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Abstract

A physics informed neural network (PINN) incorporates the physics of a system by satisfying
its boundary value problem through a neural network’s loss function. The PINN approach has
shown great success in approximating the map between the solution of a partial di↵erential
equation (PDE) and its spatio-temporal coordinates. However, the PINN’s accuracy su↵ers
significantly for strongly non-linear and higher-order time–varying partial di↵erential equations
such as Allen Cahn and Cahn Hilliard equations. To resolve this problem, a novel PINN scheme
is proposed that solves the PDE sequentially over successive time segments using a single neural
network. The key idea is to re-train the same neural network for solving the PDE over successive
time segments while satisfying the already obtained solution for all previous time segments. Thus
it is named as backward compatible PINN (bc-PINN). To illustrate the advantages of bc-PINN,
the Cahn Hilliard and Allen Cahn equations are solved. These equations are widely used to
describe phase separation and reaction-di↵usion systems. Additionally, two new techniques have
been introduced to improve the proposed bc-PINN scheme. The first technique uses the initial
condition of a time–segment to guide the neural network map closer to the true map over that
segment. The second technique is a transfer learning approach where the features learned from
the previous training are preserved. We have demonstrated that these two techniques improve
the accuracy and e�ciency of the bc-PINN scheme significantly. It has also been demonstrated
that the convergence is improved by using a phase space representation for higher-order PDEs.
It is shown that the proposed bc-PINN technique is significantly more accurate and e�cient
than PINN.

Keywords: Physics informed neural networks,, Partial di↵erential equation (PDEs), Allen Cahn
equation, Cahn Hilliard equation

1. Introduction1

Traditional physics-based numerical methods for solving partial di↵erential equations (PDEs)2

have found remarkable success in solving various science and engineering problems. These3

methods are accurate but computationally expensive for complex problems such as nonlinear4

PDEs and requires problem–specific techniques. In the last decade data driven methods have5

gained a lot of attention in almost all areas of science and engineering. Data driven methods for6

PDEs can help in identifying highly non-linear mappings (between the inputs and outputs) which7

can substitute or augment expensive physics based simulations. Due to their versatility and fast8
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evaluation capabilities, machine learning based models can be used as PDE solvers in situations9

when there is a requirement of a large number of simulations such as the inverse–problem and10

homogenization [1, 2].11

Several data–driven techniques have been attempted to solve PDEs. For instance, the Gaussian12

Process based approaches are described in [3, 4, 5, 6, 7]. Despite the ease of training for Gaussian13

Process, this approach did not gain as much popularity as a neural network for solving PDEs14

due to its di�culties in handling high dimensional problems.15

16

Among di↵erent data–driven techniques for PDEs the Physics Informed Neural Networks17

(PINN) has shown remarkable promise and versatility. PINN is a new class of machine learning18

technique where a neural network’s loss function is designed to satisfy the Initial Boundary Value19

Problem (IBVP) [8]. A PINN “learns” the non linear map between the spatio–temporal input20

and the solution of the PDE in a given domain. Henceforth, throughout this paper the PINN21

described in [8] would be referred to as std-PINN. std-PINN utilizes the automatic-di↵erentiation22

capability [9] to compute the derivatives of the field variables.23

24

Di↵erent variants of std-PINN are shown to work e↵ectively in solving many forward and25

inverse problems [10, 11, 12]. Recently in [13], PINN has been extended to satisfy various26

conservation laws while solving the PDEs. This approach is named as cPINNs. cPINNs solve the27

problem over several sub-domains and ensure flux continuity at the boundaries of the sub-domains.28

Another extension to cPINNs is XPINN known as extended PINN, where the authors propose a29

generalized space–time domain decomposition based deep learning framework [14]. The key idea30

in XPINN is to decompose the domain into multiple sub-domains and train the sub-domains31

using multiple neural networks (sub Net), while ensuring C0 continuity along the interfaces.32

