼ −1
and ð0X ¼ 0. On the space of BMS twistors the projection
map acts as

ωA ¼ ω0oA þ ω1ιA ↦ −ιAωA ¼ ω0; ð5:9Þ

where ω0 is a function on S2 with spin s ¼ −½ and
ð0ω0 ¼ 0. Applying the projection to the brackets
[Eq. (5.2)] we get

½X1; X2� ¼ X1ðX2 − X2ðX1; ½X;ω0� ¼ Xðω0 −
1

2
ω0ðX;

½ω0
1;ω

0
2� ¼ −2iω0

1ω
0
2: ð5:10Þ

We have set the function A ¼ 1 since we do not have to
consider GHP weights on S2; only the spin weights will be
important which are unaffected by the function A. It can be
checked that the Jacobi identities are still satisfied after the
projection. Note that the projection maps an infinite-
dimensional superalgebra on I into a finite-dimensional
one on S2, just like it maps the BMS algebra into the
Lorentz algebra.
We claim that theLie superalgebra defined byEq. (5.10) is

precisely the global subalgebra of the NS supersymmetries.4

Since, the NS superalgebra is usually presented in a
choice of basis, we need to pick a basis for the functions X
and ω0 on S2 to show this equivalence. In 2-dimensional
conformal field theory and string theory it is conventional
to work on the complex plane which maps conformally to a
2-sphere using complex stereographic coordinates ðz; z̄Þ.
However, the topology of the space of generators of I
being a 2-sphere is crucial for asymptotic flatness. One can
still work in the stereographic coordinates, if desired, but
then one needs to impose suitable regularity conditions on
the fields at the “point at infinity” z ¼ ∞ to ensure that they
define smooth fields on S2. Instead, it is convenient to
choose a conformal factor so that the metric on the space of
generators of I is the standard unit metric on S2, and use
spin-weighted spherical harmonics Ys

l;m (which are smooth
everywhere on S2) to define the required basis. We detail

the computation in Appendix B, and summarize the main
results below.
Note that X being s ¼ −1 and ð0X ¼ 0 implies that X is

l ¼ 1. Similarly, ω0 being s ¼ −½ and ð0ω0 ¼ 0 implies
ω0 is l ¼ ½. Thus, we define a basis Ln and Gr, for the
space of X and ω0 respectively, by

Ln ≔−
�
2jnj

4π

3

�
½
Ys¼−1
l¼1;m¼n; Gr ≔ ð−i2

ffiffiffi
2
p

πÞ½Ys¼−½
l¼½;m¼r;

ð5:11Þ

where n ∈ f−1; 0; 1g and r ∈ f−½;½g. The overall factors
have been chosen to bring the final brackets into the same
form as the standard NS superalgebra. Next, we substitute
the Xs and ω0s in Eq. (5.10) by the corresponding basis
elements Ln and Gr. A straightforward computation using
the properties of the spin-weighted spherical harmonics
(see Appendix B) gives the following brackets on the basis
elements

½Ln; Ln0 � ¼ ðn − n0ÞLnþn0 ; ½Ln;Gr� ¼
�
n
2
− r

�
Gnþr;

½Gr;Gr0 � ¼ 2Lrþr0 : ð5:12Þ

These are precisely the brackets of the global NS super-
algebra, see Sec 4.2 of Ref. [30] or [31].

VI. DISCUSSION

Lets us point out there there are three distinct kinds of
“superness” involved in the Lie superalgebra K: the first is
the usual extension of the Poincaré algebra to the infinite-
dimensional BMS algebra, the second is a similar extension
of the 2-surface twistors [11–13] to the infinite-dimensional
space of BMS twistors defined in [1], and lastly, we have
the supersymmetric structure which combines both the
BMS algebra and the BMS twistor space described in
this paper.
While we have defined the supersymmetric algebraK on

null infinity, we have not specified the action of these
supersymmetries on physical fields. It would be of interest
to define an action of these supersymmetries on the
asymptotic radiative fields, for instance the News tensor
which characterizes the asymptotic gravitational radiation.
In particular, the relation of the superalgebra K to bulk
supersymmetries in supergravity (if there is any) is unclear
at present—as noted in Remark 5.1 any such relation to
bulk supersymmetries cannot be the same as the one used
in [28,29].

