
Communication-efficient Subspace Methods for
High-dimensional Federated Learning

Zai Shi
Department of Electrical and Computer Engineering

The Ohio State University
Columbus, USA
shi.960@osu.edu

Atilla Eryilmaz
Department of Electrical and Computer Engineering

The Ohio State University
Columbus, USA

eryilmaz.2@osu.edu

Abstract—As an emerging technique to employ machine learn-
ing processes within an edge computing infrastructure, federated
learning (FL) has aroused great interests in both industry and
academia. In this paper, we consider a potential challenge of
FL in a wireless setup, whereby uplink communication from
edge devices to the central server has limited capacity. This
is particularly important for machine learning tasks (such as
training deep neural networks) in FL with extremely high-
dimensional domains that can substantially increase the com-
munication burden. To tackle this challenge, we first propose
a basic method called Subspace Stochastic Gradient Descent
for Federated Learning (FL-SSGD) to introduce the idea of
subspace methods. Through theoretical analysis, we show that
by choosing appropriate subspace matrices in FL-SSGD, we can
reduce uplink communication costs compared to classical FedAvg
method. To improve FL-SSGD, we then propose another method
called Subspace Stochastic Variance Reduced Gradient for Fed-
erated Learning (FL-SSVRG) that has a faster convergence rate
with less assumptions on objective functions. By conducting
experiments of a nonconvex machine learning problem in two FL
setups, we demonstrate the advantages of our methods compared
to other communication-efficient methods.

Index Terms—Federated Learning, Communication Efficiency,
Subspace Methods

I. INTRODUCTION

With the rapid development of deep learning and mobile
computing, federated learning (FL) has emerged as a new tech-
nique to utilize edge devices for an acceleration of machine
learning tasks. There are many scenarios and applications
where FL can be useful. For example, to support the typing
prediction feature provided by its keyboard app, a company
can set up a server deployed with FL algorithms, which
cooperates with its users to learn a model of their typing
behavior without exchanging private data.

Figure 1 illustrates a common process of FL. In this process,
the central server sends a common update ∆W to all the
devices. Based on this update, each device produces its own
update ∆Wi(Di) based on its private dataset Di and then
sends it back to the central server. The central server hopes
to obtain an accurate machine learning model after several
rounds of this process.

This research is funded in part by NSF grants: CNS-NeTS-1717045, CNS-
SpecEES-1824337, CNS-NeTS-2007231,CNS-NeTS-2106679, IIS-2112471;
and the ONR Grant N00014-19-1-2621.

. . .

Central Server

Device 1 Device n

Limited Uplink Capacity

. . .

Fig. 1: A typical model of FL with limited uplink capacity

Among previous works, the most classical FL algorithm
is called Federated Averaging (FedAvg) method [1], which
we can use to exemplify this process. Suppose that the
central server wants to learn a model parameter x by solving
minx∈Rd

∑n
i=1 wifi(x), where fi is the loss function related

to Device i’s private dataset and wi is the weight assigned to
fi. In one iteration of FedAvg, the server sends the current
learned parameter xt to each device, and then each device
sends back a stochastic gradient gi(xt) of fi at xt. The central
server receives all gi(xt)’s and updates the model parameter
as xt+1 = xt − α

∑n
i=1 wigi(xt), where α is the step size.

In many machine learning problems, the dimension of the
model parameter x can be very high, such as in deep neural
networks [2]. Then communicated vectors, like stochastic
gradients in FedAvg, may have high dimensions as well,
which leads to large communication costs. This situation is
more crucial in a wireless setup of FL as shown in Figure
1, where each uplink channel has limited capacity due to the
power limitation of mobile devices and interference from other
devices.

This motivates us in this paper to focus on the challenge
of limited uplink capacity in FL solving high-dimensional
nonconvex problems. The contributions of our paper are as
follows.

• We first propose a basic method called Subspace Stochas-
tic Gradient Descent for Federated Learning (FL-SSGD)
to introduce the idea of subspace methods for uplink
communication time-reduction in Section III. We give
a theoretical analysis of its performance and show that
FL-SSGD can reduce the uplink communication time of
FedAvg while achieving the same order of convergence

rate.
• We then propose an improved method called Subspace

Stochastic Variance Reduced Gradient for Federated
Learning (FL-SSVRG) in Section IV, which achieves a
faster convergence rate while sharing the benefits of FL-
SSGD for uplink communication time-reduction. Besides,
it relaxes the bounded gradient assumption needed by FL-
SSGD.

• Through experiments of a machine learning problem in
two FL setups, we demonstrate the advantages of our
methods compared to other benchmark communication-
efficient methods in Section V.

Next, we will discuss some related works to our paper,
including literature on subspace methods and gradient spar-
sification methods.

A. Related Works

1) Subspace Methods: Our methods are based on stochastic
subspace descent (SSD) proposed in [3]. SSD is a generaliza-
tion of coordinate descent schemes (see Section 1.1 of [3]) by
projecting the gradient onto a random subspace (not necessar-
ily a directional gradient) at each iteration. The authors proved
convergence rates of the basic method for convex problems
and then proposed an improved method for strong-convex
functions. To get even faster convergence rates, the authors
in [4] proposed a new randomized second-order optimization
algorithm, called Stochastic Subspace Cubic Newton (SSCN),
by using subspace of Hessian matrices and gradient vectors.
But their convergence results are still for convex problems. In
contrast, our paper extends subspace methods to FL setup and
proves convergence rates for nonconvex problems.

