A Novel Sequential Method to Train Physics Informed Neural
Networks for Allen Cahn and Cahn Hilliard Equations

Revanth Mattey (27, Susanta Ghosh (2P

@ Department of Mechanical Engineering—Engineering Mechanics, Michigan Technological University, MI, USA
bThe Center for Data Sciences, The Center for Applied Mathematics and Statistics Michigan Technological
University, MI, USA

Abstract

A physics informed neural network (PINN) incorporates the physics of a system by satisfying
its boundary value problem through a neural network’s loss function. The PINN approach has
shown great success in approximating the map between the solution of a partial differential
equation (PDE) and its spatio-temporal coordinates. However, the PINN’s accuracy suffers
significantly for strongly non-linear and higher-order time—varying partial differential equations
such as Allen Cahn and Cahn Hilliard equations. To resolve this problem, a novel PINN scheme
is proposed that solves the PDE sequentially over successive time segments using a single neural
network. The key idea is to re-train the same neural network for solving the PDE over successive
time segments while satisfying the already obtained solution for all previous time segments. Thus
it is named as backward compatible PINN (bc-PINN). To illustrate the advantages of be-PINN,
the Cahn Hilliard and Allen Cahn equations are solved. These equations are widely used to
describe phase separation and reaction-diffusion systems. Additionally, two new techniques have
been introduced to improve the proposed be-PINN scheme. The first technique uses the initial
condition of a time—segment to guide the neural network map closer to the true map over that
segment. The second technique is a transfer learning approach where the features learned from
the previous training are preserved. We have demonstrated that these two techniques improve
the accuracy and efficiency of the be-PINN scheme significantly. It has also been demonstrated
that the convergence is improved by using a phase space representation for higher-order PDEs.
It is shown that the proposed bc-PINN technique is significantly more accurate and efficient
than PINN.

Keywords: Physics informed neural networks,, Partial differential equation (PDEs), Allen Cahn
equation, Cahn Hilliard equation

1. Introduction

Traditional physics-based numerical methods for solving partial differential equations (PDEs)
have found remarkable success in solving various science and engineering problems. These
methods are accurate but computationally expensive for complex problems such as nonlinear
PDEs and requires problem—specific techniques. In the last decade data driven methods have
gained a lot of attention in almost all areas of science and engineering. Data driven methods for
PDEs can help in identifying highly non-linear mappings (between the inputs and outputs) which
can substitute or augment expensive physics based simulations. Due to their versatility and fast

*Corresponding author; Email: susantag@mtu.edu

Preprint submitted to Computer Methods in Applied Mechanics and Engineering April 26, 2022

https://orcid.org/0000-0002-6732-622X
https://orcid.org/0000-0002-6262-4121

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

evaluation capabilities, machine learning based models can be used as PDE solvers in situations
when there is a requirement of a large number of simulations such as the inverse—problem and
homogenization [11 [2].

Several data—driven techniques have been attempted to solve PDEs. For instance, the Gaussian
Process based approaches are described in [3] 4} [5] [6] [7]. Despite the ease of training for Gaussian
Process, this approach did not gain as much popularity as a neural network for solving PDEs
due to its difficulties in handling high dimensional problems.

Among different data—driven techniques for PDEs the Physics Informed Neural Networks
(PINN) has shown remarkable promise and versatility. PINN is a new class of machine learning
technique where a neural network’s loss function is designed to satisfy the Initial Boundary Value
Problem (IBVP) [8]. A PINN “learns” the non linear map between the spatio-temporal input
and the solution of the PDE in a given domain. Henceforth, throughout this paper the PINN
described in [8] would be referred to as std-PINN. std-PINN utilizes the automatic-differentiation
capability [9] to compute the derivatives of the field variables.

Different variants of std-PINN are shown to work effectively in solving many forward and
inverse problems [10, [11) [12]. Recently in [13], PINN has been extended to satisfy various
conservation laws while solving the PDEs. This approach is named as cPINNs. ¢cPINNs solve the
problem over several sub-domains and ensure flux continuity at the boundaries of the sub-domains.
Another extension to cPINNs is XPINN known as extended PINN, where the authors propose a
generalized space-time domain decomposition based deep learning framework [14]. The key idea
in XPINN is to decompose the domain into multiple sub-domains and train the sub-domains
using multiple neural networks (sub Net), while ensuring C° continuity along the interfaces.
While most of the PINN approaches solve the strong form of a PDE, it can also be used to solve
the weak (variational) form of a PDE. Since the weak form incorporates the natural boundary
conditions, the neural network solution only needs to satisfy the essential boundary conditions a
priori. This aspect is used in several numerical methods for PDEs such as the finite element
method. Due to this advantage of weak form over strong form the application of PINN on
the weak form has been investigated in [15]. In this study, the authors have considered the
variational form for stochastic PDEs and applied the idea of PINNs to obtain the solution of
the PDE. Also the corresponding uncertainty propagation through their model is presented in
[15] [16]. Uncertainty quantification provides the variation associated with the prediction of the
model. It is particularly useful for systems where there is a high cost of data acquisition or
lack of high resolution data [I7]. The authors in [18] proposed a Bayesian approach for physics
informed neural network to solve forward and inverse problems.

The promise and versatility of PINN have been demonstrated through its application for a
wide range of problems. PINN has been used in modeling subsurface transport phenomena [19],
approximating Euler equations for high speed flows [1], constitutive modeling of stress—strain
behavior in biological tissues [20], predicting arterial blood pressure from noisy MRI data of flow
velocity [21], and cardiac activation mapping for diagnosing atrial fibrillation [22].

Recently many other data—driven techniques for solving time varying PDEs have been pro-
posed. In [23] the authors proposed a framework called Neural-PDE which aims to learn the
solution of the PDE by utilizing numerical techniques like FDM (Finite difference method) and
LSTM (Long short term memory) networks. The method aims to predict the solution of the
PDE at n future time steps by using the meshgrid data (solution) of all the previous time steps.
Artificial neural network based approaches for solving parametric PDEs have been introduced by

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

the authors in [24]. Operator learning is a new and emerging technique for solving PDEs. In
operator learning a map between initial condition and solution of the PDE is learnt by using
multiple instantiations [25] [26] 27].

In the present work, we demonstrate that the accuracy of the std-PINN [§] suffers in the
presence of (i) Strong Non-linearity, and (ii) Higher order partial differential operators. In order
to illustrate the above, we chose the Allen Cahn equation having strong non-linearity and Cahn
Hilliard equation having strong non-linearity and fourth order derivative. These are the two
most widely used PDEs to study diffusion separation and multi-phase flows [28] [29] [30] [3T]. To
overcome the drawbacks of the std-PINN, we have proposed an extension, which is named as
backward compatible PINN (bc-PINN). The proposed be-PINN solves the PDE over successive
time segments by re-training the same neural network, where the key idea is:

To ensure that the neural network can reproduce the solution for all the prior time segments
while solving the PDE for a particular time segment.

Henceforth, this idea is referred to as backward compatibility. Some of the main advantages of
the proposed be-PINN method are as follows:

1. It works for higher order and strongly nonlinear PDEs by using fewer iterations and
collocation points while achieving significantly higher accuracy when compared to std-
PINN.

2. A single neural network is used for the entire domain and continuity across the time
segments is ensured for the predicted solution and its derivatives.

The rest of the paper is organized as follows: in section the std-PINN method is briefly
reviewed; in section the proposed bc-PINN method is presented; in section the Allen
Cahn and Cahn Hilliard equations are described; in section the be-PINN method is analyzed
and compared against the std-PINN and the XPINN method for the one dimensional (1D) Allen
Cahn and Cahn Hilliard equations; in section @ two new techniques initial condition guided
learning and transfer learning based acceleration have been presented along with the results for
the two dimensional (2D) Allen Cahn and Cahn Hilliard equations. Finally, the conclusions are
presented in section .

2. A brief review of standard physics informed neural network (std-PINN) for
partial differential equations

Physics informed neural network (PINN) is a class of machine learning model where the
governing PDE is satisfied through the loss function of the neural network [8]. The efficient
optimization and prediction capabilities of neural network are exploited in the std-PINN approach.
In std-PINN a neural network is trained to predict the solution at any point in the entire spatial—
temporal domain. Let’s consider the general form of a m'" order partial differential equation
(PDE):

he = F(h(z,t), hD(x,t) , b2 (z,t), - b (z,1)), x € QCRP, t € (0,T] (1)
Here, is an open set of RP (D = 1,2,3). F is a non linear function of the solution h(x,t) and

it’s spatial derivatives (hggl)(m, t), h? (x,t),--- ,h(mm) (z,t)) where « and ¢ are the space and time
coordinates respectively. The corresponding boundary conditions and initial conditions are

h(z,0) = ¢(x), x€Q
h(—x,t) = h(zx,t), (x,t) €T x(0,T] (2)
AV (—x,t) = WD (x,t), (x,t) €T x (0,7

89

90

91

92

93

94

95

96

97

98

100

101

102

Where, I' is the boundary of 2. The PDE, the Initial and the Boundary Conditions (given by
equation (]I) form a initial-boundary value problem (IBVP) considered in this study. The
boundary conditions are taken as periodic and the initial condition is a real function.

std-PINN approximates the map between points in the spatio-temporal domain to the solution
of the PDE. The parameters of the neural network are randomly initialized and iteratively updated
by minimizing the loss function that enforces the PDE. The std-PINN’s loss function consists of
three error components, for the prediction of the neural network as in the following (i) Initial
Condition, (ii) Boundary Condition, and (iii) PDE. Let h(z,t) be the output of neural network.
The three components of the std-PINN’s loss function are given below:

e Mean squared error on the Initial Condition

K3

MSE; = Ni 3 (i}(:c;;,()) - h;;)Q . zieQ (3)
b k=1

where fz(:c}c, 0) is the neural network output and A% is the given initial condition at (x%,0).
Here, the superscript, (e)” stands for initial condition.

e Mean squared error on the Boundary Condition

Ny na

1 g arg 2
MSEp = 303 (A Y h i) —hC Y (e)) L @k eTx 0.7 ()
k=1d=1

where ng is the highest order of derivative to which the periodicity is enforced on the
boundary, I'. Here, the superscript, (e)® stands for boundary condition.