It would also be of interest to obtain a superspace
formulation of the superalgebra K. In this context we note
that the projection of K to the 2-sphere, that is, the global
NS superalgebra (as described in Sec. VA) does have a
superspace formulation [31]. A suitable lift of this super-
manifold structure from S2 to I should give a superspace

4The restriction to the global NS subalgebra arises because we
want all the fields to be smooth on S2, which is dictated by the
smoothness ofI . We also note that the central extension plays no
role when restricted to the global NS subalgebra.
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description of the algebraK. We also note that the universal
geometric structure of null infinity is a conformal Carroll
structure on I , which is an “ultrarelativistic” limit (speed
of light tends to zero) of conformal Lorentzian structures
[32–37]. In this sense, the appropriate superspace structure
on I could be a “conformal super-Carrollian space”
which, as far as we know, has not been investigated.
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APPENDIX A: SOME USEFUL COMPUTATIONS
WITH BMS VECTOR FIELDS

In the following we collect some side computations with
the tensors αðξÞ and χðξÞab for BMS vector fields. Since
BMS vector fields are approximate conformal Killing fields
on the unphysical spacetime [see Eq. (3.28)] the derivative
of χðξÞab, can be written in terms of the Riemann tensor at
I . The proof is very similar to the case of Killing vector
fields given in Sec. C.3 of [16]; and for exact conformal
Killing fields one can just set γðξÞab ¼ 0 in the following
results without any need to evaluate at null infinity.
Proposition A.1.

∇aχðξÞbc ¼̂ − ξdRdabc − 2ga½b∇c�αðξÞ þ AγðξÞa½bnc�;

ðA1aÞ

−∇aχðξÞBC ¼̂ − ξdRdaBC þ ϵAðB∇CÞA0αðξÞ

þ½AιC
0
γðξÞA0C0AðBιCÞ: ðA1bÞ

Proof. We start with the definition of the Riemann
tensor [Eq. (2.1)]:

∇a∇bξc −∇b∇aξc ¼ −Rabc
dξd: ðA2Þ

In the second term on the left-hand side we replace ∇aξc
by −∇cξa þ 2∇ðaξcÞ and then replace 2∇ðaξcÞ using
Eq. (3.28). Evaluating the resulting expression atI we get

∇a∇bξcþ∇b∇cξa ¼̂ −Rabc
dξdþ 2∇bαðξÞgacþ∇bΩγðξÞac:

ðA3Þ

Taking cyclic permutations of the indices a, b, c we get two
more equations. Adding two of these equations and
subtracting the third we get

∇a∇bξc ¼̂ Rbca
dξd þ ð∇aαðξÞgbc þ∇bαðξÞgca −∇cαðξÞgbaÞ

−
1

2
AðnaγðξÞbc þ nbγðξÞca − ncγðξÞbaÞ: ðA4Þ

Then, replacing ∇bξc using Eq. (3.30) we have Eq. (A1a),
and using the spinor decompositions Eqs. (2.2), (3.1), and
(3.31) we get Eq. (A1b). ▪
Proposition A.2. For any two ξa1; ξ

a
2 ∈ bmsC, let ξa ¼

£ξ1ξ
a
2 be their Lie bracket. Then,

αðξÞ ¼̂ ξb1∇bαðξ2Þ − ξb2∇bαðξ1Þ; ðA5aÞ

χðξÞab ¼̂ ξc1∇cχðξ2Þab − ξc2∇cχðξ1Þab − χðξ1Þa
cχðξ2Þbc

þ χðξ2Þa
cχðξ1Þbc − ξc1ξ

d
2Rcdab: ðA5bÞ

Proof. Taking the divergence of ξa ¼ £ξ1ξ
a
2 ¼ ξb1∇bξ

a
2 −

ξb2∇bξ
a
1 and commuting the derivatives, we see that the

resulting Riemann tensor terms cancel out. The remainder
of the expression directly yields Eq. (A5a).
Similarly, we have (where 1 ↔ 2 indicates the preceding

terms with the labels 1 and 2 interchanged, and a ↔ b,
similarly indicates exchange of the abstract indices)