2) Gradient Sparsification Methods: Gradient sparsification
is an alternative method that can be used for communication
time-reduction in FL. In each iteration of this method, each
device compresses its transmitted value before communication,
and stores errors brought by compression, which will be
used for compensation in the next iteration. Because of space
limitation, we only mention related works for nonconvex
optimization problems with theoretical convergence results in
the following.

There are two kinds of popular gradient compressors in this
scheme. The first is called top-k compressor [5], [6], which
selects top k elements of gradients in terms of magnitude. In
[5], the authors proposed a basic method using this compressor
and proved convergence results for convex and nonconvex
problems. In [6], the authors provided the convergence results
of a more efficient method with this compressor. However,
the results of these two works need an artificial assumption
(Assumption 1 of [5] and [6]), respectively, which is not
common in optimization literature, and can be only verified
by experiments.

The second compressor, called random compressor [7],
[8], is more similar to ours. It randomly selects k elements
from gradients. In [7], the authors proposed a method called
DoubleSqueeze for nonconvex problems, which applies error
compensation both to the devices and the central server. In [8],

Nesterov’s acceleration scheme was used in their works to ac-
celerate convergence rates of previous methods for convex and
nonconvex problems. Both of these works assumed bounded
variance of stochastic gradients for their results, which is not
needed in our second method.

The major difference between our methods and gradient
sparsification is that we do not need error compensation for our
convergence guarantees, which can spare much space for edge
devices with limited storage. Meanwhile for time horizon T ,
our second method has a faster convergence rate O(1/T) for
nonconvex problems with fewer assumptions than the above
works of gradient sparsification which all achieve O(1/

√
T)

convergence rates.

B. Notational Convention

In this paper, we use || · || to represent l2-norm. el is a
basis whose lth element is 1 and the others are 0. Id is a
d × d identity matrix. ∇F (x; ξ) represents the gradient of F
with regard to x with parameters ξ. Finally, we denote the
transpose of a matrix A as AT .

II. PROBLEM FORMULATION

We consider a federated learning setup with n wireless
devices and one central server. The objective is to

min
x∈Rd

f(x) :=
n∑
i=1

wifi(x), (1)

where fi is the function only known by Device i and possibly
nonconvex, wi is the weight assigned to fi and d is the
dimension of x. The transmitted data is assumed to be perfect
without errors due to quantization, coding, channels and so
on. As a common target of nonconvex optimization methods
[9], we aim to obtain a first-order stationary point x∗ of (1),
where ||∇f(x∗)|| = 0.

In this paper, we consider two situations that often arise
in machine learning problems. First, fi is assumed to take
the form of 1

mi

∑mi

j=1 F (x; ξi,j), where {ξi,j}mi
j=1 are mi data

points stored in Device i, as Di shown in Figure 1. This form
captures the characteristics of empirical loss problems [10] in
machine learning, where F is the loss function between the
real dataset {ξi,j}mi

j=1 and the predicted model parameterized
by x.

Second, we assume d to be very large, which can be seen in
machine learning problems like regression with a large feature
space [10] or deep neural networks [2]. Meanwhile, we assume
that uplink capacity from each device to the central server
is limited due to the power limitation of edge devices and
interference from other devices. It means that it may take a
very long time for a device to send a d-dimensional vector
like x or ∇fi(x) to the central server, which results in large
communication costs 1. FedAvg [1] introduced in Section I is
one example suffering from this problem.

1For downlink communication, we assume that it has sufficient capacity
due to the superior performance of the central server, thus is not the focus of
this paper.

Algorithm 1 FL-SSGD

1: Input of Server: Initial value x0, step size α, time horizon
T

2: for t = 0 to T − 1 do
3: Server: Sample a matrix Pt,i ∈ Rd×τt,i independent

and identically distributed (i.i.d.) with regard to previous
iterations and satisfying Assumption 4, where τt,i ≤ d.
Send xt, Pt,i to Device i, ∀i.

4: Device i, ∀i: Randomly draw one sample Ξt,i from its
dataset and compute the stochastic gradient ∇F (xt; Ξt,i).
Send ht,i = PTt,i∇F (xt; Ξt,i) to the server.

5: Server: Receive information from all the devices and
compute gt =

∑n
i=1

wid
li
Pt,i(P

T
t,iPt,i)

−1ht,i, where li is
defined in Assumption 4. Update the model parameters as
xt+1 = xt − αgt

6: end for

For this high-dimensional setup, we hope to propose an
efficient algorithm to minimize uplink communication cost
with a convergence guarantee for solving (1). To that end,
we will first discuss an intuitive method without extra space
requirements needed in gradient sparsification methods. Then
we will improve its performance using additional techniques.

III. BASIC SUBSPACE METHOD: FL-SSGD

An intuitive strategy to deal with the high-dimensional
setup is that each device only sends a subset of dimensions
determined by its uplink capacity. Based on this intuition
and FedAvg discussed in Section I, we propose the following
algorithm called Subspace Stochastic Gradient for Federated
Learning (FL-SSGD) shown in Algorithm 1.

