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1. Introduction

Kunz [11] proved that a local ring (which will henceforth be assumed to be Noethe-
rian) (R, m, k) of positive characteristic is regular if and only if some (equivalently, every)
power of the Frobenius endomorphism is flat as an R-module homomorphism. Since then
analogous characterizations of other properties of local rings, such as complete intersec-
tions (by Rodicio [15]), Gorenstein (by Goto [17]) and Cohen-Macaulay (by Takahashi
and Yoshino [16]), have been obtained. Many of these results have been generalized
for the larger family of contracting endomorphisms. Following [4], an endomorphism
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¢: R — R is said to be contracting if ¢'(m) C m? for some i > 0. The Frobenius en-
domorphism is one example but there are many interesting examples even when R is of
characteristic 0. Avramov, Iyengar and Miller [4] generalized Kunz’s theorem to apply to
any contracting endomorphism. For other results concerning contracting endomorphisms
see, for example, Avramov, Hochster, Iyengar and Yao [2], Rahmati [14] and Nasseh and
Sather-Wagstaff [12].

In this paper we study homological properties of modules and complexes under base
change along contracting endomorphisms. Given an endomorphism ¢: R — R, we write
R? for the R-bimodule with the right module structure induced by ¢ and the left usual
R-module structure. Thus given an R-complex X the base change along ¢ is R? @%X
where R acts on the left through R¥. The main result of this work is the following,
proved in Section 3:

Theorem 1.1. Let (R, m, k) be a local ring, and let ¢: R — R be a contracting endomor-
phism. The following conditions are equivalent.

(i) R is Gorenstein.

(ii) There exists an R-complex X with nonzero finitely generated homology and finite
injective dimension for which the base change R¥ ®%X has finite injective dimen-
ston.

(iii) For every X with nonzero finitely generated homology and finite injective dimension
the base change R? ®%X has finite injective dimension.

An R-complex is said to have finite injective dimension if it is quasi-isomorphic to a
bounded complex of injective modules.

In the theorem above (i) = (iii) holds because in a Gorenstein local ring complexes
of finite injective dimension coincide with complexes of finite projective dimension. For
(iii) = (ii) we only need to show that every local ring has a complex of finite injective
dimension with nonzero finitely generated homology. (ii) = (i) is the crucial implication.
This is proven in two steps. 1) When H (X) is finitely generated, if R¥ ®@% X is bounded
in homology for ¢ > 0 then X has finite projective dimension; this follows from well
known arguments, see 3.2 for details. 2) When X is a complex with nonzero finite length
homology and finite injective dimension, if the base change R” ®@L X has finite injective
dimension then the same holds for R? ®@L X for every i > 0, see 3.3. The key tool in
the proof of the second step is a theorem of Hopkins [10] and Neeman [13] concerning
perfect complexes. The idea of using the theorem of Hopkins and Neeman was inspired
by the work of Dwyer, Greenlees, and Iyengar [9] who were the first to apply it in the
context of commutative algebra.

Theorem 1.1 is analogous to the following characterization of Gorenstein rings by
Falahola and Marley [7, Proposition 3.7].
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Theorem 1.2. Let p: R — R be a contracting endomorphism where R is a Cohen-
Macaulay local ring and wg is a canonical module. Then R is Gorenstein if and only
if R @ rwg has finite injective dimension.

In [7, Question 3.9] the authors ask: when R is a local ring with a dualizing complex D,
if R¥ ®@LD has finite injective dimension is then R necessarily Gorenstein? Theorem 1.1
gives an affirmative answer.

I thank my advisor Srikanth Iyengar for the many helpful discussions and reading
many versions of this paper, and the anonymous referee for a very thorough reading of
this paper and numerous helpful suggestions. This work was partly supported by a grant
from the National Science Foundation, DMS-1700985.

2. Homological invariants

In this Section we recall basic definitions and results we will need in Section 3.
Throughout this paper R will be a commutative Noetherian ring. We write D(R) for
the derived category of R-complexes, with the convention that complexes are graded
below i.e. we write

X=..-X,—>X,.1—...
We write X ~ Y when X is isomorphic to Y in D(R).
Definition 2.1. Given an R-complex X we set
sup H(X) =sup{i | H;(X) # 0} and inf H(X) = inf{i | H;(X) # 0}
Thus sup(0) = —oo and inf(0) = co. A complex X is said to be homologically bounded
above if sup H(X) < oo. Similarly, X is homologically bounded below if inf H(X) > —oo
and X is homologically bounded if it is homologically bounded above and below.

