1 Genetic covariance in immune measures and pathogen resistance in

2 decorated crickets (Gryllodes sigillatus) is sex and pathogen specific

3

- 4 Corinne Letendre¹, Kristin R. Duffield^{2,3}, Ben M. Sadd², Scott K. Sakaluk², Clarissa M.
- 5 House¹ and John Hunt^{1,4}

6

- 7 ¹ School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797,
- 8 Richmond, New South Wales 2753, Australia.
- 9 ² School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, United States
- 10 of America.
- ³ Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research,
- 12 Peoria, IL 61604, United States of America.
- 13 ⁴ Centre for Ecology and Conservation, College of Life and Environmental Sciences, University
- of Exeter, Tremough Campus, Penryn TR10 9EZ, Cornwall United Kingdom.

15

16 **Running Title:** Immune measures and disease resistance

17

18

Abstract

- 21 1. Insects are important models for studying immunity in an ecological and evolutionary context.
- Yet, most empirical work on the insect immune system has come from phenotypic studies
- 23 meaning we have a limited understanding of the genetic architecture of immune function in the
- 24 sexes.

20

- 25 2. We use nine highly inbred lines to thoroughly examine the genetic relationships between a
- suite of commonly used immune assays (haemocyte count, implant encapsulation, total
- 27 phenoloxidase activity, antibacterial zone of inhibition, pathogen clearance) and resistance to
- 28 infection by three generalist insect pathogens (the gram-negative bacterium Serratia marcescens,
- 29 the gram-positive bacterium Bacillus cereus and the fungus Metarhizium robertsii) in male and
- 30 female Gryllodes sigillatus.
- 3. There were consistent positive genetic correlations between haemocyte count, antibacterial
- 32 and phenoloxidase activity and resistance to *S. marcescens* in both sexes, but these relationships
- were less consistent for resistance to *B. cereus* and *M. robertsii*. In addition, the clearance of *S.*
- 34 marcescens was genetically correlated with the resistance to all three pathogens in both sexes.
- 35 Genetic correlations between resistances to the different pathogen species were inconsistent,
- indicating that resistance to one pathogen does not necessarily mean resistance to another.
- Finally, while there is ample genetic (co)variance in immune assays and pathogen resistance,
- 38 these genetic estimates differed across the sexes and many of these measures were not
- 39 genetically correlated across the sexes suggesting that these measures could evolve
- 40 independently in the sexes.
- 4. Our finding that the genetic architecture of immune function is sex and pathogen specific
- suggests that the evolution of immune function in male and female G. sigillatus is likely to be
- complex. Similar quantitative genetic studies that measure a large number of assays and
- resistance to multiple pathogens in both sexes are needed to ascertain if this complexity extends
- 45 to other species.
- 47 **Key words:** ecological immunity, insect, immune assay, disease resistance, pathogen, sexual
- 48 dimorphism.

46

Introduction

50

51 Animals are under constant attack from a diversity of pathogen species that reduce the fitness of 52 their host in a number of ways, including exploiting their available resources, interfering with 53 their normal behaviour, damaging tissues or organs and/or causing death (Janeway et al., 2001; 54 Moore, 2002). Not surprisingly, hosts have evolved various defences to help minimise these 55 costs, ranging from behavioural adaptations to physical and chemical barriers (Janeway et al., 56 2001; Moore, 2002). Given the importance of these defences to fitness, immune function is often 57 a central component of the host's life-history, especially where greater fitness is achieved 58 through enhanced longevity (Zuk & Stoehr, 2002) and when the diversity of pathogens is 59 sufficiently low to ensure that defences remain effective (Jokela et al., 2000). Consequently, theory predicts that immune function should be subject to strong natural selection (e.g. Jokela et 60 61 al., 2000; Medley, 2002; Miller et al., 2007), although empirical data suggests that positive 62 directional selection is actually more common in the wild populations (Seppälä, 2015). Both 63 forms of selection are expected to erode the variation in immune function (Endler, 1986), yet 64 hosts continue to remain susceptible to pathogenic infection and immune responses vary widely 65 both within and between individuals (Schmid-Hempel, 2003). 66 Explaining the persistence of this variation in immune function remains a key focus of 67 ecological immunology, and centres around the notion that mounting an immune response is 68 costly to the host (Sadd & Schmid-Hempel, 2009). These costs prevent the host from maximising 69 all aspects of immune function simultaneously (Reznick et al., 2000) and can manifest at 70 different individual or evolutionary scales (Rolff & Siva-Jothy, 2003). There are direct costs 71 associated with maintaining and using the immune system (termed usage costs, Sadd & Schmid-72 Hempel, 2009), including energetic costs (e.g. Ardia et al., 2012) and damage caused to self 73 through auto-reactivity and auto-immunity (e.g. Sadd & Siva-Jothy, 2006). There may also be 74 fitness costs of evolving an efficient immune system (termed evolutionary costs, Sadd & 75 Schmid-Hempel, 2009) mediated by trade-offs between immunity and other important life-76 history traits (e.g. reproduction, Hosken, 2001), as well as between different immune 77 components (e.g. Cotter et al., 2004) or defence against different pathogens (termed multiple 78 fronts costs, McKean & Lazzaro, 2011).

79 There is considerable empirical evidence suggesting that the costs of mounting an 80 immune response are prevalent (Rolff & Siva-Jothy, 2003) and vary in different ecological and 81 evolutionary contexts to shape the optimal investment in immune function (Schmid-Hempel, 82 2003; Seppälä, 2015). For example, age (e.g. Leech et al., 2019), physiological state (e.g. 83 Adamo, 2009), reproductive status (e.g. Short & Lazzaro, 2013), diet (e.g. Kutzer et al., 2018; 84 Cotter et al., 2019), social environment (e.g. Leech et al., 2019), as well as the interaction 85 between the genotype of the host and the specific pathogen species (e.g. Schmid-Hempel & 86 Ebert, 2003; Hall et al., 2017), have all been shown to influence the immune function of the host. 87 One factor that is known to have a particularly large effect on immune function is the sex of the 88 host (Nunn et al., 2009; Wilson & Cotter, 2013; Kelly et al., 2018). Sexual selection theory 89 predicts sexual dimorphism in immune function due to divergence in the way that immune 90 function is traded against reproduction in the sexes (Zuk & Stoehr, 2002). In most species, male 91 fitness is limited by the number of mates fertilised, whereas female fitness is limited by the 92 number of offspring produced (Trivers, 1972). Males are therefore expected to adopt a "live 93 hard, die young" strategy where reproduction is traded against immune function, whereas 94 females are not expected to make this trade-off as they can maximise their reproductive success 95 by living longer which is, in turn, promoted by stronger immune function (Zuk & Stoehr, 2002). 96 In agreement with sexual selection theory, sex differences in immune function are 97 taxonomically widespread and in most cases, females have superior immune function (Nunn et 98 al., 2009; Wilson & Cotter, 2013; Kelly et al., 2018). However, the majority of empirical support 99 for sexual dimorphism in immune function comes from phenotypic rather than genetic studies 100 (Nunn et al., 2009; Wilson & Cotter, 2013; Kelly et al., 2018). Understanding how immune 101 function evolves in the sexes requires estimation of the genetic variance in and covariance 102 between immune traits within each sex and genetic covariance between these traits across the 103 sexes, which can only come from detailed genetic studies (Lande, 1980). For example, male 104 mealworm beetles (*Tenebrio molitor*) have a different pattern of genetic variance and covariance 105 for three immune traits (cuticular darkness, haemocyte counts and phenoloxidase activity) than 106 females suggesting the potential for different evolutionary trajectories in the sexes (Rolff et al., 107 2005). However, there were also strong positive genetic correlations for these immune traits

across the sexes suggesting that there is likely to be a genetic constraint that prevents immune function from evolving independently in the sexes (Rolff *et al.*, 2005).

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

Insects have proven to be valuable models for studying immunity in an ecological and evolutionary context, in part because they possess a relatively simple innate immune system that lacks components of the adaptive immune system of vertebrates (Rolff & Siva-Jothy, 2003; Sadd & Schmid-Hempel, 2009). The immune system of insects consists of both cellular and humoral responses (Siva-Jothy et al., 2005). Cellular responses are mediated by circulating haemocytes and include nodulation, encapsulation and phagocytosis, whereas humoral responses include the production of antimicrobial molecules, complement-like proteins, and enzymatic cascades that regulate cytotoxic molecule production, melanin formation and clotting (Siva-Jothy et al., 2005). There are a number of assays available to assess both cellular and humoral immunity in insects (reviewed in Moreno-García et al., 2013). Frequently used assays measuring cellular responses include counts of circulating haemocytes and quantification of the encapsulation response to a sterile implant, while phenoloxidase activity (PO), cell-free anti-microbial activity, including lytic activity of the haemolymph, are commonly used to measure humoral responses (Moreno-García et al., 2013). However, it is important to note that many of these assays represent a baseline of potential immune function as they are often measured in the absence of any immune system activation by an infective agent or immune elicitor (Moreno-García et al., 2013). Well established protocols also exist for a more direct assessment of immune function in insects and have the advantage of assessing the immune system as a whole, incorporating the complex interactions within the immune system (Adamo, 2004a). Frequently used measures include quantifying the ability of the host to clear a pathogen from the haemocoel (referred to as pathogen clearance) or to survive pathogen infection (known as pathogen resistance) (e.g. Haine et al., 2008; Hunt et al., 2016). These measures, however, are often highly pathogen specific (e.g. Faria et al., 2015; Duneau et al., 2017) meaning that it is critical to use an ecologically relevant pathogen species (Adamo, 2004a).

The decorated cricket *Gryllodes sigillatus* has proven an excellent model to study the evolution of insect immune function, especially in the context of its interaction with reproduction (Gershman *et al.*, 2010a; Kerr *et al.*, 2010; Galicia *et al.*, 2014; Rapkin *et al.*, 2018). Previous work on this species has shown that many immune assays are sexually dimorphic, with females

having higher PO activity and encapsulation ability than males (Gershman *et al.*, 2010b; Galicia *et al.*, 2014), but the reverse pattern exists for lytic activity (Galicia *et al.*, 2014, but see Gershman *et al.*, 2010b). There is considerable evidence suggesting that immunity is traded against reproduction in *G. sigillatus*, especially in males (e.g. Gershman *et al.*, 2010a; Kerr *et al.*, 2010; Galicia *et al.*, 2014; Rapkin *et al.*, 2018). There is a negative phenotypic correlation between the size of male decorated cricket's endogenously produced nuptial gift and lytic activity (Gershman *et al.*, 2010a). This trade-off is further supported by the fact that males injected with a benign bacterially-based immune elicitor produce smaller nuptial gifts than shaminjected males, and males producing more nuptial gifts have lower lytic activity but not lower encapsulation ability or PO activity (Kerr *et al.*, 2010). There is also evidence for a trade-off between encapsulation ability and reproduction that is larger in males than females and is regulated by sex differences in the nutritional demands for proteins and carbohydrates (Rapkin *et al.*, 2018). However, we currently know little about the genetic architecture of immune function in *G. sigillatus*, especially involving measures of pathogen resistance, and whether this differs across the sexes.

In this study, we use nine highly inbred lines of *G. sigillatus* to provide a comprehensive examination of the genetic relationship between a suite of immune assays and resistance to infection by three pathogens in males and females. We start by quantifying circulating haemocytes, total PO activity, general antibacterial zone of inhibition (ZI) activity against *Micrococcus luteus*, and implant encapsulation responses in male and female crickets from each inbred line. These measures of immunity span cellular and humoral components (Siva-Jothy *et al.*, 2005). Next, we quantify the ability of male and female crickets from each inbred line to clear from their haemolymph the gram-negative bacterium *Serratia marcescens*, the grampositive bacterium *Bacillus cereus*, and the fungus *Metarhizium robertsii*. These pathogen species were chosen because of their ecological relevance for orthopterans (Gouli *et al.*, 2011). Finally, we examine the resistance of male and female crickets from our inbred lines to each of these pathogen species. This design therefore allows us to quantify the genetic variance in and genetic covariance between immune assays and pathogen resistance in males and females, as well as the genetic covariance for these immune traits across the sexes. These genetic parameters

are central to understanding the potential for immune function to evolve in the sexes, as well as the extent to which immune function will evolve independently in male and female *G. sigillatus*.

