

A Novel Sequential Method to Train Physics Informed Neural Networks for Allen Cahn and Cahn Hilliard Equations

Revanth Mattey ^a, Susanta Ghosh ^{a,b,*}

^a*Department of Mechanical Engineering—Engineering Mechanics, Michigan Technological University, MI, USA*

^b*The Center for Data Sciences, The Center for Applied Mathematics and Statistics Michigan Technological University, MI, USA*

Abstract

A physics informed neural network (PINN) incorporates the physics of a system by satisfying its boundary value problem through a neural network's loss function. The PINN approach has shown great success in approximating the map between the solution of a partial differential equation (PDE) and its spatio-temporal coordinates. However, the PINN's accuracy suffers significantly for strongly non-linear and higher-order time-varying partial differential equations such as Allen Cahn and Cahn Hilliard equations. To resolve this problem, a novel PINN scheme is proposed that solves the PDE sequentially over successive time segments using a single neural network. The key idea is to re-train the same neural network for solving the PDE over successive time segments while satisfying the already obtained solution for all previous time segments. Thus it is named as backward compatible PINN (bc-PINN). To illustrate the advantages of bc-PINN, the Cahn Hilliard and Allen Cahn equations are solved. These equations are widely used to describe phase separation and reaction-diffusion systems. Additionally, two new techniques have been introduced to improve the proposed bc-PINN scheme. The first technique uses the initial condition of a time-segment to guide the neural network map closer to the true map over that segment. The second technique is a transfer learning approach where the features learned from the previous training are preserved. We have demonstrated that these two techniques improve the accuracy and efficiency of the bc-PINN scheme significantly. It has also been demonstrated that the convergence is improved by using a phase space representation for higher-order PDEs. It is shown that the proposed bc-PINN technique is significantly more accurate and efficient than PINN.

Keywords: Physics informed neural networks,, Partial differential equation (PDEs), Allen Cahn equation, Cahn Hilliard equation

1. Introduction

Traditional physics-based numerical methods for solving partial differential equations (PDEs) have found remarkable success in solving various science and engineering problems. These methods are accurate but computationally expensive for complex problems such as nonlinear PDEs and requires problem-specific techniques. In the last decade data driven methods have gained a lot of attention in almost all areas of science and engineering. Data driven methods for PDEs can help in identifying highly non-linear mappings (between the inputs and outputs) which can substitute or augment expensive physics based simulations. Due to their versatility and fast

*Corresponding author; Email: susantag@mtu.edu

9 evaluation capabilities, machine learning based models can be used as PDE solvers in situations
10 when there is a requirement of a large number of simulations such as the inverse–problem and
11 homogenization [1, 2].

12 Several data–driven techniques have been attempted to solve PDEs. For instance, the Gaussian
13 Process based approaches are described in [3, 4, 5, 6, 7]. Despite the ease of training for Gaussian
14 Process, this approach did not gain as much popularity as a neural network for solving PDEs
15 due to its difficulties in handling high dimensional problems.

16

17 Among different data–driven techniques for PDEs the Physics Informed Neural Networks
18 (PINN) has shown remarkable promise and versatility. PINN is a new class of machine learning
19 technique where a neural network’s loss function is designed to satisfy the Initial Boundary Value
20 Problem (IBVP) [8]. A PINN “learns” the non linear map between the spatio–temporal input
21 and the solution of the PDE in a given domain. Henceforth, throughout this paper the PINN
22 described in [8] would be referred to as std-PINN. std-PINN utilizes the automatic-differentiation
23 capability [9] to compute the derivatives of the field variables.

24

25 Different variants of std-PINN are shown to work effectively in solving many forward and
26 inverse problems [10, 11, 12]. Recently in [13], PINN has been extended to satisfy various
27 conservation laws while solving the PDEs. This approach is named as cPINNs. cPINNs solve the
28 problem over several sub-domains and ensure flux continuity at the boundaries of the sub-domains.
29 Another extension to cPINNs is XPINN known as extended PINN, where the authors propose a
30 generalized space–time domain decomposition based deep learning framework [14]. The key idea
31 in XPINN is to decompose the domain into multiple sub-domains and train the sub-domains
32 using multiple neural networks (sub Net), while ensuring C^0 continuity along the interfaces.
33 While most of the PINN approaches solve the strong form of a PDE, it can also be used to solve
34 the weak (variational) form of a PDE. Since the weak form incorporates the natural boundary
35 conditions, the neural network solution only needs to satisfy the essential boundary conditions *a priori*.
36 This aspect is used in several numerical methods for PDEs such as the finite element
37 method. Due to this advantage of weak form over strong form the application of PINN on
38 the weak form has been investigated in [15]. In this study, the authors have considered the
39 variational form for stochastic PDEs and applied the idea of PINNs to obtain the solution of
40 the PDE. Also the corresponding uncertainty propagation through their model is presented in
41 [15, 16]. Uncertainty quantification provides the variation associated with the prediction of the
42 model. It is particularly useful for systems where there is a high cost of data acquisition or
43 lack of high resolution data [17]. The authors in [18] proposed a Bayesian approach for physics
44 informed neural network to solve forward and inverse problems.

45

46 The promise and versatility of PINN have been demonstrated through its application for a
47 wide range of problems. PINN has been used in modeling subsurface transport phenomena [19],
48 approximating Euler equations for high speed flows [1], constitutive modeling of stress–strain
49 behavior in biological tissues [20], predicting arterial blood pressure from noisy MRI data of flow
50 velocity [21], and cardiac activation mapping for diagnosing atrial fibrillation [22].

51

52 Recently many other data–driven techniques for solving time varying PDEs have been pro-
53 posed. In [23] the authors proposed a framework called Neural-PDE which aims to learn the
54 solution of the PDE by utilizing numerical techniques like FDM (Finite difference method) and
55 LSTM (Long short term memory) networks. The method aims to predict the solution of the
56 PDE at n future time steps by using the meshgrid data (solution) of all the previous time steps.
57 Artificial neural network based approaches for solving parametric PDEs have been introduced by

58 the authors in [24]. Operator learning is a new and emerging technique for solving PDEs. In
 59 operator learning a map between initial condition and solution of the PDE is learnt by using
 60 multiple instantiations [25, 26, 27].

61

62 In the present work, we demonstrate that the accuracy of the std-PINN [8] suffers in the
 63 presence of (i) Strong Non-linearity, and (ii) Higher order partial differential operators. In order
 64 to illustrate the above, we chose the Allen Cahn equation having *strong non-linearity* and Cahn
 65 Hilliard equation having *strong non-linearity and fourth order derivative*. These are the two
 66 most widely used PDEs to study diffusion separation and multi-phase flows [28, 29, 30, 31]. To
 67 overcome the drawbacks of the std-PINN, we have proposed an extension, which is named as
 68 backward compatible PINN (bc-PINN). The proposed bc-PINN solves the PDE over successive
 69 time segments by re-training the same neural network, where the key idea is:

70 *To ensure that the neural network can reproduce the solution for all the prior time segments
 71 while solving the PDE for a particular time segment.*

72 Henceforth, this idea is referred to as *backward compatibility*. Some of the main advantages of
 73 the proposed bc-PINN method are as follows:

- 74 1. It works for higher order and strongly nonlinear PDEs by using fewer iterations and
 75 collocation points while achieving significantly higher accuracy when compared to std-
 76 PINN.
- 77 2. A single neural network is used for the entire domain and continuity across the time
 78 segments is ensured for the predicted solution and its derivatives.

79 The rest of the paper is organized as follows: in section (2) the std-PINN method is briefly
 80 reviewed; in section (3) the proposed bc-PINN method is presented; in section (4) the Allen
 81 Cahn and Cahn Hilliard equations are described; in section (5) the bc-PINN method is analyzed
 82 and compared against the std-PINN and the XPINN method for the one dimensional (1D) Allen
 83 Cahn and Cahn Hilliard equations; in section (6) two new techniques initial condition guided
 84 learning and transfer learning based acceleration have been presented along with the results for
 85 the two dimensional (2D) Allen Cahn and Cahn Hilliard equations. Finally, the conclusions are
 86 presented in section (7).

87 **2. A brief review of standard physics informed neural network (std-PINN) for
 88 partial differential equations**

Physics informed neural network (PINN) is a class of machine learning model where the governing PDE is satisfied through the loss function of the neural network [8]. The efficient optimization and prediction capabilities of neural network are exploited in the std-PINN approach. In std-PINN a neural network is trained to predict the solution at any point in the entire spatial-temporal domain. Let's consider the general form of a m^{th} order partial differential equation (PDE):

$$h_t = F(h(\mathbf{x}, t), h_{\mathbf{x}}^{(1)}(\mathbf{x}, t), h_{\mathbf{x}}^{(2)}(\mathbf{x}, t), \dots, h_{\mathbf{x}}^{(m)}(\mathbf{x}, t)), \quad \mathbf{x} \in \Omega \subset \mathbb{R}^D, \quad t \in (0, T] \quad (1)$$

Here, Ω is an open set of \mathbb{R}^D ($D = 1, 2, 3$). F is a non linear function of the solution $h(\mathbf{x}, t)$ and it's spatial derivatives $(h_{\mathbf{x}}^{(1)}(\mathbf{x}, t), h_{\mathbf{x}}^{(2)}(\mathbf{x}, t), \dots, h_{\mathbf{x}}^{(m)}(\mathbf{x}, t))$ where \mathbf{x} and t are the space and time coordinates respectively. The corresponding boundary conditions and initial conditions are

$$\begin{aligned} h(\mathbf{x}, 0) &= \phi(\mathbf{x}), \quad \mathbf{x} \in \Omega \\ h(-\mathbf{x}, t) &= h(\mathbf{x}, t), \quad (\mathbf{x}, t) \in \Gamma \times (0, T] \\ h_{\mathbf{x}}^{(1)}(-\mathbf{x}, t) &= h_{\mathbf{x}}^{(1)}(\mathbf{x}, t), \quad (\mathbf{x}, t) \in \Gamma \times (0, T] \end{aligned} \quad (2)$$

89 Where, Γ is the boundary of Ω . The PDE, the Initial and the Boundary Conditions (given by
90 equation (1-2)) form a initial-boundary value problem (IBVP) considered in this study. The
91 boundary conditions are taken as periodic and the initial condition is a real function.

92 std-PINN approximates the map between points in the spatio-temporal domain to the solution
93 of the PDE. The parameters of the neural network are randomly initialized and iteratively updated
94 by minimizing the loss function that enforces the PDE. The std-PINN's loss function consists of
95 three error components, for the prediction of the neural network as in the following (i) Initial
96 Condition, (ii) Boundary Condition, and (iii) PDE. Let $\hat{h}(\mathbf{x}, t)$ be the output of neural network.
97 The three components of the std-PINN's loss function are given below:

- Mean squared error on the Initial Condition

$$\text{MSE}_I = \frac{1}{N_i} \sum_{k=1}^{N_i} \left(\hat{h}(\mathbf{x}_k^i, 0) - h_k^i \right)^2, \quad \mathbf{x}_k^i \in \Omega \quad (3)$$

99 where $\hat{h}(\mathbf{x}_k^i, 0)$ is the neural network output and h_k^i is the given initial condition at $(\mathbf{x}_k^i, 0)$.
100 Here, the superscript, $(\bullet)^i$ stands for initial condition.

- Mean squared error on the Boundary Condition

$$\text{MSE}_B = \frac{1}{N_b} \sum_{k=1}^{N_b} \sum_{d=1}^{n_d} \left(\hat{h}^{(d-1)}(\mathbf{x}_k^b, t_k^b) - \hat{h}^{(d-1)}(-\mathbf{x}_k^b, t_k^b) \right)^2, \quad (\mathbf{x}_k^b, t_k^b) \in \Gamma \times (0, T] \quad (4)$$

101 where n_d is the highest order of derivative to which the periodicity is enforced on the
102 boundary, Γ . Here, the superscript, $(\bullet)^b$ stands for boundary condition.

- The Mean squared error due to Residual of the partial differential equation

$$R := \hat{h}_t - F(\hat{h}, \hat{h}_{\mathbf{x}}^{(1)}, \hat{h}_{\mathbf{x}}^{(2)}, \dots, \hat{h}_{\mathbf{x}}^{(m)})$$

$$\text{MSE}_R = \frac{1}{N_r} \sum_{k=1}^{N_r} (R(\mathbf{x}_k^r, t_k^r))^2, \quad (\mathbf{x}_k^r, t_k^r) \in \Omega \times (0, T] \quad (5)$$

The superscript, $(\bullet)^r$ stands for residual of the PDE. (\mathbf{x}_k^i) and (\mathbf{x}_k^b, t_k^b) , represent the set of
points where the initial and boundary errors are computed. The residual/collocation error is
computed at the collocation points (\mathbf{x}_k^r, t_k^r) . These points on the domain and the boundary are
obtained using a latin hypercube sampling approach. Therefore, the total loss function of the
neural network is given by adding all the aforementioned mean squared errors

$$\text{MSE} = \text{MSE}_I + \text{MSE}_B + \text{MSE}_R \quad (6)$$

Once the std-PINN is trained, the accuracy of the predicted solution is computed with respect
to the reference solution at unknown points (called testing points). Highly accurate solution
of the initial boundary value problem obtained by the Chebyshev polynomial based numerical
algorithm [32] and is considered as the reference solution. The relative total error (ε_{total}) of the
PINN's prediction over the entire domain is obtained by normalizing the error with respect to
the reference solution as

$$\varepsilon_{total} = \frac{\left[\frac{1}{N} \sum_{k=1}^N \left(\hat{h}(\mathbf{x}_k, t_k) - h(\mathbf{x}_k, t_k) \right)^2 \right]^{1/2}}{\left[\frac{1}{N} \sum_{k=1}^N (h(\mathbf{x}_k, t_k))^2 \right]^{1/2}} \quad (7)$$

The relative error (ε) of the PINN's prediction at each point is obtained by normalizing the absolute error with respect to the reference solution as

$$\varepsilon(\mathbf{x}_k, t_k) = \frac{|\hat{h}(\mathbf{x}_k, t_k) - h(\mathbf{x}_k, t_k)|}{\left[\sum_{k=1}^N (h(\mathbf{x}_k, t_k))^2\right]^{1/2}} \quad (8)$$

103 Where $h(\mathbf{x}_k, t_k)$ is the reference solution and $\hat{h}(\mathbf{x}_k, t_k)$ is the neural network prediction for a
104 set of testing points $\{(\mathbf{x}_k, t_k)\}_{k=1}^N$, $(\mathbf{x}_k, t_k) \in \Omega \times (0, T]$. For all comparisons between reference
105 and predicted solutions the relative total error ' ε_{total} ' and relative error ' ε ' is used.

106 3. The proposed backward compatible sequential PINN method (bc-PINN)

107 In this section, we introduce an extension of the std-PINN technique that solves an initial-
108 boundary value problem sequentially in time.

109 3.1. bc-PINN

In the proposed method the PDE is solved progressively in time by re-training a single neural network over successive time segments. The limitation of such retraining is that the network can predict only for the latest time segment and cannot predict for previous time segments for those it has been trained earlier. To overcome this limitation, the proposed model is designed to satisfy the solution of all the previous time segments while solving the PDE over a particular time segment. This scheme ensures backward compatibility of the solution by a single network. The proposed method is henceforth referred as backward compatible PINN (bc-PINN). The schematics of bc-PINN for a particular time segment is shown in figure (1) and the sequential scheme of proposed bc-PINN approach is shown in figure (2). In bc-PINN the time domain $[0, T]$ is discretized into n_{max} segments as

$$[T_0 = 0, T_1], [T_1, T_2], \dots, [T_{n-1}, T_n], \dots, [T_{n_{max}-1}, T_{n_{max}} = T] \quad (9)$$

110 where the n^{th} segment is denoted as $\Delta T_n = [T_{n-1}, T_n]$, $n = 1, \dots, n_{max}$.