In this algorithm, instead of stochastic gradients
∇F (xt; Ξt,i) in d dimension, each device sends
PTt,i∇F (xt; Ξt,i) in τt,i dimensions, and τt,i can be
chosen flexibly according to its uplink rate, data size and
other factors. Here Pt,i ∈ Rd×τt,i is a subspace matrix to
reduce dimensions. If Pt,i = Id, then FL-SSGD becomes
FedAvg. Now the question becomes how to generate Pt,i
that guarantees the convergence of FL-SSGD with uplink
communication time-reduction. To answer this question, we
first need the following assumptions for FL-SSGD.

Assumption 1. There is a constant G > 0 s.t.
E||∇F (x; Ξt,i)|| ≤ G for any x. Here the expectation is taken
with regard to Ξt,i in FL-SSGD.

Assumption 2. F (·; ξ) is L-smooth for any ξ, i.e.,
||∇F (x; ξ)−∇F (y; ξ)|| ≤ L||x− y|| for any x and y.

Assumption 3. f∗ := infx f(x) <∞

Assumption 4. E[Pt,i(P
T
t,iPt,i)

−1PTt,i] = li
d Id for some 0 <

li ≤ d. Here Pt,i and Pt,i(P
T
t,iPt,i)

−1PTt,i are regarded as
d× d zero matrices if τt,i = 0.

It is noted that Assumptions 1-3 are common in optimiza-
tion literature. Compared with the requirements of subspace

matrices in [3] (Assumption 2.1 of [3]), Assumption 4 is more
general by allowing Pt,i to be a zero matrix for some t,
which makes li to be any positive real number less than d
instead of a positive integer in [3]. Obviously, examples of
subspace matrices mentioned in [3] can be used in our method.
Meanwhile, we have a simple way to construct a Pt,i with a
certain li as follows.

Remark 1. • One example of Pt,i satisfying Assumption
4 with li ∈ Z+: First generate a set A by randomly
selecting τt,i ≥ 1 numbers out of {1, ..., d}. Then let the
jth column of Pt,i ∈ Rd×τt,i be d-dimensional eA(j),
∀j ∈ {1, ..., τt,i}, where A(j) is jth element of A. Now
li = τt,i in this example.

• One example of Pt,i satisfying Assumption 4 with li ∈
R+: If we use the above procedure to generate Pt,i with
τt,i = d1 in probability q and τt,i = d1 − 1 (Pt,i is a
zero matrix if τt,i = 0) in probability 1 − q, then li =
qd1 + (1 − q)(d1 − 1), which can be any positive real
number by choosing q and d1.

In this paper, we assume that li is time-invariant for simplic-
ity. It is easy to extend our results to a time-variant case, which
can be used for time-variant uplink capacity. From Remark 1,
we can see that Pt,i can be determined and represented by A,
which only involves τt,i integers with small space complexity,
thus has little impact on downlink communication cost in FL-
SSGD. Now we can turn to the convergence result of FL-
SSGD.

Theorem 1. If Assumptions 1-4 are satisfied, then Algorithm
1 with α = 1/

√
T satisfies

1

T

T−1∑
t=0

E||∇f(xt)||2 ≤
f(x0)− f∗√

T
+
dLn

2
√
T

n∑
i=1

w2
i

li
G2 (2)

Proof. By Assumption 2, we have f is L-smooth and

f(xt+1) ≤ f(xt) +∇f(xt)
T (xt+1 − xt) +

L

2
||xt+1 − xt||2

≤ f(xt)− α∇f(xt)
T gt +

α2L

2
||gt||2. (3)

where (3) is from procedure of FL-SSGD. From Assumption
4, we have

E[gt|xt] = ∇f(xt)

E[||Pt,i(PTt,iPt,i)−1PTt,i∇F (xt; Ξt,i)||2|xt] =
li
d
E[||∇F (xt; Ξt,i)||2|xt]

Now taking expectation to both sides of (3) conditioned on
xt, we have

E[f(xt+1)|xt] ≤ f(xt)− α||∇f(xt)||2

+
α2d2Ln

2

n∑
i=1

w2
i

l2i
E[||Pt,i(PTt,iPt,i)−1PTt,i∇F (xt; Ξt,i)||2|xt]

= f(xt)− α||∇f(xt)||2 +
α2dLn

2

n∑
i=1

w2
i

li
G2

where the first inequality is from ||
∑n
i=1 ai||2 ≤

n
∑n
i=1 ||ai||2 and the second is from Assumption 1. Tele-

scoping from t = 0 to T − 1, taking expectation with regard
to all previous iterations and using Assumption 3, we have

1

T

T−1∑
t=0

E||∇f(xt)||2 ≤
f(x0)− f∗

Tα
+
αdLn

2

n∑
i=1

w2
i

li
G2

If α = 1/
√
T , we can have the final result.

The above metric is also seen in [6]. From the theorem, we
can see that FL-SSGD with time horizon T can achieve an
O(1/

√
T) convergence rate, which is the same with FedAvg

(easy to see by letting li = d), but has a larger constant
term due to compression. Meanwhile, unlike gradient spar-
sification methods introduced in Section I-A2, FL-SSGD does
not need edge devices to store their own error accumulation
in d-dimension due to sparsification. Therefore, the storage
complexity of FL-SSGD is constant while it is O(nd) for
gradient sparsification methods. The latter is not preferred in
our high-dimensional setup when edge devices like mobile
phones have limited storage.

Meanwhile, for Assumption 4, we have the following lemma
(Lemma 5.2 of [4]).

