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then R is Gorenstein. In particular, we give an affirmative 
answer to a question by Falahola and Marley [7, Question 
3.9].
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1. Introduction

Kunz [11] proved that a local ring (which will henceforth be assumed to be Noethe-

rian) (R, m, k) of positive characteristic is regular if and only if some (equivalently, every) 

power of the Frobenius endomorphism is flat as an R-module homomorphism. Since then 

analogous characterizations of other properties of local rings, such as complete intersec-

tions (by Rodicio [15]), Gorenstein (by Goto [17]) and Cohen-Macaulay (by Takahashi 

and Yoshino [16]), have been obtained. Many of these results have been generalized 

for the larger family of contracting endomorphisms. Following [4], an endomorphism 
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ϕ : R → R is said to be contracting if ϕi(m) ⊆ m2 for some i > 0. The Frobenius en-

domorphism is one example but there are many interesting examples even when R is of 

characteristic 0. Avramov, Iyengar and Miller [4] generalized Kunz’s theorem to apply to 

any contracting endomorphism. For other results concerning contracting endomorphisms 

see, for example, Avramov, Hochster, Iyengar and Yao [2], Rahmati [14] and Nasseh and 

Sather-Wagstaff [12].

In this paper we study homological properties of modules and complexes under base 

change along contracting endomorphisms. Given an endomorphism ϕ : R → R, we write 

Rϕ for the R-bimodule with the right module structure induced by ϕ and the left usual 

R-module structure. Thus given an R-complex X the base change along ϕ is Rϕ ⊗L

RX

where R acts on the left through Rϕ. The main result of this work is the following, 

proved in Section 3:

Theorem 1.1. Let (R, m, k) be a local ring, and let ϕ : R → R be a contracting endomor-

phism. The following conditions are equivalent.

(i) R is Gorenstein.

(ii) There exists an R-complex X with nonzero finitely generated homology and finite 

injective dimension for which the base change Rϕ ⊗L

RX has finite injective dimen-

sion.

(iii) For every X with nonzero finitely generated homology and finite injective dimension 

the base change Rϕ ⊗L

RX has finite injective dimension.

An R-complex is said to have finite injective dimension if it is quasi-isomorphic to a 

bounded complex of injective modules.

In the theorem above (i) ⇒ (iii) holds because in a Gorenstein local ring complexes 

of finite injective dimension coincide with complexes of finite projective dimension. For 

(iii) ⇒ (ii) we only need to show that every local ring has a complex of finite injective 

dimension with nonzero finitely generated homology. (ii) ⇒ (i) is the crucial implication. 

This is proven in two steps. 1) When H(X) is finitely generated, if Rϕi

⊗L

RX is bounded 

in homology for i � 0 then X has finite projective dimension; this follows from well 

known arguments, see 3.2 for details. 2) When X is a complex with nonzero finite length 

homology and finite injective dimension, if the base change Rϕ ⊗L

RX has finite injective 

dimension then the same holds for Rϕi

⊗L

RX for every i > 0, see 3.3. The key tool in 

the proof of the second step is a theorem of Hopkins [10] and Neeman [13] concerning 

perfect complexes. The idea of using the theorem of Hopkins and Neeman was inspired 

by the work of Dwyer, Greenlees, and Iyengar [9] who were the first to apply it in the 

context of commutative algebra.

Theorem 1.1 is analogous to the following characterization of Gorenstein rings by 

Falahola and Marley [7, Proposition 3.7].
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Theorem 1.2. Let ϕ : R → R be a contracting endomorphism where R is a Cohen-

Macaulay local ring and ωR is a canonical module. Then R is Gorenstein if and only 

if Rϕ ⊗RωR has finite injective dimension.

In [7, Question 3.9] the authors ask: when R is a local ring with a dualizing complex D, 

if Rϕ ⊗L

RD has finite injective dimension is then R necessarily Gorenstein? Theorem 1.1

gives an affirmative answer.

I thank my advisor Srikanth Iyengar for the many helpful discussions and reading 

many versions of this paper, and the anonymous referee for a very thorough reading of 

this paper and numerous helpful suggestions. This work was partly supported by a grant 

from the National Science Foundation, DMS-1700985.

2. Homological invariants

In this Section we recall basic definitions and results we will need in Section 3. 