Let S be a full subcategory of D(R). We make the following conventions:

) S.={X eS|supH(X) < o0}

) Sy ={XeS|inf H(X) > -0}
(iii) Sp=S,NS.

) The subcategory of complexes in S with degree-wise finitely generated (resp. finite
length) homology is denoted S (resp. S%)

In D(R) we have derived functors RHomp(_, ) and _ ®% . For a detailed descrip-
tion on how these functors are defined, we refer the reader to [18] and [1].
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When X is in D4 (R), there is a complex P consisting of projective modules with
P; =0 for i < 0 such that P ~ X. Such a complex P is called a projective resolution of
X. In this case we can compute RHom(X,_) by setting

RHom(X,_ ) = Hompg(P,_)

Flat and injective resolutions are similarly defined. Since R has enough projectives and
injectives, every complex in D (R) admits projective (and therefore flat) resolutions and
every complex in D_(R) admits injective resolutions.

Complexes in Dgg (R) with finite projective dimension are the perfect complexes. The
subcategory of D(R) of complexes of finite injective dimension plays a central role in this
paper and we denote it I(R).

Definition 2.2. Let X € D (R) and Y € D_(R). We define

proj-dimp(X) := inf {n

there exists a projective resolution P of X
0—P,—..— P,—0with P, #0

inj-dimg(Y) :=inf< n
f 0O—-L—>I;y—..—1,—0withl_,=#0

there exists an injective resolution I of Y }

Remark 2.3. Let (R, m, k) be a local ring. Following [6, A.5.7, A.7.9] we have,
(i) Let X € D4 (R). When V is an R-complex such that mV = 0 then,

sup H(V @% X) = sup H(V) + sup H(k @% X)
inf H(V @% X) = inf H(V) + inf H(k ©% X)

(i) X e Dig(R) and Y € D8(R) then the following hold

proj-dimp(X) = — inf H(RHompz(X, k)) = sup H(k @% X)
inj-dimp(Y) = —inf H(RHompg(k,Y))

Definition 2.4. A local ring R is Gorenstein if inj-dimg(R) is finite.

The following theorem [6, 3.3.4] asserts that in a Gorenstein local ring, the categories
of finite flat dimension and finite injective dimension coincide.

Theorem 2.5. Let (R, m, k) be a local Gorenstein ring, X € Dy(R). Then

flat-dimp(X) < 00 <= inj-dimp(X) < oo.
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It is well known that in a local ring, a complex X has finite flat dimension if and only if
X has finite projective dimension, see for example [8, Corollary 3.4]. Hence, Theorem 2.5
implies that in a local Gorenstein ring the categories of finite projective dimension and
finite injective dimension coincide.

Foxby [8, Corollary 4.4] also proved the converse to Theorem 2.5. Although in the
original paper it was stated for modules, it is well known to be true for complexes as
well. For convenience, we give a self contained proof using the terminology and properties
established above.

Theorem 2.6. Let (R, m, k) be a local ring. If there exists a compler X € Df)g(R) with
H(X) # 0 such that both proj-dimg(X) and inj-dimp(X) are finite, then R is Goren-
stein.

Proof. We have quasi-isomorphisms
RHompg(k, X) ~ RHompg(k, R ®% X) ~ RHomp(k, R) ®@% X
The first quasi-isomorphism is trivial and the second follows from [8, 1.1.4] since X is

perfect. Also, since X € D{)g(R) we have inf H(k ®% X) is finite. As H(X) # 0, we get
from 2.3:

inj-dimg(X) = — inf H(RHompg(k, X))
= —inf H(RHomp(k, R) ®% X)
—inf H(RHompg(k, R)) — inf H(k @% X)

= inj-dimp R — inf H(k ®% X)
Thus inj-dimg(X) < 00 = inj-dimgz(R) < c0. O
2.1. Thick subcategories and generation

Thick subcategories play a critical role in the proofs in Section 3. Here we recall the
definition and give some examples, following the formulation given in [3, §1].

Definition 2.7. A non-empty subcategory 7 of D(R) is thick if it is additive, closed under
taking direct summands and for every exact triangle

X—>Y—>7—-3X

if any two of X,Y, Z belong to T, so does the third. From the definition it is clear that
intersections of thick subcategories are again thick.
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Example 2.8. The subcategories D'(R), D¥(R), I(R) and the subcategory of perfect
complexes are all thick in D(R), see for example [9, 3.2]. It follows immediately that
I"8(R) and 1!(R) are thick as well.

Definition 2.9. The thick subcategory generated by X € D(R), denoted Thickg(X), is the
smallest thick subcategory that contains X. It is the intersection of all thick subcategories
of D(R) containing X.