Materials and Methods

This research did not require ethical approval.

Cricket maintenance and inbreeding protocol

G. sigillatus used in this study were descended from approximately 500 adult crickets collected in Las Cruces, New Mexico, USA in 2001. These founding animals were used to initiate a laboratory culture allowed to breed panmictically (hereafter, the outbred population). Crickets were distributed across twelve, 15L transparent plastic containers and housed in an environmental chamber (Climatron, Thermoline Scientific) at $32 \pm 1^{\circ}$ C on a 14 h: 10 h light:dark cycle. Crickets were provided ad libitum with cat food pellets (Friskies 7, Nestle Purina PetCare, Rhodes, NSW, Australia), rodent chow (Specialty Feeds, Glen Forrest, WA, Australia) and water in 60mL glass tubes plugged with cotton wool, and egg cartons for shelter. When adults were detected, moistened cotton wool was provided in a petri dish as an oviposition substrate. Hatching nymphs were collected en masse and approximately 500 nymphs were allocated at

Hatching nymphs were collected *en masse* and approximately 500 nymphs were allocated at random to each container to establish the next generation. This process ensures gene flow each generation to promote the maintenance of genetic variation in this outbred culture.

Nine inbred lines were created from this outbred population. To create these inbred lines (designated A to I), crickets selected at random from the outbred population were subjected to 23 generations of full-sib mating (Ivy *et al.*, 2005), followed by 44 generations of panmixis within each line. Each inbred line was housed in two, 15L containers and maintained following the protocols outlined above, with the obvious exception that individuals were not mixed between different inbred lines each generation.

Two weeks post-hatching, 220 nymphs from each of the nine inbred lines and from the outbred population were isolated and established in individual plastic containers (5 cm³) containing a piece of cardboard egg box for shelter. Each nymph was provided weekly with fresh cat food pellets and water. Final instar nymphs were checked daily for eclosion to adulthood.

Experimental design and measures of immunity

On day 8 post-eclosion, crickets from each of the nine inbred lines and from the outbred population were randomly allocated to one of eight groups to measure different immune parameters or resistance to pathogenic infection (Fig. 1): (i) Haemolymph immune assays (i.e. haemocyte count, zone of inhibition (ZI) and PO activity), (ii) Implant encapsulation response, (iii) Host clearance of S. marcescens, (iv) Host clearance of B. cereus, (v) Host clearance of M. robertsii, (vi) Resistance to S. marcescens, (vii) Resistance to B. cereus and (viii) Resistance to M. robertsii. With the exception of group (i), where three assays were performed on the haemolymph taken from each cricket, different crickets were used in the remaining seven groups. In total, we sampled 10 males and 10 females from each inbred line and the outbred population for all eight groups (total n = 800 crickets per sex). Immediately prior to assessing immunity, we measured each cricket's body mass using an analytical balance (Mettler Toledo AE260).

We estimated the repeatability of our immune assays (groups *i-v*) in 20 crickets of each sex taken at random from our outbred population. Assays were conducted using the same protocols as described below for our experimental crickets. For our three haemolymph assays (haemocyte count, ZI and PO activity) and encapsulation response, two assays were conducted per cricket. For clearance of *S. marcescens*, *B. cereus* and *M. robertsii*, three assays were conducted per cricket. We estimated the repeatability of each assay, as well as the 95% confidence intervals (CIs) for these estimates, using the "ICC" package (Wolak *et al.*, 2012) in R (version 3.6.2). All immune assays were highly repeatable in both sexes, with estimates ranging from 0.78 to 0.98 in males and from 0.82 to 0.99 in females (Table 1).

Haemolymph immune assays (group i)

To collect haemolymph, crickets were cold-anaesthetised for 5 min in a tube on ice. The membrane was pierced under the dorsal pronotum plate with a sterile 25G needle and 4 μl of outflowing haemolymph was collected by positioning a prechilled glass microcapillary tube (Wiretrol® II Micro Dispenser, Drummond Scientific, PA, USA) at the puncture site. Collected haemolymph was then expelled into 11 μl of Grace's insect medium (GM, Sigma-Aldrich, G8142, Australia) to be used in zone of inhibition (ZI) assays; 4 μl of this mixture was then

227 added to 12 µl of GM, which was immediately used for total circulating haemocyte counts (final 228 dilution 1/15); another 4 µl of the mixture was added to 20 µL of GM to be used in PO assays. 229 The samples for ZI and PO activity assays were snap-frozen in liquid nitrogen and stored at -230 80°C to induce cell lysis and prevent enzymatic reactions from proceeding until later analysis 231 (Gershman et al., 2010b). 232 Circulating haemocyte counts are routinely used to measure cell-mediated responses 233 (Ryder & Siva-Jothy, 2001). Total haemocytes were counted under an optical microscope (400x) 234 with a haemocytometer (FastRead 102® plastic counting chamber). 235 The ZI assay evaluates the capacity of cell-free haemolymph samples to inhibit the 236 growth of bacteria seeded in agar petri dishes (Kurtz et al., 2000). The gram-positive 237 Micrococcus luteus is routinely used, including in G. sigillatus assays (Duffield et al., 2018), due 238 to its sensitivity and resolution in detecting differences in general humoral antibacterial activity, 239 even though it is not typically considered pathogenic to insects (Gouli et al., 2011). M. luteus 240 (ATCC® 4698) from a single colony were incubated at 30°C for 48 h with agitation (250 rpm) in 241 5 mL of nutrient broth (Oxoid, Thermo Fisher Scientific, VIC, Australia). Bacteria from this 242 culture were added to liquid medium containing 1% agar held at 40°C to achieve a final density of 1.5 x 10⁵ cells/mL. Six mL of seeded medium was poured into a 10-cm diameter petri dish to 243 244 solidify. Sample wells were made using a Pasteur pipette (Volac D810) fitted with a ball pump. 245 Samples were thawed on ice and 2.5 µL of sample solution were added to each well. Negative 246 control wells (GM) were included on each plate. Plates were inverted and incubated for 48 h at 247 30°C. For each inhibition zone, two diameter measurements, perpendicular to one another, were 248 measured using ImageJ (version 1.8.0 112; http://rsbweb.nih.gov/ij) and averaged. 249 Measurements were performed blind to treatment. Each haemolymph sample was tested in 250 duplicate, with the mean of the duplicates being used in subsequent analyses. 251 The prophenoloxidase (ProPO) cascade is central to the melanisation reaction. ProPO is 252 an inactive, haemolymph-bound molecule. When microbes enter the haemolymph, a series of 253 proteases are activated and transform ProPO into its active form, PO. After activation, PO 254 catalyses the production of melanin, as well as phenols, quinones and other cytotoxins (Nappi &

Vass, 1993; Sugumaran et al., 2000) to defend against multicellular pathogens and parasites,

bacteria, fungi, and viruses (Sugumaran et al., 2000; González-Santoyo & Córdoba-Aguilar,

255

257 2012). PO activity can be measured in vitro by incubating haemolymph samples with α -258 chymotrypsin to activate all of the active zymogen, pro-PO, and allow for total PO capacity to be 259 measured. Samples are then incubated with an excess of an exogenous PO substrate, 3,4-260 dihydroxy-L-phenylalanine (L-DOPA), with PO activity represented by a rate change in optical 261 density of the sample during the linear phase of the reaction (Reeson et al., 1998; Adamo et al., 262 2001). Briefly, 10 μl of haemolymph samples were combined with 135 μl of H₂O, 20 μl of 263 phosphate-buffered saline (PBS, Gibco, ThermoFisher Scientific) and 5 μl of bovine pancreas α-264 chymotrypsin (5 mg/mL, Sigma-Aldrich, CAS: 9004-07-3) in each well of a spectrophotometer 265 microplate. The mixture was incubated for 15 min at room temperature. 20 µl of L-DOPA (4 266 mg/ml, Sigma-Aldrich, CAS: 59-92-7) were then added and the optical density (OD) was 267 recorded at 490 nm at 30°C (SPECTROstar nano, BMG LabTech, Thermofisher Scientific). The 268 total change in OD over the course of the reaction was determined using MARS data analysis 269 software (version 2.10). This method estimates the total change in OD during the linear phase of 270 the reaction, with OD readings taken every 40 seconds over a 45-min period. Preliminary tests 271 indicated that readings taken between 5 and 40 min best described the fastest rate of change in 272 OD over time. The average slope of the change in OD per min was calculated for the control 273 wells (GM) and subtracted from the slope of a given haemolymph sample to extract the corrected 274 slope, with a larger slope indicating more PO activity. Each haemolymph sample was tested in 275 duplicate and all samples were randomised within and across plates.

276

277

278

279

280

281

282

283

284

285

286

Implant encapsulation response (group ii)

The encapsulation response to an artificial implant is commonly used to evaluate the melanisation pathway *in vivo* (Siva–Jothy, 2000; Simmons *et al.*, 2005). Crickets were cold-anaesthetised and implanted with a 3 mm-long segment of 0.25 mm-diameter nylon monofilament abraded with sandpaper and sterilised in 70% ethanol as previously described (König & Schmid-Hempel, 1995; Siva-Jothy *et al.*, 1998). A small hole was made ventrally between the 5th and 6th abdominal segments using a sterile 30G hypodermic needle, and the implant was inserted into the wound with forceps until completely contained within the abdomen. After implantation, crickets were returned to their individual containers with fresh food and water. Exactly 48 h post-implantation, an ideal time-point to detect variation in

melanisation in *G. sigillatus* (Gershman *et al.*, 2010b), crickets were frozen at -80°C. Implants were dissected from frozen crickets and clumps of tissue removed. Each implant was photographed three times from different angles next to a clean control implant using a digital camera (KY-F1030, JVC with Image-Pro Plus software version 7.0) mounted on a dissecting microscope (Leica MZ12). Each implant and control was outlined using the ImageJ polygon tool. The darkness of each experimental and control implant (which reveals how well haemocytes encapsulate and melanise a foreign body) was measured as the average grayscale value of all pixels within each image. The darkness score for each individual was calculated as the average grayscale of the three implants' darkness scores subtracted from the average grayscale of the three control implants' darkness scores. Therefore, darker implants yielded higher darkness scores.