Throughout this paper R will be a commutative Noetherian ring. We write D(R) for 

the derived category of R-complexes, with the convention that complexes are graded 

below i.e. we write

X = . . . → Xn → Xn−1 → . . .

We write X � Y when X is isomorphic to Y in D(R).

Definition 2.1. Given an R-complex X we set

sup H(X) = sup{i | Hi(X) �= 0} and inf H(X) = inf{i | Hi(X) �= 0}

Thus sup(0) = −∞ and inf(0) = ∞. A complex X is said to be homologically bounded 

above if sup H(X) < ∞. Similarly, X is homologically bounded below if inf H(X) > −∞

and X is homologically bounded if it is homologically bounded above and below.

Let S be a full subcategory of D(R). We make the following conventions:

(i) S- := {X ∈ S | sup H(X) < ∞}

(ii) S+ := {X ∈ S | inf H(X) > −∞}

(iii) Sb := S+ ∩ S-

(iv) The subcategory of complexes in S with degree-wise finitely generated (resp. finite 

length) homology is denoted Sfg (resp. Sfl)

In D(R) we have derived functors RHomR( , ) and ⊗L

R . For a detailed descrip-

tion on how these functors are defined, we refer the reader to [18] and [1].
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When X is in D+(R), there is a complex P consisting of projective modules with 

Pi = 0 for i � 0 such that P � X. Such a complex P is called a projective resolution of 

X. In this case we can compute RHom(X, ) by setting

RHom(X, ) = HomR(P, )

Flat and injective resolutions are similarly defined. Since R has enough projectives and 

injectives, every complex in D+(R) admits projective (and therefore flat) resolutions and 

every complex in D-(R) admits injective resolutions.

Complexes in Dfg
b (R) with finite projective dimension are the perfect complexes. The 

subcategory of D(R) of complexes of finite injective dimension plays a central role in this 

paper and we denote it I(R).

Definition 2.2. Let X ∈ D+(R) and Y ∈ D-(R). We define

proj-dimR(X) := inf

{
n

∣∣∣∣∣
there exists a projective resolution P of X

0 → Pn → ... → Pi → 0 with Pn �= 0

}

inj-dimR(Y ) := inf

{
n

∣∣∣∣∣
there exists an injective resolution I of Y

0 → Ii → Ii−1 → ... → I−n → 0 with I−n �= 0

}

Remark 2.3. Let (R, m, k) be a local ring. Following [6, A.5.7, A.7.9] we have,

(i) Let X ∈ D+(R). When V is an R-complex such that mV = 0 then,

sup H(V ⊗L

R X) = sup H(V ) + sup H(k ⊗L

R X)

inf H(V ⊗L

R X) = inf H(V ) + inf H(k ⊗L

R X)

(ii) If X ∈ D
fg
+(R) and Y ∈ Dfg

- (R) then the following hold

proj-dimR(X) = − inf H(RHomR(X, k)) = sup H(k ⊗L

R X)

inj-dimR(Y ) = − inf H(RHomR(k, Y ))

Definition 2.4. A local ring R is Gorenstein if inj-dimR(R) is finite.

The following theorem [6, 3.3.4] asserts that in a Gorenstein local ring, the categories 

of finite flat dimension and finite injective dimension coincide.

Theorem 2.5. Let (R, m, k) be a local Gorenstein ring, X ∈ Db(R). Then

flat-dimR(X) < ∞ ⇐⇒ inj-dimR(X) < ∞.
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It is well known that in a local ring, a complex X has finite flat dimension if and only if 

X has finite projective dimension, see for example [8, Corollary 3.4]. Hence, Theorem 2.5

implies that in a local Gorenstein ring the categories of finite projective dimension and 

finite injective dimension coincide.

Foxby [8, Corollary 4.4] also proved the converse to Theorem 2.5. Although in the 

original paper it was stated for modules, it is well known to be true for complexes as 

well. For convenience, we give a self contained proof using the terminology and properties 

established above.

Theorem 2.6. Let (R, m, k) be a local ring. If there exists a complex X ∈ D
fg
b (R) with 

H(X) �= 0 such that both proj-dimR(X) and inj-dimR(X) are finite, then R is Goren-

stein.