While most of the PINN approaches solve the strong form of a PDE, it can also be used to solve33

the weak (variational) form of a PDE. Since the weak form incorporates the natural boundary34

conditions, the neural network solution only needs to satisfy the essential boundary conditions a35

priori. This aspect is used in several numerical methods for PDEs such as the finite element36

method. Due to this advantage of weak form over strong form the application of PINN on37

the weak form has been investigated in [15]. In this study, the authors have considered the38

variational form for stochastic PDEs and applied the idea of PINNs to obtain the solution of39

the PDE. Also the corresponding uncertainty propagation through their model is presented in40

[15, 16]. Uncertainty quantification provides the variation associated with the prediction of the41

model. It is particularly useful for systems where there is a high cost of data acquisition or42

lack of high resolution data [17]. The authors in [18] proposed a Bayesian approach for physics43

informed neural network to solve forward and inverse problems.44

45

The promise and versatility of PINN have been demonstrated through its application for a46

wide range of problems. PINN has been used in modeling subsurface transport phenomena [19],47

approximating Euler equations for high speed flows [1], constitutive modeling of stress–strain48

behavior in biological tissues [20], predicting arterial blood pressure from noisy MRI data of flow49

velocity [21], and cardiac activation mapping for diagnosing atrial fibrillation [22].50

51

Recently many other data–driven techniques for solving time varying PDEs have been pro-52

posed. In [23] the authors proposed a framework called Neural-PDE which aims to learn the53

solution of the PDE by utilizing numerical techniques like FDM (Finite di↵erence method) and54

LSTM (Long short term memory) networks. The method aims to predict the solution of the55

PDE at n future time steps by using the meshgrid data (solution) of all the previous time steps.56

Artificial neural network based approaches for solving parametric PDEs have been introduced by57
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the authors in [24]. Operator learning is a new and emerging technique for solving PDEs. In58

operator learning a map between initial condition and solution of the PDE is learnt by using59

multiple instantiations [25, 26, 27].60

61

In the present work, we demonstrate that the accuracy of the std-PINN [8] su↵ers in the62

presence of (i) Strong Non-linearity, and (ii) Higher order partial di↵erential operators. In order63

to illustrate the above, we chose the Allen Cahn equation having strong non-linearity and Cahn64

Hilliard equation having strong non-linearity and fourth order derivative. These are the two65

most widely used PDEs to study di↵usion separation and multi–phase flows [28, 29, 30, 31]. To66

overcome the drawbacks of the std-PINN, we have proposed an extension, which is named as67

backward compatible PINN (bc-PINN). The proposed bc-PINN solves the PDE over successive68

time segments by re-training the same neural network, where the key idea is:69

To ensure that the neural network can reproduce the solution for all the prior time segments70

while solving the PDE for a particular time segment.71

Henceforth, this idea is referred to as backward compatibility. Some of the main advantages of72

the proposed bc-PINN method are as follows:73

1. It works for higher order and strongly nonlinear PDEs by using fewer iterations and74

collocation points while achieving significantly higher accuracy when compared to std-75

PINN.76

2. A single neural network is used for the entire domain and continuity across the time77

segments is ensured for the predicted solution and its derivatives.78

The rest of the paper is organized as follows: in section (2) the std-PINN method is briefly79

reviewed; in section (3) the proposed bc-PINN method is presented; in section (4) the Allen80

Cahn and Cahn Hilliard equations are described; in section (5) the bc-PINN method is analyzed81

and compared against the std-PINN and the XPINN method for the one dimensional (1D) Allen82

Cahn and Cahn Hilliard equations; in section (6) two new techniques initial condition guided83

learning and transfer learning based acceleration have been presented along with the results for84

the two dimensional (2D) Allen Cahn and Cahn Hilliard equations. Finally, the conclusions are85

presented in section (7).86

2. A brief review of standard physics informed neural network (std-PINN) for87

partial di↵erential equations88

Physics informed neural network (PINN) is a class of machine learning model where the
governing PDE is satisfied through the loss function of the neural network [8]. The e�cient
optimization and prediction capabilities of neural network are exploited in the std-PINN approach.
In std-PINN a neural network is trained to predict the solution at any point in the entire spatial–
temporal domain. Let’s consider the general form of a mth order partial di↵erential equation
(PDE):

ht = F (h(x, t), h(1)
x (x, t) , h(2)

x (x, t), · · · , h(m)
x (x, t)) , x 2 ⌦ ⇢ RD , t 2 (0, T ] (1)