Pathogen cultures and injections (groups iii-viii)

The strains S. marcescens subsp. marcescens BS 303 (ATCC® 13880, Manassa, VA, USA), B. cereus Frankland and Frankland 1887 (ATCC® 14579) and Metarhizium robertsii (formerly classified as M. anisopliae strain ME1) isolate ARSEF 2575 (ATCC® MYA-3093) were used. S. marcescens and B. cereus were grown on nutrient agar plates (Oxoid) at 30°C for 16 h. Isolated colonies were used to inoculate 7 mL (S. marcescens) or 30 mL (B. cereus) of nutrient broth incubated for 15 h (S. marcescens) or 16 h (B. cereus) at 30°C with agitation. Late-logarithmic bacteria were washed in sterile ringer saline (Sigma-Aldrich, Australia) and diluted to the desired concentration. M. robertsii was cultured at 28°C in continuous light on one quarter strength Sabouraud dextrose agar with yeast extract (SDAY/4): 10 g/L dextrose, 2.5 g/L neopeptone, 2.5 g/L yeast extract, 15 g/L agar (Oxoid), as previously described (Hunt et al., 2016). Conidia from each plate were harvested at 15-days post-inoculation by gently scrapping the surface of the mycelium with a disposable L-shaped spreader and suspended in sterile saline containing Tween 80 (0.05% v/v, Sigma-Aldrich) as wetting agent. The suspension was vortexed for 30 s and conidia were enumerated using a disposable haemocytometer. The suspension was adjusted to a final concentration of 5 x 10⁷ conidia/mL and stored at 4°C until later use (Goettel & Inglis, 1997; Butt, 2000). Conidial viability was assessed routinely prior to the preparation of each inoculum. Briefly, 100 µl of the conidia suspension was spread onto an SDAY/4 plate. After 2022 h incubation at 28°C, a 1 cm² piece of inoculated agar was placed on a microscope slide and covered with a drop of methylene blue and a glass coverslip. Germinated and non-germinated conidia were counted over different microscope fields (400x), with more than 200 conidia counted per plate on average. Conidia with germ tubes longer than their diameters were considered germinated (Goettel & Inglis, 1997; Oliveira *et al.*, 2015). Viability was > 95% for all inocula.

Injections were performed as previously described (Duffield *et al.*, 2018) using the Wiretrol® II Micro Dispenser (Drummond Scientific, PA, USA) fitted with hollow-tipped heat-pulled glass capillary tubes. Crickets were injected with 2 μ l of the bacterial or conidial suspension corresponding to the optimal dose determined for each pathogen in a preliminary study (Table 2; Fig. S1). Capillaries were cleaned in 70% ethanol and rinsed with nanopure water between injections. Treatments were applied at the same time (0900h \pm 1h) throughout the experiment. After the injection, crickets were returned to their individual containers with food and water.

The cuticle is the first line of defence in insects against pathogenic fungi. Experimental fungal infections are therefore usually performed topically (Goettel & Inglis, 1997). However, here, we injected our crickets to evaluate host resistance at the internal level; this allowed for comparisons with our *S. marcescens* and *B. cereus* infections and testing of more relevant associations with haemolymph immune assays.

Host clearance assays (groups iii-v)

Host clearance refers to the removal/neutralisation of pathogens after initial establishment has occurred. Clearance is commonly measured as the number of CFUs recovered from a host at specific time-points post-injection, where low pathogen loads are interpreted as a strong clearance ability (see Haine *et al.*, 2008; Hunt *et al.*, 2016). Here, pathogen load was measured 6 h post-infection (bacteria) or 24 h post-infection (fungus). Briefly, crickets were cold-anaesthetised for 10 min on ice before being transferred to a 7 mL tube containing 2.4 mm-diameter metal beads (Omni International, Kennesaw GA, USA), 4 mL of PBS and N-phenylthiourea (PTU; Sigma-Aldrich, CAS: 103-85-5). PTU inhibits PO activity and melanisation (Ryazanova *et al.*, 2012) and was used here to avoid further bacterial inactivation *in*

vitro. Crickets were homogenised for 45 s using a Bead Ruptor 12 Homogenizer (Omni International). 100 μl of a 1/10 dilution of the homogenate was then spread onto appropriate selective medium plates. For *S. marcescens*, selective medium plates containing erythritol as sole source of carbon for growth and energy were used (Slotnick & Dougherty, 1972). This basal medium contains 7 g/L K2HPO4, 3 g/L KH2PO4, 0.5 g/L Na3-citrate, 0.1 g/L MgSO47H20, 1 g/L (NH4)2SO4, 5 g/L meso-erythritol (CAS: 149-32-6), 15 g/L agar, pH 7.0 (Sigma-Aldrich). For *B. cereus*, selective medium BrillianceTM *Bacillus cereus* (Oxoid) plates were used. For *M. robertsii*, homogenates were spread onto 'CTC' selective medium plates consisting of potato dextrose agar (PDA; Oxoid) supplemented with 2 g/L yeast extract, 0.5 g/L chloramphenicol, 0.001 g/L thiabendazole and 0.25 g/L cycloheximide (Sigma-Aldrich). CTC medium selectively supports the growth of *M. robertsii* (Fernandes *et al.*, 2010). Homogenates of naive crickets were routinely plated to confirm media selectivity.

After incubation (24 h at 30°C for the bacteria and 4 days at 28°C for the fungus), CFUs were counted using a colony counter Scan®1200 (Interscience, Woburn, MA, USA). CFU counts were multiplied by the dilution factor to obtain total CFUs recovered per cricket.

Clearance rate was obtained by subtracting CFUs recovered from CFUs injected, divided by CFUs injected. Positive clearance rates represent superior clearance ability of the host compared to the bacterial proliferation rate, whereas negative clearance rates represent faster bacterial proliferation compared to the rate at which the host cleared the bacteria. As higher clearance rates reflect a stronger ability to control bacterial proliferation, they are assumed to represent increased immunity.

Host resistance to infection (groups vi-viii)

Experimental *S. marcescens* and *B. cereus* infections typically cause mortality within 4 days in outbred crickets, and survivorship beyond 4 days post-infection has previously been used to differentiate "disease-susceptible" from "disease-resistant" individuals (Adamo, 2004b; Kerr *et al.*, 2010). In this study, survival was monitored daily for 7 days (bacteria) or 14 days (fungus) to determine the mean time to death (i.e. death directly caused by infection), which provides an estimate of disease resistance. The number of days survived was recorded for each individual and averaged to obtain the mean time to death for each line. Individuals that survived the 7 to 14

day observation period were given an arbitrary 8 day survival time (bacteria) or 15 day survival time (fungus). Our preliminary work showed that the survival of male and female crickets receiving the optimal dosage of each pathogen was much lower than the saline control (Table 2, Fig. S1). This time-frame is relatively short compared to *G. sigillatus* average lifespan (58.45 ± 0.94 days in males and 43.70 ± 0.60 days in females from these inbred lines) (Archer *et al.*, 2012) and the differences detected are therefore unlikely to be confounded by line or sex differences in lifespan. Moreover, to further confirm that death occurred as a direct result of infection, *M. robertsii*-infected cadavers were transferred into tubes containing a damp cotton ball and incubated until sporulation occurred, as previously described (Goettel & Inglis, 1997). Mycosis was confirmed in all cases. Unfortunately, there is no such validated methodology to confirm the cause of death of bacterially-infected crickets, to the best of our knowledge. Therefore, all bacterially-infected crickets that died within 7 days post-infection were considered to have succumbed to the disease.

Statistical analysis

As we conducted our three haemolymph immune assays on the same samples, we used a Multivariate Analysis of Covariance (MANCOVA) to determine how these assays varied across inbred lines and the sexes while controlling for differences in body mass. In this model, inbred line, sex and their interaction were included as fixed effects, body mass was included as a covariate, and our three haemolymph assays were included as response variables. We included body mass as a covariate as it is known to affect immunity and differs across the sexes and inbred lines in *G. sigillatus* (Gershman *et al.*, 2010b). Univariate Analysis of Covariance (ANCOVA) using the same model structure was used to determine which haemolymph assays contributed to any overall multivariate effects observed. As our remaining immune measures (encapsulation response, host clearance of, and resistance to, *S. marcescens*, *B. cereus* and *M. robertsii*) were measured on separate male and female crickets, we used the same univariate ANCOVA model to examine how these measures varied across inbred lines and the sexes. We compared our immune measures between outbred and inbred crickets for each sex using a univariate Analysis of Variance (ANOVA). In this analysis, our different inbred lines were all denoted as "inbred" and our outbred population as "outbred" and included as a fixed effect in the

model. Although not genetically homogenous, we include the mean immune measures estimated for the outbred population in all of our figures to serve as a baseline.

We estimated the broad-sense heritability (H^2) (the genotypic variance divided by the phenotypic variance) of our immune assays and resistance measures and the genetic correlations (r_G) using standard quantitative genetic analyses. We estimated the H^2 of each immune measure by calculating the coefficient of intraclass correlation (t) (David $et\ al.$, 2005) as:

413
$$t = \frac{nV_b - V_w}{nV_b + (n-1)V_w}$$

- where n is the number of inbred lines (in our case, 9 lines) and V_b and V_w are the between-line
- and within-line variance components, respectively, estimated directly from an ANOVA
- 416 including inbred line as the main effect. The standard error of the intraclass correlation [SE(t)]
- 417 was calculated according to Becker (1984) as:

407

408

409

410

411

412

424

425

426

427

428

418
$$SE(t) = \sqrt{\frac{2(1-t)^2[1+(k-1)t]^2}{k(k-1)(n-1)}}$$

- where k is the number of individuals sampled within each inbred line (in our case, 10 individuals
- 420 per sex). The H^2 of each measure was then calculated according to David et al. (2005) as:

$$H^2 = \frac{2}{\left(\frac{1}{t} - 0.5\right)}$$

The SE of this estimate $[SE(H^2)]$ was calculated according to David *et al.* (2005) as:

$$SE(H^2) = \frac{2}{\left(1 - \frac{t}{2}\right)^2} SE(t)$$

Genetic correlations and their SEs were estimated using the delete-one jackknife method of Roff & Preziosi (1994). In brief, this procedure first estimates the genetic correlation between the two immune measures using the mean estimates for each inbred line. A sequence of N (in our case 9) pseudo-values are then calculated by dropping, in turn, each of the inbred lines and estimating the resulting genetic correlations using the formula:

$$S_{N,i} = Nr_{N} - (N-1)r_{N-1,i}$$

where $S_{N,i}$ is the *i*th pseudo-value, r_N is the genetic correlation estimated using the means of all N inbred lines and $r_{N-1,i}$ is the genetic correlation obtained when the *i*th inbred line is dropped. The

jackknife estimate of the genetic correlation (r_j) is simply taken as the mean of these pseudovalues. An estimate of the SE for r_j is given by:

434
$$SE = \frac{\sum_{i=1}^{i=N} (S_{N,i} - r_{j})^{2}}{N(N-1)}$$

Roff & Preziosi (1994) used simulation models to demonstrate that this jackknife approach provides better genetic estimates than those based purely on inbred line means when the number of inbred lines used is small (< 20 inbred lines). It is important to note that estimates of genetic (co)variance based on inbred lines contain variance due to dominance and/or epistasis and therefore should be considered broad-sense estimates (Falconer & Mackay, 1996). Our estimates of H^2 and r_G for immune measures were considered statistically significant if the estimates divided by their SE exceeded 1.96, the critical value for a two-tailed t-distribution with infinite degrees of freedom.

Using the above procedures, we estimated the heritability of, and genetic correlations between, immune measures in males ($H^2_{\rm M}$ and $r_{\rm M}$, respectively) and females ($H^2_{\rm F}$ and $r_{\rm F}$, respectively), as well as the genetic correlations between these immune measures across the sexes ($r_{\rm MF}$). We used a randomisation procedure to determine if estimates of $r_{\rm M}$ and $r_{\rm F}$ were correlated across the sexes. In short, we first ran a bivariate Pearson correlation analysis to determine the real correlation coefficient between estimates of $r_{\rm M}$ and $r_{\rm F}$. Next, we shuffled estimates of $r_{\rm F}$ at random across different combinations of immune measures to create an expected distribution where estimates of $r_{\rm M}$ and $r_{\rm F}$ were not correlated. We then used a Monte Carlo simulation to repeat this process 10,000 times and determine the proportion (p) of times (out of the total number of permutations) that the correlation coefficient obtained from this randomised data exceeded that for the real data. This proportion was used to provide a two-tailed significance test for the correlation coefficient using the protocol outlined in Manly (1997). We examined the normality of our estimates of $r_{\rm M}$ and $r_{\rm F}$ using a Shapiro-Wilk test and compared the average magnitude of differences in these estimates using a paired t-test.