e The Mean squared error due to Residual of the partial differential equation
R he— F(h D, 5O, i)

N,
MSEr = Ni S (R 1) . (@hth) € 2 x (0,T] ®)
" k=1

The superscript, ()" stands for residual of the PDE. (zi) and (x%,t}), represent the set of
points where the initial and boundary errors are computed. The residual/collocation error is
computed at the collocation points (a7,,t],). These points on the domain and the boundary are
obtained using a latin hypercube sampling approach. Therefore, the total loss function of the
neural network is given by adding all the aforementioned mean squared errors

MSE = MSE; + MSEp + MSEg (6)

Once the std-PINN is trained, the accuracy of the predicted solution is computed with respect
to the reference solution at unknown points (called testing points). Highly accurate solution
of the initial boundary value problem obtained by the Chebyshev polynomial based numerical
algorithm [32] and is considered as the reference solution. The relative total error (e4o¢q;) of the
PINN’s prediction over the entire domain is obtained by normalizing the error with respect to
the reference solution as

e [911/2
% 2 (@,) = bl t))
Etotal = 1/2 (7)

& S (e)]

103

104

105

106

107

108

109

110

111

112

113

114

115

116

The relative error (g) of the PINN’s prediction at each point is obtained by normalizing the
absolute error with respect to the reference solution as

h(zg, ty) — h(mmtk)‘

(8)
[Zszl (h(zk, tk)ﬂ v

E(katk) =

Where h(zy, t;) is the reference solution and h(ay,) is the neural network prediction for a

set of testing points {(xy, tk)}gzl, (g, tr) € 2 x (0,T). For all comparisons between reference
and predicted solutions the relative total error ‘cotq;’ and relative error ‘e’ is used.

3. The proposed backward compatible sequential PINN method (bc-PINN)

In this section, we introduce an extension of the std-PINN technique that solves an initial-
boundary value problem sequentially in time.

3.1. bc-PINN

In the proposed method the PDE is solved progressively in time by re-training a single neural
network over successive time segments. The limitation of such retraining is that the network
can predict only for the latest time segment and cannot predict for previous time segments for
those it has been trained earlier. To overcome this limitation, the proposed model is designed to
satisfy the solution of all the previous time segments while solving the PDE over a particular
time segment. This scheme ensures backward compatibility of the solution by a single network.
The proposed method is henceforth referred as backward compatible PINN (bc-PINN). The
schematics of bc-PINN for a particular time segment is shown in figure and the sequential
scheme of proposed be-PINN approach is shown in figure . In be-PINN the time domain [0, 7]
is discretized into N4, segments as

T,

Nmazx

[TO = OyTl]a [TlaT2]a"' 3 [TnflaTn]v a[Tn :T] (9)

maz—1s

where the n'" segment is denoted as AT, = [T},_1,T,], n =1, , Nmaz-
For the first time segment AT; the solution of the PDE is sought through the std-PINN by
minimizing the following loss function

MSEar, = w; MSE; (2}, 0) + w, MSEg (z!, tf) + w, MSER (%, t})
(10)
zhcQ, (b)) eI x(0,T1] (xh,th) € Qx (0,T1]

Here, (m}c, t}C) represent the set of points where the error on initial condition is computed and
(:cz, ti) represent the set of points where the error on boundary condition is computed within the
time segment ATy = (0,73]. For all of the subsequent time segments (i.e. ATy, n =2, Nnaz)
we propose a novel loss function, which satisfies the solution of all previous time segments. The
solution of all previous time segments is enforced by penalizing the departure from the already
obtained solutions from the previous training, as given by

MSEa7, = w; MSE (2}, Tp_ 1) 4+ wy MSEg (2, t2) 4+ w, MSEg (%,)
+ws MSEg(xg,), n=2,", Nmax

zh € Q, (b, 12) € T x (T,,_1,T}]
(xh,t7) € Q% (Th_1,Th), (x5,t5) € Q x [0,T,_1]

117

118

119

120

121

122

123

124

Neural Network Physical Laws

1. Governing Equations

he = F(h(x, £), AP (x,0),.., AT (x, 1))
oo x €N cRP
t € (Th-1, Tl
.\ :—x 2. Bound?ry Conditjons
x / h(—x,t) = h(x,t)
AV (—x,0) = A (x, 1)

62
= y 2
o v 0" mmp (x,t) € T X (Ty_y,Ty]
t : 3. Initial Condition
. am ¢(x) n=1
: : — i B xX€EN
. axm h(x,Ty_1) R, Tpey) n>1
9 4. Backward Compatibility

i A (x,t) = R(x,t)
(x,t) € 2 %[0,Ty_1]

Figure 1: The schematics of the proposed backward compatible PINN (bc-PINN) approach for a time segment
((Th=1,Tn]). The neural network re-trains the PDE over (T),—1,Ty] while satisfying the solution for all previous
time segments. The error in the Initial Condition is computed at time ¢ = 0 for the first time segment and at
time ¢t = (T),—1 for the nth time segment.

(xIIC)J tllc)) erXx [Tn—lx Tn]
x ((%%, th) € QX [Ty_q, Ty]

To=0 4 Ta+1 T t

MSEg(x§, t§) + MSE;(xk, Ty_1) + MSEg(xp, t2) + MSEg(xf, ti)

Figure 2: Illustration of the proposed backward compatibility scheme (over a 1D domain) that satisfies the
solutions obtained on all previous time segments ([0, T),—1]) while satisfying the PDE on the current time segment
((Th=1,Tn]). The error in the Initial Condition is computed at time ¢ = 0 for the first time segment and at time
t = (Tp—1 for the nth time segment.

Here, (x},T,—1) represent the set of points where the error on initial condition is com-
puted and (:cﬁ,tz) represent the set of points where the error on boundary conditions is
computed within the time segment (7,_1,7,]. The residual/collocation error as given
in equation (5) is computed at the collocation points (z,#;). We also minimize the
departure from the already obtained solution that were stored at the grid points (x7,t7).
The solution obtained (on (0, T},]) at the n'h segment is stored for using it in the (n+1)*" segment.

The weights (w;, wp, w,, ws) given in equation help in faster convergence to the true solution.

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

These weights are utilized to scale the difference in the magnitude of the errors. In the present
work, the difference in the order of derivatives (spatial) and the number of spatial dimensions
are used for scaling. From a mathematical perspective, the weighting of the loss function can be
seen as a mechanism that forces the learning process to focus on the terms where high prediction
accuracy is required.

In sections (3.2]13.3)), two techniques have been proposed to further improve the accuracy and
efficiency of the bc-PINN scheme.

3.2. Initial condition guided learning (ICGL)

In initial condition guided learning, the key idea is to perform the training in two stages for
each time segment. In the first stage the neural network is trained to match only the initial
condition of that time segment, using a small fraction of the total iterations. Therefore, the loss
function for ICGL (M SEgy) is as follows:

Nsr
1 A . 2
MSBsy = > (A 65 — Y @') @) €@ x (Tn T (12)
k=1

Here, iz(a:, t) is the neural network prediction and ﬁ(:c, t) is the known solution through the neural
network at the previous time step, 7;,—1. Whereas, in the second stage the weights obtained in
the first stage are taken as the initial weights and the bc-PINN as described earlier is trained.
This is motivated by the fact that the solution of a PDE in a time segment is expected to be
close to the initial condition if the segment is small. Thus matching the initial condition brings
the neural network map closer to the true map. Since in the first step there are no derivative
calculations involved, it accelerates the training.

3.3. Transfer learning based acceleration (TL)

A transfer learning approach is implemented that uses the weights and biases from a be-PINN
that has been trained on a different initial condition or the previous segment. The transfer
learning approach preserves the features from a previous training as reported in [33]. This helps
in faster convergence for a new initial condition. A notable advantage of this technique is that
the training time can be significantly reduced as the number of trainable parameters decreases.

The two proposed techniques proposed (Initial condition guided learning and Transfer learning
based acceleration) shows significant improvement in the accuracy of the be-PINN - solution for
the Allen Cahn and Cahn Hilliard equations. These two techniques are independent of each
other and can be used either in tandem or individually.

3.4. Details of the neural network of bc-PINN

We have used a standard (deep) neural network with two input neurons consisting of the
spatial variables (x) and temporal variable (¢). The output of the neural network (h(x,t))
approximates the solution of the PDE (h(,t)). To avoid model bias due to input features of
different scales we have performed “min-max” normalization to scale the data uniformly. For
solving 1D Allen Cahn and Cahn Hilliard equations using be-PINN the architecture of the neural
network chosen has 6 hidden layers with 128 neurons in each layer. Whereas, while solving 2D
Allen Cahn and Cahn Hilliard equations using the aforementioned architecture didn’t yield a
good performance. Thus, in order to choose the neural network architecture for solving 2D PDEs
(section @) the following approach has been used. Preference has been given to increasing

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

the number of neurons of a hidden layer rather than increasing the number of hidden layers.
This is backed by the fact that increasing hidden layers is more computationally intensive than
increasing the number of neurons. For both std-PINN and bc-PINN, tanh is chosen as the
activation function. Even though it’s well known that tanh activation function has a problem of
vanishing gradient in very deep networks [34]. The advantages of tanh activation function are
that its continuous (range [-1,1]) and differentiable. Since, tanh is a non-linear function it gives
neural network the capability to learn non-linear maps [35]. The neural network has more than
100,000 learning parameters which have been initialized using the “xavier initialization” [36]
technique. The optimization of the loss function and updating the learning parameters (weights
and biases of the neural network) is performed using the ADAM and LBFGS optimizers. The
learning rate for ADAM optimizer is considered as 0.001 with all other parameters as suggested
n [37]. Following std-PINN, after training the neural network using the ADAM optimizer we
again train it using the L-BFGS optimizer until one of the following stopping criteria is met:
(i) Maximum iterations are equal to 50,000, (ii) Maximum number of function evaluations are
equal to 50,000, (iii) Maximum number of line search steps (per iteration) equal to 50, (iv) The
maximum number of variable metric corrections used to define the limited memory matrix are
equal to 50, (v) The iteration stops when % <= 2.22044604925¢ — 16, where f is
the neural network objective function and k is the iteration number.