Example 2.10. For any ring R, the thick subcategory Thickr(R) is the subcategory of
perfect complexes. When (R, m, k) is a local ring we have Thickg (k) = DI(R).

For any X € D(R) one can construct Thickp(X) as follows: Set Thick%(X) = {0}.
The objects of Thicky(X) are direct summands of finite direct sums of shifts of X. For
each n > 2, the objects of Thick(X) are direct summands of objects U such that U
appears in an exact triangle

U-U-=U"-3U

where U’ € Thick’, *(X) and U” € Thickg(X). The subcategory Thick’(X) is the nth
thickening of X. Every thickening embeds in the next one thus we have a filtration:

{0} = Thick3(X) C Thickp(X) € Thick%(X) C ... € | J Thick}(X)
n>0

It is clear that (J,,~, Thick’z(X) is a thick subcategory. By construction it is the
smallest thick subcategory containing X hence

Thickg(X) = |_J Thick(X)

n>0

For a broader discussion see, for example, [3, §1]. This discussion motivates the following
terminology: An R-complex in Thickg(X) is finitely built from X.

Definition 2.11. The support of an R-complex X is
Suppg(X) = {p € Spec(R) | H(X), # 0}
When X € D(R) the support is
Suppg(X) = V(anng(H(X)).
If N € Thickr(M), then from the construction it follows that Suppg(N) is contained

in Suppg(M). Indeed, since localization is an exact functor, if H(M), = 0 for some
p € Spec(R) then inductively H(N), = 0 for every N in Thick’ (M) for all 4.
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Hopkins [10, 11] and Neeman [13, 1.2] proved the following result which asserts that
the converse is true when both M and N are perfect complexes.

Theorem 2.12. Let R be a commutative Noetherian ring. Given perfect R-complexes N
and M, if Suppr N C Suppp M then N is finitely built from M. O

2.2. Loewy length

Another important element in this work is the Koszul complex. We recall the definition
of Koszul complexes and Loewy length.

Definition 2.13. The Koszul complex on x € R is the R-complex
Kz)=0—-R%R—0

concentrated in degrees 0 and 1. Given a sequence x = (z1, ..., Z,) the Koszul complex
on x is

K(X) = K($1) [9)3 K(.’L‘Q) XR ... DR K(Cbn)
with the convention that K (&) = R.
Set K to be the Koszul complex on a minimal generating set of m. Since K% is a
perfect complex, we have that K € Thickg(R). It follows that K®®% X is in Thickg(X)

for every X € D(R).

Definition 2.14. Let (R, m, k) be a local ring, X an R-complex. The Loewy length of X
is defined to be

Ur(X) =inf{i e N|m'- X =0}
Following [4, 6.2], the homotopical Loewy length of X is defined to be

Avramov, Tyengar and Miller [4, 6.2] prove that the homotopical Loewy length satisfies
the following finiteness property.

Theorem 2.15. Let (R, m, k) be a local ring, and K% be the Koszul complex on a minimal
generating set of m. For any complex X we have

MD(R)(KR ®% X) < KED(R) KFf<coo O
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We say that a homomorphism ¢: (R,m, k) — (S,n,l) is a deep local homomorphism
if p(m) C n® where ¢ = llpg) K 9. The following corollary is often used in the literature
to prove various results for deep local homomorphisms.

Lemma 2.16. If p: (R,m, k) — (S,n,1) is a deep local homomorphism, then there is a
quasi-isomorphism K° ~ H(K®).

Proof. By 2.14 there exist a complex V such that K° ~ V and n°V = 0. As p(m) C n°,
this yields that mV" = 0. Hence the R action on V factors through the map R — R/m = k.
Since k is a field, for every V € D(k) we have V ~ H (V). In particular, K ~ H(K®)
in D(k) so the same is true in D(R). O

3. Homological dimension and the derived base change

Let ¢: R — S be a homomorphism. There is a naturally defined functor F¥ from the
category of R-complexes to the category of S-complexes by setting

F(_)=S®Rr__
We write
LF¢: D(R) — D(S) by LF?(_)=S®%
for the induced functor on D(R).
Remark 3.1. Let ¢: (R,m, k) — (S,n,l) be a local homomorphism.
(i) For every perfect complex X the complex LF?(X) is perfect in D(S). Indeed, as

X is perfect, there exists a finite free resolution F' ~ X. Then LF#(X) ~ S ®g F
which is a finite complex of free S modules.