For the first time segment ΔT_1 the solution of the PDE is sought through the std-PINN by minimizing the following loss function

$$\begin{aligned} \text{MSE}_{\Delta T_1} = & w_i \text{MSE}_I(\mathbf{x}_k^i, 0) + w_b \text{MSE}_B(\mathbf{x}_k^b, t_k^b) + w_r \text{MSE}_R(\mathbf{x}_k^r, t_k^r) \\ & \mathbf{x}_k^i \in \Omega, \quad (\mathbf{x}_k^b, t_k^b) \in \Gamma \times (0, T_1] \quad (\mathbf{x}_k^r, t_k^r) \in \Omega \times (0, T_1] \end{aligned} \quad (10)$$

111 Here, (\mathbf{x}_k^i, t_k^i) represent the set of points where the error on initial condition is computed and
112 (\mathbf{x}_k^b, t_k^b) represent the set of points where the error on boundary condition is computed within the
113 time segment $\Delta T_1 = (0, T_1]$. For all of the subsequent time segments (i.e. ΔT_n , $n = 2, \dots, n_{max}$)
114 we propose a novel loss function, which satisfies the solution of all previous time segments. The
115 solution of all previous time segments is enforced by penalizing the departure from the already
116 obtained solutions from the previous training, as given by

$$\begin{aligned} \text{MSE}_{\Delta T_n} = & w_i \text{MSE}_I(\mathbf{x}_k^i, T_{n-1}) + w_b \text{MSE}_B(\mathbf{x}_k^b, t_k^b) + w_r \text{MSE}_R(\mathbf{x}_k^r, t_k^r) \\ & + w_s \text{MSE}_S(\mathbf{x}_k^s, t_k^s), \quad n = 2, \dots, n_{max} \\ & \mathbf{x}_k^i \in \Omega, \quad (\mathbf{x}_k^b, t_k^b) \in \Gamma \times (T_{n-1}, T_n] \\ & (\mathbf{x}_k^r, t_k^r) \in \Omega \times (T_{n-1}, T_n], \quad (\mathbf{x}_k^s, t_k^s) \in \Omega \times [0, T_{n-1}] \end{aligned} \quad (11)$$

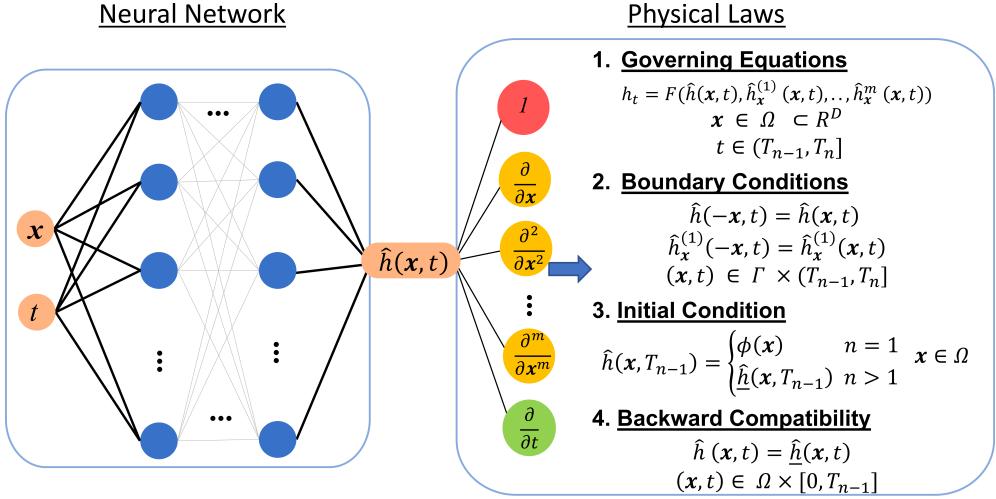


Figure 1: The schematics of the proposed backward compatible PINN (bc-PINN) approach for a time segment $((T_{n-1}, T_n])$. The neural network re-trains the PDE over $(T_{n-1}, T_n]$ while satisfying the solution for all previous time segments. The error in the Initial Condition is computed at time $t = 0$ for the first time segment and at time $t = (T_{n-1})$ for the n th time segment.

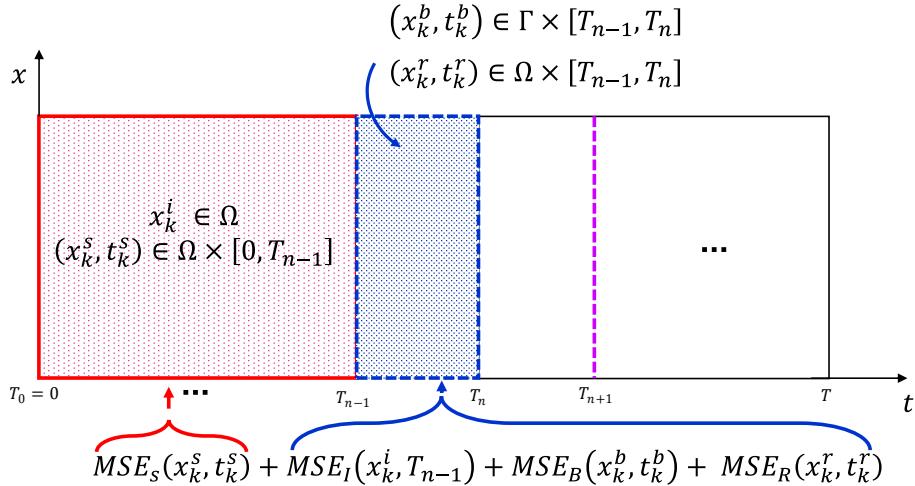


Figure 2: Illustration of the proposed backward compatibility scheme (over a 1D domain) that satisfies the solutions obtained on all previous time segments $([0, T_{n-1}])$ while satisfying the PDE on the current time segment $((T_{n-1}, T_n])$. The error in the Initial Condition is computed at time $t = 0$ for the first time segment and at time $t = (T_{n-1})$ for the n th time segment.

117 Here, (x_k^i, T_{n-1}) represent the set of points where the error on initial condition is com-
 118 puted and (x_k^b, t_k^b) represent the set of points where the error on boundary conditions is
 119 computed within the time segment $(T_{n-1}, T_n]$. The residual/collocation error as given
 120 in equation (5) is computed at the collocation points (x_k^r, t_k^r) . We also minimize the
 121 departure from the already obtained solution that were stored at the grid points (x_k^s, t_k^s) .
 122 The solution obtained (on $(0, T_n]$) at the n th segment is stored for using it in the $(n+1)$ th segment.
 123
 124 The weights (w_i, w_b, w_r, w_s) given in equation (11) help in faster convergence to the true solution.

125 These weights are utilized to scale the difference in the magnitude of the errors. In the present
 126 work, the difference in the order of derivatives (spatial) and the number of spatial dimensions
 127 are used for scaling. From a mathematical perspective, the weighting of the loss function can be
 128 seen as a mechanism that forces the learning process to focus on the terms where high prediction
 129 accuracy is required.

130

131 In sections (3.2)3.3, two techniques have been proposed to further improve the accuracy and
 132 efficiency of the bc-PINN scheme.

133 *3.2. Initial condition guided learning (ICGL)*

In initial condition guided learning, the key idea is to perform the training in two stages for each time segment. In the first stage the neural network is trained to match only the initial condition of that time segment, using a small fraction of the total iterations. Therefore, the loss function for ICGL (MSE_{SI}) is as follows:

$$MSE_{SI} = \frac{1}{N_{SI}} \sum_{k=1}^{N_{SI}} \left(\hat{h}(\mathbf{x}_k^{SI}, t_k^{SI}) - \underline{h}_k^{SI}(\mathbf{x}_k^{SI}, T_{n-1}) \right)^2, \quad (\mathbf{x}_k^{SI}, t_k^{SI}) \in \Omega \times (T_{n-1}, T_n] \quad (12)$$

134 Here, $\hat{h}(\mathbf{x}, t)$ is the neural network prediction and $\underline{h}(\mathbf{x}, t)$ is the known solution through the neural
 135 network at the previous time step, T_{n-1} . Whereas, in the second stage the weights obtained in
 136 the first stage are taken as the initial weights and the bc-PINN as described earlier is trained.
 137 This is motivated by the fact that the solution of a PDE in a time segment is expected to be
 138 close to the initial condition if the segment is small. Thus matching the initial condition brings
 139 the neural network map closer to the true map. Since in the first step there are no derivative
 140 calculations involved, it accelerates the training.

141 *3.3. Transfer learning based acceleration (TL)*

142 A transfer learning approach is implemented that uses the weights and biases from a bc-PINN
 143 that has been trained on a different initial condition or the previous segment. The transfer
 144 learning approach preserves the features from a previous training as reported in [33]. This helps
 145 in faster convergence for a new initial condition. A notable advantage of this technique is that
 146 the training time can be significantly reduced as the number of trainable parameters decreases.

147

148 The two proposed techniques proposed (*Initial condition guided learning* and *Transfer learning*
 149 *based acceleration*) shows significant improvement in the accuracy of the bc-PINN - solution for
 150 the Allen Cahn and Cahn Hilliard equations. These two techniques are independent of each
 151 other and can be used either in tandem or individually.

152 *3.4. Details of the neural network of bc-PINN*

153 We have used a standard (deep) neural network with two input neurons consisting of the
 154 spatial variables (\mathbf{x}) and temporal variable (t). The output of the neural network ($\hat{h}(\mathbf{x}, t)$)
 155 approximates the solution of the PDE ($h(\mathbf{x}, t)$). To avoid model bias due to input features of
 156 different scales we have performed “min-max” normalization to scale the data uniformly. For
 157 solving 1D Allen Cahn and Cahn Hilliard equations using bc-PINN the architecture of the neural
 158 network chosen has 6 hidden layers with 128 neurons in each layer. Whereas, while solving 2D
 159 Allen Cahn and Cahn Hilliard equations using the aforementioned architecture didn’t yield a
 160 good performance. Thus, in order to choose the neural network architecture for solving 2D PDEs
 161 (section (6)) the following approach has been used. Preference has been given to increasing

162 the number of neurons of a hidden layer rather than increasing the number of hidden layers.
 163 This is backed by the fact that increasing hidden layers is more computationally intensive than
 164 increasing the number of neurons. For both std-PINN and bc-PINN, *tanh* is chosen as the
 165 activation function. Even though it's well known that *tanh* activation function has a problem of
 166 vanishing gradient in very deep networks [34]. The advantages of *tanh* activation function are
 167 that its continuous (range [-1,1]) and differentiable. Since, *tanh* is a non-linear function it gives
 168 neural network the capability to learn non-linear maps [35]. The neural network has more than
 169 100,000 learning parameters which have been initialized using the “xavier initialization” [36]
 170 technique. The optimization of the loss function and updating the learning parameters (weights
 171 and biases of the neural network) is performed using the ADAM and LBFGS optimizers. The
 172 learning rate for ADAM optimizer is considered as 0.001 with all other parameters as suggested
 173 in [37]. Following std-PINN, after training the neural network using the ADAM optimizer we
 174 again train it using the L-BFGS optimizer until one of the following stopping criteria is met:
 175 (i) Maximum iterations are equal to 50,000, (ii) Maximum number of function evaluations are
 176 equal to 50,000, (iii) Maximum number of line search steps (per iteration) equal to 50, (iv) The
 177 maximum number of variable metric corrections used to define the limited memory matrix are
 178 equal to 50, (v) The iteration stops when $\frac{f^k - f^{k+1}}{\max(|f^k|, |f^{k+1}|, 1)} \leq 2.22044604925e - 16$, where f is
 179 the neural network objective function and k is the iteration number.

180 3.5. Details of the Computational Platform

181 All the neural networks are trained on Nvidia Tesla P100 (3584 CUDA cores and 16GB of
 182 HBM2 vRAM) and Nvidia Volta V100 GPU (5120 CUDA cores, 640 Tensor cores and 16GB of
 183 HBM2 vRAM). For inferencing and generating the reference solutions via chebfun, we have used
 184 Dell precision 3630 workstation with Intel core i7-9700k 8 core (4.9 GHz Turbo) and 32 GB
 185 RAM. The software packages used for all the computations are Tensorflow 1.15 and MATLAB
 186 R2020a. All the variables defined for computations in tensorflow are of float32 data type.
 187

188 3.6. The reference solution

189 Accurate numerical solutions for the Allen Cahn and Cahn Hilliard equations are obtained
 190 using the chebfun package [32]. The chebfun approach provides a polynomial interpolant
 191 for smooth functions in Chebyshev points. To solve time varying PDEs an exponential time
 192 differencing with Runge–Kutta time stepping scheme [38] has been implemented in chebfun,
 193 which is used in the present work. Henceforth, these solutions are considered as the reference
 194 solutions. We have taken 512 points for spatial discretization and 201 points for discretization in
 195 time scale. A fourth order Runge–Kutta time integrator with time step $\Delta t = 10^{-5}$ is used.
 196

197 The bc-PINN approach is applied to solve Allen Cahn equation and Cahn Hilliard equation
 198 in sections (5 and 6) to demonstrate its advantages for nonlinear and higher order PDEs in
 199 comparison to std-PINN method [8].

200 4. bc-PINN for Allen Cahn and Cahn Hilliard equations

201 The Allen Cahn and Cahn Hilliard¹ equations are two of the widely used partial differential
 202 equations for studying the phenomena of phase separation [39]. There are innumerable practical

¹The Cahn Hilliard equation plays an essential role in the field of material science for describing the qualitative features in a phase separation process for two phase systems (assuming isotropy and constant temperature). The process of phase separation can be observed when a binary alloy is cooled down adequately. This leads to a state

203 applications of these equations in various fields such as material science [40, 41, 42, 43, 44, 45],
 204 biological systems [46, 47, 48, 49, 50, 51, 52], electro-chemical systems etc. [53, 54, 55].

205 *4.1. Allen Cahn Equation*

206 For every $\mathbf{x} \in \Omega$, (Ω is an open set of \mathbb{R}^D) the Allen Cahn equation can be written as:

$$h_t - c_1^2 \nabla^2 h + f(h) = 0, \quad t \in (0, T], \quad \mathbf{x} \in \Omega \subset \mathbb{R}^D$$

$$f(h) = c_2(h^3 - h) \quad (13)$$

207 For a phase separation problem, the parameter h , represents the concentration of the individual
 208 component and the parameter ‘ c_1 ’ represents the interfacial thickness. The solution progressively
 209 develops interfaces separating different phases. For a given initial condition, $h_0(\mathbf{x}) \in L^2(\Omega)$
 210 and $T > 0$, we seek a function $h : \Omega \times (0, T] \rightarrow \mathbb{R}$ which satisfies the above equation. In order
 211 to implement the bc-PINN scheme for Allen Cahn equation, the following loss function has been
 212 used.

- Mean squared error on the initial Condition

$$\text{MSE}_I = \frac{1}{N_i} \sum_{k=1}^{N_i} \left(\hat{h}(\mathbf{x}_k^i, T_{n-1}) - h_k^i \right)^2, \quad \mathbf{x}_k^i \in \Omega \quad (14)$$

- Mean squared error on the boundary Condition

$$\text{MSE}_B = \frac{1}{N_b} \sum_{k=1}^{N_b} \sum_{d=1}^{n_d} \left(\hat{h}^{(d-1)}(\mathbf{x}_k^b, t_k^b) - \hat{h}^{(d-1)}(-\mathbf{x}_k^b, t_k^b) \right)^2 \quad (\mathbf{x}_k^b, t_k^b) \in \Gamma \times (T_{n-1}, T_n] \quad (15)$$

213 where n_d is the order to which periodicity is enforced on the boundary Γ . Here, the
 214 superscript, $(\bullet)^b$ stands for boundary condition.

- The Mean squared error due to residual of the partial differential equation

$$R := \hat{h}_t - c_1^2 \nabla^2 \hat{h} + f(\hat{h})$$

$$\text{MSE}_R = \frac{1}{N_r} \sum_{k=1}^{N_r} (R(\mathbf{x}_k^r, t_k^r))^2, \quad (\mathbf{x}_k^r, t_k^r) \in \Omega \times (T_{n-1}, T_n] \quad (16)$$

215 The superscript, $(\bullet)^r$ stands for residual of the PDE.

- Mean squared error for backward compatibility

$$\text{MSE}_S = \frac{1}{N_s} \sum_{k=1}^{N_s} \left(\hat{h}(\mathbf{x}_k^s, t_k^s) - \underline{h}(\mathbf{x}_k^s, t_k^s) \right)^2, \quad (\mathbf{x}_k^s, t_k^s) \in \Omega \times [0, T_{n-1}] \quad (17)$$

216 where, $\hat{h}(\mathbf{x}, t)$ is the neural network prediction and $\underline{h}(\mathbf{x}, t)$ is the known solution through
 217 the neural network from the previous time steps $\Omega \times [0, T_{n-1}]$. The superscript, $(\bullet)^s$ stands
 218 for the backward compatible solution.

219 • The total mean squared error is the same as given in equation (11)

of total nucleation which is mainly referred to as spinodal decomposition. In the subsequent stage coarsening occurs in the nucleated microstructure at a much slower rate. This whole phase separation phenomena affects the mechanical properties (eg. strength, hardness and fracture toughness) of the material.

220 4.2. Cahn Hilliard Equation

221 For every $\mathbf{x} \in \Omega$, (Ω is an open set of \mathbb{R}^D) the Cahn Hilliard equation can be written as:

$$h_t - \nabla^2 (\kappa f(h) - (\alpha \kappa) \nabla^2 h(\mathbf{x}, t)) = 0, \quad t \in (0, T], \quad \mathbf{x} \in \Omega \subset \mathbb{R}^D \quad (18)$$

222 To simplify the derivative calculation, a phase space representation of the Cahn Hilliard equation
223 has been adopted. The phase space representation is widely used to represent a high order PDE
224 into coupled multiple lower order PDEs. The phase space representation of the Cahn Hilliard
225 equation (a fourth order PDE, equation (18)) yields two coupled second order PDEs.

$$\begin{aligned} h_t - \nabla^2 (-(\alpha \kappa) \mu + \kappa f(h)) &= 0, \quad \mu = \nabla^2 h \quad t \in (0, T], \quad \mathbf{x} \in \Omega \subset \mathbb{R}^D \\ f(h) &= h^3 - h \end{aligned} \quad (19)$$

226 Since the entire process is governed by the Cahn Hilliard equation it is essential to understand
227 the physical significance of each individual variable. The order parameter (h) in equation (18),
228 refers to the rescaled density or concentration of one of the material components in the system
229 and it takes values between (-1 and 1, which corresponds to their pure states). The density of
230 second component is $(1 - h)$, and this ensures that the total density over the simulation domain
231 is a conserved quantity. The parameter κ is the mobility parameter and the parameter α is
232 related to the surface tension at the interface. In order to implement the bc-PINN scheme for
233 the Cahn Hilliard equation, the following loss function has been used.