Lemma 1. If Assumption 4 is satisfied, then E[τt,i] = li.

The above lemma tells us that in the long run, each device
“seems” to transmit li dimensions in each iteration of FL-
SSGD. From Theorem 1 and Lemma 1, we can see that a
smaller li leads to a slower convergence rate, but also less
transmission data in the uplink. Therefore, we need to discuss
how to choose li to minimize the uplink communication time
in FL-SSGD. We will take advantage of the bound in Theorem
1, which can represent the worst-case performance of this
algorithm. In the following, we will consider two transmission
schemes.

A. Time Sharing
First suppose that only one device is allowed to transmit at

any time of uplink communication and the rate of Device i is
ri. This case can serve as an upper bound of other cases where
at most b > 1 devices are allowed to transmit concurrently.
Also suppose that we need B bits to represent each dimension
of a vector accurately enough. Then, the expected uplink
communication time for one iteration of FL-SSGD is Bli/ri
for Device i. To achieve 1

T

∑T−1
t=0 E||∇f(xt)||2 ≤ ε, the

expected uplink communication time in total is bounded by(
n∑
i=1

Bli
ri

)(
f(x0)− f∗

ε
+
dLn

2ε

n∑
i=1

w2
i

li
G2

)2

. (4)

Now we can find the best li by minimizing the above bound.
Since FL-SSGD with li = d is equivalent to FedAvg, the
above bound can also be applied to FedAvg. Due to the first
term of (4), we can see that li cannot be too large, which
means that FedAvg is not always the best algorithm for uplink
communication time minimization. Due to the second term, li
cannot be too small as well.

B. Channel Sharing

Now, we turn to the discussion of the case where all the
devices share the uplink channel with capacity C. To achieve
1
T

∑T−1
t=0 E||∇f(xt)||2 ≤ ε, we should choose li and ri by

solving

min
0<li≤d,ri>0

(
f(x0)− f∗

ε
+
dLn

2ε

n∑
i=1

w2
i

li
G2

)2

E max
i∈1,...,n

Bτ0,i
ri

s.t.
n∑
i=1

ri ≤ C

where Emaxi∈1,...,n
Bτ0,i
ri

is expected uplink communication
time per iteration due to synchronization, and the expectation
is taken with regard to {τ0,1, ..., τ0,n}. To facilitate the solution
to this problem, we choose li to be integer and τt,i to be
deterministic, which is equal to li (see Remark 1). Then, we
can rewrite the optimization as

min
li≤d,ri>0

(
f(x0)− f∗

ε
+
dLn

2ε

n∑
i=1

w2
i

li
G2

)2

max
i∈1,...,n

Bli
ri

s.t.
n∑
i=1

ri ≤ C, li ∈ Z+, ∀i.

Meanwhile, for any li, we can get r∗ = Cli/
∑n
i=1 li by

minimizing maxi∈1,...,n
Bli
ri

because ri only appears in this
term. Accordingly, the problem becomes

min
li∈Z+,li≤d

(
f(x0)− f∗

ε
+
dLn

2ε

n∑
i=1

w2
i

li
G2

)2
B
∑n
i=1 li
C

,

(5)

which is much easier to solve. Again, li = d is not always the
best solution due to the first term of (5), thus FL-SSGD can
outperform FedAvg for uplink communication time.

IV. IMPROVED METHOD: FL-SSVRG

In this section, we will propose a method that has a faster
convergence rate than FL-SSGD with fewer assumptions.
The method, called Subspace Stochastic Variance Reduction
Gradient for Federated Learning (FL-SSVRG), is based on a
variance reduction strategy introduced in SVRG [11]. In fact,
there is already a work combining SVRG with a subspace
method for a faster convergence rate (See Algorithm 2.3 of
[3]). The main shortcoming of this work for our setup is that
in the beginning of each epoch, their method still needs full-
dimensional gradients, which can have large communication
costs. Meanwhile, their work only gave convergence results for
strongly-convex objective functions. In contrast, our method
can reduce uplink communication time in each iteration with
theoretical convergence results for nonconvex problems.

FL-SSVRG is an epoch-based method shown in Algorithm
2. Here xsk represents the value at iteration k of epoch s.
At the start of each epoch (k = 0), each device computes
its full gradient ∇fi(xsk) and uses the same subspace matrix
P sk with other devices for communication cost reduction. In

Algorithm 2 FL-SSVRG

1: Input of Server: Initial value x00, step size α, inner loop
iterations K, outer loop iterations S.

2: for s = 0 to S − 1 do
3: for k = 0 to K − 1 do
4: if k = 0 then
5: Server: Sample K independent matrices
{P s0 , ..., P sK−1} where P sk ∈ Rd×τs

k satisfies Assumption
5 with τ sk ≤ d. Send xsk, {P s0 , ..., P sK−1} to all the devices.

6: Device i, ∀i: Draw all the samples and compute
the gradient ∇fi(xs0). Send hs0,i = (P s0)T∇fi(xs0) to
the server and store {hs1,i, ..., hsK−1,i} where hsk,i =

(P sk)T∇fi(xs0).
7: Server: Update the model parameters as xs1 =
xs0 − αgs0 with gs0 =

∑n
i=1

wid
l P

s
0 ((P s0)TP s0)−1hs0,i.