Here, ⌦ is an open set of RD (D = 1,2,3). F is a non linear function of the solution h(x, t) and

it’s spatial derivatives (h(1)
x (x, t), h(2)

x (x, t), · · · , h(m)
x (x, t)) where x and t are the space and time

coordinates respectively. The corresponding boundary conditions and initial conditions are

h(x, 0) = �(x), x 2 ⌦

h(�x, t) = h(x, t), (x, t) 2 �⇥ (0, T ]

h(1)
x (�x, t) = h(1)

x (x, t) , (x, t) 2 �⇥ (0, T ]

(2)
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Where, � is the boundary of ⌦. The PDE, the Initial and the Boundary Conditions (given by89

equation (1–2)) form a initial–boundary value problem (IBVP) considered in this study. The90

boundary conditions are taken as periodic and the initial condition is a real function.91

92

std-PINN approximates the map between points in the spatio-temporal domain to the solution93

of the PDE. The parameters of the neural network are randomly initialized and iteratively updated94

by minimizing the loss function that enforces the PDE. The std-PINN’s loss function consists of95

three error components, for the prediction of the neural network as in the following (i) Initial96

Condition, (ii) Boundary Condition, and (iii) PDE. Let ĥ(x, t) be the output of neural network.97

The three components of the std-PINN’s loss function are given below:98

• Mean squared error on the Initial Condition

MSEI =
1

Ni

NiX

k=1

⇣
ĥ(xi

k, 0)� hi
k

⌘2
, xi

k 2 ⌦ (3)

where ĥ(xi
k, 0) is the neural network output and hi

k is the given initial condition at (xi
k, 0).99

Here, the superscript, (•)i stands for initial condition.100

• Mean squared error on the Boundary Condition

MSEB =
1

Nb

NbX

k=1

ndX

d=1

⇣
ĥ(d�1)(xb

k, t
b
k)� ĥ(d�1)(�xb

k, t
b
k)
⌘2

, (xb
k, t

b
k) 2 �⇥ (0, T ] (4)

where nd is the highest order of derivative to which the periodicity is enforced on the101

boundary, �. Here, the superscript, (•)b stands for boundary condition.102

• The Mean squared error due to Residual of the partial di↵erential equation

R := ĥt � F (ĥ, ĥ(1)
x , ĥ(2)

x , ...ĥ(m)
x )

MSER =
1

Nr

NrX

k=1

(R(xr
k, t

r
k))

2 , (xr
k, t

r
k) 2 ⌦⇥ (0, T ]

(5)

The superscript, (•)r stands for residual of the PDE. (xi
k) and (xb

k, t
b
k), represent the set of

points where the initial and boundary errors are computed. The residual/collocation error is
computed at the collocation points (xr

k, t
r
k). These points on the domain and the boundary are

obtained using a latin hypercube sampling approach. Therefore, the total loss function of the
neural network is given by adding all the aforementioned mean squared errors

MSE = MSEI +MSEB +MSER (6)

Once the std-PINN is trained, the accuracy of the predicted solution is computed with respect
to the reference solution at unknown points (called testing points). Highly accurate solution
of the initial boundary value problem obtained by the Chebyshev polynomial based numerical
algorithm [32] and is considered as the reference solution. The relative total error ("total) of the
PINN’s prediction over the entire domain is obtained by normalizing the error with respect to
the reference solution as

"total =


1
N

PN
k=1

⇣
ĥ(xk, tk)� h(xk, tk)

⌘2
�1/2

h
1
N

PN
k=1 (h(xk, tk))

2
i1/2 (7)
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The relative error (") of the PINN’s prediction at each point is obtained by normalizing the
absolute error with respect to the reference solution as

"(xk, tk) =

���ĥ(xk, tk)� h(xk, tk)
���

hPN
k=1 (h(xk, tk))