It is important to note that, for all of our immune assays (groups *i-v*), higher values are assumed to represent increased immunity. If these assays predict disease resistance, we expect a positive genetic correlation between these measures.

Results

461

489

490

462 The effects of inbred line, sex and their interaction on haemolymph immune assays 463 There was an overall multivariate effect of inbred line, sex and their interaction on haemolymph 464 immune assays (haemocyte count, ZI and PO activity), but body mass did not influence these 465 assays (Table 3). Univariate ANCOVA showed that the overall multivariate effect of inbred line 466 was driven by all three haemolymph assays, whereas the overall multivariate effect of sex was 467 due to females having higher haemocyte count and PO activity than males, but not for ZI (Table 468 3, Fig. 2). The overall multivariate effect of the interaction between inbred line and sex was also 469 driven by all three haemolymph assays, as evidenced by the fact that the reaction norms for these 470 assays across the sexes were not parallel (Table 3, Fig. 2). None of the individual haemolymph 471 assays varied with body mass (Table 3). Haemocyte count ($F_{1.98} = 0.49$) and ZI ($F_{1.98} = 2.62$, P =472 0.11) were similar for inbred and outbred male crickets, although PO activity was slightly higher 473 in inbred than outbred males $(F_{1.98} = 3.06, P = 0.08)$ (Fig. 2). Haemocyte count $(F_{1.98} = 2.00, P =$ 474 0.16) and PO activity (female: $F_{1.98} = 0.04$, P = 0.84) were similar for inbred and outbred female 475 crickets but ZI was slightly higher in inbred than outbred females ($F_{1.98} = 3.41$, P = 0.07) (Fig. 476 2). 477 478 The effects of inbred line, sex and their interaction on encapsulation response and pathogen 479 clearance ability 480 There were also significant differences in encapsulation ability and clearance of S. marcescens, 481 B. cereus and M. robertsii across inbred lines (Table 4). Encapsulation ability was higher in 482 females than males (Fig. 3A), but the sexes did not differ in their clearance of all three pathogens 483 (Table 4; Fig. 3B-D). The interaction between inbred line and sex was significant for the 484 clearance of B. cereus and M. robertsii and approached significance for encapsulation ability and 485 clearance of S. marcescens (Table 4). Accordingly, there was considerable intersection of the 486 reaction norms for these immune measures across the sexes (Fig. 3). Encapsulation ability and 487 clearance of all pathogens were not influenced by body mass (Table 4). Male and female inbred 488 and outbred crickets did not differ in encapsulation ability (male: $F_{1.98} = 1.02$, P = 0.32; female:

 $F_{1.98} = 1.15$, P = 0.29) or clearance of B. cereus (male: $F_{1.98} = 0.33$, P = 0.57; female: $F_{1.98} = 0.33$

2.25, P = 0.14) or M. robertsii (male: $F_{1.98} = 0.00$, P = 0.98; female: $F_{1.98} = 0.05$, P = 0.83) (Fig.

- 491 3A,C-D). Inbred female crickets, however, showed higher clearance of *S. marcescens* than
- outbred female crickets ($F_{1,98} = 8.88$, P = 0.004), but this effect was not as great in males ($F_{1,98} =$
- 493 3.21, P = 0.08) (Fig. 3b).

495

- The effects of inbred line, sex and their interaction on host resistance to infection
- 496 There were significant differences in host resistance to S. marcescens, B. cereus and M. robertsii
- across inbred lines (Table 5). Males showed higher resistance to S. marcescens than females
- 498 (Fig. 4A), but there were no sex differences in resistance to B. cereus and M. robertsii (Fig. 4B-
- 499 C). There were significant inbred line by sex interactions for resistance to S. marcescens and B.
- 500 cereus, while this interaction approached significance for resistance to M. robertsii (Table 5).
- There was substantial intersection of the reaction norms for resistance to all pathogens across the
- sexes (Fig. 4). Resistance to S. marcescens, B. cereus and M. robertsii was not influenced by
- body mass (Table 5). Male and female inbred and outbred crickets showed similar resistance to
- 504 S. marcescens (male: $F_{1.98} = 0.05$, P = 0.83; female: $F_{1.98} = 0.56$, P = 0.46) and M. robertsii
- (male: $F_{1.98} = 0.01$, P = 0.93; female: $F_{1.98} = 0.00$, P = 0.98) (Fig. 4). Similarly inbred and
- outbred males had similar resistance to B. cereus ($F_{1,98} = 0.50$, P = 0.48) but inbred females had a
- slightly higher resistance to this pathogen than outbred females ($F_{1.98} = 3.60$, P = 0.06) (Fig. 4).

508509

Heritability and genetic covariance of immune measures within the sexes

- 510 Consistent with the significant effects of inbred line, we found that all immune assays and our
- measures of disease resistance were heritable in both sexes (Tables 6, 7). Estimates of H^2 ,
- 512 however, varied greatly across the different immune measures, ranging from 0.55 to 0.87 in
- males and 0.53 to 0.92 in females (Tables 6, 7). There were no obvious patterns in the magnitude
- of $H^2_{\rm M}$ and $H^2_{\rm F}$ estimates, with the possible exception that $H^2_{\rm F}$ for disease resistance was lower
- than for immune assays (Table 7). Estimates of $H^2_{\rm M}$ and $H^2_{\rm F}$ were of similar magnitude in males
- and females (H^2_{M} : 0.71 ± 0.03; H^2_{F} : 0.74 ± 0.04; $t_9 = 0.70$, P = 0.50) and were not correlated
- 517 across the sexes (r = 0.16, n = 10, p = 0.35, P = 0.71).
- There was also substantial genetic covariance between our different immune measures in
- both males and females (Tables 6, 7). In both sexes, estimates of $r_{\rm M}$ and $r_{\rm F}$ did not deviate from a
- mean of zero (r_{M} : $t_{44} = 0.08$, P = 0.93; r_{F} : $t_{44} = 0.63$, P = 0.53) and were normally distributed (r_{M} :

521	Shapiro-Wilk = 0.98, df = 45, P = 0.67; r_F : Shapiro-Wilk = 0.97, df = 45, P = 0.23) indicating
522	that positive and negative estimates were as common and similar in magnitude. Moreover, the
523	average magnitude of $r_{\rm M}$ and $r_{\rm F}$ did not differ ($r_{\rm M}$: -0.004 \pm 0.05, $r_{\rm F}$: -0.04 \pm 0.07; $t_{\rm 44}$ = 0.53, P =
524	0.60) and were not correlated across the sexes ($r = 0.23$, $n = 45$, $p = 0.07$, $P = 0.13$).
525	
526	Genetic correlations between immune measures in males
527	There were positive estimates of $r_{\rm M}$ between haemolymph immune assays, with the notable
528	exception of a negative $r_{\rm M}$ between haemocyte count and PO activity (Table 6). Likewise,
529	estimates of $r_{\rm M}$ between encapsulation ability and haemolymph assays were all positive, although
530	only significant between encapsulation ability and ZI. There was a positive $r_{\rm M}$ between the
531	clearance of S. marcescens and haemocyte count and negative estimates between the clearance of
532	this bacterium and PO activity, as well as encapsulation ability. Meanwhile, $r_{\rm M}$ was positive
533	between the clearance of B . cereus and PO activity. Positive $r_{\rm M}$ estimates were observed between
534	the clearance of M . robertsii and ZI, as well as encapsulation ability. There was a positive $r_{\rm M}$
535	between the clearance of S. marcescens and B. cereus and negative $r_{\rm M}$ between the clearance of
536	S. marcescens and M. robertsii, as well as between the clearance of B. cereus and M. robertsii.
537	There were positive estimates of $r_{\rm M}$ between all haemolymph assays and resistance to S .
538	marcescens, as well as resistance to B. cereus (except for haemocyte count, Table 6). In contrast,
539	estimates of $r_{\rm M}$ between haemolymph assays and resistance to M . robertsii were not significant.
540	Moreover, none of the estimates of $r_{\rm M}$ between encapsulation ability and resistance to S .
541	marcescens, B. cereus and M. robertsii were significant. Estimates of $r_{\rm M}$ were all positive
542	between the clearance of S. marcescens and resistance to S. marcescens, B. cereus and M.
543	robertsii. Similar results were obtained between the clearance of B. cereus and resistance to all
544	three pathogens. $r_{\rm M}$ was positive between the clearance of M . robertsii and resistance to B .
545	cereus, but negative between the clearance of M. robertsii and resistance to the same pathogen.
546	There was also little consistency in the genetic covariance between resistance to both bacteria
547	and the fungus, with only a positive $r_{\rm M}$ between resistance to S . marcescens and resistance to M .
548	robertsii.

Genetic correlations between immune measures in females

There were positive estimates of r_F between all haemolymph immune assays, as well as between these assays and encapsulation ability (Table 7). There were no significant r_F between the clearance of S. marcescens and haemolymph immune assays, but a negative r_F was observed between clearance of this bacterium and encapsulation ability. Positive estimates of r_F existed between the clearance of B. cereus and haemocyte count, ZI and encapsulation activity, as well as between the clearance of M. robertsii and haemocyte count, ZI and PO activity. There was also a positive r_F estimate between the clearance of S. marcescens and M. robertsii, and a negative r_F between the clearance of S. marcescens and B. marcescens and mascescens and

There were positive estimates of r_F between all haemolymph assays and resistance to S. marcescens, as well as between ZI and resistance to B. cereus (Table 7). Meanwhile, estimates of r_F between haemolymph assays and resistance to M. robertsii were all negative. Estimates of r_F were similarly all negative between encapsulation ability and resistance to the three pathogens. Positive r_F were detected between the clearance of S. marcescens and resistance to the three pathogens. In contrast, negative r_F estimates were observed between the clearance of and resistance to B. cereus, as well as between the clearance of and resistance to B. cereus, however. Finally, there was a positive r_F between resistance to S. marcescens and resistance to B. cereus and a negative r_F between resistance to S. marcescens and ma

Genetic covariance of immune measures across the sexes

There was also considerable genetic covariance between the same immune measures across the sexes, although this was not as large as expected if immune function was regulated by the same genes in the sexes (Table 8). For example, there was a negative $r_{\rm MF}$ for haemocyte count and positive estimates of $r_{\rm MF}$ for ZI, encapsulation ability, clearance of *S. marcescens* and resistance to *B. cereus*, but all other immune measures were not genetically correlated across the sexes (Table 8). Likewise, while there was ample genetic covariance between different immune measures across the sexes, there was no clear pattern observed in the estimates of $r_{\rm MF}$ (Table 8). That is, estimates of $r_{\rm MF}$ above (female-male) and below (male-female) the diagonal in Table 8 were both normally distributed (female-male: Shapiro-Wilk = 0.97, df = 45, P = 0.41; male-

female: Shapiro-Wilk = 0.99, df = 45, P = 0.84) and did not deviate significantly from a mean of zero (female-male: $t_{44} = 0.75$, P = 0.46; male-female: $t_{44} = 0.50$, P = 0.62) indicating that positive and negative estimates were as common and similar in magnitude. Moreover, the average magnitude of these estimates did not differ (female-male: -0.05 ± 0.06 , male-female: 0.03 ± 0.06 , $t_{44} = 0.89$, P = 0.38) and were not correlated (r = -0.01, n = 45, p = 0.52, P = 0.96).

Discussion

Here we provide a comprehensive examination of the genetic architecture of seven immune assays and resistance to three pathogens in male and female *G. sigillatus*. Although we show considerable genetic variance in and covariance between immune assays and pathogen resistance in *G. sigillatus*, the nature of these relationships are sex and pathogen specific. While both sexes exhibit substantial genetic (co)variance in immune assays and resistance, these genetic estimates differed across the sexes. In addition, many of these immune assays and measures of disease resistance were not genetically correlated across the sexes suggesting the potential for them to evolve independently in the sexes. The sign and magnitude of genetic correlations between resistances to the different pathogens were also inconsistent in each sex, indicating that resistance to one pathogen does not necessarily confer resistance to another. The nature of the genetic relationships we demonstrate here illustrates that the evolution of immune function in male and female *G. sigillatus* is likely to be complex. Whether or not this degree of complexity exists for other species will require similar quantitative genetic studies that measure a large number of assays and resistance to multiple pathogens in both sexes.