8: else
9: Server: Sample a matrix P sk,i ∈ Rd×τ

s
k,i sat-

isfying Assumption 5 and independent of previous itera-
tions, where τ sk,i ≤ d. Send xsk, P

s
k,i to Device i, ∀i.

10: Device i, ∀i: Randomly draw a sample Ξsk,i
from its dataset, and compute two stochastic gradi-
ents ∇F (xsk; Ξsk,i) and ∇F (xs0; Ξsk,i). Send vsk,i =

(P sk,i)
T
(
∇F (xsk; Ξsk,i)−∇F (xs0; Ξsk,i)

)
and hsk,i to the

server. Delete hsk,i from storage.
11: Server: Update the model pa-

rameters as xsk+1 = xsk − αgsk with
gsk =

∑n
i=1 wi[

d
li
P sk,i((P

s
k,i)

TP sk,i)
−1vsk,i +

d
l P

s
k ((P sk)TP sk)−1hsk,i]

12: end if
13: end for
14: Server: Let xs+1

0 = xsk+1.
15: end for

the subsequent iterations of each epoch (k 6= 0), each device
computes two stochastic gradients at xsk and xs0 using the same
sample and adopts two subspace matrices, P sk and P sk,i, for
communication cost reduction. The former matrix must be the
same for all the devices and the latter can be different. When
k = 0, the number of dimensions in uplink communication
is τ s0 for each device; when k 6= 0 it becomes τ sk + τ sk,i for
Device i. These parameters can be set according to uplink
rates of edge devices. The intuition behind FL-SSVRG is that
the variance of gsk we constructed is smaller than gt used in
FL-SSGD so that a faster convergence rate can be achieved.

Before discussing its performance, we first introduce As-
sumption 5 that is needed for FL-SSVRG.

Assumption 5. P sk and P sk,i satisfy Assumption 4 for some
0 < l ≤ d and 0 < li ≤ d, respectively.

We continue to assume that l and li is time-invariant for
simplicity, and it is easy to extend our results to a time-variant
case. Similar to the discussion below Remark 1, if P sk and P sk,i
are generated as shown in Remark 1, they have little impact on
downlink communication cost in FL-SSVRG. Next we show

the convergence rate of FL-SSVRG.

Theorem 2. Define a positive sequence {ck}Kk=0:

ck = ck+1 + αck+1 + (
α2L

2
+ α2ck+1)(

4dL2

l
+

n∑
i=1

4widnL
2

li
)

with cK = 0. (6)

If Assumption 2, 3 and 5 are satisfied and α is chosen such
that γ := α−αc0− 2d

l (α
2L
2 +α2c0) > 02, then for Algorithm

2 we have

1

T

S−1∑
s=0

K−1∑
k=0

E||∇f(xsk)||2 =
f(x00)− f∗

Tγ
(7)

where T = SK.

Here {ck}Kk=0 is used to construct a Lyapunov function
V sk = f(xsk) + ck||xsk − xs0|| to prove the above theorem as
follows

Proof. To simplify the proof, we write gsk for k = 0 and k 6= 0
as one unified form.

gsk =
n∑
i=1

dwi
li
P sk,i((P

s
k,i)

TP sk,i)
−1(P sk,i)

T (∇F (xsk; Ξsk,i)

−∇F (xs0; Ξsk,i)) +
d

l
P sk ((P sk)TP sk)−1(P sk)T∇f(xs0) (8)

In the following, we want to give a bound to a Lyapunov
function V sk = f(xsk) + ck||xsk − xs0||.

First, by Assumption 2, we have

f(xsk+1) ≤ f(xsk) +∇f(xsk)T (xsk+1 − xk) +
L

2
||xsk+1 − xsk||2

≤ f(xsk)− α∇f(xsk)T gsk +
α2L

2
||gsk||2 (9)

From Assumption 5, we have E[gsk|xsk] = ∇f(xsk). Now we
want to bound E[||gsk||2|xsk].

E[||gsk||2|xsk]

≤ 2E[||gsk −
d

l
P sk ((P sk)TP sk)−1(P sk)T∇f(xsk)||2|xsk]

+ 2E[||d
l
P sk ((P sk)TP sk)−1(P sk)T∇f(xsk)||2|xsk] (10)

≤ 4E[||d
l
P sk ((P sk)TP sk)−1(P sk)T (∇f(xsk)−∇f(xs0))||2|xsk]

+ 4E[||
n∑
i=1

wid

li
P sk,i((P

s
k,i)

TP sk,i)
−1(P sk,i)

T

(∇F (xsk; Ξsk,i)−∇F (xs0; Ξsk,i))||2|xsk]

+ 2E[||d
l
P sk ((P sk)TP sk)−1(P sk)T∇f(xsk)||2|xsk] (11)

2We can always find an α satisfying the condition by making α small
enough. This is because when α is small enough, then c0 can be less than 1
due to (6). Then γ can be made positive because of its positive α term and
negative α2 term.