Proof. We have quasi-isomorphisms

RHomR(k, X) � RHomR(k, R ⊗L

R X) � RHomR(k, R) ⊗L

R X

The first quasi-isomorphism is trivial and the second follows from [8, 1.1.4] since X is 

perfect. Also, since X ∈ D
fg
b (R) we have inf H(k ⊗L

R X) is finite. As H(X) �= 0, we get 

from 2.3:

inj-dimR(X) = − inf H(RHomR(k, X))

= − inf H(RHomR(k, R) ⊗L

R X)

= − inf H(RHomR(k, R)) − inf H(k ⊗L

R X)

= inj-dimR R − inf H(k ⊗L

R X)

Thus inj-dimR(X) < ∞ =⇒ inj-dimR(R) < ∞. �

2.1. Thick subcategories and generation

Thick subcategories play a critical role in the proofs in Section 3. Here we recall the 

definition and give some examples, following the formulation given in [3, §1].

Definition 2.7. A non-empty subcategory T of D(R) is thick if it is additive, closed under 

taking direct summands and for every exact triangle

X → Y → Z → ΣX

if any two of X, Y, Z belong to T , so does the third. From the definition it is clear that 

intersections of thick subcategories are again thick.
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Example 2.8. The subcategories Dfg(R), Dfl(R), I(R) and the subcategory of perfect 

complexes are all thick in D(R), see for example [9, 3.2]. It follows immediately that 

Ifg(R) and Ifl(R) are thick as well.

Definition 2.9. The thick subcategory generated by X ∈ D(R), denoted ThickR(X), is the 

smallest thick subcategory that contains X. It is the intersection of all thick subcategories 

of D(R) containing X.

Example 2.10. For any ring R, the thick subcategory ThickR(R) is the subcategory of 

perfect complexes. When (R, m, k) is a local ring we have ThickR(k) = Dfl
b(R).

For any X ∈ D(R) one can construct ThickR(X) as follows: Set Thick0
R(X) = {0}. 

The objects of Thick1
R(X) are direct summands of finite direct sums of shifts of X. For 

each n ≥ 2, the objects of Thickn
R(X) are direct summands of objects U such that U

appears in an exact triangle

U ′ → U → U ′′ → ΣU ′

where U ′ ∈ Thickn−1
R (X) and U ′′ ∈ Thick1

R(X). The subcategory Thickn
R(X) is the nth 

thickening of X. Every thickening embeds in the next one thus we have a filtration:

{0} = Thick0
R(X) ⊆ Thick1

R(X) ⊆ Thick2
R(X) ⊆ ... ⊆

⋃

n≥0

Thickn
R(X)

It is clear that 
⋃

n≥0 Thickn
R(X) is a thick subcategory. By construction it is the 

smallest thick subcategory containing X hence

ThickR(X) =
⋃

n≥0

Thickn
R(X)

For a broader discussion see, for example, [3, §1]. This discussion motivates the following 

terminology: An R-complex in ThickR(X) is finitely built from X.

Definition 2.11. The support of an R-complex X is

SuppR(X) := {p ∈ Spec(R) | H(X)p �= 0}

When X ∈ D
fg
b (R) the support is

SuppR(X) = V (annR(H(X)).

If N ∈ ThickR(M), then from the construction it follows that SuppR(N) is contained 

in SuppR(M). Indeed, since localization is an exact functor, if H(M)p = 0 for some 

p ∈ Spec(R) then inductively H(N)p = 0 for every N in Thicki
R(M) for all i.
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Hopkins [10, 11] and Neeman [13, 1.2] proved the following result which asserts that 

the converse is true when both M and N are perfect complexes.

Theorem 2.12. Let R be a commutative Noetherian ring. Given perfect R-complexes N

and M , if SuppR N ⊆ SuppR M then N is finitely built from M . �

2.2. Loewy length

Another important element in this work is the Koszul complex. We recall the definition 

of Koszul complexes and Loewy length.

Definition 2.13. The Koszul complex on x ∈ R is the R-complex

K(x) := 0 → R
x
−→ R → 0

concentrated in degrees 0 and 1. Given a sequence x = (x1, ..., xn) the Koszul complex 

on x is

K(x) := K(x1) ⊗R K(x2) ⊗R ... ⊗R K(xn)

with the convention that K(∅) = R.