2
i1/2 (8)

Where h(xk, tk) is the reference solution and ĥ(xk, tk) is the neural network prediction for a103

set of testing points {(xk, tk)}Nk=1, (xk, tk) 2 ⌦⇥ (0, T ]. For all comparisons between reference104

and predicted solutions the relative total error ‘"total’ and relative error ‘"’ is used.105

3. The proposed backward compatible sequential PINN method (bc-PINN)106

In this section, we introduce an extension of the std-PINN technique that solves an initial-107

boundary value problem sequentially in time.108

3.1. bc-PINN109

In the proposed method the PDE is solved progressively in time by re-training a single neural
network over successive time segments. The limitation of such retraining is that the network
can predict only for the latest time segment and cannot predict for previous time segments for
those it has been trained earlier. To overcome this limitation, the proposed model is designed to
satisfy the solution of all the previous time segments while solving the PDE over a particular
time segment. This scheme ensures backward compatibility of the solution by a single network.
The proposed method is henceforth referred as backward compatible PINN (bc-PINN). The
schematics of bc-PINN for a particular time segment is shown in figure (1) and the sequential
scheme of proposed bc-PINN approach is shown in figure (2). In bc-PINN the time domain [0, T ]
is discretized into nmax segments as

[T0 = 0, T1], [T1, T2], · · · , [Tn�1, Tn], · · · , [Tnmax�1, Tnmax = T ] (9)

where the nth segment is denoted as �Tn = [Tn�1, Tn], n = 1, · · · , nmax.110

For the first time segment �T1 the solution of the PDE is sought through the std-PINN by
minimizing the following loss function

MSE�T1 = wi MSEI (x
i
k , 0 ) + wb MSEB (x

b
k , t

b
k ) + wr MSER(x

r
k , t

r
k )

xi
k 2 ⌦, (xb

k, t
b
k) 2 �⇥ (0, T1] (xr

k, t
r
k) 2 ⌦⇥ (0, T1]

(10)

Here, (xi
k, t

i
k) represent the set of points where the error on initial condition is computed and111

(xb
k, t

b
k) represent the set of points where the error on boundary condition is computed within the112

time segment �T1 = (0, T1]. For all of the subsequent time segments (i.e. �Tn, n = 2, · · · , nmax)113

we propose a novel loss function, which satisfies the solution of all previous time segments. The114

solution of all previous time segments is enforced by penalizing the departure from the already115

obtained solutions from the previous training, as given by116

MSE�Tn = wi MSEI (x
i
k ,Tn�1 ) + wb MSEB (x

b
k , t

b
k ) + wr MSER(x

r
k , t

r
k )

+ws MSES (x
s
k , t

s
k ) , n = 2 , · · · ,nmax

xi
k 2 ⌦, (xb

k, t
b
k) 2 �⇥ (Tn�1, Tn]

(xr
k, t

r
k) 2 ⌦⇥ (Tn�1, Tn], (xs

k, t
s
k) 2 ⌦⇥ [0, Tn�1]

(11)
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Figure 1: The schematics of the proposed backward compatible PINN (bc-PINN) approach for a time segment

((Tn�1, Tn]). The neural network re-trains the PDE over (Tn�1, Tn] while satisfying the solution for all previous

time segments. The error in the Initial Condition is computed at time t = 0 for the first time segment and at

time t = (Tn�1 for the nth time segment.

!"−1!0 = 0 !" !"+1 !

Figure 2: Illustration of the proposed backward compatibility scheme (over a 1D domain) that satisfies the

solutions obtained on all previous time segments ([0, Tn�1]) while satisfying the PDE on the current time segment

((Tn�1, Tn]). The error in the Initial Condition is computed at time t = 0 for the first time segment and at time

t = (Tn�1 for the nth time segment.