Despite the large number of genetic relationships between immune assays and disease resistance that we quantified in *G. sigillatus*, only two patterns were consistent in both sexes. First, we found that haemocyte count, ZI and PO activity all exhibited positive genetic correlations with resistance to *S. marcescens* in males and females. The relationships between these immune assays and resistance to *B. cereus* and *M. robertsii*, however, were far less consistent. While there were also positive genetic correlations between these immune assays and resistance to *B. cereus*, only half of these estimates were statistically significant (ZI and PO activity in males and ZI in females). There were significant negative genetic correlations between these immune assays and resistance to *M. robertsii* in females but not in males. These

patterns suggest that while internal immune defences, such as those captured by our haemolymph assays, may be relatively effective in providing resistance against bacteria, they appear less effective against attack by pathogenic fungi where the main line of defence is likely to occur at the cuticle (Goettel & Inglis, 1997). Likewise, our finding that encapsulation ability exhibited negative genetic correlations with resistance to all three pathogens in females but not in males also suggests that the encapsulation response is unlikely to be effective against bacterial or fungal infection. This is perhaps not unexpected given that the encapsulation response in insects predominately serves to protect against larger attackers, such as macro-parasites and parasitoids. Second, we showed consistent significant positive genetic correlations between the clearance of S. marcescens and the resistance to all three pathogens in males and females. While other positive genetic correlations between pathogen clearance and resistance were found, these were far less consistent across the sexes. Exactly why the clearance of S. marcescens provides an accurate predictor of resistance to all three pathogens is currently unknown, but the fact that negative clearance rates (i.e. in vivo microbial growth) were obtained across most genotypes for S. marcescens, but not for B. cereus and M. robertsii (Fig. 3), suggests that S. marcescens proliferates relatively faster in G. sigillatus. Therefore, genotypes capable of controlling the fast proliferation of S. marcescens might also be more efficient in controlling the proliferation of B. cereus and M. robertsii, conferring greater resistance to all three pathogens. Clearly more work is needed to understand this relationship, but it does suggest that the clearance of S. marcescens may capture an aspect of "general" immune function in G. sigillatus.

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

The general lack of consistency that we show in the relationships between immune assays and pathogen resistance in *G. sigillatus* largely supports the mixed results reported in other insects. In some species, immune assays are positively correlated with resistance to pathogens (Kraaijeveld *et al.*, 2001; Wilson *et al.*, 2001; Tucker & Stevens, 2003), whereas in others, no such relationship exists (Adamo *et al.*, 2001; Adamo, 2004b; Leclerc *et al.*, 2006). The same inconsistency also exists for the relationship between pathogen clearance and disease resistance, where contrasting results have even been documented within the same host species (Corby-Harris *et al.*, 2007; Sleiman *et al.*, 2015). Interestingly, studies on vertebrates have shown more certainty in this relationship, with most confirming a positive relationship between immune assays and disease resistance often with a surprisingly high degree of predictability (e.g. Keil *et*

al., 2001; Biard et al., 2015). While this suggests that the relationship between immune assays and disease resistance may be more labile in insects than vertebrates, more thorough testing across a wider range of species is needed to confirm this.

In nature, most organisms are attacked by multiple pathogen species, often coming from very different taxonomic groups. Despite this, only two studies have examined this relationship in insects and have yielded mixed results. In D. melanogaster, there is a positive genetic correlation between resistance to the bacterium P. aeruginosa and the fungus M. anisopliae (Wang et al., 2017). However, 25 generations of artificial selection for resistance to the pathogenic fungus Beauveria bassiana in the greater wax moth Galleria mellonella, resulted in individuals being more resistant to this fungus but not to the fungus M. anisopliae (Dubovskiy et al., 2013). In G. sigillatus, we found that disease resistance was highly heritable, with H^2 estimates being similar in magnitude for each pathogen examined and for both sexes. The sign and strength of the genetic correlations, however, differed across the sexes. In females, there was a significant positive genetic correlation between resistance to S. marcescens and B. cereus and a significant negative genetic correlation between resistance to S. marescens and M. robertsii but the genetic correlation between resistance to B. cereus and M. robertsii was not significant. In males, there was a significant positive genetic correlation between resistance to S. marcescens and M. robertsii, but all other genetic correlations were not significant. Collectively, these findings show that resistance to one pathogen does not always mean resistance to another and highlights the need to examine multiple pathogen species in ecological immunity studies.

Our results provide partial support for general prediction of sexual selection theory that females will have a superior immune function to males (Zuk & Stoehr, 2002). We show in *G. sigillatus* that haemocyte count, PO activity and encapsulation response were all higher in females than males across our inbred lines. However, ZI, clearance of all pathogens and resistance to *B. cereus* and *M. robertsii* did not differ across the sexes and resistance to *S. marcescens* was actually higher in males than females. The lack of sexual dimorphism observed for pathogen clearance and disease resistance may reflect the fact that these measures provide a more integrative view of the immune system that involves more immune pathways than the targeted immune assays we examined (Charles & Killian, 2015). As such, it is possible that sex differences may be lost when examining immune measures that encompass a greater number of

immune pathways. More importantly, our findings caution against only using single, targeted immune assays to study sexual dimorphism in insect immunity, as sex differences in these assays may not always be accompanied by sex differences in pathogen clearance and/or disease resistance.

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

Although we observe ample genetic (co)variance in both immune assays and disease resistance in both sexes, males and females were shown to have different genetic architecture for these immune measures. That is, estimates of heritability ($H^2_{\rm M}$ and $H^2_{\rm F}$) and genetic correlations $(r_{\rm M}$ and $r_{\rm F})$ for immune assays and disease resistance were not correlated across the sexes. Furthermore, these immune measures were not always significantly genetically correlated across the sexes $(r_{\rm MF})$, as would be expected if the genes governing them were shared by the sexes. Indeed, only five out of the ten immune measures we examined (haemocyte count, ZI, encapsulation response, clearance of S. marcescens and resistance to B. cereus) showed significant estimates of $r_{\rm MF}$, whereas the remaining five measures were not genetically correlated across the sexes. The high estimates of H^2 , $r_{\rm M}$ and $r_{\rm F}$ shown for immune measures, as well as the fact that these estimates vary across the sexes, is consistent with previous work on this species, but it should be noted that far fewer immune measures were examined and no formal comparisons between the sexes were conducted (Gershman et al., 2010a, b). Our findings also show striking similarities to work on the mealworm beetle *Tenebrio molitor* that showed high H^2 estimates for PO activity, cuticular darkness and haemocyte density in both sexes and estimates of $r_{\rm M}$ and $r_{\rm F}$ that statistically differed between the sexes (Rolff et al., 2005). This work, however, showed significant positive estimates of r_{MF} for each immune measure suggesting that they are genetically constrained from evolving independently in the sexes (Rolff et al., 2005). Likewise, there are significant negative estimates of $r_{\rm MF}$ in *Drosophila melanogaster* for tolerance and resistance to the bacterial pathogen Pseudomonas aeruginosa suggesting that antagonistic pleiotropy is likely to constrain the evolution of sexual dimorphism (Vincent & Sharp, 2014). Contrary to these studies, our estimates of r_{MF} in G. sigillatus suggest that while some immune measures are likely to be constrained in this species, others have the potential to evolve independently in the sexes. This is likely to have important implications for the evolution of sexual dimorphism in immune function in G. sigillatus, although estimates of selection for these

individual immune measures are needed for each sex to better understand this process (Lande, 1980).

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

It is important to recognize a number of caveats with our current study. First, our genetic estimates for immune assays and pathogen resistance are based on only 9 inbred lines. It is therefore possible that our findings are not generalizable to the population (or species) as a whole. This is a concern for all studies using inbred lines as the inbreeding process can reduce genetic variation as genotypes are selectively lost from the population. While possible, this is unlikely in our study as only one out of ten lines (10%) established at random from the outbred base population went extinct during the inbreeding process and most of our measures of immune function were similar for inbred and outbred crickets. Second, we examined bacterial clearance 6 hours post-infection, so it could be argued that a longer timeframe would have provided a better assessment of immune function. We selected this timeframe as it has been used in other insect studies (Haine et al., 2008; Miller & Cotter, 2018) and the significant estimates of $H^2_{\rm M}$ and $H^2_{\rm F}$ we show for bacterial clearance indicates this timeframe is sufficient to detect differences in immune function between genotypes. However, it is entirely possible that if we measured bacterial clearance over a longer timeframe (as we did for our fungal pathogen), our genetic estimates would be different. Third, while it would have been ideal to have saline control individuals for each sex and genetic line to account for any potential sex and line responses to wounding in our host resistance assay, this would simply not have been logistically possible in our experiment. However, despite not having saline controls for males and females in each inbred line, we did extensively test the optimal dosage of each pathogen in male and female outbred crickets and have found that for the dosages of each pathogen used, it is the pathogen rather than the inoculation procedure that reduces mortality (compare the survival of the saline control to the optimal dosage in Fig. S1). Finally, in our measurements of the clearance and resistance to bacterial and fungal pathogens we injected a known quantity of pathogen into crickets rather than administering this dosage topically. Consequently, this approach bypasses the host's behavioural, physical and local immune defences (Adamo, 2004a), which can often be effective component of immune function in insects (e.g. Hunt et al., 2016; Cini et al., 2020). Our reason for using injections was to ensure that the immune function of crickets from each line and for both sexes was assessed when a standardized quantity of pathogens entered their body, which 730 cannot be guaranteed with topical application. Ideally, future studies would examine both 731 applications simultaneously to better understand the complexity of processes that help prevent 732 pathogens from entering the body of the host in the first place. 733 734 **Acknowledgments** 735 This research was funded by grants from the Australian Research Council (DP180101708) to JH, 736 and the National Science Foundation (IOS 16-54028) to SKS, BS and JH. CL was supported by 737 Higher Degree Research Funds allocated by WSU School of Science and was the recipient of a 738 PhD Scholarship granted by the Fonds de recherche du Québec – Nature et technologies. This 739 research was supported in part by the U.S. Department of Agriculture, Agricultural Research 740 Service. Mention of trade names or commercial products in this publication is solely for the 741 purpose of providing specific information and does not imply recommendation or endorsement 742 by the U.S. Department of Agriculture. 743 Authors' contributions 744 745 CL, KRD, BMS, SKS, CMH and JH conceived the ideas and designed methodology; CL 746 collected the data; CL, BMS, SKS and JH analysed the data; CL and JH led the writing of the 747 manuscript. All authors contributed critically to the drafts and gave final approval for 748 publication. 749 750 Data availability statement 751 Data will be deposited in Dryad on acceptance. 752 **Non-discrimination statement** 753 754 WSU, UoE, ISU and USDA are equal opportunity providers and employers. 755 756