- Mean squared error on the initial condition for $h(\mathbf{x}, t)$ and $\mu(\mathbf{x}, t)$

$$\text{MSE}_I = \frac{1}{N_i} \left\{ \sum_{k=1}^{N_i} \left(\hat{h}(\mathbf{x}_k^i, T_{n-1}) - h_k^i \right)^2 + \sum_{k=1}^{N_i} \left(\hat{\mu}(\mathbf{x}_k^i, T_{n-1}) - \mu_k^i \right)^2 \right\}, \quad \mathbf{x}_k^i \in \Omega \quad (20)$$

- Mean squared error on the boundary Condition

$$\begin{aligned} \text{MSE}_{B_h} &= \frac{1}{N_b} \left\{ \sum_{k=1}^{N_b} \sum_{d=1}^{n_d} \left(\hat{h}^{(d-1)}(x_k^b, t_k^b) - \hat{h}^{(d-1)}(-x_k^b, t_k^b) \right)^2 \right\} \\ \text{MSE}_{B_\mu} &= \frac{1}{N_b} \left\{ \sum_{k=1}^{N_b} \sum_{d=1}^{n_d} \left(\hat{\mu}^{(d-1)}(x_k^b, t_k^b) - \hat{\mu}^{(d-1)}(-x_k^b, t_k^b) \right)^2 \right\} \\ \text{MSE}_B &= \text{MSE}_{B_h} + \text{MSE}_{B_\mu}, \quad (x_k^b, t_k^b) \in \Gamma \times (T_{n-1}, T_n] \end{aligned} \quad (21)$$

234 Here, the superscript, $(\bullet)^b$ stands for boundary condition.

- The Mean squared error due to residual of the partial differential equation

$$\begin{aligned} R_1 &:= \hat{h}_t - \nabla^2 \left(-(\alpha \kappa) \mu + \kappa f(\hat{h}) \right) \\ R_2 &:= \hat{\mu} - \nabla^2 \hat{h} \\ \text{MSE}_R &= \frac{1}{N_r} \left\{ \sum_{k=1}^{N_r} R_1(\mathbf{x}_k^r, t_k^r)^2 + \sum_{k=1}^{N_r} R_2(\mathbf{x}_k^r, t_k^r)^2 \right\}, \quad (\mathbf{x}_k^r, t_k^r) \in \Omega \times (T_{n-1}, T_n] \end{aligned} \quad (22)$$

235 The superscript, $(\bullet)^r$ stands for residual of the PDE.

- Mean squared error for backward compatibility

$$\text{MSE}_S = \frac{1}{N_s} \sum_{k=1}^{N_s} \left(\hat{h}(\mathbf{x}_k^s, t_k^s) - \underline{h}(\mathbf{x}_k^s, t_k^s) \right)^2, \quad (\mathbf{x}_k^s, t_k^s) \in \Omega \times [0, T_{n-1}] \quad (23)$$

236 where, $\hat{h}(\mathbf{x}, t)$ is the neural network prediction and $\underline{h}(\mathbf{x}, t)$ is the known solution through
 237 the neural network from the previous time steps $\Omega \times [0, T_{n-1}]$. The superscript, $(\bullet)^s$ stands
 238 for the backward compatible solution.

239 • The total mean squared error is the same as given in equation (11)

240 The boundary loss (equation (21) is applied for $n_d = 1$ on \hat{h} and $\hat{\mu}$, to represent periodic boundary
 241 conditions. Equation (22) describes two components of residual for two PDEs in the phase space
 242 form of the Cahn Hilliard equation (equation (19)). In the following sections (5 and 6), the
 243 results of Allen Cahn and Cahn Hilliard equations obtained using bc-PINN are presented..

244 **5. Results of Allen Cahn and Cahn Hilliard equations using bc-PINN in 1D**

245 *5.1. Allen Cahn equation in one dimension*

In this section, a 1D time varying Allen Cahn equation has been considered. The PDE for Allen Cahn equation remains the same as described in section (4.1). Since, the domain considered is one dimensional, $\Omega \in [-1, 1]$ and $t \in (0, 1]$. The values of the parameters considered in equation (13) are, $c_1^2 = 0.0001$ and $c_2 = 5$.

$$\begin{aligned} h(x, 0) &= x^2 \cos(\pi x) \\ h(x, t) &= h(-x, t), \quad (x, t) \in \Gamma \times (0, T] \\ h_x^{(1)}(x, t) &= h_x^{(1)}(-x, t), \quad (x, t) \in \Gamma \times (0, T] \end{aligned} \quad (24)$$

246 The above equation (24) gives details about the initial and boundary conditions (where Γ
 247 describes the boundary).

248 *5.1.1. std-PINN for Allen Cahn equation*

249 At first, the aforementioned Allen Cahn equation is solved using the std-PINN to demonstrate
 250 the challenge associated with non-linearity. The number of collocation points considered for
 251 training the std-PINN are 512 points for initial condition, 201 points for the boundary condition
 252 and 20,000 spatio-temporal points for computing the residual. The neural network architecture
 253 used has 4 hidden layers with 200 neurons in each layer and which is the same as given in (8).
 254 For training the std-PINN, we have used both ADAM and L-BFGS optimizers. Training is
 255 performed using 100,000 ADAM iterations and the subsequent training has been performed
 256 using the L-BFGS optimization method until one of the stopping criteria is met: (i) Maximum
 257 iterations are equal to 50,000 (ii) Maximum number of function evaluations are equal to 50,000
 258 (iii) Maximum number of line search steps (per iteration) equal to 50 (iv) The maximum number
 259 of variable metric corrections used to define the limited memory matrix are equal to 50 (v) The
 260 iteration stops when $\frac{f^k - f^{k+1}}{\max(|f^k|, |f^{k+1}|, 1)} \leq 2.22044604925e-16$, where f is the neural network
 261 objective function and k is the iteration number. The loss function for std-PINN is described in
 262 equation (3), (4) and (5). The solution of std-PINN is quite erroneous as shown in figure (5).
 263 In order to understand the reason for failure of the std-PINN, we analyze its prediction for the
 264 individual terms of the Allen Cahn equation. Figure (4) shows the individual terms of the Allen

265 Cahn equation obtained through the Chebfun method and the std-PINN. We observe that the
 266 std-PINN fail to predict the non-linear term ($5(h^3 - h)$) of the Allen Cahn equation. Therefore
 267 we have shown that the std-PINN [8] does not work for the Allen Cahn equation that consist of
 268 a strongly non-linear term.

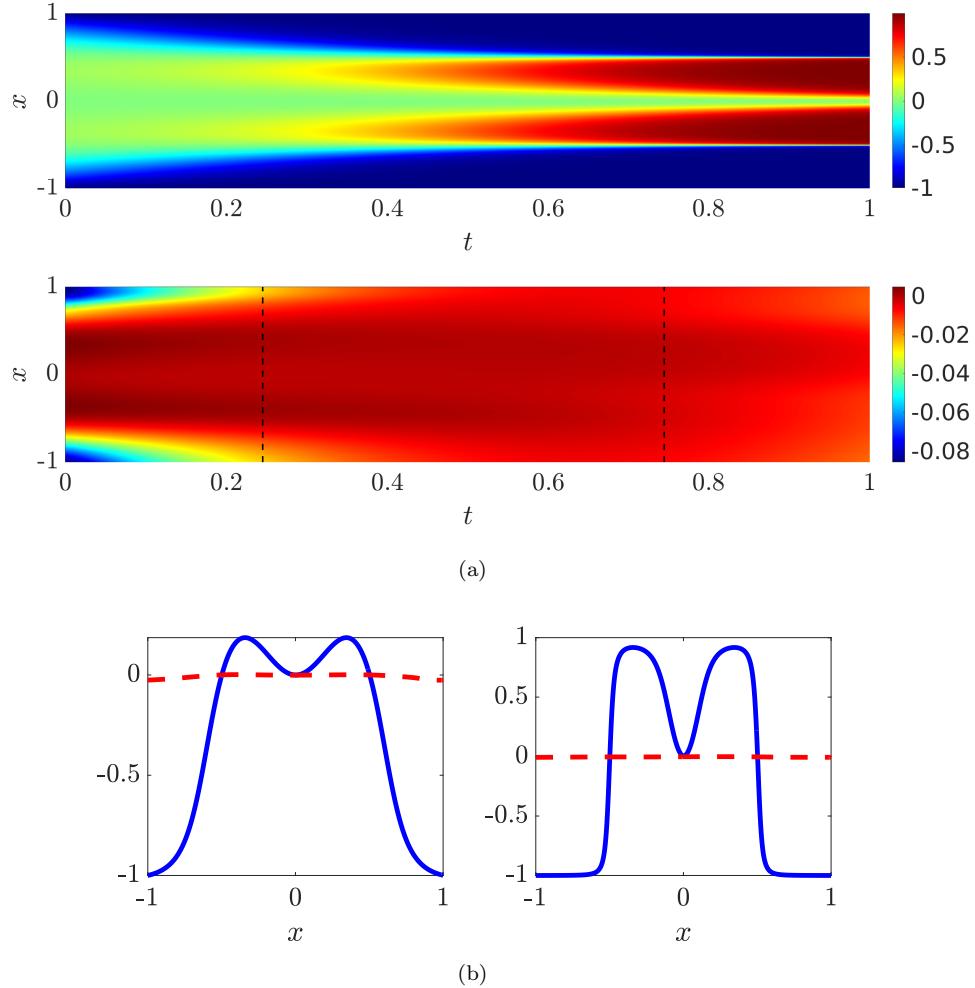


Figure 3: (a): The reference solution (Top) and the std-PINN solution (Bottom) of the Allen Cahn equation for the entire spatio-temporal domain. (b): Time snapshots for the reference solution (—) and the std-PINN solution (---) at $t = 0.25$ and $t = 0.75$.

269 *5.1.2. bc-PINN for Allen Cahn equation*

270 To overcome this limitation of std-PINN, the backward compatible PINN approach has
 271 been used along with ICGL and TL techniques. Therefore for the proposed bc-PINN approach,
 272 the loss function given in equations (11,14,17) is used for any given time segment ΔT_n . The
 273 hyper-parameters associated with training the bc-PINN are number of ADAM iterations (N_{iter}),
 274 time steps per segment and number of residual collocation points (N_r) per segment.

275

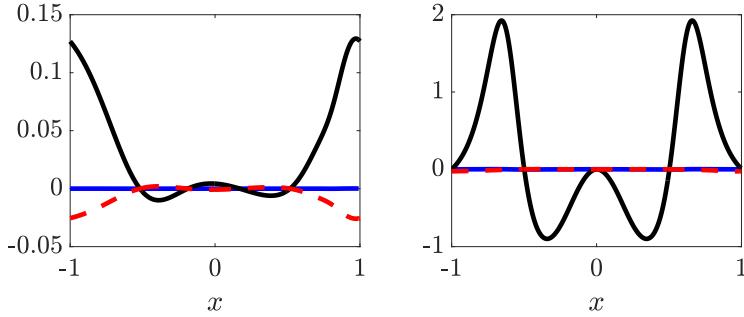


Figure 4: Individual terms of the Allen Cahn Equation obtained through the (Left): std-PINN method (Right): Chebfun method. $h(x, t)$, (---), $0.0001\nabla^2 h$ (—) and $5(h^3 - h)$ (—) at $t = 0.25$.

Variable	Description	Number
N_i	Initial collocation points	128
N_b	Boundary collocation points	50/segment
N_r	Residual collocation points	20000/segment
N_{iter}	Number of ADAM iterations	10000/segment

Table 1: Description of Training Data for Allen Cahn Equation. The segment considered here consists of 50 time steps.

276 In table 1, initial collocation points (N_i) refer to the input spatio-temporal points where
 277 the initial condition is prescribed. (N_b) and (N_r) refer to the number of boundary and residual
 278 collocation points respectively and the output of the neural network at these points is used to
 279 compute the loss function. For computing the backward compatibility loss the solution predicted
 280 by the neural network in all the previous time steps is utilized. To reiterate, the reference
 281 solution is only available at the initial condition whereas for all other points in the entire domain
 282 the solution of the PDE is obtained through minimizing the bc-PINN loss function.

283
 284 The reference and predicted solution at time $t = 0.25$ obtained by the std-PINN and bc-PINN
 285 are shown in figure 5. While the std-PINN fails, the proposed bc-PINN predicts the solution
 286 quite accurately. The relative total errors (ε_{total}) and the total training time for std-PINN,
 287 XPINN, bc-PINN and bc-PINN with ICGL and TL approaches are shown in table 2. By using
 288 techniques like ICGL and TL we have been able to observe a significant improvement in accuracy
 289 and also reduction in training time. In order to implement the XPINN 14 for the time-varying
 290 Allen Cahn equation the entire domain has been decomposed into 5 sub-domains sequentially
 291 across time and each sub-domain is trained by a sub-net. Interfacial solution continuity across
 292 different sub-domains has also been implemented and trained using 50,000 ADAM iterations
 293 and L-BFGS optimizer with the same stopping criteria as bc-PINN. But the main drawback
 294 of XPINN in solving forward problems is that while training subnet-1 all other subsequent
 295 subnets are also trained which increases the computational cost. For example, before even the
 296 solution converges in subnet-1, subnet-2 is simultaneously being trained which searches for the
 297 solution of the PDE in an infinite-dimensional space in other words subnet-2 is trying to predict
 298 the solution with an incorrect initial condition, which has not yet converged to the correct solution.

299
 300 The comparison between the predicted solution using bc-PINN and the reference solution
 301 is shown in figure 6. This shows that the bc-PINN can accurately predict the solution for
 302 the entire domain. The solutions and errors by the std-PINN and bc-PINN are compared in

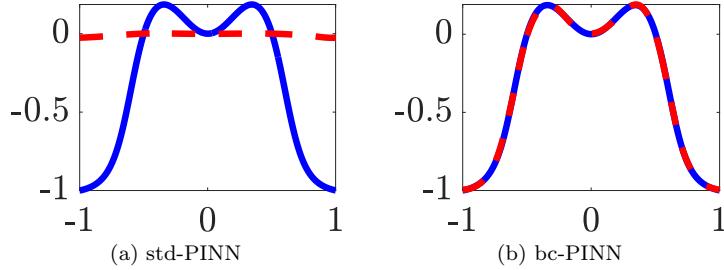


Figure 5: Reference (—) and Predicted (---) solution at time $t = 0.25$

Method	Error($\varepsilon_{\text{total}}$)	Training Time
std-PINN	0.9919	4.5hrs
XPINN	0.9612	4 hrs
bc-PINN	0.0701	2 hrs
bc-PINN with ICGL and TL	0.0168	0.75 hrs

Table 2: Relative total errors (equation (7)) over the entire domain with respect to Chebfun solution for different methods.

303 figure (7), showing much higher accuracy by the bc-PINN. The error plots confirms high accuracy
 304 of bc-PINN. The error increases with time very slowly. This is due to two reasons: (i) the solution
 305 becomes progressively phase-separated (between zero and one) yielding greater curvatures and
 306 sharp phase-boundaries that are difficult to capture, and (ii) due to the sequential nature of
 307 the bc-PINN approach the error accumulates with time progression, which is similar to the
 308 time-integrators. To illustrate the high accuracy of the bc-PINN approach, solutions and errors
 309 for different values of the interfacial thickness (c_1) is plotted in figure (8). As we decrease the
 310 parameter c_1 , it can be seen that the error in the prediction decreases. The parameter c_1 controls
 311 the effect of the double derivative of the solution ($\nabla^2 h$). Therefore, as we decrease c_1 the error
 312 due to the approximation in derivative reduces and thus the accuracy of the bc-PINN solution
 313 increases. In Appendix B, a new loss function including a logarithmic residual for the Allen
 314 Cahn equation is discussed. This new logarithmic residual bc-PINN approach and its results are
 315 presented in comparison with the simple bc-PINN approach without a logarithmic residual.