Here, (xi
k, Tn�1) represent the set of points where the error on initial condition is com-117

puted and (xb
k, t

b
k) represent the set of points where the error on boundary conditions is118

computed within the time segment (Tn�1, Tn]. The residual/collocation error as given119

in equation (5) is computed at the collocation points (xr
k, t

r
k). We also minimize the120

departure from the already obtained solution that were stored at the grid points (xs
k, t

s
k).121

The solution obtained (on (0, Tn]) at the nth segment is stored for using it in the (n+1)th segment.122

123

The weights (wi, wb, wr, ws) given in equation (11) help in faster convergence to the true solution.124
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These weights are utilized to scale the di↵erence in the magnitude of the errors. In the present125

work, the di↵erence in the order of derivatives (spatial) and the number of spatial dimensions126

are used for scaling. From a mathematical perspective, the weighting of the loss function can be127

seen as a mechanism that forces the learning process to focus on the terms where high prediction128

accuracy is required.129

130

In sections (3.2,3.3), two techniques have been proposed to further improve the accuracy and131

e�ciency of the bc-PINN scheme.132

3.2. Initial condition guided learning (ICGL)133

In initial condition guided learning, the key idea is to perform the training in two stages for
each time segment. In the first stage the neural network is trained to match only the initial
condition of that time segment, using a small fraction of the total iterations. Therefore, the loss
function for ICGL (MSESI) is as follows:

MSESI =
1

NSI

NSIX

k=1

⇣
ĥ(xSI

k , tSI
k )� ĥSI

k (xSI
k , Tn�1)

⌘2
, (xSI

k , tSI
k ) 2 ⌦⇥ (Tn�1, Tn] (12)

Here, ĥ(x, t) is the neural network prediction and ĥ(x, t) is the known solution through the neural134

network at the previous time step, Tn�1. Whereas, in the second stage the weights obtained in135

the first stage are taken as the initial weights and the bc-PINN as described earlier is trained.136

This is motivated by the fact that the solution of a PDE in a time segment is expected to be137

close to the initial condition if the segment is small. Thus matching the initial condition brings138

the neural network map closer to the true map. Since in the first step there are no derivative139

calculations involved, it accelerates the training.140

3.3. Transfer learning based acceleration (TL)141

A transfer learning approach is implemented that uses the weights and biases from a bc-PINN142

that has been trained on a di↵erent initial condition or the previous segment. The transfer143

learning approach preserves the features from a previous training as reported in [33]. This helps144

in faster convergence for a new initial condition. A notable advantage of this technique is that145

the training time can be significantly reduced as the number of trainable parameters decreases.146

147

The two proposed techniques proposed (Initial condition guided learning and Transfer learning148

based acceleration) shows significant improvement in the accuracy of the bc-PINN - solution for149

the Allen Cahn and Cahn Hilliard equations. These two techniques are independent of each150

other and can be used either in tandem or individually.151

3.4. Details of the neural network of bc-PINN152

We have used a standard (deep) neural network with two input neurons consisting of the153

spatial variables (x) and temporal variable (t). The output of the neural network (ĥ(x, t))154

approximates the solution of the PDE (h(x, t)). To avoid model bias due to input features of155

di↵erent scales we have performed “min-max” normalization to scale the data uniformly. For156

solving 1D Allen Cahn and Cahn Hilliard equations using bc-PINN the architecture of the neural157

network chosen has 6 hidden layers with 128 neurons in each layer. Whereas, while solving 2D158

Allen Cahn and Cahn Hilliard equations using the aforementioned architecture didn’t yield a159

good performance. Thus, in order to choose the neural network architecture for solving 2D PDEs160

(section (6)) the following approach has been used. Preference has been given to increasing161
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the number of neurons of a hidden layer rather than increasing the number of hidden layers.162

This is backed by the fact that increasing hidden layers is more computationally intensive than163

increasing the number of neurons. For both std-PINN and bc-PINN, tanh is chosen as the164

activation function. Even though it’s well known that tanh activation function has a problem of165

vanishing gradient in very deep networks [34]. The advantages of tanh activation function are166

that its continuous (range [-1,1] ) and di↵erentiable. Since, tanh is a non-linear function it gives167

neural network the capability to learn non-linear maps [35]. The neural network has more than168