References

758

- 759 Adamo, S. A., Jensen, M. & Younger, M. 2001. Changes in lifetime immunocompetence in male and
- female Gryllus texensis (formerly G. integer): trade-offs between immunity and reproduction. Anim.
- 761 Behav. **62**: 417-425. doi:10.1006/anbe.2001.1786
- Adamo, S. A. 2004a. How should behavioural ecologists interpret measurements of immunity? *Anim.*
- 763 *Behav.* **68**: 1443-1449. doi:10.1016/j.anbehav.2004.05.005
- Adamo, S. A. 2004b. Estimating disease resistance in insects: phenoloxidase and lysozyme-like activity
- and disease resistance in the cricket *Gryllus texensis*. J. Insect Physiol. **50**: 209-216.
- 766 doi:10.1016/j.jinsphys.2003.11.011
- Adamo, S. A. 2009. The impact of physiological state on immune function in insects. In: *Insect Infection*
- 768 and Immunity, pp. 173-186. Oxford, UK: Oxford University Press.
- Archer, C. R., Zajitschek, F., Sakaluk, S. K., Royle, N. J. & Hunt, J. 2012. Sexual selection affects the
- evolution of lifespan and ageing in the decorated cricket *Gryllodes sigillatus*. *Evolution* **66**: 3088-3100.
- 771 doi:10.1111/j.1558-5646.2012.01673.x
- Ardia, D. R., Gantz, J. E., Schneider, B. C. & Strebel, S. 2012. Costs of immunity in insects: an induced
- immune response increases metabolic rate and decreases antimicrobial activity. Funct. Ecol. 26: 732-739.
- 774 doi:10.1111/j.1365-2435.2012.01989.x
- 775 Becker, W. 1984. Manual of Quantitative Genetics. Pullman, WA: Academic Enterprises.
- 776 Biard, C., Monceau, K., Motreuil, S. & Moreau, J. 2015. Interpreting immunological indices: The
- importance of taking parasite community into account. An example in blackbirds *Turdus merula*.
- 778 *Methods Ecol. Evol.* **6**: 960-972. doi:10.1111/2041-210x.12371
- Butt, T. 2000. Bioassays of entomogenous fungi. In A. Navon & K. R. S. Ascher (Ed.), Bioassays of
- 780 entomopathogenic microbes and nematodes, pp. 141-195. New York, NY: CABI Publishing.
- 781 Charles, H. M. & Killian, K. A. 2015. Response of the insect immune system to three different immune
- 782 challenges. J. Insect Physiol. **81**: 97-108. doi:10.1016/j.jinsphys.2015.07.005
- Cini, A., Bordoni, A., Cappa, F., Petrocelli, J., Pitzalis, M., Iovinella, I., Dani, F. R., Turillazzi, S. &
- 784 Cervo, R. 2020. Increased immunocompetence and network centrality of allogroomer workers suggest a
- 785 link beween individual and social immunitu in honeybees. Sci. Rep. 10: 8928. doi:10.1038/s41598-020-
- 786 65780-w
- Corby-Harris, V., Habel, K., Ali, F. & Promislow, D. 2007. Alternative measures of response to
- 788 Pseudomonas aeruginosa infection in Drosophila melanogaster. J. Evol. Biol. 20: 526-533.
- 789 doi:10.1111/j.1420-9101.2006.01267.x
- 790 Cotter, S. C., Kruuk, L. E. B. & Wilson, K. 2004. Costs of resistance: genetic correlations and potential
- 791 trade-offs in an insect immune system. J. Evol. Biol. 17: 421-429. doi:10.1046/j.1420-9101.2003.00655.x

- Cotter, S.C., Reavey, C.E., Tummala, Y., Randall, J.L., Holdbrook, R., Ponton, F., Simpson, S.J., Smith,
- J.A. & Wilson, K. 2019. Diet modulates the relationship between immune gene expression and functional
- 794 immune responses. *Insect Biochem. Mol. Biol.* **109**: 128-141. doi:10.1016/j.ibmb.2019.04.009
- David, J., Gibert, P., Legout, H., Pétavy, G., Capy, P. & Moreteau, B. 2005. Isofemale lines in
- 796 *Drosophila*: an empirical approach to quantitative trait analysis in natural populations. *Heredity* **94**: 3-12.
- 797 doi:10.1038/sj.hdy.6800562
- Dubovskiy, I. M., Whitten, M. M., Yaroslavtseva, O. N., Greig, C., Kryukov, V. Y., Grizanova, E. V.,
- Mukherjee, K., Vilcinskas, A., Glupov, V. V. & Butt, T. M. 2013. Can insects develop resistance to insect
- 800 pathogenic fungi? *PLoS One.* **8**: e60248. doi:10.1371/journal.pone.0060248
- Duffield, K. R., Hampton, K. J., Houslay, T. M., Hunt, J., Rapkin, J., Sakaluk, S. K. & Sadd, B. M. 2018.
- Age-dependent variation in the terminal investment threshold in male crickets. *Evolution* **72**: 578-589.
- 803 doi:10.1111/evo.13443
- Duneau, D.F., Kondolf, H.C., Im, J.H., Ortiz, G.A., Chow, C., Fox, M.A., Eugénio, A.T., Revah, J.,
- Buchon, N. & Lazzaro, B.P., 2017. The Toll pathway underlies host sexual dimorphism in resistance to
- both Gram-negative and Gram-positive bacteria in mated *Drosophila*. *BMC Biology* **15**: 1-17. doi:
- 807 10.1186/s12915-017-0466-3
- 808 Endler, J.A. 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.
- Falconer, D. & Mackay, T. 1996. Introduction to quantitative genetics. Harlow, Essex, UK: Longmans
- 810 Green.
- Faria, V.G., Martins, N.E., Paulo, T., Teixeira, L., Sucena, É. and Magalhães, S. 2015. Evolution of
- 812 Drosophila resistance against different pathogens and infection routes entails no detectable maintenance
- 813 costs. Evolution **69**: 2799-2809.
- Fernandes, É. K., Keyser, C. A., Rangel, D. E., Foster, R. N. & Roberts, D. W. 2010. CTC medium: a
- 815 novel dodine-free selective medium for isolating entomopathogenic fungi, especially *Metarhizium*
- 816 acridum, from soil. Biol. Control. **54**: 197-205. doi:10.1016/j.biocontrol.2010.05.009
- 617 Galicia, A., Cueva del Castillo, R. & Contreras-Garduño, J. 2014. Is sexual dimorphism in the immune
- response of *Gryllodes sigillatus* related to the quality of diet? *ISRN Evol. Biol.* **329736**: 1-6.
- 819 doi:10.1155/2014/329736
- Gershman, S. N., Barnett, C. A., Pettinger, A. M., Weddle, C. B., Hunt, J. & Sakaluk, S. K. 2010a. Give
- 821 'til it hurts: trade-offs between immunity and male reproductive effort in the decorated cricket, *Gryllodes*
- 822 *sigillatus. J. Evol. Biol.* **23**: 829-839. doi:10.1111/j.1420-9101.2010.01951.x
- Gershman, S. N., Barnett, C. A., Pettinger, A. M., Weddle, C. B., Hunt, J. & Sakaluk, S. K. 2010b. Inbred
- decorated crickets exhibit higher measures of macroparasitic immunity than outbred individuals. *Heredity*
- 825 **105**: 282-289. doi:10.1038/hdy.2010.1
- Goettel, M. S. & Inglis, G. D. 1997. Chapter V-3 Fungi: hyphomycetes. In L. A. Lacey (Ed.), Manual of
- 827 Techniques in Insect Pathology, pp. 213-249. San Diego, CA: Academic Press.

- 828 González-Santoyo, I. & Córdoba-Aguilar, A. 2012. Phenoloxidase: a key component of the insect
- 829 immune system. *Anim. Behav.* **142**: 1-16. doi:10.1111/j.1570-7458.2011.01187.x
- 830 Gouli, V., Gouli, S. & Marcelino, J. 2011. Common Infectious Diseases of Insects in Culture: Diagnostic
- and Prophylactic Methods Springer Science & Business Media. doi:10.1007/978-94-007-1890-6
- Haine, E. R., Moret, Y., Siva-Jothy, M. T. & Rolff, J. 2008. Antimicrobial defense and persistent
- 833 infection in insects. Science 322: 1257-1259. doi:10.1126/science.1165265
- Hall, M. D., Bento, G. & Ebert, D. 2017. The evolutionary consequences of stepwise infection processes.
- 835 *Trends Ecol. Evol.* **32**: 612-623. doi:10.1016/j.tree.2017.05.009
- Hosken, D. J. 2001. Sex and death: microevolutionary trade-offs between reproductive and immune
- 837 investment in dung flies. Curr. Biol. 11: R379-R380. doi:10.1016/s0960-9822(01)00211-1
- Hunt, V. L., Zhong, W., McClure, C. D., Mlynski, D. T., Duxbury, E. M., Keith Charnley, A. & Priest, N.
- K. 2016. Cold-seeking behaviour mitigates reproductive losses from fungal infection in *Drosophila*. J.
- 840 Anim. Ecol. **85**: 178-186. doi:10.1111/1365-2656.12438
- 841 Ivy, T. M., Weddle, C. B. & Sakaluk, S. K. 2005. Females use self-referent cues to avoid mating with
- previous mates. *Proc. Royal Soc. B* **272**: 2475-2478. doi:10.1098/rspb.2005.3222
- Janeway, C., Travers, P., Walport, M. & Shlomchik, M. J. 2001. Immunobiology: the immune system in
- health and disease (5th ed.). New York, NY: Garland Science.
- Jokela, J., Schmid-Hempel, P., & Rigby, M. C. 2000. Dr. Pangloss restrained by the Red Queen-steps
- towards a unified defence theory. *Oikos* **89**: 267-274.
- Keil, D., Luebke, R. W. & Pruett, S. B. 2001. Quantifying the relationship between multiple
- immunological parameters and host resistance: probing the limits of reductionism. *J. Immunol.* **167**:
- 849 4543-4552. doi:10.4049/jimmunol.167.8.4543
- Kelly, C. D., Stoehr, A. M., Nunn, C., Smyth, K. N. & Prokop, Z. M. 2018. Sexual dimorphism in
- 851 immunity across animals: a meta-analysis. *Ecol. Lett.* **21**: 1885-1894. doi:10.1111/ele.13164
- Kerr, A. M., Gershman, S. N. & Sakaluk, S. K. 2010. Experimentally induced spermatophore production
- and immune responses reveal a trade-off in crickets. *Behav. Ecol.* **21**: 647-654.
- 854 doi:10.1093/beheco/arq035
- König, C. & Schmid-Hempel, P. 1995. Foraging activity and immunocompetence in workers of the
- bumble bee, *Bombus terrestris* L. *Proc. R. Soc. Lond. B* **260**: 225-227.
- Kraaijeveld, A. R., Limentani, E. & Godfray, H. 2001. Basis of the trade-off between parasitoid
- resistance and larval competitive ability in *Drosophila melanogaster*. Proc. R. Soc. Lond. B Biol. Sci.
- 859 **268**: 259-261. doi:10.1098/rspb.2000.1354
- Kurtz, J., Wiesner, A., Götz, P. & Sauer, K. P. 2000. Gender differences and individual variation in the
- immune system of the scorpionfly *Panorpa vulgaris* (Insecta: Mecoptera). *Dev. Comp. Immunol.* 24: 1-
- 862 12. doi:10.1016/S0145-305X(99)00057-9