(ii) For every X € D%(R) such that H(X) # 0 we have H(LF¥?(X)) # 0. Indeed, after
perhaps shifting, we may assume Ho(X) # 0 and H;(X) = 0 for all ¢ < 0. We have

Hy(S @k X) = S or Hy(X)

Applying S®g__to the surjection Ho(X) — Ho(X)/mHo(X) — k we get Ho(S®%
S
X)—> S®rpk™ S # 0 as ¢ is a local homomorphism.

Proposition 3.2. Let ¢: (R,m,k) — (S,n,1) be a deep local homomorphism. For any
X € fo(R) the complex LF¥(X) is homologically bounded above if and only if X has
finite projective dimension in D(R).
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Proof. The if part is clear. For the converse, by the discussion after 2.13 the complex
K% ®% X ~ K9 ®% (S®% X) is in Thicks(S ®% X). Example 2.8 yields

sup H(S % X) < 0o = sup H(K® @% X) < cc.

By Corollary 2.16, the complex K° ~ H(K?®) in D(R) and H(K®) is a complex of
k-vector spaces as an R-complex. One gets by the Kiinneth formula
H(KS @% X)~ H(H(K%) % X)
H(H(K®) @y (k ©F X))
H(K?®)® H(k % X)

12

12

Since H(K® @% X) is bounded, so is H(k ®% X). Therefore proj-dimp(X) < oo by
Remark 2.3 (ii). O

Corollary 3.3. Let p: (R,m, k) — (S,n,l) be a deep local homomorphism. If there exists
an X € 1®8(R) with H(X) # 0 and inj-dimg(LF? (X)) < oo then R is Gorenstein.

Proof. By Remark 3.1 (ii), the homology H(LF¥(X) is nonzero. By hypothesis X is in
D{%(R) so LF?(X) € D{(S). Hence

inj-dim4(LF?(X)) < 0o = sup H(LF¥(X)) < oo.

Therefore proj-dimp(X) < oo by Proposition 3.2. Theorem 2.6 now shows that R is
Gorenstein. O

Remark 3.4. In the context of Corollary 3.3, if there exists an X € Dég(R) with H(X) #
0 such that inj-dimp(LF?(X)) < oo then R is regular. Indeed, if LF¥(X) has finite
injective dimension, then following the lines of the proof of Proposition 3.2, we see
that inj-dim (K% ®@% X) < co. It follows that inj-dimp(k ®% X) is finite and therefore
inj-dimp (k) < oo which implies that R is regular, see [5, 3.1.26]. This gives another proof
of a result of Avramov, Hochster, Iyengar and Yao [2, 5.3].

Our main result concerns the finiteness of injective dimension with respect to the
derived base change over contracting endomorphisms.

Definition 3.5. Let (R, m, k) be a local ring. An endomorphism ¢: R — R is said to be
contracting if p*(m) C m? for some i > 1.

As mentioned in the introduction, the most prominent example of a contracting en-
domorphism is the Frobenius when R has positive characteristic. But there are many
other interesting examples of contracting endomorphisms even in characteristic 0.
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Remark 3.6. If ¢ is a contracting endomorphism then ¢ will be a deep local homomor-
phism for each i > 0.

If ¢ is an endomorphism on R, then we define R¥ to be R with the right module
structure induced by . Proposition 3.2 shows that given a contracting endomorphism ¢
and a complex X then for large enough i the complex LFW(X ) is bounded if and only if
X has finite projective dimension. However, there are examples of complexes of infinite
projective dimension for which LF¥(X) is homologically bounded. For example, let

Set ¢(z) = y and ¢(y) = y2. One can check that LF¥(x) ~ (y) but (z) has infinite
projective dimension. A natural question to ask is when does sup H(LF¥ (X)) < oo
imply that sup H(LF¥*(X)) < oo for all # > 0? Our goal is to show that if X has finite
injective dimension then LF¥(X) is homologically bounded if and only if LF?*(X) is
homologically bounded for every i > 0.

Definition 3.7. Let (R, m, k) be a local ring and E the injective hull of the R-module k.
For an R-complex M set

M"Y = Hompg(M, E).
We will need the following lemma; we give a proof for completeness.

Lemma 3.8. Let (R, m, k) be a local ring.

i e natural map X — is a quasi-isomorphism for a € .
i) Th I X — XYV i hism for all X € DY(R
(ii) The complex XV is perfect with finite length homology for all X € 18(R).

Proof. For (i), we observe that {X € D(R) | X ~ XVV} form a thick subcategory.
When X € D#(R) one can show that by induction on the total length of H(X) that
X € Thickg(k). Clearly k ~ kVV so it follows that X ~ X"V for all X € Di(R).