100,000 learning parameters which have been initialized using the “xavier initialization” [36]169

technique. The optimization of the loss function and updating the learning parameters (weights170

and biases of the neural network) is performed using the ADAM and LBFGS optimizers. The171

learning rate for ADAM optimizer is considered as 0.001 with all other parameters as suggested172

in [37]. Following std-PINN, after training the neural network using the ADAM optimizer we173

again train it using the L–BFGS optimizer until one of the following stopping criteria is met:174

(i) Maximum iterations are equal to 50,000, (ii) Maximum number of function evaluations are175

equal to 50,000, (iii) Maximum number of line search steps (per iteration) equal to 50, (iv) The176

maximum number of variable metric corrections used to define the limited memory matrix are177

equal to 50, (v) The iteration stops when fk�fk+1

max(|fk|,|fk+1|,1) <= 2.22044604925e� 16, where f is178

the neural network objective function and k is the iteration number.179

3.5. Details of the Computational Platform180

All the neural networks are trained on Nvidia Tesla P100 (3584 CUDA cores and 16GB of181

HBM2 vRAM) and Nvidia Volta V100 GPU (5120 CUDA cores, 640 Tensor cores and 16GB of182

HBM2 vRAM). For inferencing and generating the reference solutions via chebfun, we have used183

Dell precision 3630 workstation with Intel core i7-9700k 8 core (4.9 GHz Turbo) and 32 GB184

RAM. The software packages used for all the computations are Tensorflow 1.15 and MATLAB185

R2020a. All the variables defined for computations in tensorflow are of float32 data type.186

187

3.6. The reference solution188

Accurate numerical solutions for the Allen Cahn and Cahn Hilliard equations are obtained189

using the chebfun package [32]. The chebfun approach provides a polynomial interpolant190

for smooth functions in Chebyshev points. To solve time varying PDEs an exponential time191

di↵erencing with Runge–Kutta time stepping scheme [38] has been implemented in chebfun,192

which is used in the present work. Henceforth, these solutions are considered as the reference193

solutions. We have taken 512 points for spatial discretization and 201 points for discretization in194

time scale. A fourth order Runge–Kutta time integrator with time step �t = 10�5 is used.195

196

The bc-PINN approach is applied to solve Allen Cahn equation and Cahn Hilliard equation197

in sections (5 and 6) to demonstrate its advantages for nonlinear and higher order PDEs in198

comparison to std-PINN method [8].199

4. bc-PINN for Allen Cahn and Cahn Hilliard equations200

The Allen Cahn and Cahn Hilliard 1 equations are two of the widely used partial di↵erential201

equations for studying the phenomena of phase separation [39]. There are innumerous practical202

1
The Cahn Hilliard equation plays an essential role in the field of material science for describing the qualitative

features in a phase separation process for two phase systems (assuming isotropy and constant temperature). The

process of phase separation can be observed when a binary alloy is cooled down adequately. This leads to a state
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applications of these equations in various fields such as material science [40, 41, 42, 43, 44, 45],203

biological systems [46, 47, 48, 49, 50, 51, 52], electro-chemical systems etc. [53, 54, 55].204

4.1. Allen Cahn Equation205

For every x 2 ⌦, (⌦ is an open set of RD) the Allen Cahn equation can be written as:206

ht � c21 r2h+ f(h) = 0 , t 2 (0, T ], x 2 ⌦ ⇢ RD

f(h) = c2(h
3 � h)

(13)

For a phase separation problem, the parameter h, represents the concentration of the individual207

component and the parameter ‘c1’ represents the interfacial thickness. The solution progressively208

develops interfaces separating di↵erent phases. For a given initial condition, h0(x) 2 L2(⌦)209

and T > 0, we seek a function h : ⌦⇥ (0, T ] ! R which satisfies the above equation. In order210

to implement the bc-PINN scheme for Allen Cahn equation, the following loss function has been211

used.212

• Mean squared error on the initial Condition

MSEI =
1

Ni

NiX

k=1

⇣
ĥ(xi

k, Tn�1)� hi
k

⌘2
, xi

k 2 ⌦ (14)