3.5. Details of the Computational Platform

All the neural networks are trained on Nvidia Tesla P100 (3584 CUDA cores and 16GB of
HBM2 vRAM) and Nvidia Volta V100 GPU (5120 CUDA cores, 640 Tensor cores and 16GB of
HBM2 vRAM). For inferencing and generating the reference solutions via chebfun, we have used
Dell precision 3630 workstation with Intel core i7-9700k 8 core (4.9 GHz Turbo) and 32 GB
RAM. The software packages used for all the computations are Tensorflow 1.15 and MATLAB
R2020a. All the variables defined for computations in tensorflow are of float32 data type.

3.6. The reference solution

Accurate numerical solutions for the Allen Cahn and Cahn Hilliard equations are obtained
using the chebfun package [32]. The chebfun approach provides a polynomial interpolant
for smooth functions in Chebyshev points. To solve time varying PDEs an exponential time
differencing with Runge—Kutta time stepping scheme [38] has been implemented in chebfun,
which is used in the present work. Henceforth, these solutions are considered as the reference
solutions. We have taken 512 points for spatial discretization and 201 points for discretization in
time scale. A fourth order Runge-Kutta time integrator with time step At = 107° is used.

The be-PINN approach is applied to solve Allen Cahn equation and Cahn Hilliard equation
in sections (E and @ to demonstrate its advantages for nonlinear and higher order PDEs in
comparison to std-PINN method [g].

4. bc-PINN for Allen Cahn and Cahn Hilliard equations

The Allen Cahn and Cahn Hilliard |'| equations are two of the widely used partial differential
equations for studying the phenomena of phase separation [39]. There are innumerous practical

IThe Cahn Hilliard equation plays an essential role in the field of material science for describing the qualitative
features in a phase separation process for two phase systems (assuming isotropy and constant temperature). The
process of phase separation can be observed when a binary alloy is cooled down adequately. This leads to a state

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

applications of these equations in various fields such as material science [40), 411, [42] [43] [44] [45],
biological systems [46] [47] 48], 49, [50L [51], [52], electro-chemical systems etc. [53], [54] [55].

4.1. Allen Cahn Equation
For every x € , (Q is an open set of RP) the Allen Cahn equation can be written as:

hy — 2 V2h+ f(h)=0, te (0,T], x € QCRP
f(h) = ca(h® —h)

For a phase separation problem, the parameter h, represents the concentration of the individual
component and the parameter ‘c;’ represents the interfacial thickness. The solution progressively
develops interfaces separating different phases. For a given initial condition, ho(x) € L?*(Q)
and T > 0, we seek a function h : Q x (0,7] — R which satisfies the above equation. In order
to implement the be-PINN scheme for Allen Cahn equation, the following loss function has been
used.

(13)

e Mean squared error on the initial Condition

1

AL N\ 2)
> (bt Tu) = 1i) " @he0 (14)

1

MSE; =

e Mean squared error on the boundary Condition

Nl, ndg

1 aoa - 2
MSEp = 530 3 (A h i) ~ AV (e) (@) €T x (T, T
k=1d=1

(15)

where ng is the order to which periodicity is enforced on the boundary I". Here, the
superscript, ()® stands for boundary condition.

e The Mean squared error due to residual of the partial differential equation

R:=hy — 2 V2h + f(h)

2
3
—
—
D
=

1

T

(Raf,17)*, (@f, 1) € Q% (Tno1, T
1

The superscript, ()" stands for residual of the PDE.

b
Il

e Mean squared error for backward compatibility

s

1 . . 2
MSEs = = > (h@i i) —h@it))) . (@i H)eQx[0.Tm] (17)
% k=1

where, iz(m, t) is the neural network prediction and ﬁ(az, t) is the known solution through
the neural network from the previous time steps Q x [0,7,,—1]. The superscript, () stands
for the backward compatible solution.

e The total mean squared error is the same as given in equation

of total nucleation which is mainly referred to as spinodal decomposition. In the subsequent stage coarsening
occurs in the nucleated microstructure at a much slower rate. This whole phase separation phenomena affects the
mechanical properties (eg. strength, hardness and fracture toughness) of the material.

20 4.2. Cahn Hilliard Equation

21 For every « € Q, (Q is an open set of R”) the Cahn Hilliard equation can be written as:

= V2 (kf(h) — (ar)V? h(z,t)) =0, t € (0,T], z € QCRP (18)

222 To simplify the derivative calculation, a phase space representation of the Cahn Hilliard equation
223 has been adopted. The phase space representation is widely used to represent a high order PDE
24 into coupled multiple lower order PDEs. The phase space representation of the Cahn Hilliard
»s equation (a fourth order PDE, equation) yields two coupled second order PDEs.

—V3(—~(ar)p+rf(h) =0, u=V>3h te (0,7T), = € QCRP

f(h)y=h%—h (19)
26 Since the entire process is governed by the Cahn Hilliard equation it is essential to understand
27 the physical significance of each individual variable. The order parameter (h) in equation ,
xs refers to the rescaled density or concentration of one of the material components in the system
2o and it takes values between (-1 and 1, which corresponds to their pure states). The density of
20 second component is (1 — h), and this ensures that the total density over the simulation domain
21 is a conserved quantity. The parameter x is the mobility parameter and the parameter « is
2 related to the surface tension at the interface. In order to implement the bc-PINN scheme for
213 the Cahn Hilliard equation, the following loss function has been used.

e Mean squared error on the initial condition for h(x,t) and u(x,t)

N; N;
MSE; = Ni {Z (E(w}c,Tn) + Z alxt, T, MZ)Q} , xheQ (20

k=1 =1

e Mean squared error on the boundary Condition

Ny, ng
MSEg, = A {ZZ(h(d Db, 1) — ﬁ(d_l)(—xz,tZ)f}

k=1d=1
o A1 (g by — =D b (21)
MSEB“:N;) ZZ((z8, %) — (mkt))
k=1d=1
MSEp = MSEpg, + MSEBM s (xlwtk) el x (Tn,th]
23 Here, the superscript, (O)b stands for boundary condition.

e The Mean squared error due to residual of the partial differential equation

Ry = hy = V? (~(am)u + nf (i)

Ryi=jp=Vh (22)
1 N, Ny
roar\2 r oar\2
MSER = N {ZRl (@h, t1)° + Y Ra (a, 17) } . (& th) € Qx (T 1, Ty
k=1 k=1
235 The superscript, (e)" stands for residual of the PDE.

10

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

e Mean squared error for backward compatibility

N
1 <= /: A 2
MSEs = — (h(xz,t;) —Q(wz,ti)) L (@) e x[0,Th] (23)
® k=1
where, h(x,t) is the neural network prediction and h(x,t) is the known solution through
the neural network from the previous time steps x [0, 7,,—1]. The superscript, (e)° stands
for the backward compatible solution.

e The total mean squared error is the same as given in equation (11)

The boundary loss (equation is applied for ng = 1 on h and i1, to represent periodic boundary
conditions. Equation describes two components of residual for two PDEs in the phase space
form of the Cahn Hilliard equation (equation) In the following sections (E and @, the
results of Allen Cahn and Cahn Hilliard equations obtained using bc-PINN are presented..

5. Results of Allen Cahn and Cahn Hilliard equations using bc-PINN in 1D

5.1. Allen Cahn equation in one dimension

In this section, a 1D time varying Allen Cahn equation has been considered. The PDE
for Allen Cahn equation remains the same as described in section . Since, the domain
considered is one dimensional, Q € [—1,1] and ¢ € (0,1]. The values of the parameters considered
in equation are, ¢ = 0.0001 and cp = 5.

h(z,0) = z* cos(mz)
(—z,t), (z,%) eI x(0,T] (24)
M(—x,t), (z,t) el x (0,7

The above equation gives details about the initial and boundary conditions (where T’
describes the boundary).

5.1.1. std-PINN for Allen Cahn equation

At first, the aforementioned Allen Cahn equation is solved using the std-PINN to demonstrate
the challenge associated with non-linearity. The number of collocation points considered for
training the std-PINN are 512 points for initial condition, 201 points for the boundary condition
and 20,000 spatio-temporal points for computing the residual. The neural network architecture
used has 4 hidden layers with 200 neurons in each layer and which is the same as given in [§].
For training the std-PINN, we have used both ADAM and L-BFGS optimizers. Training is
performed using 100,000 ADAM iterations and the subsequent training has been performed
using the L-BFGS optimization method until one of the stopping criteria is met: (i) Maximum
iterations are equal to 50,000 (ii) Maximum number of function evaluations are equal to 50,000
(ili) Maximum number of line search steps (per iteration) equal to 50 (iv) The maximum number
of variable metric corrections used to define the limited memory matrix are equal to 50 (v) The
iteration stops when m <= 2.22044604925¢ — 16,where f is the neural network
objective function and k is the iteration number. The loss function for std-PINN is described in
equation , and . The solution of std-PINN is quite erroneous as shown in figure (3).
In order to understand the reason for failure of the std-PINN, we analyze its prediction for the
individual terms of the Allen Cahn equation. Figure shows the individual terms of the Allen

11

265

266

267

268

269

270

271

272

273

274

275

Cahn equation obtained through the Chebfun method and the std-PINN. We observe that the
std-PINN fail to predict the non-linear term (5(h® — h)) of the Allen Cahn equation. Therefore
we have shown that the std-PINN [8] does not work for the Allen Cahn equation that consist of
a strongly non-linear term.

0

-0.02
-0.04
-0.06
-0.08

-0.5

Figure 3: (a): The reference solution (Top) and the std-PINN solution (Bottom) of the Allen Cahn equation
for the entire spatio-temporal domain. (b): Time snapshots for the reference solution (——) and the std-PINN
solution (- --) at t = 0.25 and t = 0.75.

5.1.2. bc-PINN for Allen Cahn equation

To overcome this limitation of std-PINN, the backward compatible PINN approach has
been used along with ICGL and TL techniques. Therefore for the proposed be-PINN approach,
the loss function given in equations is used for any given time segment AT,,. The
hyper-parameters associated with training the be-PINN are number of ADAM iterations (Njzer),
time steps per segment and number of residual collocation points (N,.) per segment.