316 *5.2. Cahn Hilliard equation in one dimension*

317 In this section, a 1D time varying Cahn Hilliard equation has been considered. The PDE
 318 for Cahn Hilliard equation remains the same as described in section (4.2). Since, the domain
 319 considered is one dimensional, $\Omega \in [-1, 1]$ and $t \in (0, 1]$. The values of the parameters considered
 320 in equation (18) are, $\alpha = 0.02$ and $\kappa = 1$.

$$\begin{aligned}
 h(x, 0) &= \cos(\pi x) - \exp(-4(\pi x)^2) \\
 h(-x, t) &= h(x, t), \quad (x, t) \in \Gamma \times (0, T] \\
 h_x^{(1)}(-x, t) &= h_x^{(1)}(x, t), \quad (x, t) \in \Gamma \times (0, T] \\
 \mu(-x, t) &= \mu(x, t), \quad (x, t) \in \Gamma \times (0, T] \\
 \mu_x^{(1)}(-x, t) &= \mu_x^{(1)}(x, t), \quad (x, t) \in \Gamma \times (0, T]
 \end{aligned} \tag{25}$$

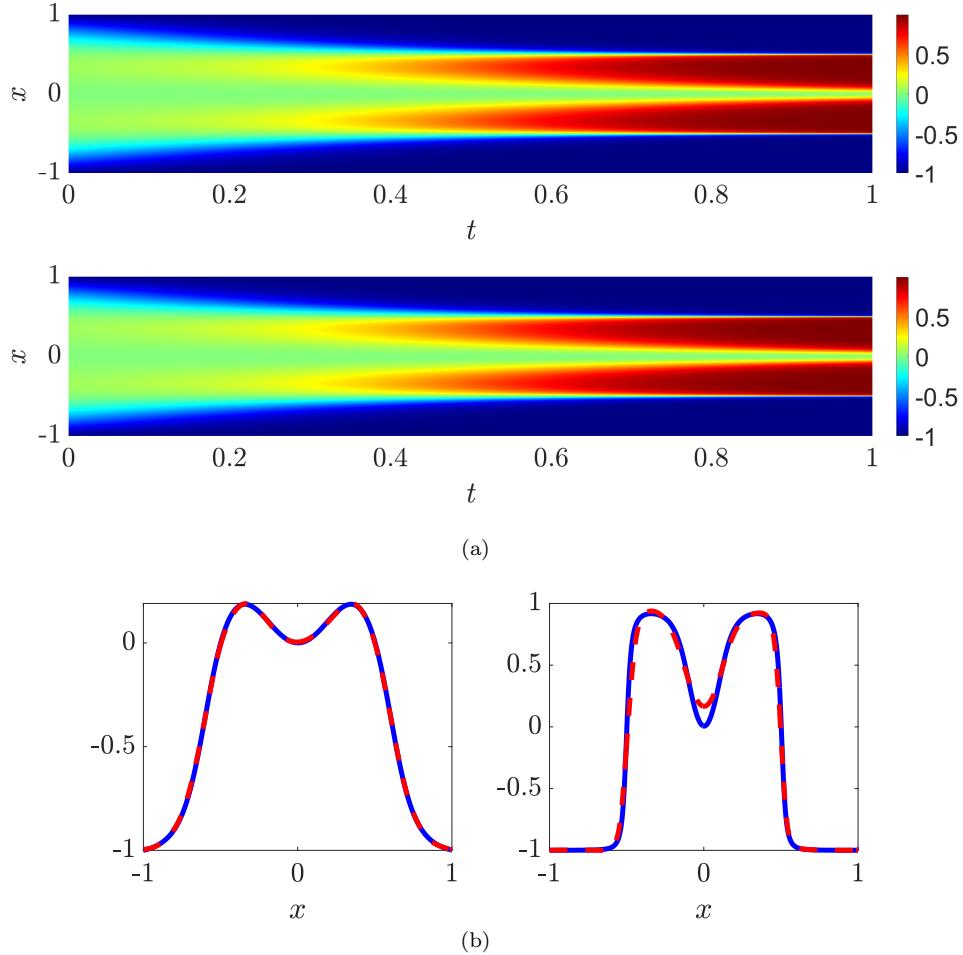
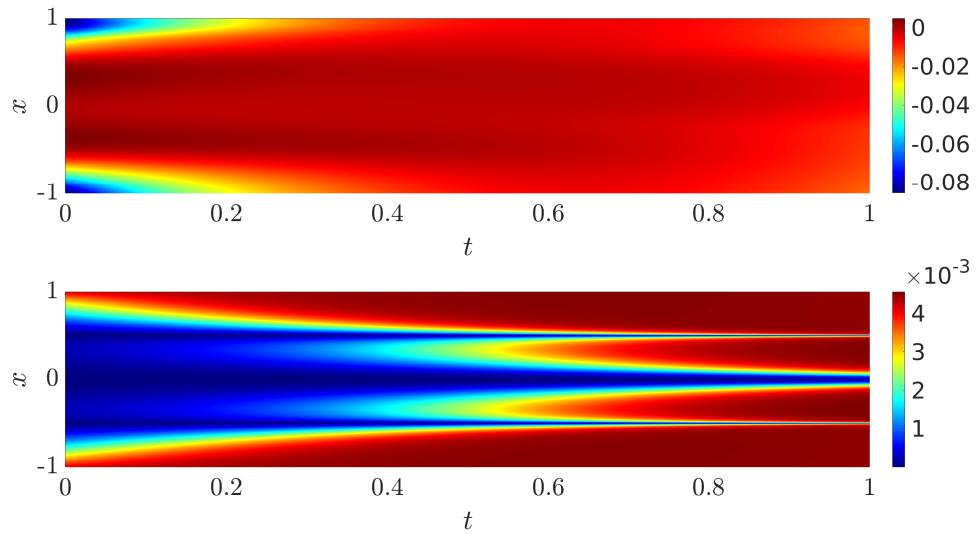


Figure 6: (a): Reference (Top) and bc-PINN (Bottom) solutions of the Allen Cahn equation for the entire spatio-temporal domain. (b): The Reference (—) and the bc-PINN (---) solutions at time $t = 0.25$ and $t = 0.75$.

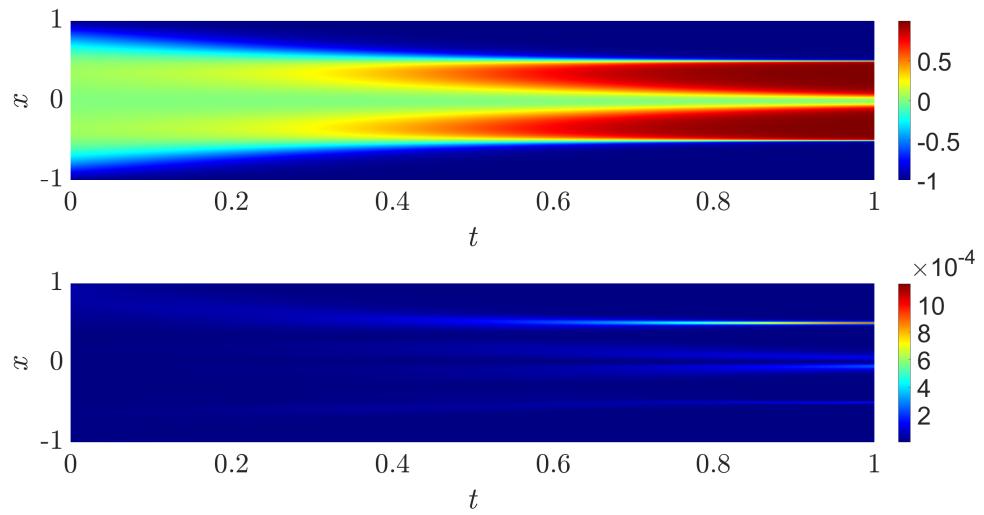
321 The above equation (25) gives details about the initial and boundary conditions (where Γ
322 describes the boundary).

323 5.2.1. std-PINN for Cahn Hilliard equation

324 Initially, the Cahn Hilliard equation (18) (without phase space) is solved using the std-PINN
325 to demonstrate the challenge associated with high order. The neural network architecture
326 used has 4 hidden layers with 200 neurons in each layer and which is the same as given in
327 [8]. For training the std-PINN, we have used 20,000 collocation points and the loss function is
328 minimized by using 100,000 ADAM iterations and subsequently L-BFGS optimizer until one
329 of the stopping criteria are met: (i) Maximum iterations are equal to 50,000 (ii) Maximum
330 number of function evaluations are equal to 50,000 (iii) Maximum number of line search
331 steps (per iteration) equal to 50 (iv) The maximum number of variable metric corrections
332 used to define the limited memory matrix are equal to 50 (v) The iteration stops when
333 $\frac{f^k - f^{k+1}}{\max(|f^k|, |f^{k+1}|, 1)} <= 2.22044604925e - 16$, where f is the neural network objective function and k

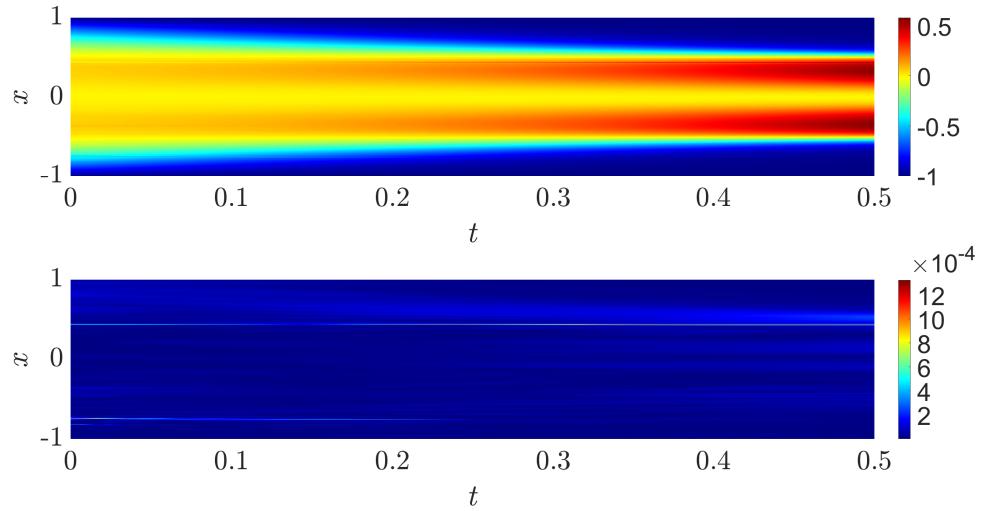


(a) Predicted solution (top) and relative error (bottom) obtained using std-PINN

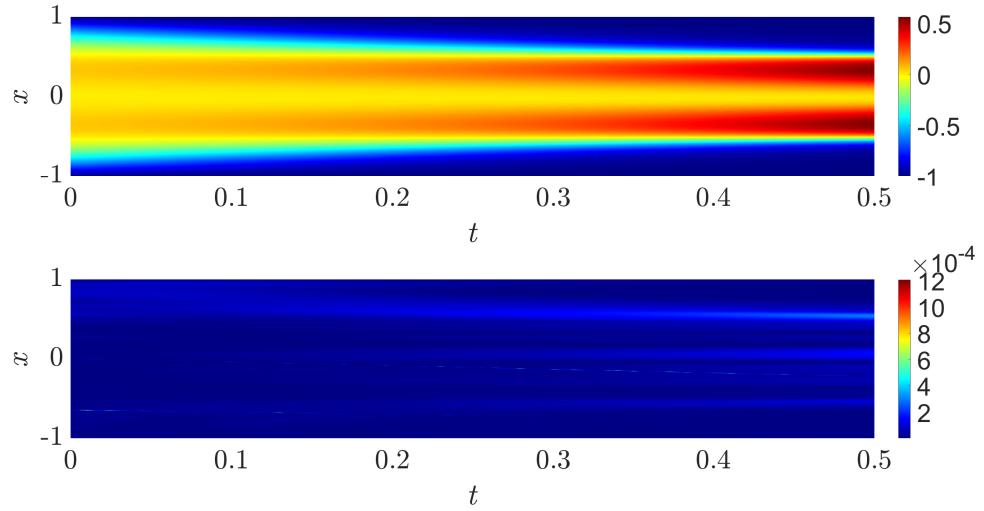


(b) Predicted solution (top) and relative error (bottom) obtained using bc-PINN

Figure 7: Solution and relative error associated with respect to the reference solution for Allen-Cahn equation.



(a) Predicted solution (top) and relative error (bottom) obtained using bc-PINN for $c_1^2 = 0.00001$



(b) Predicted solution (top) and relative error (bottom) obtained using bc-PINN for $c_1^2 = 0.00005$

Figure 8: Solutions and relative errors of the Allen Cahn equation for different c_1^2 (of equation (13)) obtained by the bc-PINN method.

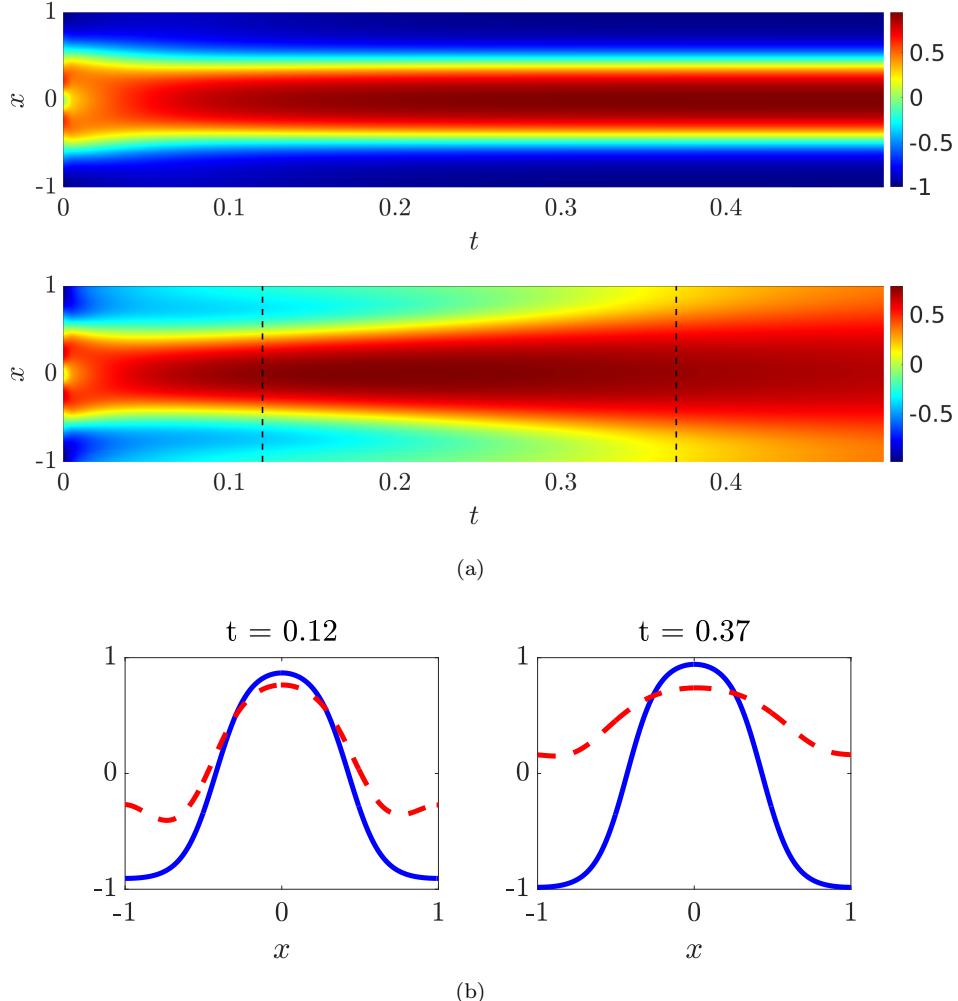


Figure 9: (a): The reference solution (Top) and the std-PINN solution (Bottom) of the Cahn Hilliard equation for the entire spatio-temporal domain. (b): Time snapshots for the reference solution (—) and the std-PINN solution (---) at $t = 0.12$ and $t = 0.37$.

334 is the iteration number. The loss function for std-PINN is described in equation (3), (4) and (5).
 335 The solution predicted after training is shown in figure (9) and it can be observed that there is
 336 significant mismatch between the std-PINN prediction and the reference solution.

337
 338 The two possible reasons for the inaccurate solution are strong non-linearity and the high
 339 order derivative terms (fourth order). In PINN the derivatives are approximated using automatic
 340 differentiation. It has been shown that as the order of the derivative increases the complexity in
 341 automatic differentiation increases and it becomes computationally expensive [9]. In order to
 342 overcome the difficulty in approximating the higher order derivative via automatic differentiation,
 343 we adopt the phase space representation in the proposed bc-PINN.

344 5.2.2. *bc-PINN for Cahn Hilliard equation*

345 In this section, we introduce the bc-PINN approach with a phase space representation for
 346 solving the Cahn Hilliard Equation (equation (19)). Additionally we have used the ICGL and TL
 347 techniques as described in sections (3.2, 3.3). Therefore, there are two outputs of the neural
 348 network $\hat{h}(x, t)$ and $\hat{\mu}(x, t)$ in the present method. The input features are the spatio-temporal
 349 variables (x, t) . The modified loss function for the coupled phase space system includes an
 350 error on initial condition, error on the boundary conditions and error on the residual. In
 351 addition it will have the error for the backward compatibility. Therefore, the total loss function
 352 (equation (11)) for any time segment ΔT_n is sum of all the aforementioned errors given in
 353 equation (20-23).