χðξÞab ¼∇½aξb� ¼½∇a½ξc1∇cξ2b − ð1↔ 2Þ�− ða↔ bÞ
¼½∇aξ

c
1∇cξ2bþ½ξc1∇a∇cξ2b − ð1↔ 2Þ− ða↔ bÞ:

ðA6Þ

Using Eq. (3.30) to replace ∇aξc in the first term in
Eq. (A6) gives

½∇aξ
c
1∇cξ2b − ð1 ↔ 2Þ − ða ↔ bÞ

¼̂ − χðξ1Þa
cχðξ2Þbc þ χðξ2Þa

cχðξ1Þ1bc: ðA7Þ

The second term in Eq. (A6) can we written as

ξc1∇a∇cξ2b ¼ ξc1∇c∇aξ2b − ξc1Racbdξ
d
2; ðA8Þ

so that

½ξc1∇a∇cξ2b − ð1 ↔ 2Þ − ða ↔ bÞ
¼ ξc1∇cχðξ2Þab − ξc2∇cχðξ1Þab − ξc1ξ

d
2Rcdab: ðA9Þ

Combining Eqs. (A6), (A7), and (A9) we get the desired
result, Eq. (A.5b). ▪

APPENDIX B: COMPUTATION OF THE
K-BRACKETS PROJECTED TO S2

In this appendix we collect the computations showing
that the projected brackets Eq. (5.10) of the BMS super-
algebra K are the same as the brackets of the global NS
supersymmetries on a 2-sphere, as claimed in Sec. VA.
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We recall the following properties of the spin-weighted
spherical harmonics [15,41]. A spin-weighted spherical
harmonic Ys

l;m is a smooth function on S2 satisfying

ðYs
l;m ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

2

r
Ysþ1
l;m ;

ð0Ys
l;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

2

r
Ys−1
l;m: ðB1Þ

The harmonic Ys
l;m is nonzero if and only if jsj ≤ l and

jmj ≤ l. For a given spin s the harmonics Ys
l;m form a

complete basis for the space of smooth functions with spin
s. An explicit expression for these harmonics in terms of the
stereographic coordinates on S2 can be found in [41].
Further, under complex conjugation we have

Ys
l;m ¼ ð−ÞmþsY−s

l;−m: ðB2Þ

The product of two harmonics can be written as a sum over
other harmonics as

Ys1
l1;m1

Ys2
l2;m2

¼
X
s;l;m

�ð2l1 þ 1Þð2l2 þ 1Þð2lþ 1Þ
4π

�
½

×

�
l1 l2 l

m1 m2 m

��
l1 l2 l

−s1 −s2 −s

�

× ð−1ÞmþsY−s
l;−m; ðB3Þ

where (l1m1

l2
m2

l
m) is theWigner 3j-symbol which is nonzero if

and only if (Sec. 34 of [42])

m1 þm2 þm ¼ 0; jl1 − l2j ≤ l ≤ l1 þ l2;

l1 þ l2 þ l is an integer: ðB4Þ

The 3j-symbols can be explicitly computed using
Eqs. (34.24) and (34.2.5) in Sec. 34.2 of [42], or using
the function ThreeJSymbol in Mathematica [38].
Using the above properties of the spin-weighted har-

monics we can show that the brackets Eq. (5.10) reproduce
those of the global NS supersymmetries Eq. (5.12) as
claimed. The basic strategy is as follows. We will substitute
the basis elements Eq. (5.11) into the brackets Eq. (5.10),
and express the right-hand sides in terms of products of
spin-weighted spherical harmonics. These products can
then be expressed in terms of sums of other spherical
harmonics using Eqs. (B3) and (B4). In each case of interest
only one term in the general sum will be nonzero which can
again be reexpressed in terms of the basis elements Ln and
Gr. Finally, we explicitly compute the 3j-symbols for each
case with n ∈ f−1; 0; 1g and r ∈ f−½;½g and show that
the brackets match the NS brackets Eq. (5.12).
Lets start substituting Ln and Ln0 into the first bracket in