≤ 4d

l
||∇f(xsk)−∇f(xs0)||2 +

2d

l
||∇f(xsk)||2

+
n∑
i=1

4widn

li
||∇F (xsk; Ξsk,i)−∇F (xs0; Ξsk,i)||2 (12)

≤ 4dL2

l
||xsk − xs0||2 +

2d

l
||∇f(xsk)||2

+
n∑
i=1

4widnL
2

li
||xsk − xs0||2 (13)

where (10) is from ||a+ b||2 ≤ 2||a||2 + 2||b||2, (11) is from
the definition of gsk in (8), (12) is from Assumption 5 and
||
∑n
i=1 ai||2 ≤ n

∑n
i=1 ||ai||2, and (13) is from Assumption

2.
Meanwhile, we have

E[||xsk+1 − xs0||2|xsk]

= E[||xsk − xs0||2 + ||xsk+1 − xsk||2

+ 2(xsk+1 − xsk)T (xsk − xs0)|xsk]

≤ E[α2||gsk||2|xsk] + ||xsk − xs0||2 + α||∇f(xsk)||2

+ α||xsk − xs0||2 (14)

where (14) is from 2ab ≤ ||a||2+||b||2 and E[xsk+1−xsk|xsk] =
α∇f(xsk).

Combing (9), (13) and (14), we have

E[V sk+1|xsk]

≤ f(xsk)−
(
α− αck+1 −

2d

l
(
α2L

2
+ α2ck+1)

)
||∇f(xsk)||2

+ (ck+1 + αck+1)||xsk − xs0||2 + (
α2L

2
+ α2ck+1)

(
4dL2

l
+

n∑
i=1

4widnL
2

li
)||xsk − xs0||2 (15)

Due to (6), we have

E[V sk+1|xsk]

≤ V sk −
(
α− αck+1 −

2d

l
(
α2L

2
+ α2ck+1)

)
||∇f(xsk)||2

It is easy to see that c0 is largest among {c0, ..., cK} from (6).
By our choice of α, we have

E[V sk+1|xsk] ≤ V sk − γ||∇f(xsk)||2

with γ > 0 defined in Theorem 2, which leads to
K−1∑
k=0

E||∇f(xsk)||2 ≤ E[V s0 − V sK]

γ

by telescoping from k = 0 to K − 1 within epoch s. Mean-
while, since cK = 0, we have V sK = V s+1

0 . By telescoping all
epoches, we have

1

T

S−1∑
s=0

K−1∑
k=0

E||∇f(xsk)||2 ≤
E[V 0

0 − V S−1K]

Tγ
≤ f(x00)− f∗

Tγ

where T = SK, V 0
0 = f(x00) and V S−1K = f(xS−1K) ≥ f∗.

Note that compared to the O(1/
√
T) rate of FL-SSGD, FL-

SSVRG has a faster O(1/T) rate without Assumption 1 which
is not satisfied for functions like l2-norm loss. Its rate is also
faster than gradient sparsification methods in [6] and [8]. The
comparison of sample complexity is determined by T and total
sample size in FL. One drawback of FL-SSVRG is that edge
devices need extra space to store hsk, which makes its expected
storage complexity O(Knl) instead of constant complexity of
FL-SSGD. However, when Kl is set to be much smaller than
d, it still outperforms gradient sparsification methods, whose
storage complexity is O(nd).

Now we turn to discussion of how to choose l and li to
minimize the worst-case uplink communication time of FL-
SSVRG based on the bound in Theorem 2. Note that a similar
lemma to Lemma 1 holds for Assumption 5.

A. Time Sharing

First, we still suppose that only one device is allowed
to transmit at any time of uplink communication and the
uplink rate of Device i is ri. Also suppose that there are
at most B bits in each dimension of a vector for accurate
representation. Similar to Section III, we can calculate the
bound of expected total uplink communication time to reach
1
T

∑S−1
s=0

∑K−1
k=0 E||∇f(xsk)||2 ≤ ε, which is

n∑
i=1

(
B(l + li)

ri
(
f(x00)− f∗

εγ
− S) +

BlS

ri

)
. (16)

Here γ involves parameters of l and li shown in Theorem 2.
The first term of (16) represents the uplink communication
time for k 6= 0 and the second term is for k = 0. It is
complicated to find the best l and li due to existence of γ.
The only observation is that when l and li increase, γ also
increases because of (6), which makes the optimality gap (7)
of FL-SSVRG smaller. Therefore, FL-SSVRG has a tradeoff
between the convergence rate and uplink communication time
per iteration (B(l+li)

ri
for k 6= 0 or Bl

ri
for k = 0).

It is not easy to compare (16) with (4) if l+li in FL-SSVRG
is equal to li in FL-SSGD. But we can give an asymptotic
result: when ε is small enough, the total uplink communication
time of FL-SSVRG will be smaller due to the order of ε in
(16) and (4).

B. Channel Sharing

For the case where all the devices share the uplink
channel with capacity C, the expected total uplink time
to reach 1

T

∑S−1
s=0

∑K−1
k=0 E||∇f(xsk)||2 ≤ ε is bounded

by
(
f(x0)−f∗

εγ − S
)(

Bl
ri

+ Emaxi∈1,...,n
Bτ0

1,i

ri

)
+ BlS

ri
if we

allocate channel capacity ri to Device i and make {P sk,i}k,s
i.i.d.. It is hard to choose l and li according to this bound due
to complexity of γ. But again, we can see that this bound is
smaller in the order of ε compared to FL-SSGD.

V. SIMULATIONS

In this section, we will use an example of robust linear
regression to test the performance of our algorithms. For a fair

comparison, we make sample complexity of the algorithms in
the experiments similar to each other.