354

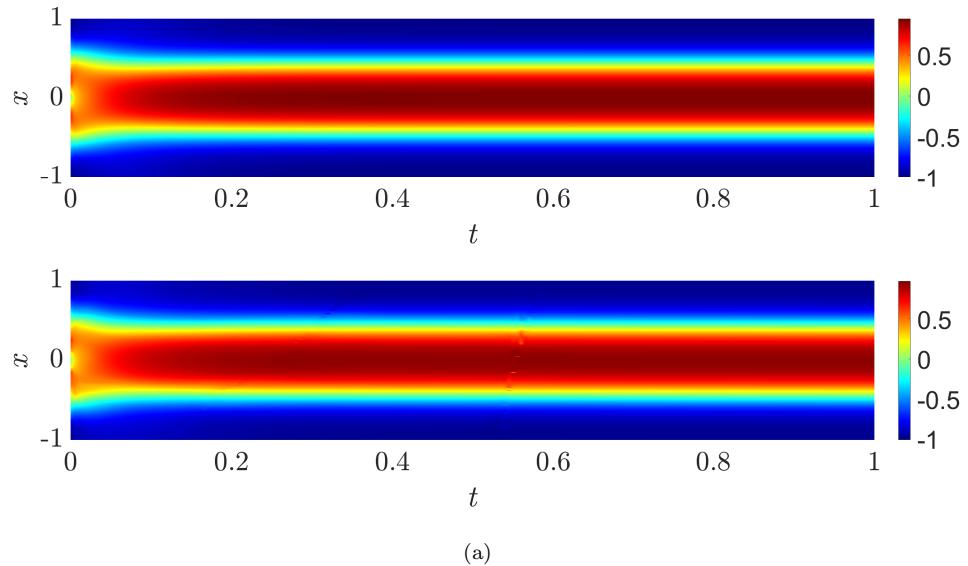
Variable	Description	Number
N_i	Initial collocation points	128
N_b	Boundary collocation points	20/segment
N_r	Residual collocation points	10000/segment
N_{iter}	Number of ADAM iterations	10000/segment

Table 3: Description of training data for Cahn Hilliard equation. 20 time steps/segment have been considered and the amount of collocation points generated remains same and doesn't increase as we progress through time.

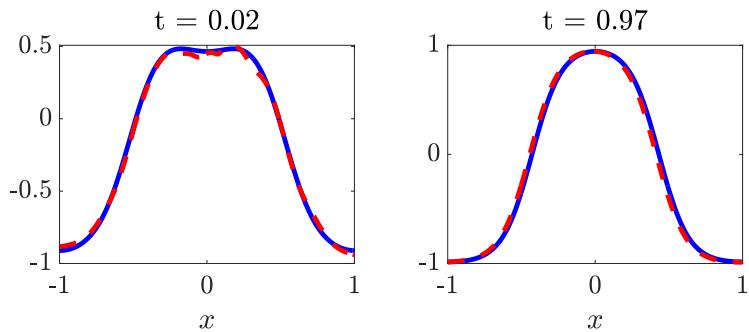
355 Table 3 describes the values of the hyper-parameters used in bc-PINN. N_i and N_b refers to
 356 the number of points considered to enforce the initial and boundary condition respectively. N_r
 357 is the number of residual collocation points per time segment and N_{iter} is the number of ADAM
 358 iterations used to train the neural network per time segment. As described in section 5.1.2,
 359 only the reference solution at the initial points (N_i) is used to compute the initial loss and for
 360 computing the remaining terms in loss function (equation (20-23)) the output of the neural
 361 network (predicted solution of the PDE) is used.

362

363 The accuracy of the proposed bc-PINN approach is shown by comparing it against the
 364 reference solution obtained by the chebfun method in figure (10). This shows that the phase
 365 space representation with bc-PINN can closely match the reference solution for the Cahn Hilliard
 366 equation. The relative total error (ε_{total}) obtained for the bc-PINN solution is 0.0186 whereas for
 367 the std-PINN solution the error is 0.8594. It is evident from the error plots given in figure (11)
 368 that a more accurate solution is obtained by using the bc-PINN compared to std-PINN. The
 369 higher accuracy can be accredited to the fact that approximating lower order derivatives using
 370 automatic differentiation is much simpler. One key observation to note is that the solution in
 371 the n^{th} time segment takes the solution at time T_{n-1} from the $(n-1)^{\text{th}}$ time segment as initial
 372 condition. Thus, only the error at the end point in a time segment is propagated to the next time
 373 segment. For instance, only the error at the time T_{n-1} in $(n-1)^{\text{th}}$ time segment is propagated
 374 to the next time segment. Errors at all other time steps in $(n-1)^{\text{th}}$ time segment does not
 375 propagate to the n^{th} time segment. This can be observed in figure (11b), even though the error
 376 at time 0.01 is quite high but since this is not the end point of the time segment $[0, 0.05]$ it does
 377 not propagate with time. The error in the first time segment can be further reduced by using
 378 more iterations and the accuracy of the total solution can be improved. To further demonstrate
 379 the effectiveness of the current phase space backward compatible training approach, we have
 380 taken different values of the parameter ($\alpha\kappa$) and compared the predicted solutions with the
 381 reference solutions generated using chebfun which is shown in figure (12). The proposed phase
 382 space representation with bc-PINN approach can be extended to any partial differential equation
 383 consisting higher order derivatives and non-linearity.

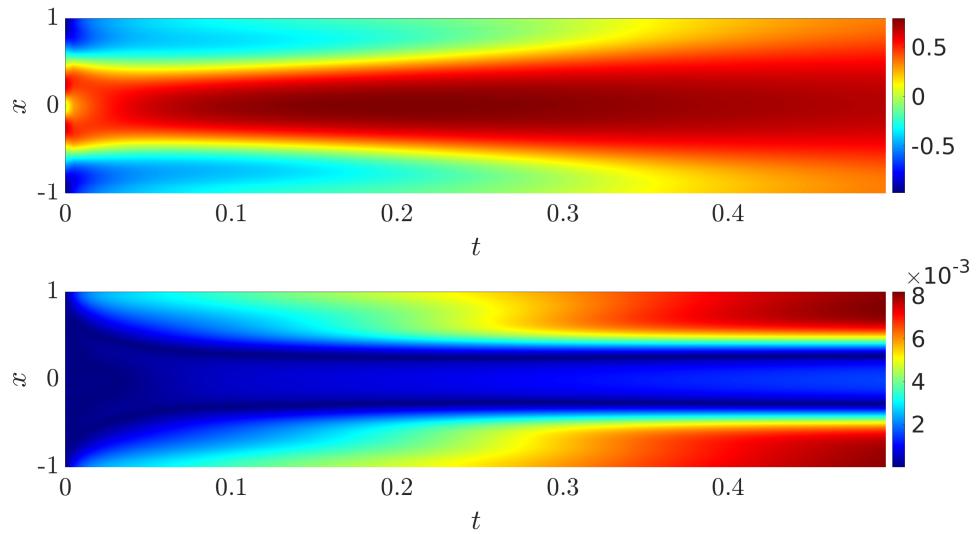


(a)

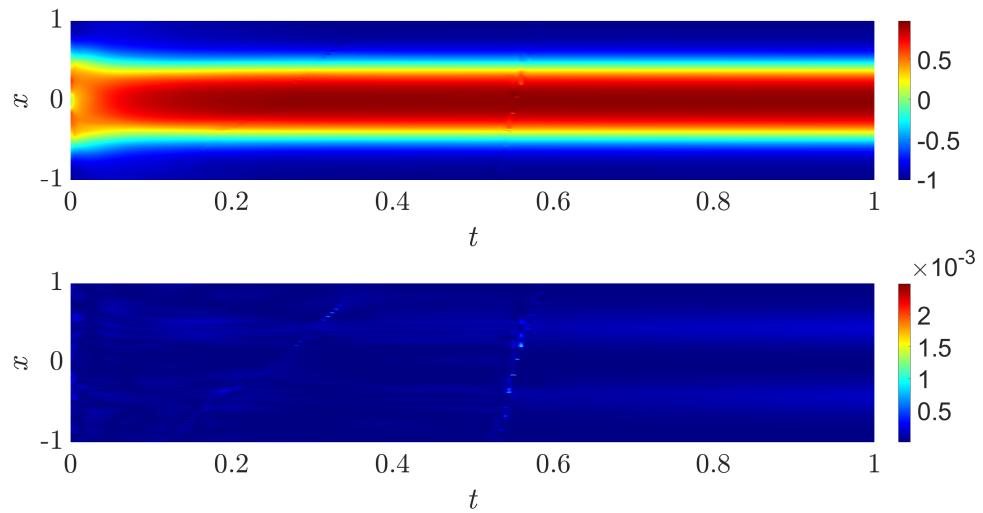


(b)

Figure 10: (a): Reference (Top) and bc-PINN (Bottom) solutions of the Cahn Hilliard equation for the entire spatio-temporal domain. (b): The Reference (—) and the bc-PINN (---) solutions at time $t = 0.02$ and $t = 0.97$.

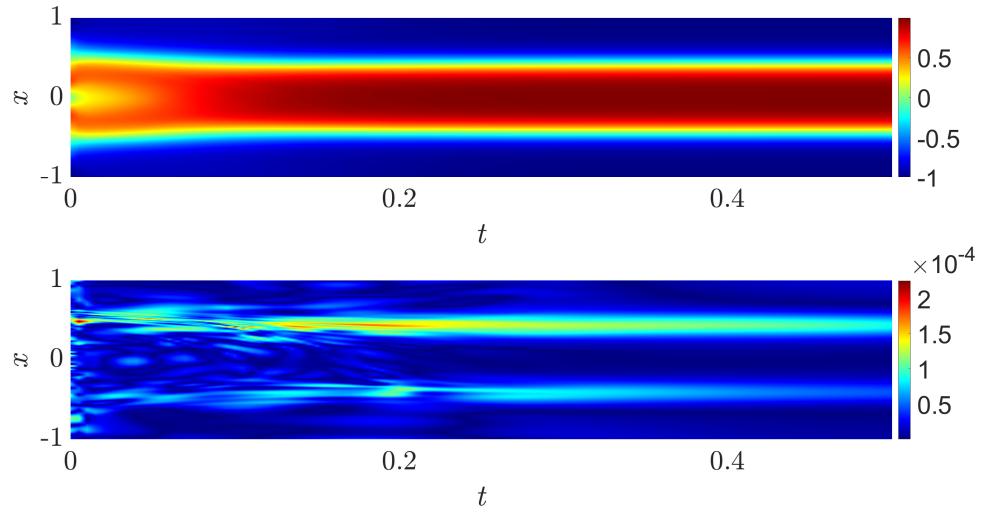


(a) Solution (top) and relative error (bottom) via std-PINN

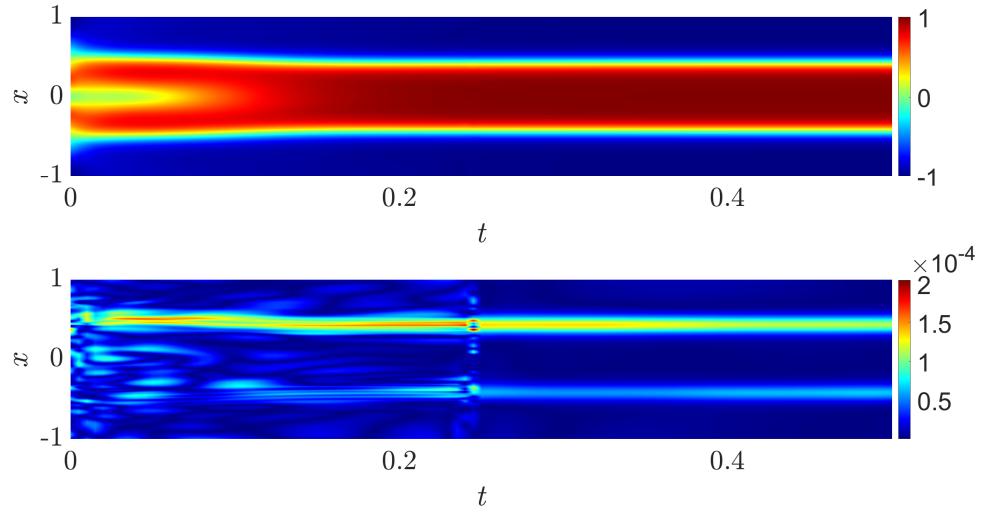


(b) Solution (top) and relative error (bottom) via bc-PINN

Figure 11: Solution and error associated with respect to the reference solution for Cahn-Hilliard equation.



(a) Solution (top) and error (bottom) for $\alpha \kappa = 0.01$



(b) Solution (top) and error (bottom) $\alpha \kappa = 0.005$

Figure 12: Solution and relative errors of the Cahn Hilliard equation for different parameters ($\alpha \kappa$ of equation (18)) obtained by the bc-PINN method.

384 **6. Results of Allen Cahn and Cahn Hilliard equations using bc-PINN in 2D**

385 In this section, the Allen Cahn and Cahn Hilliard equations are solved in two dimensions
 386 using the proposed bc-PINN scheme. Solving the Allen Cahn and Cahn Hilliard equations in 2D
 387 is more computationally intensive than in 1D. Thus in order to solve the 2D equations, the
 388 bc-PINN technique has been implemented along with the ICGL and TL techniques as proposed
 389 in section (3).
 390

391 *6.1. Allen Cahn equation in two dimensions*

392 In this section, a two dimensional time varying Allen Cahn equation has been considered.
 393 The PDE for Allen Cahn equation remains the same as described in section (4.1). The values of
 394 the parameters considered in equation (13) are, $c_1^2 = 0.0001$ and $c_2 = 1$. To demonstrate the
 395 proposed method following two IBVPs have been considered :

396 IBVP-1: The PDE used is the same as that given in equation (13). The domain for the IBVP
 397 is taken as $\mathbf{x} \times t \in [0, 1]^2 \times (0, 1]$. The initial condition chosen is, $\sin(4\pi x_1) \cos(4\pi x_2)$, where,
 398 (x_1, x_2) are points in the domain $[0, 1]^2$. The boundary conditions have been considered to
 399 be periodic, $h^{(d-1)}(\mathbf{x}, t) = h^{(d-1)}(-\mathbf{x}, t)$, for $d = 1, 2$

400 IBVP-2: The PDE used is the same as that given in equation (13). The domain for the
 401 IBVP is taken as $\mathbf{x} \times t \in [0, 1]^2 \times (0, 2]$. The initial condition chosen is a random doubly
 402 periodic function where the maximum amplitude is 0.3. The boundary conditions have
 403 been considered to be periodic, $h^{(d-1)}(\mathbf{x}, t) = h^{(d-1)}(-\mathbf{x}, t)$, for $d = 1, 2$

404 *6.1.1. bc-PINN for Allen Cahn equation in two dimensions*

405 First in order to solve IBVP-1, the ICGL technique has been using along with bc-PINN. The
 406 loss function for ICGL and bc-PINN remains the same as described in equations (12, 14, 17).
 407 Furthermore, as described in section (3.6), Chebfun is used to obtain the reference solution.
 408 Here, the spatial domain has been discretized into a grid containing 64 points along each
 409 axis and the temporal domain has been discretized into 101 grid points. The neural network
 410 architecture has 3 input neurons and consists of 6 hidden layers with 128 neurons in each layer.
 411 The output layer contains only one neuron for the output/solution of the PDE (h). Following, to
 412 solve the IBVP-1, bc-PINN is used along with the ICGL technique. The loss function has
 413 been optimized using both ADAM and L-BFGS optimizers. 15,000 ADAM iterations (20% for
 414 MSE_{SI} and 80% for $MSE_{\Delta T_n}$) and 10,000 LBFGS iterations are used for every time segment.
 415 Apart from the maximum iterations other stopping criteria for L-BFGS remain the same as
 416 those mentioned in section (3.4) (criteria ii - v). The total number of collocation points used to
 417 train the bc-PINN for IBVP-1 are given in table 4. The total error in prediction (ε_{total}), using
 418 bc-PINN with ICGL is 2.5%. Whereas, the total error in prediction using bc-PINN without
 419 ICGL is more than 95%. Figure (13) shows the evolution of solution as time increases.
 420

N_i	Initial collocation points	4096
N_b	Boundary collocation points	640 per segment
N_r	Residual collocation points	20,000 per segment

Table 4: Description of training data for 2D Allen Cahn equation (IBVP - 1). 20 time steps/segment have been considered and the amount of collocation points generated remains same and doesn't increase as we progress through time.