Eq. (5.10). Using Eqs. (5.11) and (B1) we get

½Ln; Ln0 � ¼ −
�
2jnj

4π

3

�
½
�
2jn0j

4π

3

�
½
ðY−1

1;nY
0
1;n0 − ðn ↔ n0ÞÞ:

ðB5Þ

Now using Eqs. (B3) and (B4) we get

Y−1
1;nY

0
1;n0 ¼

X2
l¼1

�
3 × 3ð2lþ 1Þ

4π

�
½
�
1 1 l

n n0 −ðnþ n0Þ

�

×

�
1 1 l

1 0 −1

�
ð−1Þ−n−n0þ1Y−1

l;nþn0 : ðB6Þ

Note that the l ¼ 0 contribution vanishes since the har-
monic on the right-hand side has spin s ¼ −1. Further,
evaluating the 3j-symbols one can verify that the l ¼ 2
contribution also vanishes once antisymmetrized over n
and n0. So we are only left with the l ¼ 1 contribution
which gives

½Ln; Ln0 � ¼
�
2jnj

4π

3

�
½
�
2jn0j

4π

3

�
½
�
2jnþn0j

4π

3

�
−½

× 2

�
3 × 3 × 3

4π

�
½
�
1 1 1

n n0 −ðnþ n0Þ

�

×

�
1 1 1

1 0 −1

�
ð−1Þ−n−n0þ1Lnþn0

¼ ðn − n0ÞLnþn0 ; ðB7Þ

where in the final step we evaluate the 3j-symbols for the
values n; n0 ∈ f−1; 0; 1g.
Similarly, we substitute two basis elements Gr and Gr0

[Eq. (5.11)] into the last bracket in Eq. (5.10) to get

½Gr;Gr0 � ¼ −4
ffiffiffi
2
p

πY−½
½;rY

−½
½;r0 : ðB8Þ

Again using Eqs. (B3) and (B4) we get a harmonic of spin
s ¼ −1 and only a l ¼ 1 term. This gives

Y−½
½;rY

−½
½;r0 ¼

�ð2Þð2Þ3
4π

�
½
�
½ ½ 1

r r0 −ðrþ r0Þ

�

×

�
½ ½ 1

½ ½ −1

�
ð−1Þ−r−r0þ1Y−1

1;rþr0 : ðB9Þ

So

½Gr;Gr0 � ¼ 4
ffiffiffi
2
p

π

�
2jrþr0j

4π

3

�
−½

�ð2Þð2Þ3
4π

�
½

×

�
½ ½ 1

r r0 −ðrþ r0Þ

��
½ ½ 1

½ ½ −1

�

× ð−1Þ−r−r0þ1Lrþr0

¼ 2Lrþr0 ; ðB10Þ
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where to get the last line we evaluate the 3j-symbols
for r; r0 ∈ f−½;½g.
Lastly, we substitute an Ln and a Gr into the second

bracket in Eq. (5.10), and use Eq. (B1) to obtain

½Ln;Gr� ¼ −
�
2jnj

4π

3

�
½
ð−i2

ffiffiffi
2
p

πÞ½

×

�
−

1ffiffiffi
2
p Y−1

1;nY
½
½;r þ

1

2
Y−½
½;rY

0
1;n

�
: ðB11Þ

Evaluating both products using Eqs. (B3) and (B4) gives a
Y−½
l;nþr and the sum over l ∈ f½; 3=2g. An explicit com-

putation shows that the 3j-symbols in the square brackets

cancel for l ¼ 3=2, so we are only left with l ¼ ½ which
gives

½Ln;Gr� ¼ −
�
2jnj

4π

3

�
½
�ð3Þð2Þð2Þ

4π

�
½

×

�
1 ½ ½

n r −ðnþ rÞ

�
ð−1Þ−n−rþ½Gnþr

×

�
−

1ffiffiffi
2
p

�
1 ½ ½

1 −½ −½

�
þ 1

2

�
1 ½ ½

0 ½ −½

��

¼ ðn=2− rÞGnþr; ðB12Þ
where the last line follows from evaluating the 3j-symbols
for n ∈ f−1; 0; 1g and r ∈ f−½;½g.
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[21] Y. Kosmann, Dérivées de Lie des spineurs, Ann. Mat. Pura
Appl. 91, 317 (1971).