Robust linear regression studies linear relation of feature-
outcome (α, β) from data points with outliers. In our sim-
ulations, 100 data points {(αi,j , βi,j}100j=1 of Device i are
generated i.i.d. by βi,j = 〈x0, αi,j〉 + εi,j , where αi,j ∈
R1000 is generated from N (0, I1000) and x0 is a fixed 1000-
dimensional vector. The noise εi,j is from a mixed Gaussian
0.9N (0, 0.2i) + 0.1N (0, 10000). Here we use different noise
variances for different devices to reflect statistical heterogene-
ity of FL in practice [12]. Suppose that there are 10 edge
devices in FL. To learn x0, the objective of the central server
is to

min
λ∈R1000

f(x) =
1

1000

10∑
i=1

100∑
j=1

ρTuc(βi,j − 〈λ, αi,j〉)2 (17)

where ρTuc(t) = 1 − (1 − (t/100)2)3 when |t| ≤ 100 and
ρTuc(t) = 1 otherwise. ρTuc is a Tuckey’s bisquare loss
function [10] for robustness.

A. Uplink Communication with Time Sharing

In this subsection, we assume that in uplink communication,
only one device is allowed to transmit concurrently. The rate
of Device i, denoted by ri, is 100i bits per second and we use
1000 bits to represent each dimension of a vector.

We compare five methods in this experiment, which are
FL-SSGD, FL-SSVRG, Top k gradient compressor with error
feedback (Top k with EF) [6], S-SNAG-EF [8], and full-
dimensional FedAvg [1] as the benchmark. Top k with EF
and S-SNAG-EF can represent gradient sparsification methods
with two kinds of gradient compressors discussed in Section
I-A2. Since we do not know f∗, we cannot obtain the best li
for FL-SSGD by solving (4). For simplicity and fairness, li is
chosen to be proportional to ri and let the device with the
largest ri transmit full-dimensional (i.e., 1000-dimensional)
gradients. In Top k with EF and S-SNAG-EF, the number of
dimensions sent by each device per iteration is set to be the
nearest integer to li in FL-SSGD. For FL-SSVRG, we let li be
the same with FL-SSGD and l equal to 100 in Assumption 5.
Subspace matrices in FL-SSGD and FL-SSVRG are generated
as discussed in Remark 1.

Figure 2a shows a typical sample path of these five methods
in terms of gradient norm versus iterations. We can see that
FL-SSVRG and full-dimensional FedAvg have the fastest
convergence rate among these methods. It demonstrates the
superior performance of FL-SSVRG in convergence rates by
only transmitting subspace of gradients.

Next we will compare the total uplink communication time
to reach a certain gradient norm of (17) in these five methods.
To present their statistical results, we run these algorithms
for 100 times and show box plots in Figure 2b and Figure
2c for uplink communication time to achieve 0.4, 0.3, 0.2 and
0.1 gradient norm. We also connect the average of all the
runs for each method to reflect its trend. Particularly, Figure
2b compares two methods without extra space requirements,

0 100 200 300 400 500 600 700 800 900 1000

iterations

10
-2

10
-1

10
0

g
ra

d
ie

n
t

n
o

rm

FL-SSGD

Top k with EF

FL-SSVRG

S-SNAG-EF

Full-D FedAvg

(a) Convergence rates of five algorithms with regard to gradient norm
of f in (17)

0.4 0.3 0.2 0.1

A B A B A B A B
gradient norm

0

0.5

1

1.5

2

2.5

to
ta

l
u

p
lin

k
 c

o
m

m
u

n
ic

a
ti
o

n
 t

im
e

10
6

FL-SSGD

Full-D FedAvg

(b) Total uplink communication time of two methods without space
requirement to achieve a certain gradient norm.

0.4 0.3 0.2 0.1

A B C A B C A B C A B C
gradient norm

0

0.5

1

1.5

2

to
ta

l
u

p
lin

k
 c

o
m

m
u

n
ic

a
ti
o

n
 t

im
e

10
6

FL-SSGD

Top k with EF

FL-SSVRG

(c) Total uplink communication time of three methods to achieve a
certain gradient norm.

Fig. 2: Methods comparison with time sharing uplink commu-
nication.

i.e., FL-SSGD and FedAvg. From the figure, we can see
that most sample paths of FL-SSGD can outperform FedAvg
regardless of targeted gradient norm and the gap becomes
larger as the targeted norm is smaller. FL-SSGD, Top k
with EF and FL-SSVRG are compared in Figure 2c, where
the latter two methods need extra storage space. Since S-
SNAG-EF is too slow to achieve small gradient norms, we
neglect it for cleanness of our figure. From the figure, we
can see that FL-SSVRG and Top k with EF has comparable
uplink communication time to achieve gradient norms of 0.4
and 0.3, but the advantage of FL-SSVRG is more and more
obvious as the gradient norm becomes smaller due to the faster
convergence rate of FL-SSVRG. Here FL-SSGD has much
worse performance than the other two, which means more
storage complexity can substantially improve time complexity
in this experiment.

B. Uplink Communication with Channel Sharing

In this subsection, we assume that all the devices share the
uplink channel with total capacity C = 1000 bits per second.

From the discussion in Section III, when using FL-SSGD,
we should choose l∗i by solving (5) with r∗i = Cl∗i /

∑n
i=1 l

∗
i ,

0 100 200 300 400 500 600 700 800 900 1000

iterations

10
-1

10
0

g
ra

d
ie

n
t

n
o

rm
FL-SSGD

Top k with EF

FL-SSVRG

S-SNAG-EF

Full-D FedAvg

(a) Convergence rates of four algorithms when 16 dimensions are
sent by each device per iteration plus a benchmark.