- Kutzer, M.A., Kurtz, J. & Armitage, S.A. 2018. Genotype and diet affect resistance, survival, and
- fecundity but not fecundity tolerance. J. Evol. Biol. 31: 159-171. doi:10.1111/jeb.13211
- Lande, R. 1980. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. *Evolution*,
- **34**: 292-305.
- Leclerc, V., Pelte, N., El Chamy, L., Martinelli, C., Ligoxygakis, P., Hoffmann, J. A. & Reichhart, J. M.
- 868 2006. Prophenoloxidase activation is not required for survival to microbial infections in *Drosophila*.
- 869 *EMBO Rep.* 7: 231-235. doi:10.1038/sj.embor.7400592
- Leech, T., Evison, S.E., Armitage, S.A., Sait, S.M. & Bretman, A. 2019. Interactive effects of social
- environment, age and sex on immune responses in *Drosophila melanogaster*. J Evol. Biol. **32**: 1082-1092.
- 872 doi:10.1111/jeb.13509
- 873 Manly, B. F. 1997. Randomization, Bootstrap and Monte Carlo Methods in Biology. London: Chapman
- and Hall.
- McKean, K. A. & Lazzaro, B. P. 2011. The costs of immunity and the evolution of immunological
- defense mechanisms. In T. Flatt & A. Heyland (Ed.), Mechanisms of Life History Evolution: The Genetics
- 877 and Physiology of Life History Traits and Trade-Offs (pp. 299-310). Oxford: Oxford University Press.
- Medley, G.F., 2002. The epidemiological consequences of optimisation of the individual host immune
- 879 response. *Parasitology*, **125**: S61-S70.
- Miller, M.R., White, A. & Boots, M. 2007. Host life span and the evolution of resistance characteristics.
- 881 Evolution, **61**: 2-14. doi:10.1111/j.1558-5646.2007.00001.x
- Miller, C. V. L. & Cotter, S. C. 2018. Resistance and tolerance: the role of nutrients on pathogen
- dynamics and infection outcomes in an insect host. J. Anim. Ecol. 87: 500-510. doi:10.1111/1365-
- 884 2656.12763
- Moore, J. 2002. Parasites and the behavior of animals. New York, NY: Oxford University Press.
- Moreno-García, M., Córdoba-Aguilar, A., Condé, R. & Lanz-Mendoza., H. 2013. Current immunity
- markers in insect ecological immunology: assumed trade-offs and methodological issues. *Bull. Entomol.*
- 888 Res. 103: 127-139. doi:10.1017/S000748531200048X
- Nappi, A. & Vass, E. 1993. Melanogenesis and the generation of cytotoxic molecules during insect
- 890 cellular immune reactions. *Pigment Cell Res.* **6**: 117-126. doi:10.1111/j.1600-0749.1993.tb00590.x
- Nunn, C.L., Lindenfors, P., Pursall, E.R. & Rolff, J., 2009. On sexual dimorphism in immune function.
- 892 *Philos Trans R Soc Lond B Biol Sci*, **364**: 61-69. doi:10.1098/rstb.2008.0148
- Oliveira, D. G. P., Pauli, G., Mascarin, G. M. & Delalibera, I. 2015. A protocol for determination of
- 894 conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from
- 895 commercial products. *J. Microbiol. Methods* **119**: 44-52. doi:10.1016/j.mimet.2015.09.021
- Rapkin, J., Jensen, K., Archer, C. R., House, C. M., Sakaluk, S. K., del Castillo, E. & Hunt, J. 2018. The
- geometry of nutrient space—based life-history trade-offs: sex-specific effects of macronutrient intake on

- the trade-off between encapsulation ability and reproductive effort in decorated crickets. Am. Nat. 191:
- 899 452-474. doi:10.1086/696147
- Reeson, A. F., Wilson, K., Gunn, A., Hails, R. S. & Goulson, D. 1998. Baculovirus resistance in the
- noctuid *Spodoptera exempta* is phenotypically plastic and responds to population density. *Proc. R. Soc.*
- 902 Lond. B Biol. Sci. 265: 1787-1791. doi:10.1098/rspb.1998.0503
- Reznick, D., Nunney, L. & Tessier, A. 2000. Big houses, big cars, superfleas and the costs of
- 904 reproduction. *Trends Ecol. Evol.* **15**: 421-425. doi:10.1016/S0169-5347(00)01941-8
- Roff, D. A. & Preziosi, R. 1994. The estimation of the genetic correlation: the use of the jackknife.
- 906 Heredity **73**: 544-548. doi:10.1038/hdy.1994.153
- Rolff, J. & Siva-Jothy, M. T. 2003. Invertebrate ecological immunology. *Science* **301**: 472-475.
- 908 doi:10.1126/science.1080623
- Rolff, J., Armitage, S.A. & Coltman, D.W. 2005. Genetic constraints and sexual dimorphism in immune
- 910 defense. Evolution **59**: 1844-1850. doi:10.1111/j.0014-3820.2005.tb01831.x
- 911 Ryazanova, A. D., Alekseev, A. A. & Slepneva, I. A. 2012. The phenylthiourea is a competitive inhibitor
- of the enzymatic oxidation of DOPA by phenoloxidase. J. Enzyme Inhib. Med. Chem. 27: 78-83.
- 913 doi:10.3109/14756366.2011.576010
- Ryder, J. J. & Siva-Jothy, M. T. 2001. Quantitative genetics of immune function and body size in the
- 915 house cricket, Acheta domesticus. J. Evol. Biol. 14: 646-653. doi:10.1046/j.1420-9101.2001.00302.x
- 916 Sadd, B. M. & Siva-Jothy, M. T. 2006. Self-harm caused by an insect's innate immunity. *Proc. Royal Soc.*
- 917 *B* **273**: 2571-2574. doi:10.1098/rspb.2006.3574
- 918 Sadd, B. M. & Schmid-Hempel, P. 2009. Principles of ecological immunology. Evol. Appl. 2: 113-121.
- 919 doi:10.1111/j.1752-4571.2008.00057.x
- 920 Schmid-Hempel, P. 2003. Variation in immune defence as a question of evolutionary ecology. *Proc.*
- 921 Royal Soc. B 270: 357-366. doi:10.1098/rspb.2002.2265
- 922 Schmid-Hempel, P. & Ebert, D. 2003. On the evolutionary ecology of specific immune defence. *Trends*
- 923 Ecol. Evol. 18: 27-32. doi:10.1016/S0169-5347(02)00013-7
- 924 Seppälä, O. 2015. Natural selection on quantitative immune defence traits: a comparison between theory
- 925 and data. J. Evol. Biol. 28: 1-9. doi:10.1111/jeb.12528
- 926 Short, S. M. & Lazzaro, B.P. 2013. Reproductive status alters transcriptomic response to infection in
- 927 female Drosophila melanogaster. G3: Genes, Genomes, Genetics 3: 827-840. doi:
- 928 10.1534/g3.112.005306
- 929 Simmons, L. W., Zuk, M. & Rotenberry, J. T. 2005. Immune function reflected in calling song
- characteristics in a natural population of the cricket *Teleogryllus commodus*. Animal Behav 69: 1235-
- 931 1241.

- 932 Siva-Jothy, M. T., Tsubaki, Y. & Hooper, R. E. 1998. Decreased immune response as a proximate cost of
- opulation and oviposition in a damselfly. *Physiol. Entomol.* **23**: 274-277.
- 934 Siva–Jothy, M. T. 2000. A mechanistic link between parasite resistance and expression of a sexually
- 935 selected trait in a damselfly. *Proc. Royal Soc. B* **267**: 2523-2527.
- 936 Siva-Jothy, M. T., Moret, Y. & Rolff, J. 2005. Insect immunity: an evolutionary ecology perspective.
- 937 Adv. Insect Physiol. **32**: 1-48. doi:10.1016/S0065-2806(05)32001-7
- 938 Sleiman, M. S. B., Osman, D., Massouras, A., Hoffmann, A. A., Lemaitre, B. & Deplancke, B. 2015.
- Genetic, molecular and physiological basis of variation in *Drosophila* gut immunocompetence. *Nat.*
- 940 *Commun.* **6**: 7829. doi:10.1038/ncomms8829
- 941 Slotnick, I. J. & Dougherty, M. 1972. Erythritol as a selective substrate for the growth of Serratia
- 942 *marcescens. Appl. Microbiol.* **24**: 292-293.
- 943 Sugumaran, M., Nellaiappan, K. & Valivittan, K. 2000. A new mechanism for the control of
- 944 phenoloxidase activity: inhibition and complex formation with quinone isomerase. Arch. Biochem.
- 945 *Biophys.* **379**: 252-260. doi:10.1006/abbi.2000.1884
- 946 Trivers, R. L. 1972. Parental investment and sexual selection. In: Sexual selection and the descent of Man,
- pp. 136-179. Aldine de Gruyter, New York, USA.
- Tucker, T. M. & Stevens, L. 2003. Geographical variation and sexual dimorphism of phenoloxidase levels
- 949 in Japanese beetles (*Popillia japonica*). *Proc. R. Soc. Lond. B Biol. Sci.* **270**: S245-S247.
- 950 doi:10.1098/rsbl.2003.0080
- Vincent, C. M. & Sharp, N. P. 2014. Sexual antagonism for resistance and tolerance to infection in
- 952 Drosophila melanogaster. Proc. R. Soc. Lond. B Biol. Sci. 281: 20140987. doi:10.1098/rspb.2014.0987
- Wang, J. B., Lu, H.-L. & St. Leger, R. J. 2017. The genetic basis for variation in resistance to infection in
- 954 the *Drosophila melanogaster* genetic reference panel. *PLoS Pathog.* **13**: e1006260.
- 955 doi:10.1371/journal.ppat.1006260
- Wilson, K., Cotter, S. C., Reeson, A. F. & Pell, J. K. 2001. Melanism and disease resistance in insects.
- 957 *Ecol. Lett.* **4**: 637-649. doi:10.1046/j.1461-0248.2001.00279.x
- Wilson, K., & Cotter, S.C. 2013. Host–Parasite interactions and the evolution of immune defense. In
- 959 Advances in the Study of Behavior. 45: 81-174. Academic Press. doi: 10.1016/B978-0-12-407186-
- 960 5.00003-3
- Wolak, M. E., Fairbairn, D. J. & Paulsen, Y. R. 2012. Guidelines for estimating repeatability. *Methods*
- 962 *Ecol. Evol.* **3**: 129-137. doi:10.1111/j.2041-210X.2011.00125.x
- 2002. Immune defense and host life history. *Am. Nat.* **160** (S4): S9-S22.

Tables

Table 1. Estimates of repeatability, measured as the intraclass correlation coefficient (ICC) and 95% confidence intervals (95% CIs) for immune assays in male and female outbred crickets. Repeatability estimates and 95% CIs were estimated following the protocols of Wolak et *al.* 2012.

	N	Males	F	emales
Immune assay	ICC	95% CIs	ICC	95% CIs
Haemocyte count	0.85	0.72, 0.97	0.87	0.76, 0.98
Zone of inhibition	0.92	0.86, 0.99	0.98	0.95, 1.00
PO activity	0.78	0.61, 0.95	0.82	0.69, 0.97
Encapsulation response	0.85	0.68, 1.03	0.86	0.69, 1.03
Clearance of S. marcescens	0.97	0.94, 0.99	0.99	0.98, 1.00
Clearance of <i>B. cereus</i>	0.98	0.96, 0.99	0.98	0.97, 1.00
Clearance of M. robertsii	0.92	0.86, 0.98	0.92	0.86, 0.98

Table 2. Dose selection for Serratia marcescens, Bacillus cereus or Metarhizium robertsii in G. sigillatus. For each bacterial and fungal species examined, 20 crickets of each sex were injected per dosage (including the saline control). All crickets were injected at 8 days posteclosion with 2 μl of saline containing various concentrations of live bacteria or fungal spores. In each instance, CFUs refers to colony forming units. Survivorship (measured as a %) of each injected cricket was monitored daily for 7 days in bacteria and 14 days in the fungus. For each pathogen, the dosage highlighted in bold was selected for subsequent experiments.

	% Su	ırvival
Treatment	Females	Males
Serratia marcescens		
Saline	85%	95%
10 ² CFUs (live)	85%	75%
10 ³ CFUs (live)	55%	90%
10 ⁴ CFUs (live)	55%	75%
10 ⁵ CFUs (live)	25%	5%
Bacillus cereus		
Saline	70%	100%
10 ² CFUs (live)	65%	80%
10 ³ CFUs (live)	50%	85%
10 ⁴ CFUs (live)	30%	70%
10 ⁵ CFUs (live)	20%	15%
Metarhizium robertsii		
Saline	65%	80%
10 ³ CFUs (live)	75%	75%
10 ⁴ CFUs (live)	50%	80%
10 ⁵ CFUs (live)	15%	5%
10 ⁶ CFUs (live)	5%	0%

Table 3. MANCOVA examining the effects of inbred line, sex and their interaction on three hemolymph immune assays (haemocyte count, zone of inhibition and PO activity) in crickets. Univariate ANCOVAs are used to determine how each immune assay contributes to the overall multivariate effect.