12

276

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

0.15 2

0.1
1
0.05
0
0— = \/\/
- -
-0.05 -1
-1 0 1 -1 0 1

T

Figure 4: Individual terms of the Allen Cahn Equation obtained through the (Left): std-PINN method (Right):

Chebfun method. h(z,t), (- - -), 0.0001V2h (—) and 5(h3 — h) () at t = 0.25.
Variable Description Number
N; Initial collocation points 128
Ny Boundary collocation points 50/segment
N, Residual collocation points | 20000/segment
Niter Number of ADAM iterations | 10000/segment

Table 1: Description of Training Data for Allen Cahn Equation. The segment considered here consists of
50 time steps.

In table 7 initial collocation points (NV;) refer to the input spatio-temporal points where
the initial condition is prescribed. (Np) and (N,.) refer to the number of boundary and residual
collocation points respectively and the output of the neural network at these points is used to
compute the loss function. For computing the backward compatibility loss the solution predicted
by the neural network in all the previous time steps is utilized. To reiterate, the reference
solution is only available at the initial condition whereas for all other points in the entire domain
the solution of the PDE is obtained through minimizing the be-PINN loss function.

The reference and predicted solution at time ¢ = 0.25 obtained by the std-PINN and bc-PINN
are shown in figure . While the std-PINN fails, the proposed bc-PINN predicts the solution
quite accurately. The relative total errors (etotq;) and the total training time for std-PINN,
XPINN, be-PINN and be-PINN with ICGL and TL approaches are shown in table [2| By using
techniques like ICGL and TL we have been able to observe a significant improvement in accuracy
and also reduction in training time. In order to implement the XPINN [14] for the time-varying
Allen Cahn equation the entire domain has been decomposed into 5 sub-domains sequentially
across time and each sub-domain is trained by a sub-net. Interfacial solution continuity across
different sub-domains has also been implemented and trained using 50,000 ADAM iterations
and L-BFGS optimizer with the same stopping criteria as be-PINN. But the main drawback
of XPINN in solving forward problems is that while training subnet-1 all other subsequent
subnets are also trained which increases the computational cost. For example, before even the
solution converges in subnet-1, subnet-2 is simultaneously being trained which searches for the
solution of the PDE in an infinite-dimensional space in other words subnet-2 is trying to predict
the solution with an incorrect initial condition, which has not yet converged to the correct solution.

The comparison between the predicted solution using be-PINN and the reference solution

is shown in figure @ This shows that the be-PINN can accurately predict the solution for
the entire domain. The solutions and errors by the std-PINN and bc-PINN are compared in

13

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

-0.5 -0.5

-1 -1
-1 0 1 -1 0 1

(a) std-PINN (b) be-PINN

Figure 5: Reference (——) and Predicted (- - -) solution at time t = 0.25

Method Error(etota;) | Training Time
std-PINN 0.9919 4.5hrs
XPINN 0.9612 4 hrs
be-PINN 0.0701 2 hrs
be-PINN with ICGL and TL 0.0168 0.75 hrs

Table 2: Relative total errors (equation) over the entire domain with respect to Chebfun solution for
different methods.

figure (|7), showing much higher accuracy by the be-PINN. The error plots confirms high accuracy
of be-PINN. The error increases with time very slowly. This is due to two reasons: (i) the solution
becomes progressively phase-separated (between zero and one) yielding greater curvatures and
sharp phase-boundaries that are difficult to capture, and (ii) due to the sequential nature of
the bc-PINN approach the error accumulates with time progression, which is similar to the
time-integrators. To illustrate the high accuracy of the be-PINN approach, solutions and errors
for different values of the interfacial thickness (c;) is plotted in figure (8). As we decrease the
parameter c1, it can be seen that the error in the prediction decreases. The parameter ¢; controls
the effect of the double derivative of the solution (V2 h). Therefore, as we decrease ¢; the error
due to the approximation in derivative reduces and thus the accuracy of the be-PINN solution
increases. In a new loss function including a logarithmic residual for the Allen
Cahn equation is discussed. This new logarithmic residual be-PINN approach and its results are
presented in comparison with the simple be-PINN approach without a logarithmic residual.

5.2. Cahn Hilliard equation in one dimension

In this section, a 1D time varying Cahn Hilliard equation has been considered. The PDE
for Cahn Hilliard equation remains the same as described in section . Since, the domain
considered is one dimensional, Q € [—1,1] and ¢ € (0, 1]. The values of the parameters considered
in equation are, a = 0.02 and k = 1.

h(z,0) = cos(mz) — exp(—4(nz)?)
t

h(—z,t) = h(z,t), (z,t) €T x(0,T]

A (2, t) = AV (z,t), (2,t) €T x (0,T] (25)
u(—z,t) = p(z,t), (x,t) € x(0,T]

pD (=2, t) = D (2,t), (2,1) €T x (0, 7]

321

322

323

324

325

326

327

328

329

330

331

332

333

1
0
0.5
0
-0.5
-0.5
-1 -1 J L
-1 0 1 -1 0 1

(b)

Figure 6: (a): Reference (Top) and bc-PINN (Bottom) solutions of the Allen Cahn equation for the entire
spatio—temporal domain. (b): The Reference (——) and the bc-PINN (- - -) solutions at time ¢ = 0.25 and
t=0.75.

The above equation gives details about the initial and boundary conditions (where I'
describes the boundary).

5.2.1. std-PINN for Cahn Hilliard equation

Initially, the Cahn Hilliard equation (without phase space) is solved using the std-PINN
to demonstrate the challenge associated with high order. The neural network architecture
used has 4 hidden layers with 200 neurons in each layer and which is the same as given in
[8]. For training the std-PINN, we have used 20,000 collocation points and the loss function is
minimized by using 100,000 ADAM iterations and subsequently L-BFGS optimizer until one
of the stopping criteria are met: (i) Maximum iterations are equal to 50,000 (ii) Maximum
number of function evaluations are equal to 50,000 (iii) Maximum number of line search
steps (per iteration) equal to 50 (iv) The maximum number of variable metric corrections
used to define the limited memory matrix are equal to 50 (v) The iteration stops when

k_ gkl
—f +

A LT <= 2.22044604925¢ — 16,where f is the neural network objective function and &

15

-0.02
-0.04
-0.06
-0.08

%1073

0 0.2 0.4 0.6 0.8
t

—

(b) Predicted solution (top) and relative error (bottom) obtained using bc-PINN

Figure 7: Solution and relative error associated with respect to the reference solution for Allen Cahn equation.

N

0.5
—
g 0 0
S Y
-1 -1
0 0.1 0.2 0.3 0.4 0.5
t
1 %107
12
;0
4
1 2
0 0.1 0.2 0.3 0.4 0.5

t

(a) Predicted solution (top) and relative error (bottom) obtained using bc-PINN for ¢? = 0.00001

————
E——__
g 0)
e 5
 e—_ s |
0 0.1 0.2 0.3 0.4 0.5
t 4
1 430
10
8
8 0 6
4
2
1
0 0.1 0.2 0.3 0.4 0.5

t
(b) Predicted solution (top) and relative error (bottom) obtained using be-PINN for ¢ = 0.00005

Figure 8: Solutions and relative errors of the Allen Cahn equation for different cf (of equation @)) obtained by
the bc-PINN method.

17

334

335

336

337

338

339

340

341

342

343

Figure 9: (a): The reference solution (Top) and the std-PINN solution (Bottom) of the Cahn Hilliard equation
for the entire spatio—temporal domain. (b): Time snapshots for the reference solution (——) and the std-PINN
solution (- --) at t = 0.12 and t = 0.37.

is the iteration number. The loss function for std-PINN is described in equation (3)), () and (5).
The solution predicted after training is shown in figure (ED and it can be observed that there is
significant mismatch between the std-PINN prediction and the reference solution.

The two possible reasons for the inaccurate solution are strong non-linearity and the high
order derivative terms (fourth order). In PINN the derivatives are approximated using automatic
differentiation. It has been shown that as the order of the derivative increases the complexity in
automatic differentiation increases and it becomes computationally expensive [9]. In order to
overcome the difficulty in approximating the higher order derivative via automatic differentiation,
we adopt the phase space representation in the proposed bc-PINN.

18

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

5.2.2. bc-PINN for Cahn Hilliard equation

In this section, we introduce the bc-PINN approach with a phase space representation for
solving the Cahn Hilliard Equation (equation . Additionally we have used the ICGL and TL
techniques as described in sections . Therefore, there are two outputs of the neural
network iL(iE, t) and fi(x,t) in the present method. The input features are the spatio—temporal
variables (z,t). The modified loss function for the coupled phase space system includes an
error on initial condition, error on the boundary conditions and error on the residual. In
addition it will have the error for the backward compatibility. Therefore, the total loss function
(equation (|11)) for any time segment AT, is sum of all the aforementioned errors given in
equation (201/23).

Variable Description Number
N; Initial collocation points 128
Ny Boundary collocation points 20/segment
N, Residual collocation points | 10000/segment
Niter Number of ADAM iterations | 10000/segment

Table 3: Description of training data for Cahn Hilliard equation. 20 time steps/segment have been considered
and the amount of collocation points generated remains same and doesn’t increase as we progress through time.

Table (3| describes the values of the hyper-parameters used in be-PINN. N; and N, refers to
the number of points considered to enforce the initial and boundary condition respectively. N,
is the number of residual collocation points per time segment and Ny, is the number of ADAM
iterations used to train the neural network per time segment. As described in section
only the reference solution at the initial points (V;) is used to compute the initial loss and for
computing the remaining terms in loss function (equation @) the output of the neural
network (predicted solution of the PDE) is used.

The accuracy of the proposed bc-PINN approach is shown by comparing it against the
reference solution obtained by the chebfun method in figure (10). This shows that the phase
space representation with be-PINN can closely match the reference solution for the Cahn Hilliard
equation. The relative total error (g¢ptq;) Obtained for the be-PINN solution is 0.0186 whereas for
the std-PINN solution the error is 0.8594. It is evident from the error plots given in figure
that a more accurate solution is obtained by using the bc-PINN compared to std-PINN. The
higher accuracy can be accredited to the fact that approximating lower order derivatives using
automatic differentiation is much simpler. One key observation to note is that the solution in
the n'! time segment takes the solution at time 7},_; from the (n — 1)*" time segment as initial
condition. Thus, only the error at the end point in a time segment is propagated to the next time
segment. For instance, only the error at the time 7},_; in (n — 1)*" time segment is propagated
to the next time segment. Errors at all other time steps in (n — 1)'" time segment does not
propagate to the n'" time segment. This can be observed in figure , even though the error
at time 0.01 is quite high but since this is not the end point of the time segment [0, 0.05] it does
not propagate with time. The error in the first time segment can be further reduced by using
more iterations and the accuracy of the total solution can be improved. To further demonstrate
the effectiveness of the current phase space backward compatible training approach, we have
taken different values of the parameter (ax) and compared the predicted solutions with the
reference solutions generated using chebfun which is shown in figure . The proposed phase
space representation with bc-PINN approach can be extended to any partial differential equation
consisting higher order derivatives and non-linearity.