Set KR to be the Koszul complex on a minimal generating set of m. Since KR is a 

perfect complex, we have that KR ∈ ThickR(R). It follows that KR⊗L

RX is in ThickR(X)

for every X ∈ D(R).

Definition 2.14. Let (R, m, k) be a local ring, X an R-complex. The Loewy length of X

is defined to be

��R(X) := inf{i ∈ N | mi · X = 0}

Following [4, 6.2], the homotopical Loewy length of X is defined to be

��D(R)(X) := inf{��R(V ) | V � X}

Avramov, Iyengar and Miller [4, 6.2] prove that the homotopical Loewy length satisfies 

the following finiteness property.

Theorem 2.15. Let (R, m, k) be a local ring, and KR be the Koszul complex on a minimal 

generating set of m. For any complex X we have

��D(R)(K
R ⊗L

R X) ≤ ��D(R) KR < ∞ �
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We say that a homomorphism ϕ : (R, m, k) → (S, n, l) is a deep local homomorphism

if ϕ(m) ⊆ nc where c = ��D(S) KS . The following corollary is often used in the literature 

to prove various results for deep local homomorphisms.

Lemma 2.16. If ϕ : (R, m, k) → (S, n, l) is a deep local homomorphism, then there is a 

quasi-isomorphism KS � H(KS).

Proof. By 2.14 there exist a complex V such that KS � V and ncV = 0. As ϕ(m) ⊆ nc, 

this yields that mV = 0. Hence the R action on V factors through the map R → R/m = k. 

Since k is a field, for every V ∈ D(k) we have V � H(V ). In particular, KS � H(KS)

in D(k) so the same is true in D(R). �

3. Homological dimension and the derived base change

Let ϕ : R → S be a homomorphism. There is a naturally defined functor Fϕ from the 

category of R-complexes to the category of S-complexes by setting

Fϕ( ) := S ⊗R

We write

LFϕ : D(R) → D(S) by LFϕ( ) = S ⊗L

R

for the induced functor on D(R).

Remark 3.1. Let ϕ : (R, m, k) → (S, n, l) be a local homomorphism.

(i) For every perfect complex X the complex LFϕ(X) is perfect in D(S). Indeed, as 

X is perfect, there exists a finite free resolution F � X. Then LFϕ(X) � S ⊗R F

which is a finite complex of free S modules.

(ii) For every X ∈ D
fg
+(R) such that H(X) �= 0 we have H(LFϕ(X)) �= 0. Indeed, after 

perhaps shifting, we may assume H0(X) �= 0 and Hi(X) = 0 for all i < 0. We have

H0(S ⊗L

R X) ∼= S ⊗R H0(X)

Applying S⊗R to the surjection H0(X) � H0(X)/mH0(X) � k we get H0(S⊗L

R

X) � S ⊗R k ∼=
S

mS
�= 0 as ϕ is a local homomorphism.

Proposition 3.2. Let ϕ : (R, m, k) → (S, n, l) be a deep local homomorphism. For any 

X ∈ D
fg
+(R) the complex LFϕ(X) is homologically bounded above if and only if X has 

finite projective dimension in D(R).
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Proof. The if part is clear. For the converse, by the discussion after 2.13 the complex 

KS ⊗L

R X � KS ⊗L

S (S ⊗L

R X) is in ThickS(S ⊗L

R X). Example 2.8 yields

sup H(S ⊗L

R X) < ∞ =⇒ sup H(KS ⊗L

R X) < ∞.

By Corollary 2.16, the complex KS � H(KS) in D(R) and H(KS) is a complex of 

k-vector spaces as an R-complex. One gets by the Künneth formula

H(KS ⊗L

R X) ∼= H(H(KS) ⊗L

R X)

∼= H(H(KS) ⊗k (k ⊗L

R X))

∼= H(KS) ⊗k H(k ⊗L

R X)

Since H(KS ⊗L

R X) is bounded, so is H(k ⊗L

R X). Therefore proj-dimR(X) < ∞ by 

Remark 2.3 (ii). �

Corollary 3.3. Let ϕ : (R, m, k) → (S, n, l) be a deep local homomorphism. If there exists 

an X ∈ Ifg(R) with H(X) �= 0 and inj-dimS(LFϕ(X)) < ∞ then R is Gorenstein.