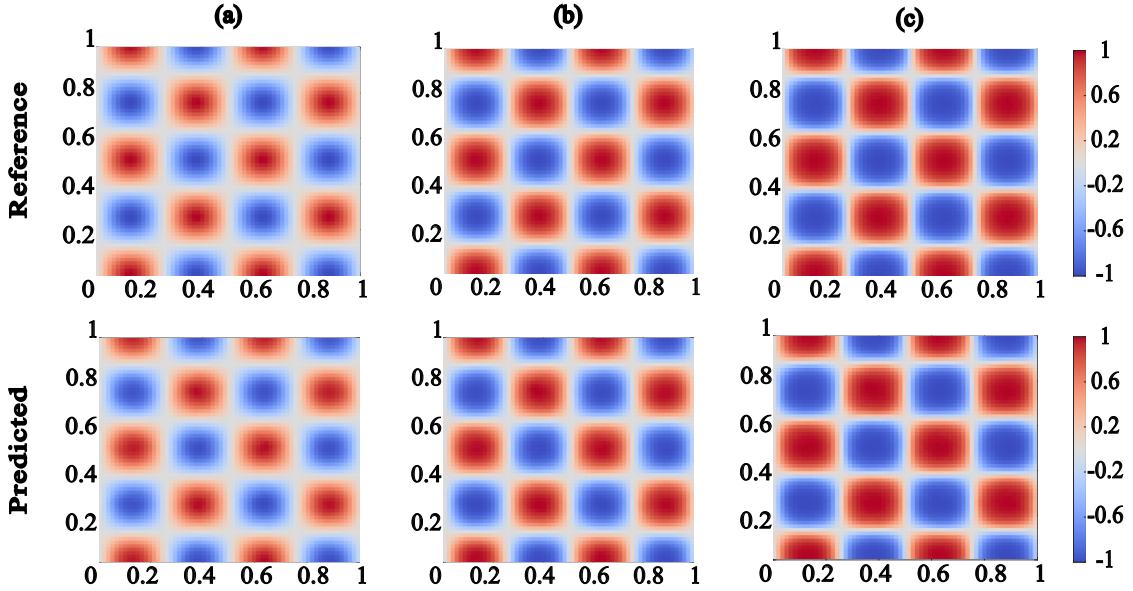


Figure 13: Reference and bc-PINN predicted solution of the 2D Allen Cahn equation (IBVP-1) at different time snapshots (a) $t = 0$, (b) $t = 0.5$, (c) $t = 1$

421 To demonstrate bc-PINN with (ICGL and TL), IBVP-2 has been considered. The loss function for
 422 ICGL, initial condition, and boundary condition remains the same as described in equations (12),
 423 (14), (17). The total loss function also remains the same as given in equation (11). The optimization
 424 of the loss function is performed using both ADAM and L-BFGS optimizers. For minimizing
 425 the loss function in the first segment 30,000 ADAM iterations and 10,000 LBFGS iterations are
 426 used. From the second segment 40,000 ADAM iterations and 10,000 LBFGS iterations are used
 427 in optimizing the bc-PINN loss function. Apart from the maximum iterations other stopping
 428 criteria for L-BFGS are the same as mentioned in section (3.4) (criteria ii - v). Also, during
 429 the minimization process in each time segment, 20% of the total ADAM iterations are used
 430 to implement the ICGL technique. The neural network architecture remains the same as that
 431 used for solving IBVP - 1 (3 input neurons, 6 hidden layers with 128 neurons, and 1 output).
 432 Following, the TL technique has been implemented by freezing the parameters obtained after
 433 solving the IBVP-1. Initially, only a single layer is fixed. As the training progresses through
 434 different time segments the number of layers frozen has been slowly incremented. Table (5) gives
 435 details about the number of collocation points and the time segment details. From figure (14) it
 436 can be observed that the bc-PINN prediction matches well with the reference solution, whereas
 437 the std-PINN cannot solve this using the same number of collocation points.

N_i	Initial collocation points	4096
N_b	Boundary collocation points	1600 per segment
N_r	Residual collocation points	30,000 per segment

Table 5: Description of training data for 2D Allen Cahn equation (IBVP - 2). 50 time steps/segment have been considered and the amount of collocation points generated remains same and doesn't increase as we progress through time.



Figure 14: Reference and bc-PINN predicted solution of the 2D Allen Cahn equation (IBVP-2) at different time snapshots (a) $t = 0$, (b) $t = 1.2$, (c) $t = 2$

438 *6.2. Cahn Hilliard equation in two dimensions*

439 In this section, a two dimensional time varying Cahn Hilliard equation has been considered.
440 The PDE for the Cahn Hilliard equation remains the same as described in section (4.2). The
441 values of the parameters considered in equation (19) are, $(\alpha, \kappa) = (0.02, 1)$. To demonstrate the
442 applicability of bc-PINN for 2D Cahn Hilliard, the following two IBVP's has been considered:

443 **IBVP-1:** The PDE used is the same as that given in equation (19). The domain for the IBVP
444 is taken as $\mathbf{x} \times t \in [0, 1]^2 \times (0, 0.005]$. The initial condition chosen is, $0.4 \cos(3\pi x_1) \cos(3\pi x_2)$,
445 where, (x_1, x_2) are points in the domain $[0, 1]^2$. Homogeneous Neumann boundary conditions
446 have been considered.

447 **IBVP-2:** The PDE used is the same as that given in equation (19). The domain for the IBVP
448 is taken as $\mathbf{x} \times t \in [0, 1]^2 \times (0, 0.005]$. The initial condition chosen is,
449 $0.4 \cos(4\pi x_1) \cos(4\pi(x_1 + x_2))$, where, (x_1, x_2) are points in the domain $[0, 1]^2$. Periodic
450 boundary conditions have been considered.

451 **IBVP-3:** The PDE used is the same as that given in equation (19). The domain for
452 the IBVP is taken as $\mathbf{x} \times t \in [0, 1]^2 \times (0, 0.00375]$. The initial condition chosen is a
453 random doubly periodic function where the maximum amplitude is 0.5. Periodic boundary
454 conditions have been considered.

455 *6.2.1. bc-PINN for Cahn Hilliard equation in two dimensions*

456 As described in section (3), the ICGL technique has been used along with bc-PINN to solve
457 IBVP-1. A key point to be noted here is that the loss function for ICGL remains the same as
458 that in equation (12). Therefore, the total loss function (equation (11)) for any time segment
459 ΔT_n is a sum of all the aforementioned errors given in equation (20-23).

460

461 Further in order to generate the reference solution for IBVP-1, a cosine transform has been
462 utilized as given in [56]. Here, the spatial domain is discretized into a grid containing 64 points
463 along each axis. The temporal domain is discretized into 201 grid points. The neural network
464 architecture has 3 input neurons and consists of 5 hidden layers with 128 neurons in each layer.
465 Two output neurons have been taken to represent the output/solution of the PDE and the phase
466 space term (h, μ). The minimization of bc-PINN loss function has been performed using ADAM
467 and L-BFGS optimizers. The number of ADAM iterations are 30,000 for the first segment and
468 for all the later segments 50,000 iterations have been used. The maximum number of L-BFGS
469 iterations are 15,000 per segment and the other stopping criteria are the same as those mentioned
470 in section (3.4) (criteria ii - v). The details of collocation points used to train the bc-PINN for
471 IBVP1 are given in table (6). Figure (15), shows the evolution of $h(\mathbf{x}, t)$ with time and there's a
472 good match between the predicted and reference solution.

N_i	Initial collocation points	4096
N_b	Boundary collocation points	1600 per segment
N_r	Residual collocation points	50,000 per segment

Table 6: Description of training data for 2D Cahn Hilliard equation (IBVP-1). 50 time steps/segment have been considered and the amount of collocation points generated remains same and doesn't increase as we progress through time.

472

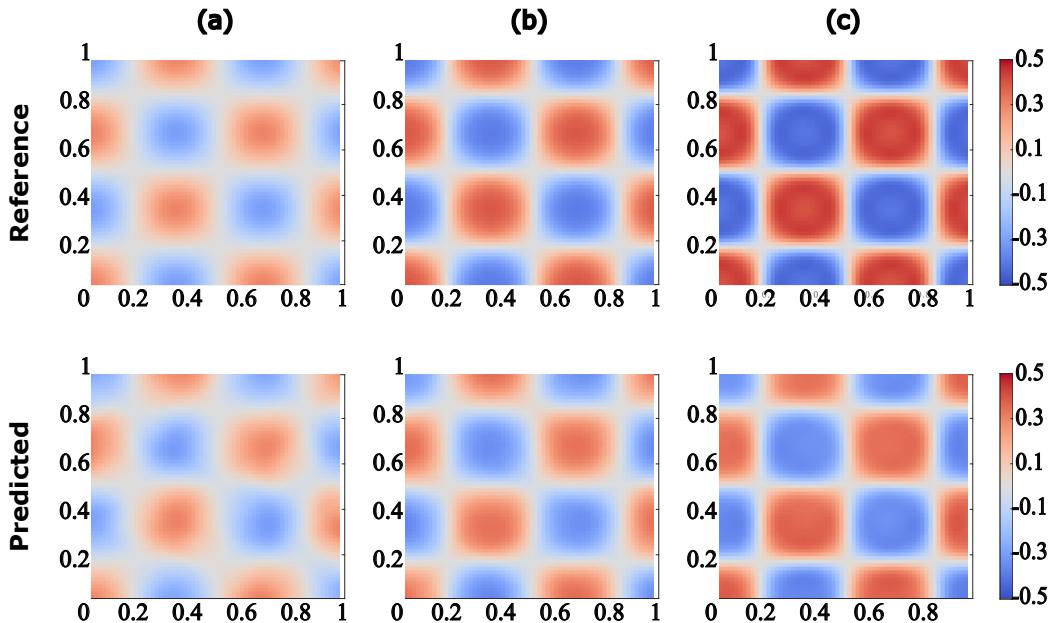


Figure 15: Reference and bc-PINN predicted solution of the 2D Cahn Hilliard equation (IBVP-1) at different time snapshots (a) $t = 0$, (b) $t = 0.003$, (c) $t = 0.005$

473 In order to demonstrate bc-PINN with (ICGL and TL), IBVP-2 has been considered. To solve
474 the IBVP-2, the loss function for ICGL, initial condition and boundary condition remain the
475 same as described in equations (12), [20], [23], [11]. To generate the reference solution for IBVP-2
476 and IBVP-3, an explicit time stepping scheme is used for time integration and a 9-stencil finite
477 difference method for computing the spatial derivatives. Here, the spatial domain is discretized

N_i	Initial collocation points	4096
N_b	Boundary collocation points	1600 per segment
N_r	Residual collocation points	50,000 per segment

Table 7: Description of training data for 2D Cahn Hilliard equation (IBVP-2,IBVP-3). 25 time steps/segment have been considered and the amount of collocation points generated remains same and doesn't increase as we progress through time.

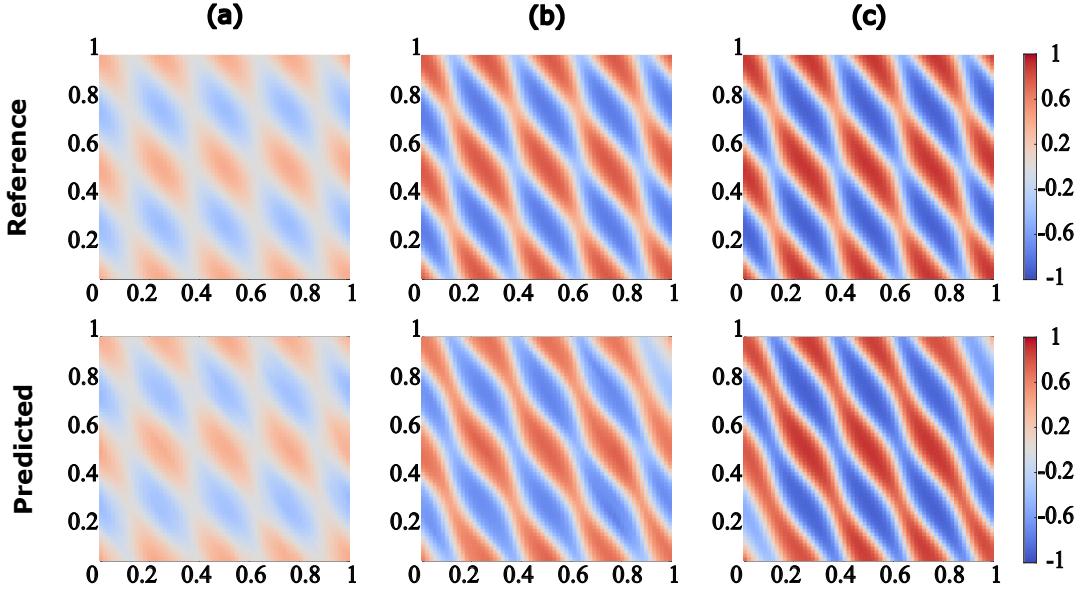


Figure 16: Reference and bc-PINN predicted solution of the 2D Cahn Hilliard equation (IBVP-2) at different time snapshots (a) $t = 0$, (b) $t = 0.003$, (c) $t = 0.005$

478 into a grid containing 64 points along each axis, whereas, the temporal domain is discretized
479 into 101 grid points. The neural network architecture has 3 input neurons and consists 5 hidden
480 layers with 128 neurons in each layer. Two output neurons have been taken to represent the
481 output/solution of the PDE and the phase space term (h, μ) . The neural network architecture
482 remains the same as that used for solving IBVP - 1 (3 input neurons, 5 hidden layers with 128
483 neurons and 2 outputs). Following, the TL technique has been implemented for IBVP2 by
484 freezing the parameters obtained after solving the first segment of IBVP-1. Initially, only a
485 single layer is fixed and as the training progresses through different time segments the number
486 of layers frozen has been incremented by one after every time segment. The minimization of
487 bc-PINN loss function for IBVP-2 has been performed using ADAM and L-BFGS optimizers.
488 The number of ADAM iterations are 50,000 for all the segments. The maximum number of
489 L-BFGS iterations are 75,000 per segment and the other stopping criteria are same as those
490 mentioned in in section (3.4) (criteria ii - v). The details of collocation points used to train the
491 bc-PINN for IBVP-2 are given in table (7). Figure (16) shows the evolution of $h(\mathbf{x}, t)$ with time.
492

Despite using all the aforementioned techniques (ICGL, TL and weighting of the loss function) the solution doesn't converge efficiently for IBVP-3. This is because the initial condition in this case is random and the evolution is complex. Therefore, we have used a sum of \mathcal{L}^1 norm and \mathcal{L}^2 norm of the individual error terms in the total loss function. The reason behind using such a

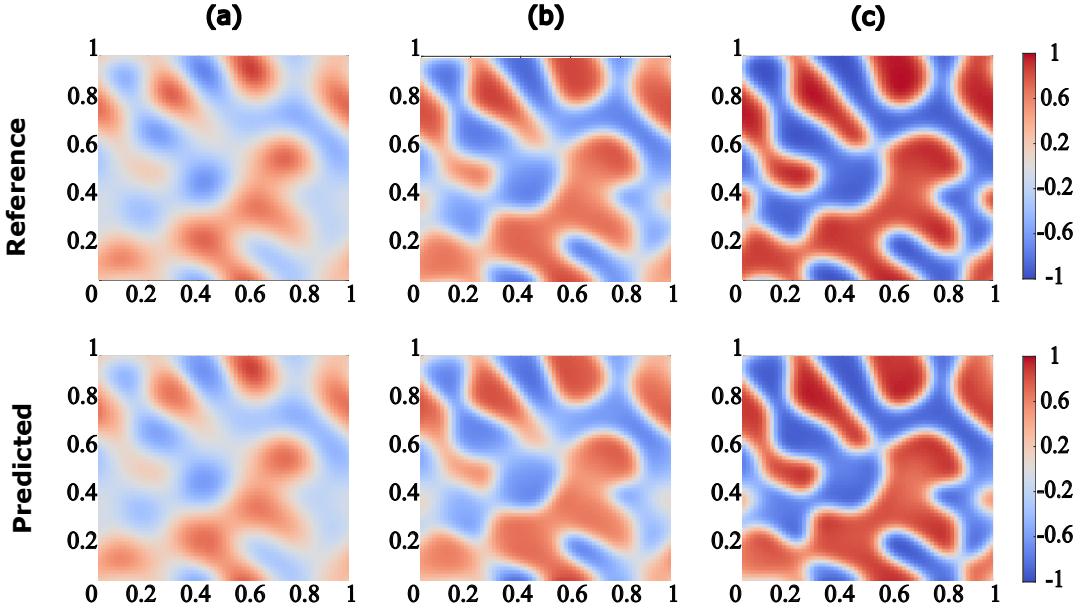


Figure 17: Reference and bc-PINN predicted solution of the 2D Cahn Hilliard equation (IBVP-3) at different time snapshots (a) $t = 0$, (b) $t = 0.002$, (c) $t = 0.005$

loss function is that, when the error is small the penalization due to \mathcal{L}^1 norm is more than \mathcal{L}^2 norm. Thus, as given in equation (26) a combination of \mathcal{L}^1 norm + \mathcal{L}^2 norm has been used to solve the IBVP-3.

$$\text{MSE}_{\Delta T_n} = w_i (\text{MSE}_I + \text{MAE}_I) + w_b (\text{MSE}_B + \text{MAE}_B) + w_r (\text{MSE}_R + \text{MAE}_R) + w_s (\text{MSE}_S + \text{MAE}_S) \quad (26)$$

493 Here, MAE_I , is the mean absolute error on the initial condition ; MAE_B , is the mean absolute
 494 error on the boundary condition; MAE_R , is the mean absolute error on the residual (R_1, R_2) as
 495 given in equations (22); MSE_S ; is the mean absolute error on backward compatibility;

496 Other hyper-parameters like neural network architecture, number of training iterations, number
 497 of collocation points etc. remain the same as those used for solving IBVP-2. The only difference
 498 is that the TL technique has been implemented for IBVP-3, by using the parameters obtained
 500 after solving the first segment of IBVP-2. Considering the complexity of the Cahn Hilliard
 501 equation from figure (17) it can be observed that the bc-PINN prediction matches the reference
 502 solution remarkably well.

503 **7. Conclusions**

504 A new PINN approach (named as bc-PINN) has been proposed for solving the Allen Cahn
 505 and Cahn Hilliard equations, however, the methodology in general should be applicable to
 506 any PDE. The bc-PINN re-trains the neural network over successive time segments while
 507 satisfying the solution for all previous time segments. Additionally, bc-PINN incorporates
 508 two new techniques to improve the accuracy and efficiency of training. Firstly, while solving
 509 a boundary value problem using bc-PINN, the initial condition of that segment is used to
 510 bring the neural network map closer to the true map. Secondly, a transfer learning approach

511 is implemented to accelerate training, where the parameters learned from previous training
512 are used to train a subsequent segment or a new initial condition. In addition by using
513 a phase space representation for the Cahn Hilliard equation, better convergence has been achieved.