19

t = 0.02 t =0.97
0.5 1
0
0
-0.5
-1 -1
-1 0 1 -1 0 1
T

Figure 10: (a): Reference (Top) and bc-PINN (Bottom) solutions of the Cahn Hilliard equation for the entire
spatio-temporal domain. (b): The Reference (—) and the bc-PINN (- - =) solutions at time ¢ = 0.02 and
t=0.97.

20

o

N A~ o X

0 0.1 0.2 0.3 0.4
t

(a) Solution (top) and relative error (bottom) via std-PINN

0.5

o

-0.5

%107

N

1.5

—_

0.5

0 0.2 0.4 0.6 0.8
t

(b) Solution (top) and relative error (bottom) via bc-PINN

Figure 11: Solution and error associated with respect to the reference solution for Cahn Hilliard equation.

21

(a) Solution (top) and error (bottom) for ax = 0.01

t

(b) Solution (top) and error (bottom) ax = 0.005

Figure 12: Solution and relative errors of the Cahn Hilliard equation for different parameters (« k of equation)
obtained by the bc-PINN method.

22

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

6. Results of Allen Cahn and Cahn Hilliard equations using bc-PINN in 2D

In this section, the Allen Cahn and Cahn Hilliard equations are solved in two dimensions
using the proposed bc-PINN scheme. Solving the Allen Cahn and Cahn Hilliard equations in 2D
is more computationally intensive than in 1D. Thus in order to solve the 2D equations, the
be-PINN technique has been implemented along with the ICGL and TL techniques as proposed

in section .

6.1. Allen Cahn equation in two dimensions

In this section, a two dimensional time varying Allen Cahn equation has been considered.
The PDE for Allen Cahn equation remains the same as described in section . The values of
the parameters considered in equation @ are, ¢7 = 0.0001 and ¢; = 1. To demonstrate the
proposed method following two IBVPs have been considered :

IBVP-1: The PDE used is the same as that given in equation . The domain for the IBVP
is taken as x t € [0,1]2x (0, 1]. The initial condition chosen is, sin(47z1) cos(4mzs), where,
(w1, 2) are points in the domain [0, 1]2.The boundary conditions have been considered to
be periodic, A4~V (x,t) = K4~V (—z, 1), for d = 1,2

IBVP-2: The PDE used is the same as that given in equation . The domain for the
IBVP is taken as « x t € [0,1]2 x (0,2]. The initial condition chosen is a random doubly
periodic function where the maximum amplitude is 0.3. The boundary conditions have
been considered to be periodic, A4~ (z,t) = h{=V(—x,t), for d = 1,2

6.1.1. be-PINN for Allen Cahn equation in two dimensions

First in order to solve IBVP-1, the ICGL technique has been using along with bc-PINN. The
loss function for ICGL and bc-PINN remains the same as described in equations @, E
Furthermore, as described in section 7 Chebfun is used to obtain the reference solution.
Here, the spatial domain has been discretized into a grid containing 64 points along each
axis and the temporal domain has been discretized into 101 grid points. The neural network
architecture has 3 input neurons and consists of 6 hidden layers with 128 neurons in each layer.
The output layer contains only one neuron for the output/solution of the PDE (h). Following, to
solve the IBVP-1, be-PINN is used along with with the ICGL technique. The loss function has
been optimized using both ADAM and L-BFGS optimizers. 15,000 ADAM iterations (20% for
MSEg; and 80% for MSEar,) and 10,000 LBFGS iterations are used for every time segment.
Apart from the maximum iterations other stopping criteria for L-BFGS remain the same as
those mentioned in section (criteria ii - v). The total number of collocation points used to
train the be-PINN for IBVP-1 are given in table 4| The total error in prediction (€4tq1), using
be-PINN with ICGL is 2.5%. Whereas, the total error in prediction using be-PINN without
ICGL is more than 95%. Figure shows the evolution of solution as time increases.

N; Initial collocation points 4096
N, | Boundary collocation points 640 per segment
N, | Residual collocation points | 20,000 per segment

Table 4: Description of training data for 2D Allen Cahn equation (IBVP - 1). 20 time steps/segment have been
considered and the amount of collocation points generated remains same and doesn’t increase as we progress
through time.

23

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

1'- - T . 1 1

g :'zllll Z':I-I. ZZ
VLA A A L L L 1 02
ol B R B e L L) 06
-, - 1

1 1

; S -
3 wl Ll
E 02--.. -0.6
I W W W 3 1

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

Figure 13: Reference and be-PINN predicted solution of the 2D Allen Cahn equation (IBVP-1) at different time
snapshots (a) t =0, (b) t =05, (c)t =1

To demonstrate be-PINN with (ICGL and TL), IBVP-2 has been considered. The loss function for
ICGL, initial condition, and boundary condition remains the same as described in equations
. The total loss function also remains the same as given in equation . The optimization
of the loss function is performed using both ADAM and L-BFGS optimizers. For minimizing
the loss function in the first segment 30,000 ADAM iterations and 10,000 LBFGS iterations are
used. From the second segment 40,000 ADAM iterations and 10,000 LBFGS iterations are used
in optimizing the bc-PINN loss function. Apart from the maximum iterations other stopping
criteria for L-BFGS are the same as mentioned in section (criteria ii - v). Also, during
the minimization process in each time segment, 20% of the total ADAM iterations are used
to implement the ICGL technique. The neural network architecture remains the same as that
used for solving IBVP - 1 (3 input neurons, 6 hidden layers with 128 neurons, and 1 output).
Following, the TL technique has been implemented by freezing the parameters obtained after
solving the IBVP-1. Initially, only a single layer is fixed. As the training progresses through
different time segments the number of layers frozen has been slowly incremented. Table gives
details about the number of collocation points and the time segment details. From figure it
can be observed that the bc-PINN prediction matches well with the reference solution, whereas
the std-PINN cannot solve this using the same number of collocation points.

N; Initial collocation points 4096
N, | Boundary collocation points | 1600 per segment
N, | Residual collocation points | 30,000 per segment

Table 5: Description of training data for 2D Allen Cahn equation (IBVP - 2). 50 time steps/segment have been
considered and the amount of collocation points generated remains same and doesn’t increase as we progress
through time.

24

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

(@) (b)

1 1
0.8 0.8
&
€ 06 0.6
o
€ 04 0.4
E 02 0.2
0 02 04 06 08 1 0 02 04 06 08 1
1 1
.' £ -y
o 08 0.8 0.8 . !
- .
8 06 0.6 UL AL, O™
oo L]

T 04 0.4 047 gt 8
& hy 3
0.2 0.2 0.2 o

o i -:. i

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

Figure 14: Reference and be-PINN predicted solution of the 2D Allen Cahn equation (IBVP-2) at different time
snapshots (a) t =0, (b) t =12, (¢c) t = 2

6.2. Cahn Hilliard equation in two dimensions

In this section, a two dimensional time varying Cahn Hilliard equation has been considered.
The PDE for the Cahn Hilliard equation remains the same as described in section . The
values of the parameters considered in equation are, (a, k) = (0.02,1). To demonstrate the
applicability of bc-PINN for 2D Cahn Hilliard, the following two IBVP’s has been considered:

IBVP-1: The PDE used is the same as that given in equation . The domain for the IBVP
is taken as xt € [0, 1]?x(0,0.005]. The initial condition chosen is, 0.4 cos(3mx1) cos(3mxs),
where, (71, 12) are points in the domain [0, 1]2. Homogeneous Neumann boundary conditions
have been considered.

IBVP-2: The PDE used is the same as that given in equation . The domain
for the IBVP is taken as x t € [0,1]? x (0,0.005]. The initial condition chosen is,
0.4 cos(4mw1) cos(4n(z1 + x2)), where, (21, x2) are points in the domain [0, 1]2. Periodic
boundary conditions have been considered.

IBVP-3: The PDE used is the same as that given in equation . The domain for
the IBVP is taken as x x t € [0,1]? x (0,0.00375]. The initial condition chosen is a
random doubly periodic function where the maximum amplitude is 0.5. Periodic boundary
conditions have been considered.

6.2.1. bc-PINN for Cahn Hilliard equation in two dimensions

As described in section , the ICGL technique has been used along with bc-PINN to solve
IBVP-1. A key point to be noted here is that the loss function for ICGL remains the same as
that in equation . Therefore, the total loss function (equation (11)) for any time segment
AT, is a sum of all the aforementioned errors given in equation .

25

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

Further in order to generate the reference solution for IBVP-1, a cosine transform has been
utilized as given in [56]. Here, the spatial domain is discretized into a grid containing 64 points
along each axis. The temporal domain is discretized into 201 grid points. The neural network
architecture has 3 input neurons and consists of 5 hidden layers with 128 neurons in each layer.
Two output neurons have been taken to represent the output/solution of the PDE and the phase
space term (h,). The minimization of be-PINN loss function has been performed using ADAM
and L-BFGS optimizers. The number of ADAM iterations are 30,000 for the first segment and
for all the later segments 50,000 iterations have been used. The maximum number of L-BFGS
iterations are 15,000 per segment and the other stopping criteria are the same as those mentioned
in section (criteria ii - v). The details of collocation points used to train the be-PINN for
IBVP1 are given in table (6). Figure (I5), shows the evolution of h(z,t) with time and there’s a
good match between the predicted and reference solution.

N; Initial collocation points 4096
Ny | Boundary collocation points | 1600 per segment
N, | Residual collocation points | 50,000 per segment

Table 6: Description of training data for 2D Cahn Hilliard equation (IBVP-1). 50 time steps/segment have been
considered and the amount of collocation points generated remains same and doesn’t increase as we progress
through time.