		MANCOV	A	
	Model term	Pillai's Trace	df	P
	Line	0.55	24,483	0.0001
	Sex	0.61	3,159	0.0001
	Line × Sex	0.55	24,483	0.0001
	Body mass	0.03	3,159	0.19
		Univariate ANC	OVAs	
Trait	Model term	F	df	P
Haemocyte count	Line	3.22	8,161	0.002
	Sex	10.75	1,161	0.001
	Line × Sex	6.14	8,161	0.0001
	Body mass	0.10	1,161	0.75
Zone of inhibition	Line	4.59	8,161	0.0001
	Sex	2.10	1,161	0.15
	Line × Sex	2.74	8,161	0.007
	Body mass	1.07	1,161	0.30
PO activity	Line	7.40	8,161	0.0001
	Sex	244.59	1,161	0.0001
	Line × Sex	7.75	8,161	0.0001
	Body mass	2.98	1,161	0.09

Table 4. Univariate ANCOVAs examining the effects of inbred line, sex and their interaction on the encapsulation response and pathogen clearance of crickets.

	Uni	variate A	NCOVA	S
Trait	Model term	F	df	P
Encapsulation response	Line	10.44	8,161	0.0001
	Sex	13.90	1,161	0.0001
	Line × Sex	1.94	8,161	0.06
	Body mass	0.63	1,161	0.43
Clearance of S. marcescens	Line	7.40	8,161	0.0001
	Sex	0.29	1,161	0.59
	Line × Sex	1.86	8,161	0.07
	Body mass	0.00	1,161	0.95
Clearance of B. cereus	Line	4.33	8,161	0.0001
	Sex	1.13	1,161	0.29
	Line × Sex	2.93	8,161	0.004
	Body mass	1.68	1,161	0.20
Clearance of <i>M. robertsii</i>	Line	3.48	8,161	0.001
	Sex	1.08	1,161	0.30
	Line × Sex	5.89	8,161	0.0001
	Body mass	1.56	1,161	0.21

Table 5. Univariate ANCOVAs examining the effects of inbred line, sex and their interaction on resistance of crickets to three pathogens.

	Uni	variate A	NCOVA	S
Trait	Model term	F	df	P
Resistance to S. marcescens	Line	3.15	8,161	0.002
	Sex	4.26	1,161	0.04
	Line × Sex	2.09	8,161	0.04
	Body mass	0.01	1,161	0.93
Resistance to <i>B. cereus</i>	Line	4.52	8,161	0.0001
	Sex	1.78	1,161	0.18
	Line × Sex	1.98	8,161	0.04
	Body mass	1.01	1,161	0.32
Resistance to M. robertsii	Line	3.14	8,161	0.002
	Sex	0.32	1,161	0.57
	Line × Sex	1.89	8,161	0.07
	Body mass	0.90	1,161	0.35

Table 6. The heritability $(H^2_{\rm M})$ of and genetic correlation $(r_{\rm M})$ between different immune measures in male crickets. $H^2_{\rm M}$ estimates are provided along the diagonal (in italics) and $r_{\rm M}$ estimates are provided in the off diagonal positions. In each case, estimates provided in bold are statistically significant at P < 0.05.

	НС	ZI	РО	ENC	CS	CB	CM	RS	RB	RM
НС	0.55									
ZI	0.29	0. 77								
PO	-0.18	0.44	0.66							
ENC	0.11	0.17	0.10	0.87						
CS	0.42	0.01	-0.35	-0.59	0.83					
CB	0.16	0.02	0.23	-0.09	0.59	0.70				
CM	0.29	0.66	0.05	0.34	-0.23	-0.50	0.75			
RS	0.35	0.45	0.29	0.08	0.18	0.42	-0.14	0.66		
RB	0.20	0.36	0.19	0.01	0.18	0.20	0.73	0.25	0.64	
RM	0.07	-0.15	0.26	0.24	0.39	0.31	-0.22	0.49	0.05	0.62

Abbreviations: HC = haemocyte count, ZI = zone of inhibition, PO = phenoloxidase activity, ENC = implant encapsulation response, CS = clearance of S. marcescens, CB = clearance of B. cereus, CM = clearance of M. robertsii, RS = resistance to S. marcescens, RB = resistance to B. cereus and RM = resistance to M. robertsii.

Table 7. The heritability (H^2_F) of and genetic correlation (r_F) between different immune measures in female crickets. H^2_F estimates are provided along the diagonal (in italics) and r_F estimates are provided in the off diagonal positions. In each case, estimates provided in bold are statistically significant at P < 0.05. Abbreviations as provided in Table 4.

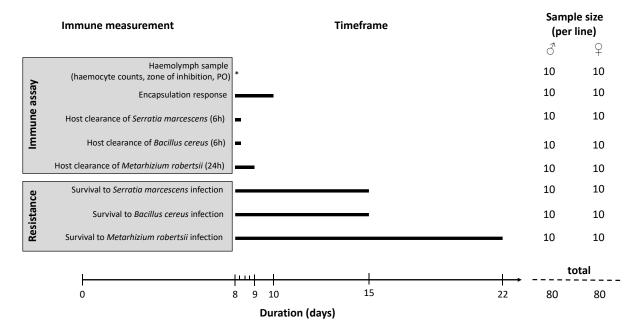

	НС	ZI	PO	ENC	CS	CB	CM	RS	RB	RM
HC	0.82									
ZI	0.78	0.70								
PO	0.50	0.35	0.92							
ENC	0.65	0.33	0.26	0.81						
CS	-0.06	-0.16	-0.20	-0.46	0.72					
CB	0.34	0.47	-0.04	0.29	-0.66	0.76				
CM	0.55	0.58	0.54	-0.01	0.52	-0.14	0.84			
RS	0.51	0.71	0.50	-0.20	0.39	0.00	0.95	0.55		
RB	0.16	0.26	0.06	-0.47	0.50	-0.29	0.69	0.79	0.72	
RM	-0.77	-0.68	-0.39	-0.63	0.29	-0.05	-0.23	-0.27	-0.06	0.53

Table 8. The across sex genetic correlations ($r_{\rm MF}$) between immune measures. Estimates of $r_{\rm MF}$ along the diagonal are for the same immune measures in males and females. Estimates of $r_{\rm MF}$ above the diagonal represent the genetic covariance between an immune measure in the female against a different immune measure in the male, whereas estimates below the diagonal represent the genetic covariance between an immune measure in the male against a different immune measure in the female. Estimates of $r_{\rm MF}$ in bold are statistically significant at P < 0.05. Abbreviations as provided in Table 4.

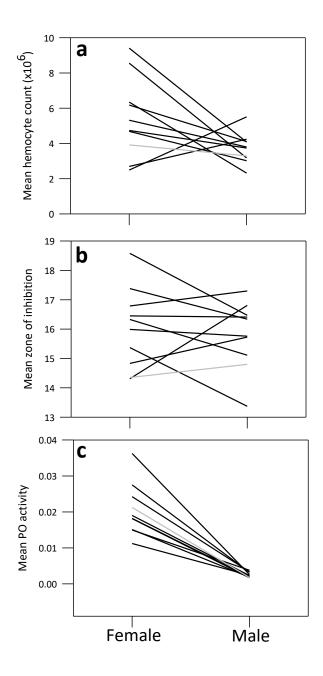
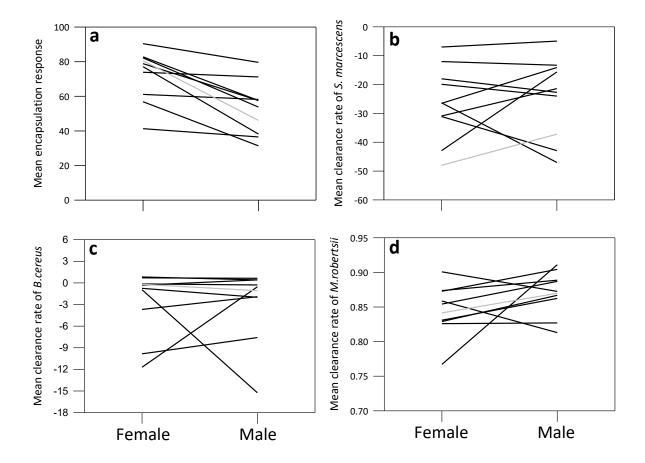

			Females									
		HC	ZI	PO	ENC	CS	CB	CM	RS	RB	RM	
	НС	-0.49	-0.45	-0.56	-0.44	0.63	-0.40	0.14	0.10	0.50	0.67	
	ZI	0.11	0.28	-0.11	-0.25	-0.06	-0.09	0.24	0.50	0.83	-0.33	
	PO	0.21	0.60	0.15	-0.48	-0.05	0.35	0.17	0.47	0.40	-0.09	
	ENC	0.60	0.50	-0.07	0.69	-0.23	0.49	0.05	0.06	-0.03	-0.33	
Males	CS	-0.17	-0.36	0.12	-0.44	0.70	-0.55	0.62	0.45	0.54	0.32	
Ma	CB	0.29	0.57	0.48	-0.22	0.50	-0.07	0.99	0.92	0.54	0.01	
	CM	0.07	0.10	-0.77	0.05	0.06	-0.01	-0.30	-0.12	0.32	-0.28	
	RS	0.08	0.11	-0.19	-0.33	0.75	-0.15	0.32	0.23	0.07	0.35	
	RB	0.12	0.34	-0.69	-0.25	0.39	0.05	0.22	0.35	0.42	-0.15	
	RM	0.57	0.16	0.30	-0.06	0.34	0.36	0.55	0.44	0.32	0.16	

Figure Legends Fig. 1. Experimental design showing the immune measures examined, the timeframe over which these immune measurements were taken (indicated by black bars) and the number of male and female crickets sampled from each inbred line for each measurement. Fig. 2. Reaction norms for mean (A) haemocyte count (cells/mL), (B) zone of inhibition (mm) and (C) PO activity (OD change per min) across the sexes in G. sigillatus. Each black line represents a discrete genotype, whereas the grey line represents outbred crickets. Fig. 3. Reaction norms for mean (A) implant encapsulation response (darkness score) and the clearance rates of (B) S. marcescens, (C) B. cereus and (D) M. robertsii across the sexes in G. sigillatus. Each black line represents a discrete genotype (inbred line), whereas the grey line represents outbred crickets. Fig. 4. Reactions norms for mean resistance (days survived) following inoculation with (A) S. marcescens, (B) B. cereus or (C) M. robertsii across the sexes in G. sigillatus. Each black line represents a discrete genotype (inbred line), whereas the grey line represents outbred crickets.


Fig. 1

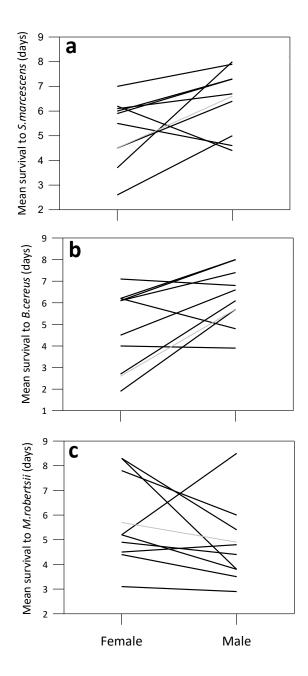

Fig. 2

Fig. 3

Fig. 4