514

515 The key advantages of bc-PINN are summarized below. The proposed bc-PINN method can
516 provide an accurate solution for nonlinear or higher-order PDEs such as the Cahn Hilliard and
517 Allen Cahn equations in 1D and 2D. Moreover, the proposed method can achieve high accuracy
518 by using fewer collocation points compared to std-PINN. Despite the segmentation of the time
519 domain, it uses only one neural network and provides a continuous solution for the entire
520 spatio-temporal domain. The proposed backward compatibility scheme may enhance many other
521 machine learning approaches applied to complex systems represented by time dependent PDEs.

522

523 The code accompanying this manuscript would be available on Github repository:

524 <https://github.com/vmattey/bc-PINN>

525

526 **Acknowledgments:** SG acknowledges the financial support by NSF (CMMI MoMS) under
527 grant number 1937983. We acknowledge Superior, a high-performance computing facility at
528 MTU and Google Colab, a cloud service hosted by Google. This work used the Extreme Science
529 and Engineering Discovery Environment (XSEDE) (allocation number MSS200004), which is
530 supported by the NSF grant number ACI-1548562. RM acknowledges Ponkrshnan Thiagarajan
531 and Shashank Pathrudkar for their valuable discussions and insights on the topic.

532 **Appendix A. Hyper-parameter selection for bc-PINN**

533 As discussed in section 5 and 6, the proposed method has a number of hyper-parameters like
 534 number of ADAM iterations (N_{iter} per segment), time steps per segment, number of collocation
 535 points (N_r) etc. The accuracy of the bc-PINN's solution depends on proper choice of these
 536 hyper-parameters. To optimize each of the hyper-parameters, various cases and metrics like
 537 computational time and accuracy have been considered. In the current section, we chose the
 538 Cahn Hilliard equation as the canonical example for all the analysis performed. Table (A.8)
 539 describes the optimum parameters required to train 100 steps. The optimum parameters are
 540 chosen to achieve an accurate solution while balancing the computational cost as shown in
 541 figure (A.18). It can be also seen that as the number of collocation points and number of
 542 iterations are increased the accuracy increases. Therefore, a segment size of 10 steps with 5000
 543 collocation points and 10000 iterations per time segment has been chosen.

544 In general the bc-PINN framework is robust enough to handle any arbitrary length of time
 545 segments and any number of time segments. One effective way for choosing a minimum time
 546 segment is to try training the bc-PINN initially for a specific length of time segment where the
 547 accuracy doesn't get affected. Based on this minimum length of time segment the total number
 548 of time segments can be chosen depending on the length of the total time domain.

Model	Time steps/segment	N_r	N_{iter}
A	10	5000	10000
B	10	5000	20000
C	10	10000	10000
D	10	10000	20000
E	25	5000	10000
F	25	5000	20000
G	25	10000	10000
H	25	10000	20000

Table A.8: Parameter combinations for choosing the optimum segment size, collocation points and number of ADAM iterations to apply the bc-PINN technique for Cahn Hilliard equation.

550 **Appendix B. bc-PINN with a logarithmic residual for Allen Cahn Equation**

551 In this section we show how the bc-PINN with logarithmic residual compares against the
 552 std-PINN and bc-PINN without the logarithmic residual. The loss function for the bc-PINN
 553 with a logarithmic residual is same as the bc-PINN except the equation(16) is replaced by the
 554 following loss term for the residual of the PDE:

$$R := \hat{h}_t - c_1^2 \nabla^2 \hat{h} + f(\hat{h})$$

$$\text{MSE}_R^{(\ln)} = \frac{1}{N_r} \sum_{k=1}^{N_r} \ln (1 + (R(x_k^r, t_k^r))^2), \quad (x_k^r, t_k^r) \in \Omega \times (T_{n-1}, T_n] \quad (\text{B.1})$$

555 It turns out that the bc-PINN with a logarithmic residual is more accurate than the bc-PINN
 556 without the logarithmic residual. A possible explanation is that the logarithmic function reduces
 557 the relative weight on the MSE_R , which would have larger inaccuracy due to its derivative and
 558 nonlinear terms. Thus the initial and boundary terms are satisfied more accurately, which in

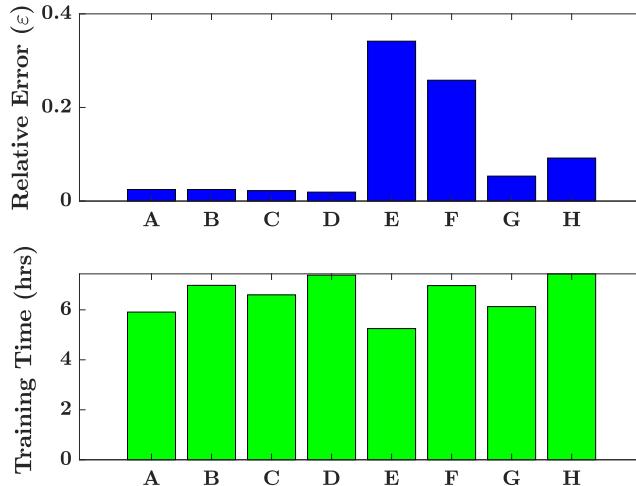


Figure A.18: Relative error (ε) and time taken for various models given in table (A.8).

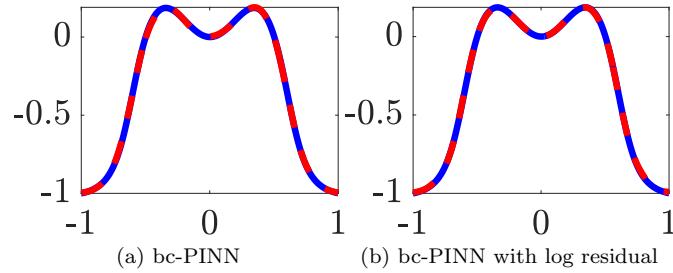


Figure B.19: Reference (—) and Predicted (---) solution at time $t = 0.25$

Method	Error(ε)
std-PINN	0.9919
bc-PINN	0.0701
bc-PINN with logresidual	0.03

Table B.9: Relative errors (equation (7)) over the entire domain with respect to Chebfun solution for different methods.

turn yields a more accurate solution. This explanation is substantiated by the fact that when the logarithmic function is used on all of the four terms in the loss function then the accuracy decreases.

Appendix C. Minimization of the bc-PINN loss function

In section 3.4 we have described the learning rates and stopping criteria for the ADAM and LBFGS optimizer that are utilized to train the bc-PINN. Figure (C.20) shows the minimization of the loss function (equation (11)) while training the bc-PINN for 1D Cahn Hilliard equation in

566 time segment $[0.45, 0.5]$.

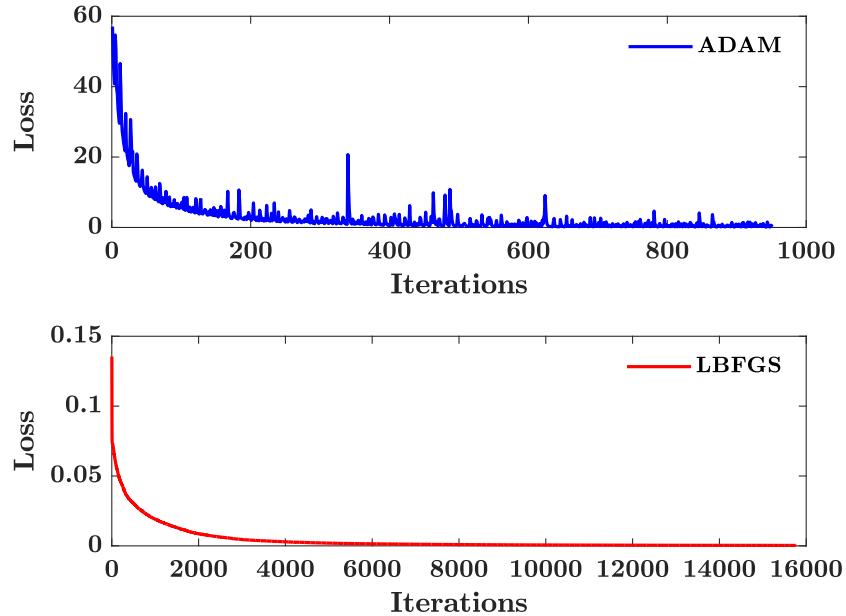


Figure C.20: Loss vs Iterations (Top): using ADAM optimizer (Bottom): using the LBFGS optimizer for training the time segment $[0.45, 0.5]$ of the Cahn Hilliard equation.

567 **Appendix D. Data driven identification of parameters for PDEs using bc-PINN**

568 The framework of bc-PINN is versatile and can be applied to both forward and inverse
 569 problems. Data driven methods for inverse problems have been shown to be extremely effective
 570 [57, 24, 58, 59]. Especially in situations where only partial physics and noisy data are present
 571 physics informed neural networks perform well. In this section, the performance of std-PINN [8]
 572 and bc-PINN for non-parametric PDEs and parametric PDEs has been showcased. For the
 573 non-parametric PDE case, Allen Cahn equation which has been described in section 4 will be
 574 considered as the canonical example. Finally for the parametric PDE, burgers equation with a
 575 time-varying parameter has been considered.

576 Consider a general, m^{th} order partial differential equation with parameters λ_1, λ_2 etc. as given
 577 in equation (D.1).

$$h_t = F(h(\mathbf{x}, t), h_{\mathbf{x}}^{(1)}(\mathbf{x}, t), h_{\mathbf{x}}^{(2)}(\mathbf{x}, t), \dots, h_{\mathbf{x}}^{(m)}(\mathbf{x}, t), \lambda_1, \lambda_2, \dots, \lambda_n), \quad \mathbf{x} \in \Omega \subset \mathbb{R}^D, \quad t \in (0, T] \quad (\text{D.1})$$

577 In equation (D.1), we are interested in finding the parameters $\lambda_1, \lambda_2 \dots \lambda_n$. These parameters
 578 are learnt by defining them as trainable parameters to the physics informed neural networks.
 579 Therefore the loss function can be written as

- Mean squared error on the observed data

$$\text{MSE}_o = \frac{1}{N_o} \sum_{k=1}^{N_o} \left(\hat{h}(\mathbf{x}_k^o, t_k^o) - h_k^o \right)^2, \quad (\mathbf{x}_k^o, t_k^o) \in \Omega \times (0, T] \quad (\text{D.2})$$

- Mean squared error of the residual at observed data points

$$\begin{aligned} R &:= h_t - F(h(\mathbf{x}, t), h_{\mathbf{x}}^{(1)}(\mathbf{x}, t), h_{\mathbf{x}}^{(2)}(\mathbf{x}, t), \dots, h_{\mathbf{x}}^{(m)}(\mathbf{x}, t), \lambda_1, \lambda_2, \dots, \lambda_n) \\ \text{MSE}_{oR} &= \frac{1}{N_o} \sum_{k=1}^{N_o} (R(\mathbf{x}_k^o, t_k^o))^2, \quad (\mathbf{x}_k^o, t_k^o) \in \Omega \times (0, T] \end{aligned} \quad (\text{D.3})$$

580 where $\hat{h}(\mathbf{x}_k^o, t_k^o)$ is the neural network output and h_k^o is the observed data at (\mathbf{x}_k^o, t_k^o) . Here,
581 the superscript, $(\bullet)^o$ stands for observed data.

- The total mean squared error for the inverse std-PINN is given as

$$\text{MSE} = \text{MSE}_o + \text{MSE}_{oR} \quad (\text{D.4})$$

582 The equations (D.2) (D.3) (D.4) represent the total loss function of std-PINN for inverse identification
583 of parameters. In order to implement the bc-PINN scheme for inverse problems, the domain
584 has been divided into multiple segments as shown in figure (D.21). To identify the parameters
585 in a particular time segment, the residual has been minimized only on the observed data in
586 that particular segment. Additionally, to implement the backward compatibility scheme the
587 solution of all the previous segments is satisfied simultaneously. Moreover, the parameters for
588 n^{th} time segment are initialized from the parameters learned in the $(n-1)^{th}$ time segment.
589 This framework helps in identifying the parameters of the PDE in a given segment and also
590 learning the solution in the entire domain. The loss function for parameter identification using
591 the bc-PINN framework is as follows:

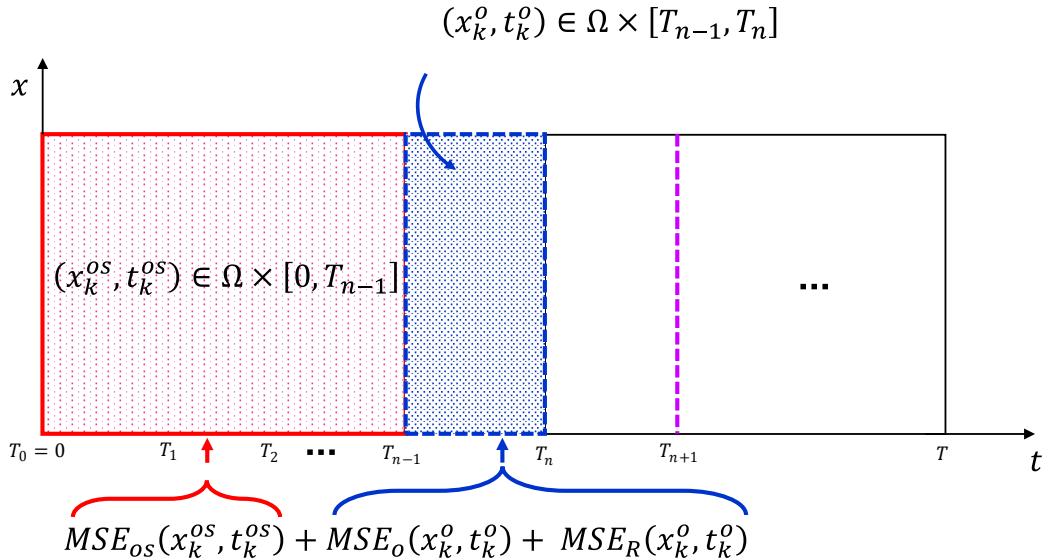


Figure D.21: Illustration of the proposed backward compatibility scheme that satisfies the data observed in the previous time segments at the same time learning the observed data and parameters in a particular segment.

- Mean squared error on the observed data

$$\text{MSE}_o = \frac{1}{N_o} \sum_{k=1}^{N_o} \left(\hat{h}(\mathbf{x}_k^o, t_k^o) - h_k^o \right)^2, \quad (\mathbf{x}_k^o, t_k^o) \in \Omega \times [T_{n-1}, T_n] \quad (\text{D.5})$$

- Mean squared error of the residual at observed data points

$$\begin{aligned} R &:= h_t - F(h(\mathbf{x}, t), h_{\mathbf{x}}^{(1)}(\mathbf{x}, t), h_{\mathbf{x}}^{(2)}(\mathbf{x}, t), \dots, h_{\mathbf{x}}^{(m)}(\mathbf{x}, t), \lambda_1, \lambda_2, \dots, \lambda_n) \\ \text{MSE}_{oR} &= \frac{1}{N_o} \sum_{k=1}^{N_o} (R(\mathbf{x}_k^o, t_k^o))^2, \quad (\mathbf{x}_k^o, t_k^o) \in \Omega \times [T_{n-1}, T_n] \end{aligned} \quad (\text{D.6})$$

- Mean squared error on the previous segments observed data

$$\text{MSE}_{os} = \frac{1}{N_{os}} \sum_{k=1}^{N_{os}} \left(\hat{h}(\mathbf{x}_k^{os}, t_k^{os}) - h_k^{os} \right)^2, \quad (\mathbf{x}_k^{os}, t_k^{os}) \in \Omega \times [0, T_{n-1}] \quad (\text{D.7})$$

592 where $\hat{h}(\mathbf{x}_k^{os}, t_k^{os})$ is the neural network output and h_k^{os} is the observed data at $(\mathbf{x}_k^{os}, t_k^{os})$.
593 Here, the superscript, $(\bullet)^{os}$ stands for observed data in the previous time segments.

- Total mean squared error for inverse bc-PINN is given as

$$\text{MSE}_{\Delta T_n} = \text{MSE}_o + \text{MSE}_{oR} + \text{MSE}_{os} \quad (\text{D.8})$$

594 *Appendix D.1. Parameter identification of Allen Cahn equation 1D*

595 The Allen Cahn as described in earlier sections is a very widely used PDE in material science
596 for studying the diffusion separation process. Therefore inverse identification of the Allen Cahn
597 equation is essential to understand the governing physics of a process. Let us consider the explicit
598 form of Allen Cahn equation

$$h_t = \lambda_1 \nabla^2 h + \lambda_2 (h^3 - h), \quad t \in (0, T], \quad x \in \Omega \subset \mathbb{R} \quad (\text{D.9})$$

599 Using the proposed framework of bc-PINN for inverse problems, the parameters learned are
600 compared against std-PINN. To generate the required data set, random points have been sampled
601 from the reference solution of Allen Cahn equation. The reference solution is computed as given
602 in section (3.6). Also to test the effectiveness of both the methods noise has been added to
603 the reference solution. Table (D.10) shows the parameter values obtained using std-PINN and
604 bc-PINN.

	Predicted λ_1 (True value : 1e-04)		Predicted λ_2 (True value : 5)		Total relative error in the predicted solution	
Noise (%)	bc-PINN	PINN	bc-PINN	PINN	bc-PINN	PINN
0	1.504e-04	1.522e-04	5.03237	5.01081	0.0068	0.0062
2	1.375e-04	7.592e-05	4.98174	4.98214	0.0078	0.0070

Table D.10: True and Predicted parameters using bc-PINN and std-PINN for the 1D Allen Cahn equation.