Proof. By Remark 3.1 (ii), the homology H(LFϕ(X) is nonzero. By hypothesis X is in 

D
fg
b (R) so LFϕ(X) ∈ D

fg
b (S). Hence

inj-dimS(LFϕ(X)) < ∞ =⇒ sup H(LFϕ(X)) < ∞.

Therefore proj-dimR(X) < ∞ by Proposition 3.2. Theorem 2.6 now shows that R is 

Gorenstein. �

Remark 3.4. In the context of Corollary 3.3, if there exists an X ∈ D
fg
b (R) with H(X) �=

0 such that inj-dimR(LFϕ(X)) < ∞ then R is regular. Indeed, if LFϕ(X) has finite 

injective dimension, then following the lines of the proof of Proposition 3.2, we see 

that inj-dimR(KS ⊗L

R X) < ∞. It follows that inj-dimR(k ⊗L

R X) is finite and therefore 

inj-dimR(k) < ∞ which implies that R is regular, see [5, 3.1.26]. This gives another proof 

of a result of Avramov, Hochster, Iyengar and Yao [2, 5.3].

Our main result concerns the finiteness of injective dimension with respect to the 

derived base change over contracting endomorphisms.

Definition 3.5. Let (R, m, k) be a local ring. An endomorphism ϕ : R → R is said to be 

contracting if ϕi(m) ⊆ m2 for some i ≥ 1.

As mentioned in the introduction, the most prominent example of a contracting en-

domorphism is the Frobenius when R has positive characteristic. But there are many 

other interesting examples of contracting endomorphisms even in characteristic 0.
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Remark 3.6. If ϕ is a contracting endomorphism then ϕi will be a deep local homomor-

phism for each i � 0.

If ϕ is an endomorphism on R, then we define Rϕ to be R with the right module 

structure induced by ϕ. Proposition 3.2 shows that given a contracting endomorphism ϕ

and a complex X then for large enough i the complex LFϕi(X) is bounded if and only if 

X has finite projective dimension. However, there are examples of complexes of infinite 

projective dimension for which LFϕ(X) is homologically bounded. For example, let

R =
k[x, y]

(x3, y3)

Set ϕ(x) = y and ϕ(y) = y2. One can check that LFϕ(x) � (y) but (x) has infinite 

projective dimension. A natural question to ask is when does sup H(LFϕ(X)) < ∞

imply that sup H(LFϕi(X)) < ∞ for all i > 0? Our goal is to show that if X has finite 

injective dimension then LFϕ(X) is homologically bounded if and only if LFϕi(X) is 

homologically bounded for every i > 0.

Definition 3.7. Let (R, m, k) be a local ring and E the injective hull of the R-module k. 

For an R-complex M set

M∨ := HomR(M, E).

We will need the following lemma; we give a proof for completeness.

Lemma 3.8. Let (R, m, k) be a local ring.

(i) The natural map X → X∨∨ is a quasi-isomorphism for all X ∈ Dfl
b(R).

(ii) The complex X∨ is perfect with finite length homology for all X ∈ Ifl(R).

Proof. For (i), we observe that {X ∈ D(R) | X � X∨∨} form a thick subcategory. 

When X ∈ Dfl
b(R) one can show that by induction on the total length of H(X) that 

X ∈ ThickR(k). Clearly k � k∨∨ so it follows that X � X∨∨ for all X ∈ Dfl
b(R).

For (ii), take an injective resolution I of X. Since Supp(X) = {m}, the injective 

resolution I is a finite complex where all the modules are direct sums of E. Hence by 

Matlis duality, X∨ is quasi-isomorphic to a bounded complex of free R̂ modules. As R̂

is faithfully flat over R we have,

sup(k ⊗L

R X∨) = sup(k ⊗L

R X∨ ⊗L

R R̂)

Since X∨ is perfect in D(R̂) it is also perfect in D(R). �

Proposition 3.9. For all X ∈ Ifl(R) with H(X) �= 0, one has ThickR(X) = Ifl(R).
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Proof. By Example 2.8, ThickR(X) ⊆ Ifl(R), so it suffices to show that for all Y ∈ Ifl(R)

we have Y is in ThickR(X). Let Y ∈ Ifl(R) with H(Y ) �= 0. By Lemma 3.8 (ii) X∨ and 

Y ∨ are complexes with finite length homology and finite projective dimension over R. 