0 200 400 600 800 1000

iterations

10
-1

10
0

g
ra

d
ie

n
t
n
o
rm

FL-SSGD

Top k with EF

FL-SSVRG

S-SNAG-EF

Full-D FedAvg

(b) Convergence rates of four algorithms when 200 dimensions are
sent by each device per iteration plus a benchmark.

16-D 40-D 200-D Full-DDimensions sent

to
ta

l
u

p
lin

k
 c

o
m

m
u

n
ic

a
ti
o

n
 t

im
e

A B C A B C A B C A B C

0

2

4

6

8

10

12

14

10
6

FL-SSGD

Top k with EF

FL-SSVRG

(c) Total uplink communication time of three methods when each
device transmits 16, 40, 200, 1000 dimensions per iteration.

Fig. 3: Methods comparison with channel sharing uplink
communication.

but again f∗ is unknown. On the other hands, since w1 =
... = w10 = 1/1000 from (17), then all l∗i ’s should be equal
from symmetry of (5). As a result, all r∗i ’s should be equal
to each other, which means r∗i = C/10 = 100. It remains to
decide l∗i .

In the following, we will test different li for FL-SSGD with
ri = 100, ∀i. Meanwhile, FL-SSGD will be compared to other
methods with the same number of dimensions sent by each
device per iteration, including FL-SSVRG, Top k with EF
and S-SNAG-EF. In Figure 3a and 3b we plot a sample path
of these four algorithms with 16 and 200 dimensions commu-
nicated by each device per iteration, respectively, in terms of
gradient norm versus iterations. We also add full-dimensional
FedAvg as a benchmark for these methods. From Figure 3a
and 3b, we can see that except FedAvg, the convergence rates
of FL-SSVRG are always the fastest and very close to FedAvg.
Meanwhile, FL-SSVRG and Top k with EF are both robust to
different numbers of dimensions communicated per iteration,
whereas FL-SSGD and S-SNAG-EF become much worse in
convergence rates when the number becomes smaller.

Next, we compare total uplink communication time of FL-
SSGD, Top k with EF and FL-SSVRG to achieve a gradient
norm of 0.1 when the number of dimensions communicated by

each device per iteration is 16, 40, 200 and 1000. S-SNAG-EF
is still neglected for cleanness of the figure. Similar to the last
subsection, we run these algorithms for 100 times and draw
their box plots and connect their averages in Figure 3c. We
can see that FL-SSVRG has the least uplink communication
time for most sample paths and the gap between FL-SSVRG
and the other two methods become larger as the number of
dimensions communicated increases. Meanwhile, FL-SSGD
with full dimension is equivalent to FedAvg. From Figure
3c, we can see that FedAvg has much worse performance
compared to FL-SSGD communicating fewer dimensions per
iteration. This shows the necessity of subspace methods for
communication time-reduction in FL.

VI. CONCLUSION

In this paper, we focused on challenges of limited uplink
capacity in FL for high-dimensional nonconvex machine learn-
ing problems. Inspired by subspace methods, we first proposed
a method called FL-SSGD that can reduce communication
cost by controlling a parameter in the algorithm without
extra storage complexity. To achieve a faster convergence
rate with fewer assumptions, we then presented an improved
method called FL-SSVRG. Through experiments of robust
linear regression problems, we demonstrated advantages of our
proposed methods for uplink communication time minimiza-
tion compared to other benchmark communication-efficient
methods.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–
1282.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[3] D. Kozak, S. Becker, A. Doostan, and L. Tenorio, “Stochastic subspace
descent,” arXiv preprint arXiv:1904.01145, 2019.

[4] F. Hanzely, N. Doikov, Y. Nesterov, and P. Richtarik, “Stochastic sub-
space cubic newton method,” in International Conference on Machine
Learning. PMLR, 2020, pp. 4027–4038.

[5] D. Alistarh, T. Hoefler, M. Johansson, S. Khirirat, N. Konstantinov, and
C. Renggli, “The convergence of sparsified gradient methods,” arXiv
preprint arXiv:1809.10505, 2018.

[6] S. Shi, K. Zhao, Q. Wang, Z. Tang, and X. Chu, “A convergence analysis
of distributed sgd with communication-efficient gradient sparsification.”
in IJCAI, 2019, pp. 3411–3417.

[7] H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu, “Doublesqueeze: Parallel
stochastic gradient descent with double-pass error-compensated com-
pression,” in International Conference on Machine Learning. PMLR,
2019, pp. 6155–6165.

[8] T. Murata and T. Suzuki, “Accelerated sparsified sgd with error feed-
back,” arXiv preprint arXiv:1905.12224, 2019.

[9] Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, N. Srebro, and
B. Woodworth, “Lower bounds for non-convex stochastic optimization,”
arXiv preprint arXiv:1912.02365, 2019.

[10] S. Mei, Y. Bai, A. Montanari et al., “The landscape of empirical risk for
nonconvex losses,” Annals of Statistics, vol. 46, no. 6A, pp. 2747–2774,
2018.

[11] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochastic vari-
ance reduction for nonconvex optimization,” in International conference
on machine learning. PMLR, 2016, pp. 314–323.

[12] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