605 *Appendix D.2. Parameter identification of Burgers equation with a time-varying parameter*

606 This section highlights the ability of the proposed bc-PINN framework for solving parametric
 607 PDEs. Most of the real world systems are governed by parametric PDEs. The explicit parametric
 608 form of burgers equation is as follows:

$$h_t = \lambda_1(t) h h_x + \lambda_2 h_{xx} \quad (x, t) \in [-8, 8] \times (0, 10] \quad (\text{D.10})$$

609 where, $\lambda_1(t)$ is a time varying parameter and, λ_2 is a constant value equal to 0.1. The reference
 610 solution has been computed as given in [57].

$$\lambda_1(t) = \begin{cases} 1.00 & 0 \leq t < 2 \\ 0.75 & 2 \leq t < 4 \\ 0.50 & 4 \leq t < 6 \\ 0.75 & 6 \leq t < 8 \\ 1.00 & 8 \leq t < 10 \end{cases} \quad (\text{D.11})$$

611 Using the proposed framework of bc-PINN for inverse problems, the parameters of the parametric
 612 burgers equation are learnt using an arbitrary length of time segment. In the present example
 613 the total time domain has been discretized into 256 time steps. Therefore, in order to identify
 614 the time varying parameter (λ_1) an arbitrary time segment of 10 steps has been chosen. In
 615 order to identify the parameter λ_1 , all the observed data within the 10 steps segment has been
 616 considered. A similar procedure has also been adopted for identifying the parameter λ_2 .

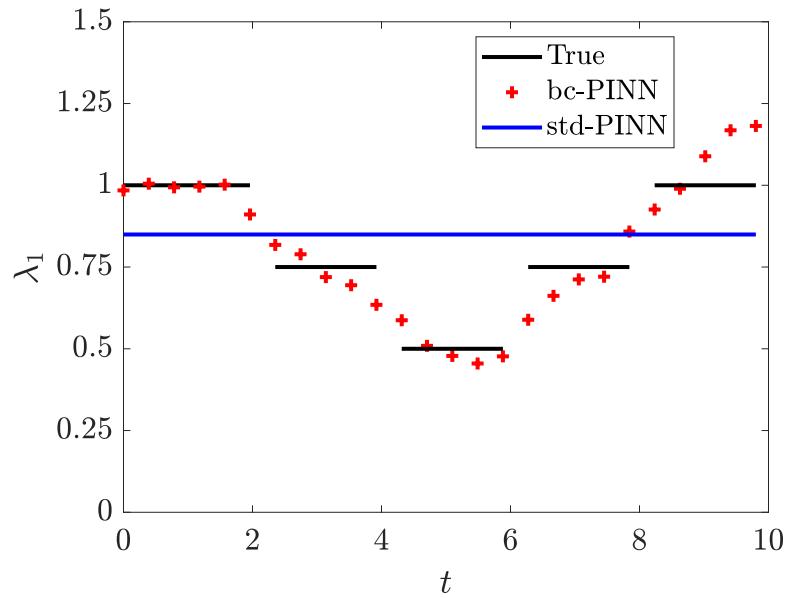


Figure D.22: ‘ λ_1 ’ learned using the bc-PINN and std-PINN approach for the parametric burgers equation

617 From figure (D.22|D.23), it can be observed that the predicted parameters follow a trend
 618 similar to the true values. The main advantage of inverse bc-PINN scheme is that without any
 619 prior knowledge, the nature of a PDE (constant or time-varying) can be identified. Moreover, the
 620 values of the time varying parameters can be obtained without any prior information about the
 621 time segments over which its constant.

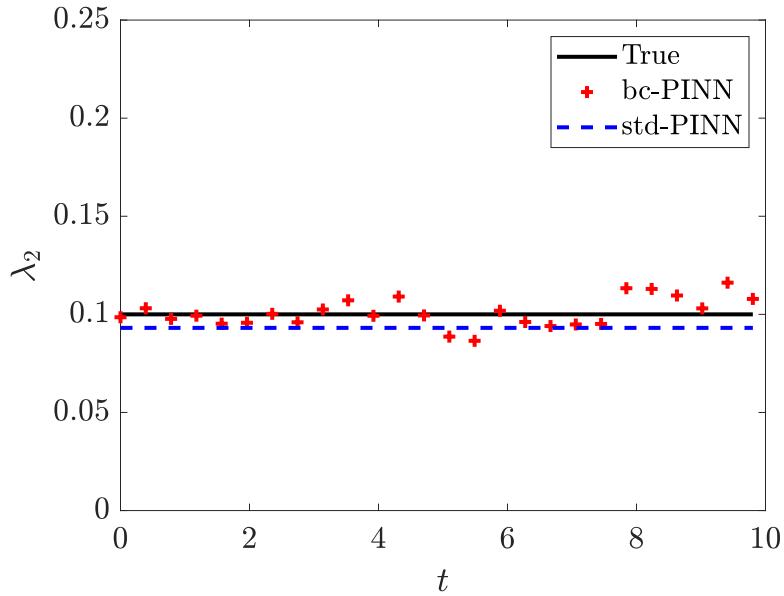


Figure D.23: ‘ λ^2 ’ learned using the bc-PINN and std-PINN approach for the parametric burgers equation

622 References

- 623 [1] Z. Mao, A. D. Jagtap, G. E. Karniadakis, Physics-informed neural networks for high-speed
624 flows, Computer Methods in Applied Mechanics and Engineering 360 (2020) 112789.
- 625 [2] H. Arbabi, J. E. Bunder, G. Samaey, A. J. Roberts, I. G. Kevrekidis, Linking machine
626 learning with multiscale numerics: Data-driven discovery of homogenized equations, JOM
627 72 (12) (2020) 4444–4457.
- 628 [3] M. Raissi, P. Perdikaris, G. E. Karniadakis, Inferring solutions of differential equations using
629 noisy multi-fidelity data, Journal of Computational Physics 335 (2017) 736–746.
- 630 [4] M. Raissi, P. Perdikaris, G. E. Karniadakis, Machine learning of linear differential equations
631 using Gaussian processes, Journal of Computational Physics 348 (2017) 683–693.
- 632 [5] M. Raissi, G. E. Karniadakis, Hidden physics models: Machine learning of nonlinear
633 partial differential equations, Journal of Computational Physics 357 (2018) 125–141. [arXiv:1708.00588](https://arxiv.org/abs/1708.00588).
- 635 [6] S. Atkinson, N. Zabaras, Structured bayesian gaussian process latent variable model:
636 Applications to data-driven dimensionality reduction and high-dimensional inversion, Journal of
637 Computational Physics 383 (2019) 166 – 195.
- 638 [7] I. Bilionis, N. Zabaras, B. A. Konomi, G. Lin, Multi-output separable gaussian process:
639 Towards an efficient, fully bayesian paradigm for uncertainty quantification, Journal of
640 Computational Physics 241 (2013) 212 – 239.
- 641 [8] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep
642 learning framework for solving forward and inverse problems involving nonlinear partial
643 differential equations, Journal of Computational Physics 378 (2019) 686–707.

644 [9] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, Automatic differentiation in
 645 machine learning: a survey, *Journal of machine learning research* 18 (2018).

646 [10] D. Zhang, L. Lu, L. Guo, G. E. Karniadakis, Quantifying total uncertainty in physics-
 647 informed neural networks for solving forward and inverse stochastic problems, *Journal of*
 648 *Computational Physics* 397 (2019) 108850.

649 [11] L. Yang, D. Zhang, G. E. Karniadakis, Physics-informed generative adversarial networks
 650 for stochastic differential equations, *SIAM Journal on Scientific Computing* 42 (1) (2020)
 651 A292–A317.

652 [12] X. Meng, G. E. Karniadakis, A composite neural network that learns from multi-fidelity data:
 653 Application to function approximation and inverse pde problems, *Journal of Computational*
 654 *Physics* 401 (2020) 109020.

655 [13] A. Jagtap, E. Kharazmi, G. Karniadakis, Conservative physics-informed neural networks
 656 on discrete domains for conservation laws: Applications to forward and inverse problems,
 657 *Computer Methods in Applied Mechanics and Engineering* 365 (2020) 113028.

658 [14] A. D. Jagtap, G. Em Karniadakis, Extended physics-informed neural networks (xpinnns): A
 659 generalized space-time domain decomposition based deep learning framework for nonlinear
 660 partial differential equations, *Communications in Computational Physics* 28 (5) (2020)
 661 2002–2041.

662 [15] S. Karumuri, R. Tripathy, I. Bilionis, J. Panchal, Simulator-free solution of high-dimensional
 663 stochastic elliptic partial differential equations using deep neural networks, *Journal of*
 664 *Computational Physics* 404 (2020) 109120. [arXiv:1902.05200](https://arxiv.org/abs/1902.05200).

665 [16] R. K. Tripathy, I. Bilionis, Deep UQ: Learning deep neural network surrogate models for
 666 high dimensional uncertainty quantification, *Journal of Computational Physics* 375 (2018)
 667 565–588.

668 [17] Y. Yang, P. Perdikaris, Adversarial uncertainty quantification in physics-informed neural
 669 networks, *Journal of Computational Physics* 394 (2019) 136–152.

670 [18] L. Yang, X. Meng, G. E. Karniadakis, B-pinns: Bayesian physics-informed neural networks
 671 for forward and inverse pde problems with noisy data (2020). [arXiv:2003.06097](https://arxiv.org/abs/2003.06097).

672 [19] Q. He, D. Barajas-Solano, G. Tartakovsky, A. M. Tartakovsky, Physics-informed neural net-
 673 works for multiphysics data assimilation with application to subsurface transport, *Advances*
 674 *in Water Resources* 141 (2020) 103610.

675 [20] M. Liu, L. Liang, W. Sun, A generic physics-informed neural network-based constitutive
 676 model for soft biological tissues, *Computer Methods in Applied Mechanics and Engineering*
 677 372 (2020) 113402.

678 [21] G. Kissas, Y. Yang, E. Hwuang, W. R. Witschey, J. A. Detre, P. Perdikaris, Machine learning
 679 in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4d flow
 680 mri data using physics-informed neural networks, *Computer Methods in Applied Mechanics and*
 681 *Engineering* 358 (2020) 112623.

682 [22] F. Sahli Costabal, Y. Yang, P. Perdikaris, D. E. Hurtado, E. Kuhl, Physics-informed neural
 683 networks for cardiac activation mapping, *Frontiers in Physics* 8 (2020) 42.

684 [23] Y. Hu, T. Zhao, Z. Xu, L. Lin, Neural time-dependent partial differential equation (2020).
685 [arXiv:2009.03892](https://arxiv.org/abs/2009.03892).

686 [24] Y. Khoo, J. Lu, L. Ying, Solving parametric pde problems with artificial neural networks,
687 European Journal of Applied Mathematics 32 (3) (2020) 421–435.

688 [25] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar,
689 Neural operator: Graph kernel network for partial differential equations (2020). [arXiv:2003.03485](https://arxiv.org/abs/2003.03485)

690 [26] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar,
691 Fourier neural operator for parametric partial differential equations (2021). [arXiv:2010.08895](https://arxiv.org/abs/2010.08895).

692 [27] L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear operators via
693 deeponet based on the universal approximation theorem of operators, Nature Machine
694 Intelligence 3 (3) (2021) 218–229.

695 [28] H. Abels, H. Garcke, G. Grün, Thermodynamically consistent, frame indifferent diffuse
696 interface models for incompressible two-phase flows with different densities, Mathematical
697 Models and Methods in Applied Sciences 22 (03) (2012) 1150013.

698 [29] K. Deckelnick, G. Dziuk, C. M. Elliott, Computation of geometric partial differential
699 equations and mean curvature flow, Acta Numerica 14 (2005) 139–232.

700 [30] J. Lowengrub, L. Truskinovsky, Quasi incompressible cahn hilliard fluids and topological
701 transitions, Proceedings of the Royal Society of London. Series A: Mathematical, Physical
702 and Engineering Sciences 454 (1998) 2617–2654.

703 [31] B. Li, J. Lowengrub, A. Ratz, A. Voigt, Geometric evolution laws for thin crystalline films:
704 modeling and numerics, Communications in Computational Physics 6 (3) (2009) 433.

705 [32] L. N. Trefethen, N. Hale, T. A. Driscoll, Chebfun Guide, Pafnuty Publications, Oxford,
706 2014.

707 [33] S. J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions on Knowledge and
708 Data Engineering 22 (10) (2010) 1345–1359. [doi:10.1109/TKDE.2009.191](https://doi.org/10.1109/TKDE.2009.191).

709 [34] Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent
710 is difficult, IEEE Transactions on Neural Networks 5 (2) (1994) 157–166.

711 [35] Y. Lecun, L. Bottou, G. Orr, K.-R. Müller, Efficient backprop (08 2000).

712 [36] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural
713 networks, in: Proceedings of the thirteenth international conference on artificial intelligence
714 and statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.

715 [37] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization (2017). [arXiv:1412.6980](https://arxiv.org/abs/1412.6980).

716 [38] S. Cox, P. Matthews, Exponential time differencing for stiff systems, Journal of Computational Physics 176 (2) (2002) 430–455.

717 [39] M. Z. Bazant, Thermodynamic stability of driven open systems and control of phase
718 separation by electro-autocatalysis, Faraday discussions 199 (2017) 423–463.

722 [40] S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its
723 application to antiphase domain coarsening, *Acta Metallurgica* 27 (6) (1979) 1085–1095.

724 [41] S. Bartels, Numerical methods for nonlinear partial differential equations, Vol. 47, Springer,
725 2015.

726 [42] J. Shen, X. Yang, Numerical approximations of allen-cahn and cahn-hilliard equations,
727 *Discrete & Continuous Dynamical Systems-A* 28 (4) (2010) 1669.

728 [43] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. i. interfacial free energy,
729 *The Journal of chemical physics* 28 (2) (1958) 258–267.

730 [44] A. Miranville, The cahn-hilliard equation and some of its variants, *AIMS Mathematics* 2
731 (2017) 479–544.

732 [45] J. Kim, S. Lee, Y. Choi, S.-M. Lee, D. Jeong, Basic principles and practical applications of
733 the cahn–hilliard equation, *Mathematical Problems in Engineering* 2016 (2016).

734 [46] S. C. Takatori, J. F. Brady, Towards a thermodynamics of active matter, *Phys. Rev. E* 91
735 (2015) 032117.

736 [47] T. Speck, J. Bialké, A. M. Menzel, H. Löwen, Effective cahn-hilliard equation for the phase
737 separation of active brownian particles, *Phys. Rev. Lett.* 112 (2014) 218304.

738 [48] S. C. Takatori, W. Yan, J. F. Brady, Swim pressure: Stress generation in active matter,
739 *Phys. Rev. Lett.* 113 (2014) 028103.

740 [49] A. A. Hyman, C. A. Weber, F. Jülicher, Liquid-liquid phase separation in biology, *Annual
741 Review of Cell and Developmental Biology* 30 (1) (2014) 39–58.

742 [50] D. Zwicker, A. A. Hyman, F. Jülicher, Suppression of oswald ripening in active emulsions,
743 *Physical Review E* 92 (1) (2015) 012317.

744 [51] C. P. Brangwynne, C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege, J. Gharakhani,
745 F. Jülicher, A. A. Hyman, Germline p granules are liquid droplets that localize by controlled
746 dissolution/condensation, *Science* 324 (5935) (2009) 1729–1732.

747 [52] C. P. Brangwynne, P. Tompa, R. V. Pappu, Polymer physics of intracellular phase transitions,
748 *Nature Physics* 11 (11) (2015) 899–904.

749 [53] B. Horstmann, T. Danner, W. G. Bessler, Precipitation in aqueous lithium–oxygen batteries:
750 a model-based analysis, *Energy & Environmental Science* 6 (4) (2013) 1299–1314.

751 [54] J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity
752 in dealloying, *Nature* 410 (6827) (2001) 450–453.

753 [55] W. Tian, X. Mao, P. Brown, G. C. Rutledge, T. A. Hatton, Electrochemically nanostructured
754 polyvinylferrocene/polypyrrole hybrids with synergy for energy storage, *Advanced Functional
755 Materials* 25 (30) (2015) 4803–4813.

756 [56] D. Lee, J.-Y. Huh, D. Jeong, J. Shin, A. Yun, J. Kim, Physical, mathematical, and
757 numerical derivations of the cahn–hilliard equation, *Computational Materials Science* 81
758 (2014) 216–225.

759 [57] S. Rudy, A. Alla, S. L. Brunton, J. N. Kutz, Data-driven identification of parametric partial
760 differential equations (2018). [arXiv:1806.00732](https://arxiv.org/abs/1806.00732).

761 [58] V. Dwivedi, N. Parashar, B. Srinivasan, Distributed learning machines for solving forward
762 and inverse problems in partial differential equations, Neurocomputing 420 (2021) 299–316.

763 [59] M. Cheng, T. Y. Hou, M. Yan, Z. Zhang, A data-driven stochastic method for elliptic pdes
764 with random coefficients, SIAM/ASA Journal on Uncertainty Quantification 1 (1) (2013)
765 452–493.