@
lp - - r 0.5
) 0.8 0.3
o
5 ol A 0.1
-
(] 0.1
E 0.4. ™ - |
02 0.3
i s F il 0.5
0 02 04 06 08 1
1 __ 0.5
0.8 0.3
b~
% 0.6' ‘ o ! 0.1
5
0.1
0 04 ™ » |
o 0.2 0.3
0.5

e 1 N
0O 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08

Figure 15: Reference and bc-PINN predicted solution of the 2D Cahn Hilliard equation (IBVP-1) at different
time snapshots (a) t =0, (b) t = 0.003 , (¢) t = 0.005

In order to demonstrate bc-PINN with (ICGL and TL), IBVP-2 has been considered. To solve
the IBVP-2, the loss function for ICGL, initial condition and boundary condition remain the
same as described in equations . To generate the reference solution for IBVP-2
and IBVP-3, an explicit time stepping scheme is used for time integration and a 9-stencil finite
difference method for computing the spatial derivatives. Here, the spatial domain is discretized

26

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

N; Initial collocation points 4096
N, | Boundary collocation points | 1600 per segment
N, | Residual collocation points | 50,000 per segment

Table 7: Description of training data for 2D Cahn Hilliard equation (IBVP-2,IBVP-3). 25 time steps/segment
have been considered and the amount of collocation points generated remains same and doesn’t increase as we
progress through time.

@ ()

1 1
g 0.8 0.8\ 0.6
§ 0.6 0.6 0.2
"3 0.4 0.4\I -0.2
.2 0.6
0.2 0.2\ -
L\ |

0 02 04 06 08 1 O 02 04 06 08 1 0 02 04 06 08 1
1 1 1 3 1
o 0.8 o.s\ \ \ \ 0.8 \ 0.6
5 06 0.6 0.6 0.2
§ 04 0.4\ 0.4 02
& 02 0.2\ 0.2 -0.6
-1

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

Figure 16: Reference and bc-PINN predicted solution of the 2D Cahn Hilliard equation (IBVP-2) at different
time snapshots (a) t =0, (b) t = 0.003, (c) t = 0.005

into a grid containing 64 points along each axis, whereas, the temporal domain is discretized
into 101 grid points. The neural network architecture has 3 input neurons and consists 5 hidden
layers with 128 neurons in each layer. Two output neurons have been taken to represent the
output/solution of the PDE and the phase space term (h,). The neural network architecture
remains the same as that used for solving IBVP - 1 (3 input neurons, 5 hidden layers with 128
neurons and 2 outputs). Following, the TL technique has been implemented for IBVP2 by
freezing the parameters obtained after solving the first segment of IBVP-1. Initially, only a
single layer is fixed and as the training progresses through different time segments the number
of layers frozen has been incremented by one after every time segment. The minimization of
be-PINN loss function for IBVP-2 has been performed using ADAM and L-BFGS optimizers.
The number of ADAM iterations are 50,000 for all the segments. The maximum number of
L-BFGS iterations are 75,000 per segment and the other stopping criteria are same as those
mentioned in in section (criteria ii - v). The details of collocation points used to train the
bc-PINN for IBVP-2 are given in table . Figure shows the evolution of h(x,t) with time.

Despite using all the aforementioned techniques (ICGL, TL and weighting of the loss function)
the solution doesn’t converge efficiently for IBVP-3. This is because the initial condition in this
case is random and the evolution is complex. Therefore, we have used a sum of £! norm and £2
norm of the individual error terms in the total loss function. The reason behind using such a

27

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

(@)

(©

1 1 1
08 A9 0.8 0.6
Q ' . .
9 06 - 0.6 0.2
()] . I
a', 04 -. 0.4. 0.2
‘5 ‘ -0.6
¢ 02 0.2 .
- h B
0 02 04 06 08 1 1 0 02 04 06 08 1
1 1 1
3 0.8. ‘ I 0.8 0.6
5 06 - . 0.6 02
T 04 - 04 02
& -
02 W 02 0.6
- -1

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

Figure 17: Reference and bc-PINN predicted solution of the 2D Cahn Hilliard equation (IBVP-3) at different
time snapshots (a) t =0, (b) t = 0.002, (c) t = 0.005

loss function is that, when the error is small the penalization due to £ norm is more than £2
norm. Thus, as given in equation a combination of £! norm + £2? norm has been used to
solve the IBVP-3.

MSEAT” = w; (MSE[+ MAEI) + wy (MSEB + MAEB)—I—

26
w, (MSEg, + MAER) + w, (MSEg + MAEy) (26)

Here, MAEj, is the mean absolute error on the initial condition ; MAEg, is the mean absolute
error on the boundary condition; MAEg, is the mean absolute error on the residual (Rj, Rg) as
given in equations ; MSEg; is the mean absolute error on backward compatibility;

Other hyper—parameters like neural network architecture, number of training iterations, number
of collocation points etc. remain the same as those used for solving IBVP-2. The only difference
is that the TL technique has been implemented for IBVP-3, by using the parameters obtained
after solving the first segment of IBVP-2. Considering the complexity of the Cahn Hilliard
equation from figure it can be observed that the bc-PINN prediction matches the reference
solution remarkably well.

7. Conclusions

A new PINN approach (named as be-PINN) has been proposed for solving the Allen Cahn
and Cahn Hilliard equations, however, the methodology in general should be applicable to
any PDE. The bc-PINN re-trains the neural network over successive time segments while
satisfying the solution for all previous time segments. Additionally, be-PINN incorporates
two new techniques to improve the accuracy and efficiency of training. Firstly, while solving
a boundary value problem using bc-PINN, the initial condition of that segment is used to
bring the neural network map closer to the true map. Secondly, a transfer learning approach

28

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

is implemented to accelerate training, where the parameters learned from previous training
are used to train a subsequent segment or a new initial condition. In addition by using
a phase space representation for the Cahn Hilliard equation, better convergence has been achieved.

The key advantages of bc-PINN are summarized below. The proposed be-PINN method can
provide an accurate solution for nonlinear or higher-order PDEs such as the Cahn Hilliard and
Allen Cahn equations in 1D and 2D. Moreover, the proposed method can achieve high accuracy
by using fewer collocation points compared to std-PINN. Despite the segmentation of the time
domain, it uses only one neural network and provides a continuous solution for the entire
spatio—temporal domain. The proposed backward compatibility scheme may enhance many other
machine learning approaches applied to complex systems represented by time dependent PDEs.

The code accompanying this manuscript would be available on Github repository:
https://github.com/vmattey/bc-PINN

Acknowledgments: SG acknowledges the financial support by NSF (CMMI MoMS) under
grant number 1937983. We acknowledge Superior, a high-performance computing facility at
MTU and Google Colab, a cloud service hosted by Google. This work used the Extreme Science
and Engineering Discovery Environment (XSEDE) (allocation number MSS200004), which is
supported by the NSF grant number ACI-1548562. RM acknowledges Ponkrshnan Thiagarajan
and Shashank Pathrudkar for their valuable discussions and insights on the topic.

29

https://github.com/vmattey/bc-PINN

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

Appendix A. Hyper-parameter selection for bc-PINN

As discussed in section [5] and [6] the proposed method has a number of hyper-parameters like
number of ADAM iterations (N per segment), time steps per segment, number of collocation
points (N,.) etc. The accuracy of the be-PINN’s solution depends on proper choice of these
hyper-parameters. To optimize each of the hyper-parameters, various cases and metrics like
computational time and accuracy have been considered. In the current section, we chose the
Cahn Hilliard equation as the canonical example for all the analysis performed. Table
describes the optimum parameters required to train 100 steps. The optimum parameters are
chosen to achieve an accurate solution while balancing the computational cost as shown in
figure (A.18). It can be also seen that as the number of collocation points and number of
iterations are increased the accuracy increases. Therefore, a segment size of 10 steps with 5000
collocation points and 10000 iterations per time segment has been chosen.

In general the be-PINN framework is robust enough to handle any arbitrary length of time
segments and any number of time segments. One effective way for choosing a minimum time
segment is to try training the bc-PINN initially for a specific length of time segment where the
accuracy doesn’t get affected. Based on this minimum length of time segment the total number
of time segments can be chosen depending on the length of the total time domain.

Model | Time steps/segment N, Niter
A 10 5000 | 10000
B 10 5000 | 20000
C 10 10000 | 10000
D 10 10000 | 20000
E 25 5000 | 10000
F 25 5000 | 20000
G 25 10000 | 10000
H 25 10000 | 20000

Table A.8: Parameter combinations for choosing the optimum segment size, collocation points and number of
ADAM iterations to apply the be-PINN technique for Cahn Hilliard equation.

Appendix B. bc-PINN with a logarithmic residual for Allen Cahn Equation

In this section we show how the bc-PINN with logarithmic residual compares against the
std-PINN and bc-PINN without the logarithmic residual. The loss function for the bc-PINN
with a logarithmic residual is same as the be-PINN except the equation is replaced by the
following loss term for the residual of the PDE:

R:=h —C% VQ}Al—l-f(}Al)

(In) 1 9 (B.1)
MSER" = > In(1+ (R, 1)), (ahth) € 2 x (Tu-r, Tl
" k=1

It turns out that the bc-PINN with a logarithmic residual is more accurate than the be-PINN
without the logarithmic residual. A possible explanation is that the logarithmic function reduces
the relative weight on the MSER, which would have larger inaccuracy due to its derivative and
nonlinear terms. Thus the initial and boundary terms are satisfied more accurately, which in

30

559

560

561

562

563

564

565

=
FS

Relative Error (¢)

Training Time (hrs)

A B C D E F G H
Figure A.18: Relative error (&) and time taken for various models given in table .

0 0
-0.5 -0.5
-1 -1
-1 0 1 -1 0 1
(a) be-PINN (b) be-PINN with log residual

Figure B.19: Reference (——) and Predicted (- - -) solution at time t = 0.25

Method Error(¢)

std-PINN 0.9919

bc-PINN 0.0701
bc-PINN with logresidual 0.03

Table B.9: Relative errors (equation) over the entire domain with respect to Chebfun solution for
different methods.

turn yields a more accurate solution. This explanation is substantiated by the fact that when
the logarithmic function is used on all of the four terms in the loss function then the accuracy
decreases.