In particular, X∨ and Y ∨ are both perfect, and

Supp(X∨) = {m} = Supp(Y ∨)

Theorem 2.12 yields that

ThickR(X∨) = ThickR(Y ∨)

Applying the Matlis dual again, we get ThickR(X∨∨) = ThickR(Y ∨∨) since the Matlis 

dual is an exact functor. Noting that X∨∨ � X by Lemma 3.8 (i), we see that 

ThickR(X) = ThickR(Y ). In particular, Y is in ThickR(X). �

Lemma 3.10. Let ϕ : (R, m, k) → (R, m, k) be contracting endomorphism. If for some 

X ∈ Ifl(R) with H(X) �= 0 the injective dimension of LFϕ(X) is finite then the injective 

dimension of LFϕi

(Y ) is finite for all i ≥ 1 and all Y ∈ Ifl(R).

Proof. By Remark 3.1 H(LFϕ(X)) �= 0 when H(X) �= 0. Proposition 3.9 shows that 

ThickD(R)(X) = Ifl(R). Since LFϕ( ) is an exact functor it follows that LFϕ(Y ) is in 

ThickR(LFϕ(X)) for every Y ∈ Ifl(R). By hypothesis LFϕ(X) ∈ Ifl(R), hence the functor 

LFϕ( ) takes Ifl(R) to Ifl(R), but this implies that LFϕ2

(Y ) ∼= LFϕ(LFϕ(Y )) has finite 

injective dimension for every Y ∈ Ifl(R). By induction on i, we have that the injective 

dimension of LFϕi

(Y ) is finite for all i ≥ 1 and all Y ∈ Ifl(R). �

The following theorem is a restatement of Theorem 1.1.

Theorem. Let ϕ : (R, m, k) → (R, m, k) be a contracting endomorphism. The following 

are equivalent.

(i) R is Gorenstein.

(ii) There exists X ∈ Ifg(R) with H(X) �= 0 and LFϕ(X) ∈ Ifg(R).

(iii) For every X ∈ Ifg(R) we have LFϕ(X) ∈ Ifg(R).

Proof. (i) =⇒ (iii). The discussion after Theorem 2.5 shows that Ifg(R) is the sub-

category of perfect complexes. So for every X ∈ Ifg(R) the base change LFϕ(X) is also 

perfect and hence in Ifg(R).

(iii) =⇒ (ii). We need to show that for every local ring there exists a complex 

X ∈ Ifg(R) with H(X) �= 0. Let E be the injective hull of the residue field, and KR the 

Koszul complex of R. As mH(KR ⊗R E) = 0, all the homology modules are isomorphic 

to direct sums of k. As the complex KR ⊗R E consists of Artinian modules, it follows 

that for every i, the module Hi(K
R ⊗R E) is Artinian, hence it has finite length.
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(ii) =⇒ (i). Let KR be the Koszul complex of R. Let X ∈ Ifg(R) with 

inj-dimR(LFϕ(X)) < ∞. Since KR ⊗L

R X still has finite injective dimension and nonzero 

finite length homology, Lemma 3.10 shows that

inj-dimR(LFϕi

(KR ⊗L

R X)) < ∞ for all i ≥ 1

Setting c = ��D(R) KR we can take i large enough so that ϕi(m) ⊆ mc. Corollary 3.3

yields that R is Gorenstein. �

Theorem 1.1 is the derived analogue of the following result by Falahola and Marley 

[7, Theorem 3.1].

Theorem 3.11. Let (R, m, k) be a Cohen-Macaulay local ring, and let ϕ be a contracting 

endomorphism. Suppose that ωR is a canonical module for R, then inj-dimRϕ Fϕ(ωR) in 

finite if and only if R is Gorenstein.

Remark 3.12. Falahola and Marley [7, Example 3.8] show that Theorem 3.11 fails if 

we replace ωR with a general dualizing complex C. In [7, Question 3.9] they ask if R

has a dualizing complex C is it true that inj-dimR(Rϕ ⊗L

RC) < ∞ if and only if R is 

Gorenstein? Since a dualizing complex is in Ifg(R), Theorem 1.1 shows in particular that 

if C is a dualizing complex in D(R) then inj-dimR(LFϕ(C)) being finite implies that R

is Gorenstein, giving an affirmative answer.
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