For (ii), take an injective resolution I of X. Since Supp(X) = {m}, the injective
resolution [ is a finite complex where all the modules are direct sums of E. Hence by
Matlis duality, X" is quasi-isomorphic to a bounded complex of free R modules. As R
is faithfully flat over R we have,

sup(k @% XV) = sup(k @% XV @% R)

Since XV is perfect in D(R) it is also perfect in D(R). O

Proposition 3.9. For all X € I'(R) with H(X) # 0, one has Thickg(X) = 14(R).
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Proof. By Example 2.8, Thickz(X) C I(R), so it suffices to show that for all Y € I'(R)
we have Y is in Thickg(X). Let Y € I'(R) with H(Y) # 0. By Lemma 3.8 (ii) X" and
YV are complexes with finite length homology and finite projective dimension over R.
In particular, XV and YV are both perfect, and

Supp(X") = {m} = Supp(Y")
Theorem 2.12 yields that
Thickp(X") = Thickg(Y")

Applying the Matlis dual again, we get Thickg(X"Y) = Thickr(YV"V) since the Matlis
dual is an exact functor. Noting that XYV ~ X by Lemma 3.8 (i), we see that
Thickr(X) = Thickr(Y). In particular, Y is in Thickr(X). O

Lemma 3.10. Let ¢: (R,m, k) — (R,m,k) be contracting endomorphism. If for some
X € 1%(R) with H(X) # 0 the injective dimension of LF¥(X) is finite then the injective
dimension of LF? (Y) is finite for alli > 1 and all Y € 18(R).

Proof. By Remark 3.1 H(LF¥(X)) # 0 when H(X) # 0. Proposition 3.9 shows that
Thickp(gy(X) = I*(R). Since LF#(_) is an exact functor it follows that LF#(Y’) is in
Thickr(LF# (X)) for every Y € I"(R). By hypothesis LF#(X) € I?(R), hence the functor
LF#(_) takes I(R) to I%(R), but this implies that LF®" (V) = LF*(LF#(Y)) has finite
injective dimension for every Y € I®(R). By induction on 4, we have that the injective
dimension of LF¥' (Y) is finite for alli > 1 and all Y € I%(R). O

The following theorem is a restatement of Theorem 1.1.

Theorem. Let ¢: (R,m, k) — (R,m, k) be a contracting endomorphism. The following
are equivalent.

(i) R is Gorenstein.
(ii) There exists X € I"8(R) with H(X) # 0 and LF¥(X) € I"8(R).
(iii) For every X € I®8(R) we have LF¥(X) € I®8(R).

Proof. (i) == (iii). The discussion after Theorem 2.5 shows that 1%(R) is the sub-
category of perfect complexes. So for every X € I'8(R) the base change LF¥?(X) is also
perfect and hence in 1%(R).

(ili) = (ii). We need to show that for every local ring there exists a complex
X € I'8(R) with H(X) # 0. Let E be the injective hull of the residue field, and K the
Koszul complex of R. As mH (KT ®g E) = 0, all the homology modules are isomorphic
to direct sums of k. As the complex K @ E consists of Artinian modules, it follows
that for every 4, the module H;(Kf ®g E) is Artinian, hence it has finite length.
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(i) == (i). Let K be the Koszul complex of R. Let X € I%(R) with
inj-dim (LF?(X)) < oo. Since K ®% X still has finite injective dimension and nonzero
finite length homology, Lemma 3.10 shows that

inj'dimR(LEwi (KRob X)) <00 foralli>1

Setting ¢ = llp(R) K we can take i large enough so that ¢(m) C m¢. Corollary 3.3
yields that R is Gorenstein. 0O

Theorem 1.1 is the derived analogue of the following result by Falahola and Marley
[7, Theorem 3.1].

Theorem 3.11. Let (R,m, k) be a Cohen-Macaulay local ring, and let ¢ be a contracting
endomorphism. Suppose that wg is a canonical module for R, then inj-dimpe F¥(wg) in
finite if and only if R is Gorenstein.

Remark 3.12. Falahola and Marley [7, Example 3.8] show that Theorem 3.11 fails if
we replace wg with a general dualizing complex C. In [7, Question 3.9] they ask if R
has a dualizing complex C is it true that inj-dimp(R? ®%C) < oo if and only if R is
Gorenstein? Since a dualizing complex is in I'8(R), Theorem 1.1 shows in particular that
if C is a dualizing complex in D(R) then inj-dimg(LF?(C)) being finite implies that R
is Gorenstein, giving an affirmative answer.
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