Appendix C. Minimization of the bc-PINN loss function

In section [3.4] we have described the learning rates and stopping criteria for the ADAM and
LBFGS optimizer that are utilized to train the be-PINN. Figure (C.20) shows the minimization
of the loss function (equation (I1))) while training the be-PINN for 1D Cahn Hilliard equation in

31

566

567

568

569

570

571

572

573

574

575

576

577

578

579

time segment [0.45,0.5].

n
n
Q
[
0 200 400 600 800 1000
Iterations
0015 T T T T T T T
— LBFGS
o 01} .
n
o
= 0.05 |
0 1

0 2000 4000 6000 8000 10000 12000 14000 16000
Iterations

Figure C.20: Loss vs Iterations (Top): using ADAM optimizer (Bottom): using the LBFGS optimizer for training
the time segment [0.45, 0.5] of the Cahn Hilliard equation.

Appendix D. Data driven identification of parameters for PDEs using bc-PINN

The framework of bc-PINN is versatile and can be applied to both forward and inverse
problems. Data driven methods for inverse problems have been shown to be extremely effective
57, 24] [58] [59]. Especially in situations where only partial physics and noisy data are present
physics informed neural networks perform well. In this section, the performance of std-PINN |[§]
and bc-PINN for non-parametric PDEs and parametric PDEs has been showcased. For the
non-parametric PDE case, Allen Cahn equation which has been described in section [will be
considered as the canonical example. Finally for the parametric PDE, burgers equation with a
time-varying parameter has been considered.

Consider a general, m*" order partial differential equation with parameters A;, Ay etc. as given

in equation (D.1).

he = F(h(z,t), hD (x,t) , h2 (1), - - R (@, 1), A1, Xay -+, An), 2 € QCRP € (0,7
(D.1)
In equation (D.1), we are interested in finding the parameters A1, Ao - - - A\,,. These parameters
are learnt by defining them as trainable parameters to the physics informed neural networks.
Therefore the loss function can be written as

32

580

581

582

583

584

585

586

587

588

589

590

591

e Mean squared error on the observed data

N,

RS 2

MSE, = = > (hl@f.) = h2)" . (@i, t) € 2x (0.7] (D.2)
© k=1

e Mean squared error of the residual at observed data points

R:=hy — F(h(x,t), D (x,t) , AP (2, 1), A (@, 1), A1, Ag, -+, An)

1 a o 10\\2 o 10 (D?))

where h(x9,t?) is the neural network output and hg is the observed data at (g, 7). Here,
the superscript, (e)° stands for observed data.

e The total mean squared error for the inverse std-PINN is given as

MSE = MSE, + MSE,z (D.4)

The equations @@ represent the total loss function of std-PINN for inverse identification
of parameters. In order to implement the bc-PINN scheme for inverse problems, the domain
has been divided into multiple segments as shown in figure (D.21)). To identify the parameters
in a particular time segment, the residual has been minimized only on the observed data in
that particular segment. Additionally, to implement the backward compatibility scheme the
solution of all the previous segments is satisfied simultaneously. Moreover, the parameters for
n'" time segment are initialized from the parameters learned in the (n — 1)** time segment.
This framework helps in identifying the parameters of the PDE in a given segment and also
learning the solution in the entire domain. The loss function for parameter identification using
the be-PINN framework is as follows:

x::: - (

(x,?, tlg) € X [Tn—l’ Tn]

(%, 1) € . x [0, 4]

To=0 o4 T, wus Ty_q) T, Thi1 T Vt
i
Ve ~ 7 N

MSE,s(xg®%,t2°) + MSE,(xp, tg) + MSER(xp,tg)

Figure D.21: Illustration of the proposed backward compatibility scheme that satisfies the data observed in the
previous time segments at the same time learning the observed data and parameters in a particular segment.

33

592

593

594

595

596

597

598

599

600

601

602

603

604

e Mean squared error on the observed data

No

~ 2
> (b t) ~12) s (@R,4) €@ x [T, T
k=1

1

MSEO == ﬁ

(D.5)

e Mean squared error of the residual at observed data points

R:= ht - F(h(ﬂ),t), h(ml)(mat)) h(mZ) (mat)a e 7h(mm)(mat)v >\la)‘27 e v)‘n)

1 oL o 10\\2 o 40 (DG)
MSEqr = N Z (R(p, t3))" (x7,ty) € QU x [Th—1, T
© k=1

e Mean squared error on the previous segments observed data

2

1 0s
NOS

~ 2
MSE,, = (bt =) @F) € Qx0.Ta] (D)

>
Il

1

where ﬁ(mzs, t9°) is the neural network output and h{® is the observed data at (x(®,t9°).
Here, the superscript, (#)°° stands for observed data in the previous time segments.

e Total mean squared error for inverse bc-PINN is given as

MSEa7, = MSE, + MSE,z + MSE,, (D.8)

Appendiz D.1. Parameter identification of Allen Cahn equation 1D

The Allen Cahn as described in earlier sections is a very widely used PDE in material science
for studying the diffusion separation process. Therefore inverse identification of the Allen Cahn
equation is essential to understand the governing physics of a process. Let us consider the explicit
form of Allen Cahn equation

he = MV2h 4 Ao (h® — h), t € (0,7),

reNCR (D.9)

Using the proposed framework of be-PINN for inverse problems, the parameters learned are
compared against std-PINN. To generate the required data set, random points have been sampled
from the reference solution of Allen Cahn equation. The reference solution is computed as given
in section . Also to test the effectiveness of both the methods noise has been added to
the reference solution. Table (D.10) shows the parameter values obtained using std-PINN and
be-PINN.

Predicted \q Predicted A\ T9ta1 relatlw'a error
(True value : 1e-04) (True value : 5) in the prgdmted
solution
Noise (%) | be-PINN PINN bce-PINN | PINN | be-PINN | PINN
0 1.504e-04 | 1.522e-04 | 5.03237 | 5.01081 | 0.0068 0.0062
2 1.375e-04 | 7.592e-05 | 4.98174 | 4.98214 | 0.0078 0.0070

34

Table D.10: True and Predicted parameters using bc-PINN and std-PINN for the 1D Allen Cahn equation.

605

606

607

608

609

610

611

612

613

614

615

616

618

619

620

621

Appendiz D.2. Parameter identification of Burgers equation with a time-varying parameter

This section highlights the ability of the proposed bc-PINN framework for solving parametric
PDEs. Most of the real world systems are governed by parametric PDEs. The explicit parametric

form of burgers equation is as follows:

hi = A1(t) hhy + Aohyy

(z,) € [-8,8] x (0, 10]

(D.10)

where, A1 (t) is a time varying parameter and, Ay is a constant value equal to 0.1. The reference

solution has been computed as given in [57].

1.00
0.75
0.50
0.75
1.00

Ai(t) =

0<t<?2
2<t<4
4<t<6
6<t<8
8<t<10

(D.11)

Using the proposed framework of be-PINN for inverse problems, the parameters of the parametric
burgers equation are learnt using an arbitrary length of time segment. In the present example
the total time domain has been discretized into 256 time steps. Therefore, in order to identify
the time varying parameter (A;) an arbitrary time segment of 10 steps has been chosen. In
order to identify the parameter A1, all the observed data within the 10 steps segment has been
considered. A similar procedure has also been adopted for identifying the parameter As.

1.5
True
125 L + bC—PINN i
std-PINN + +
+
1.|r4—-|--|-—l— ——
& +
&
< 0.75 ¢ —— — 1
+ +
+ &
05 r —l—.‘? i
0.25 + i
0 Il Il Il Il
0 2 4 6 8 10
t

Figure D.22: ‘A1’ learned using the bc-PINN and std-PINN approach for the parametric burgers equation

From figure , it can be observed that the predicted parameters follow a trend
similar to the true values. The main advantage of inverse bc-PINN scheme is that without any
prior knowledge, the nature of a PDE (contant or time-varying) can be identified. Moreover, the
values of the time varying parameters can be obtained without any prior information about the
time segments over which its constant.

35

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

0.25 :

True
+ bc-PINN
0.2+ = = =std-PINN |]
0.15+ J
<
+ + +
0.1 tyrggt .1-::::_'- g Ty —— : ET:’
+
0.05 + J
0 1 1 1 1
0 2 4 6 8 10
t

Figure D.23: ‘A2’ learned using the be-PINN and std-PINN approach for the parametric burgers equation

References

1]

[2]

Z. Mao, A. D. Jagtap, G. E. Karniadakis, Physics-informed neural networks for high-speed
flows, Computer Methods in Applied Mechanics and Engineering 360 (2020) 112789.

H. Arbabi, J. E. Bunder, G. Samaey, A. J. Roberts, I. G. Kevrekidis, Linking machine
learning with multiscale numerics: Data-driven discovery of homogenized equations, JOM
72 (12) (2020) 4444-4457.

M. Raissi, P. Perdikaris, G. E. Karniadakis, Inferring solutions of differential equations using
noisy multi-fidelity data, Journal of Computational Physics 335 (2017) 736-746.

M. Raissi, P. Perdikaris, G. E. Karniadakis, Machine learning of linear differential equations
using Gaussian processes, Journal of Computational Physics 348 (2017) 683-693.

M. Raissi, G. E. Karniadakis, Hidden physics models: Machine learning of nonlinear
partial differential equations, Journal of Computational Physics 357 (2018) 125-141. arXiv:
1708.00588.

S. Atkinson, N. Zabaras, Structured bayesian gaussian process latent variable model:
Applications to data-driven dimensionality reduction and high-dimensional inversion, Journal
of Computational Physics 383 (2019) 166 — 195.

I. Bilionis, N. Zabaras, B. A. Konomi, G. Lin, Multi-output separable gaussian process:
Towards an efficient, fully bayesian paradigm for uncertainty quantification, Journal of
Computational Physics 241 (2013) 212 — 239.

M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics 378 (2019) 686—707.

36

http://arxiv.org/abs/1708.00588
http://arxiv.org/abs/1708.00588
http://arxiv.org/abs/1708.00588

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

[9]

[10]

[11]

[12]

[13]

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, Automatic differentiation in
machine learning: a survey, Journal of machine learning research 18 (2018).

D. Zhang, L. Lu, L. Guo, G. E. Karniadakis, Quantifying total uncertainty in physics-
informed neural networks for solving forward and inverse stochastic problems, Journal of
Computational Physics 397 (2019) 108850.