[22] L. Fatibene and M. Francaviglia, General theory of Lie
derivatives for Lorentz tensors, Commun. Math. Phys. 19,
11 (2011).

[23] M. Godina and P. Matteucci, The Lie derivative of spinor
fields: Theory and applications, Int. J. Geom. Methods Mod.
Phys. 02, 159 (2005).

[24] R. F. Leão, W. A. Rodrigues, Jr., and S. A. Wainer, Concept
of Lie derivative of spinor fields. A geometric motivated
approach, Adv. Appl. Clifford Algebras 27, 209 (2015).

[25] A. D. Helfer, Spinor Lie derivatives and Fermion stress-
energies, Proc. R. Soc. A 472 (2016).

[26] K. Prabhu, The first law of black hole mechanics for fields
with internal gauge freedom, Classical Quantum Gravity 34,
035011 (2017).

[27] K. Habermann, The graded algebra and the derivative L̄ of
spinor fields related to the twistor equation, J. Geom. Phys.
18, 131 (1996).

[28] M. Awada, G. Gibbons, and W. Shaw, Conformal super-
gravity, twistors, and the super-BMS group, Ann. Phys.
(N.Y.) 171, 52 (1986).

KARTIK PRABHU PHYS. REV. D 105, 064054 (2022)

064054-12

https://doi.org/10.1103/PhysRevD.105.024018
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1103/PhysRev.128.2851
https://doi.org/10.1098/rspa.1965.0058
https://doi.org/10.1063/1.524987
https://doi.org/10.1063/1.524987
https://doi.org/10.1098/rspa.1981.0109
https://doi.org/10.1103/PhysRevD.61.084027
https://arXiv.org/abs/2105.05919
https://doi.org/10.1098/rspa.1982.0058
https://doi.org/10.1088/0264-9381/1/1/005
https://doi.org/10.1088/0264-9381/1/4/001
https://doi.org/10.1088/0264-9381/1/4/001
https://doi.org/10.1063/1.1666410
https://doi.org/10.1063/1.1666410
https://doi.org/10.1007/JHEP03(2019)148
https://doi.org/10.1007/JHEP03(2019)148
https://doi.org/10.1007/s10714-007-0509-0
https://doi.org/10.1007/s10714-007-0509-0
https://doi.org/10.1007/BF02428822
https://doi.org/10.1007/BF02428822
https://doi.org/10.48550/arXiv.0904.0258
https://doi.org/10.48550/arXiv.0904.0258
https://doi.org/10.1142/S0219887805000624
https://doi.org/10.1142/S0219887805000624
https://doi.org/10.1007/s00006-015-0560-y
https://doi.org/10.1098/rspa.2015.0757
https://doi.org/10.1088/1361-6382/aa536b
https://doi.org/10.1088/1361-6382/aa536b
https://doi.org/10.1016/0393-0440(95)00009-7
https://doi.org/10.1016/0393-0440(95)00009-7
https://doi.org/10.1016/S0003-4916(86)80023-9
https://doi.org/10.1016/S0003-4916(86)80023-9


[29] O. Fuentealba, M. Henneaux, S. Majumdar, J. Matulich, and
T. Neogi, Local supersymmetry and the square roots of
Bondi-Metzner-Sachs supertranslations, Phys. Rev. D 104,
L121702 (2021).

[30] M. B. Green, J. H. Schwarz, and E. Witten, Superstring
Theory. Vol. 1: Introduction, Cambridge Monographs on
Mathematical Physics (Cambridge University Press, Cam-
bridge, England, 1988).

[31] D. Friedan, E. J. Martinec, and S. H. Shenker, Conformal
invariance, supersymmetry and string theory, Nucl. Phys.
B271, 93 (1986).
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