L. Yang, D. Zhang, G. E. Karniadakis, Physics-informed generative adversarial networks
for stochastic differential equations, STAM Journal on Scientific Computing 42 (1) (2020)
A292-A317.

X. Meng, G. E. Karniadakis, A composite neural network that learns from multi-fidelity data:
Application to function approximation and inverse pde problems, Journal of Computational
Physics 401 (2020) 109020.

A. Jagtap, E. Kharazmi, G. Karniadakis, Conservative physics-informed neural networks
on discrete domains for conservation laws: Applications to forward and inverse problems,
Computer Methods in Applied Mechanics and Engineering 365 (2020) 113028.

A. D. Jagtap, G. Em Karniadakis, Extended physics-informed neural networks (xpinns): A
generalized space-time domain decomposition based deep learning framework for nonlinear
partial differential equations, Communications in Computational Physics 28 (5) (2020)
2002—-2041.

S. Karumuri, R. Tripathy, I. Bilionis, J. Panchal, Simulator-free solution of high-dimensional
stochastic elliptic partial differential equations using deep neural networks, Journal of
Computational Physics 404 (2020) 109120. arXiv:1902.05200.

R. K. Tripathy, I. Bilionis, Deep UQ: Learning deep neural network surrogate models for
high dimensional uncertainty quantification, Journal of Computational Physics 375 (2018)
565-588.

Y. Yang, P. Perdikaris, Adversarial uncertainty quantification in physics-informed neural
networks, Journal of Computational Physics 394 (2019) 136-152.

L. Yang, X. Meng, G. E. Karniadakis, B-pinns: Bayesian physics-informed neural networks
for forward and inverse pde problems with noisy data (2020). arXiv:2003.06097.

Q. He, D. Barajas-Solano, G. Tartakovsky, A. M. Tartakovsky, Physics-informed neural net-
works for multiphysics data assimilation with application to subsurface transport, Advances
in Water Resources 141 (2020) 103610.

M. Liu, L. Liang, W. Sun, A generic physics-informed neural network-based constitutive
model for soft biological tissues, Computer Methods in Applied Mechanics and Engineering
372 (2020) 113402.

G. Kissas, Y. Yang, E. Hwuang, W. R. Witschey, J. A. Detre, P. Perdikaris, Machine learning
in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4d flow
mri data using physics-informed neural networks, Computer Methods in Applied Mechanics
and Engineering 358 (2020) 112623.

F. Sahli Costabal, Y. Yang, P. Perdikaris, D. E. Hurtado, E. Kuhl, Physics-informed neural
networks for cardiac activation mapping, Frontiers in Physics 8 (2020) 42.

37

http://arxiv.org/abs/1902.05200
http://arxiv.org/abs/2003.06097

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

23]

[24]

[25]

[26]

[27]

[28]

Y. Hu, T. Zhao, Z. Xu, L. Lin, Neural time-dependent partial differential equation (2020).
arXiv:2009.03892

Y. Khoo, J. Lu, L. Ying, Solving parametric pde problems with artificial neural networks,
European Journal of Applied Mathematics 32 (3) (2020) 421-435.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar,
Neural operator: Graph kernel network for partial differential equations (2020). |arXiv:
2003.03485.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar,
Fourier neural operator for parametric partial differential equations (2021). |arXiv:2010}
08895.

L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear operators via
deeponet based on the universal approximation theorem of operators, Nature Machine
Intelligence 3 (3) (2021) 218-229.

H. Abels, H. Garcke, G. Griin, Thermodynamically consistent, frame indifferent diffuse
interface models for incompressible two-phase flows with different densities, Mathematical
Models and Methods in Applied Sciences 22 (03) (2012) 1150013.

K. Deckelnick, G. Dziuk, C. M. Elliott, Computation of geometric partial differential
equations and mean curvature flow, Acta Numerica 14 (2005) 139-232.

J. Lowengrub, L. Truskinovsky, Quasi incompressible cahn hilliard fluids and topological
transitions, Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences 454 (1978) (1998) 2617-2654.

B. Li, J. Lowengrub, A. Ratz, A. Voigt, Geometric evolution laws for thin crystalline films:
modeling and numerics, Communications in Computational Physics 6 (3) (2009) 433.

L. N. Trefethen, N. Hale, T. A. Driscoll, Chebfun Guide, Pafnuty Publications, Oxford,
2014.

S. J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions on Knowledge and
Data Engineering 22 (10) (2010) 1345-1359. doi:10.1109/TKDE.2009.191.

Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent
is difficult, IEEE Transactions on Neural Networks 5 (2) (1994) 157-166.

Y. Lecun, L. Bottou, G. Orr, K.-R. Miiller, Efficient backprop (08 2000).

X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural
networks, in: Proceedings of the thirteenth international conference on artificial intelligence
and statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249-256.

D. P. Kingma, J. Ba, Adam: A method for stochastic optimization (2017). |arXiv:1412.6980.

S. Cox, P. Matthews, Exponential time differencing for stiff systems, Journal of Computa-
tional Physics 176 (2) (2002) 430—455.

M. Z. Bazant, Thermodynamic stability of driven open systems and control of phase
separation by electro-autocatalysis, Faraday discussions 199 (2017) 423-463.

38

http://arxiv.org/abs/2009.03892
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
https://doi.org/10.1109/TKDE.2009.191
http://arxiv.org/abs/1412.6980

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[56]

[57]

S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening, Acta Metallurgica 27 (6) (1979) 1085-1095.

S. Bartels, Numerical methods for nonlinear partial differential equations, Vol. 47, Springer,
2015.

J. Shen, X. Yang, Numerical approximations of allen-cahn and cahn-hilliard equations,
Discrete & Continuous Dynamical Systems-A 28 (4) (2010) 1669.

J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. i. interfacial free energy,
The Journal of chemical physics 28 (2) (1958) 258-267.

A. Miranville, The cahn-hilliard equation and some of its variants, AIMS Mathematics 2
(2017) 479-544.

J. Kim, S. Lee, Y. Choi, S.-M. Lee, D. Jeong, Basic principles and practical applications of
the cahn-hilliard equation, Mathematical Problems in Engineering 2016 (2016).

S. C. Takatori, J. F. Brady, Towards a thermodynamics of active matter, Phys. Rev. E 91
(2015) 032117.

T. Speck, J. Bialké, A. M. Menzel, H. Lowen, Effective cahn-hilliard equation for the phase
separation of active brownian particles, Phys. Rev. Lett. 112 (2014) 218304.

S. C. Takatori, W. Yan, J. F. Brady, Swim pressure: Stress generation in active matter,
Phys. Rev. Lett. 113 (2014) 028103.

A. A. Hyman, C. A. Weber, F. Jiilicher, Liquid-liquid phase separation in biology, Annual
Review of Cell and Developmental Biology 30 (1) (2014) 39-58.

D. Zwicker, A. A. Hyman, F. Jiilicher, Suppression of ostwald ripening in active emulsions,
Physical Review E 92 (1) (2015) 012317.

C. P. Brangwynne, C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege, J. Gharakhani,
F. Jiilicher, A. A. Hyman, Germline p granules are liquid droplets that localize by controlled
dissolution/condensation, Science 324 (5935) (2009) 1729-1732.

C. P. Brangwynne, P. Tompa, R. V. Pappu, Polymer physics of intracellular phase transitions,
Nature Physics 11 (11) (2015) 899-904.

B. Horstmann, T. Danner, W. G. Bessler, Precipitation in aqueous lithium-oxygen batteries:
a model-based analysis, Energy & Environmental Science 6 (4) (2013) 1299-1314.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity
in dealloying, Nature 410 (6827) (2001) 450-453.

W. Tian, X. Mao, P. Brown, G. C. Rutledge, T. A. Hatton, Electrochemically nanostructured
polyvinylferrocene/polypyrrole hybrids with synergy for energy storage, Advanced Functional
Materials 25 (30) (2015) 4803-4813.

D. Lee, J.-Y. Huh, D. Jeong, J. Shin, A. Yun, J. Kim, Physical, mathematical, and
numerical derivations of the cahn—hilliard equation, Computational Materials Science 81
(2014) 216-225.

S. Rudy, A. Alla, S. L. Brunton, J. N. Kutz, Data-driven identification of parametric partial
differential equations (2018). larXiv:1806.00732.

39

http://arxiv.org/abs/1806.00732

71 [58] V. Dwivedi, N. Parashar, B. Srinivasan, Distributed learning machines for solving forward

760 and inverse problems in partial differential equations, Neurocomputing 420 (2021) 299-316.
73 [59] M. Cheng, T. Y. Hou, M. Yan, Z. Zhang, A data-driven stochastic method for elliptic pdes
764 with random coefficients, STAM/ASA Journal on Uncertainty Quantification 1 (1) (2013)
765 452-493.

40

	Introduction
	A brief review of standard physics informed neural network (std-PINN) for partial differential equations
	The proposed backward compatible sequential PINN method (bc-PINN)
	bc-PINN
	Initial condition guided learning (ICGL)
	Transfer learning based acceleration (TL)
	Details of the neural network of bc-PINN
	Details of the Computational Platform
	The reference solution

	bc-PINN for Allen Cahn and Cahn Hilliard equations
	Allen Cahn Equation
	Cahn Hilliard Equation

	Results of Allen Cahn and Cahn Hilliard equations using bc-PINN in 1D
	Allen Cahn equation in one dimension
	std-PINN for Allen Cahn equation
	bc-PINN for Allen Cahn equation

	Cahn Hilliard equation in one dimension
	std-PINN for Cahn Hilliard equation
	bc-PINN for Cahn Hilliard equation

	Results of Allen Cahn and Cahn Hilliard equations using bc-PINN in 2D
	Allen Cahn equation in two dimensions
	bc-PINN for Allen Cahn equation in two dimensions

	Cahn Hilliard equation in two dimensions
	bc-PINN for Cahn Hilliard equation in two dimensions

	Conclusions
	Hyper-parameter selection for bc-PINN
	bc-PINN with a logarithmic residual for Allen Cahn Equation
	Minimization of the bc-PINN loss function
	Data driven identification of parameters for PDEs using bc-PINN
	Parameter identification of Allen Cahn equation 1D
	Parameter identification of Burgers equation with a time-varying parameter