• Mean squared error on the boundary Condition

MSEB =
1

Nb

NbX

k=1

ndX

d=1

⇣
ĥ(d�1)(xb

k, t
b
k)� ĥ(d�1)(�xb

k, t
b
k)
⌘2

(xb
k, t

b
k) 2 �⇥ (Tn�1, Tn]

(15)

where nd is the order to which periodicity is enforced on the boundary �. Here, the213

superscript, (•)b stands for boundary condition.214

• The Mean squared error due to residual of the partial di↵erential equation

R := ĥt � c21 r2ĥ+ f(ĥ)

MSER =
1

Nr

NrX

k=1

(R(xr
k, t

r
k))

2 , (xr
k, t

r
k) 2 ⌦⇥ (Tn�1, Tn]

(16)

The superscript, (•)r stands for residual of the PDE.215

• Mean squared error for backward compatibility

MSES =
1

Ns

NsX

k=1

⇣
ĥ(xs

k, t
s
k)� ĥ(xs

k, t
s
k)
⌘2

, (xs
k, t

s
k) 2 ⌦⇥ [0, Tn�1] (17)

where, ĥ(x, t) is the neural network prediction and ĥ(x, t) is the known solution through216

the neural network from the previous time steps ⌦⇥ [0, Tn�1]. The superscript, (•)s stands217

for the backward compatible solution.218

• The total mean squared error is the same as given in equation (11)219

of total nucleation which is mainly referred to as spinodal decomposition. In the subsequent stage coarsening

occurs in the nucleated microstructure at a much slower rate. This whole phase separation phenomena a↵ects the

mechanical properties (eg. strength, hardness and fracture toughness) of the material.
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4.2. Cahn Hilliard Equation220

For every x 2 ⌦, (⌦ is an open set of RD) the Cahn Hilliard equation can be written as:221

ht �r2
�
f(h)� (↵)r2 h(x, t)

�
= 0 , t 2 (0, T ], x 2 ⌦ ⇢ RD (18)

To simplify the derivative calculation, a phase space representation of the Cahn Hilliard equation222

has been adopted. The phase space representation is widely used to represent a high order PDE223

into coupled multiple lower order PDEs. The phase space representation of the Cahn Hilliard224

equation (a fourth order PDE, equation (18)) yields two coupled second order PDEs.225

ht �r2(�(↵)µ+ f(h)) = 0, µ = r2h t 2 (0, T ], x 2 ⌦ ⇢ RD

f(h) = h3 � h
(19)

Since the entire process is governed by the Cahn Hilliard equation it is essential to understand226

the physical significance of each individual variable. The order parameter (h) in equation (18),227

refers to the rescaled density or concentration of one of the material components in the system228

and it takes values between (-1 and 1, which corresponds to their pure states). The density of229

second component is (1� h), and this ensures that the total density over the simulation domain230

is a conserved quantity. The parameter  is the mobility parameter and the parameter ↵ is231

related to the surface tension at the interface. In order to implement the bc-PINN scheme for232

the Cahn Hilliard equation, the following loss function has been used.233

• Mean squared error on the initial condition for h(x, t) and µ(x, t)

MSEI =
1

Ni

(
NiX

k=1

⇣
ĥ(xi

k, Tn�1)� hi
k

⌘2
+

NiX

k=1

�
µ̂(xi

k, Tn�1)� µi
k

�2
)

, xi
k 2 ⌦ (20)

• Mean squared error on the boundary Condition

MSEBh =
1

Nb

(
NbX

k=1

ndX

d=1

⇣
ĥ(d�1)(xb

k, t
b
k)� ĥ(d�1)(�xb

k, t
b
k)
⌘2

)

MSEBµ =
1

Nb

(
NbX

k=1

ndX

d=1

⇣
µ̂(d�1)(xb

k, t
b
k)� µ̂(d�1)(�xb

k, t
b
k)
⌘2

)

MSEB = MSEBh +MSEBµ , (xb
k, t

b
k) 2 �⇥ (Tn�1, Tn]

(21)

Here, the superscript, (•)b stands for boundary condition.234

• The Mean squared error due to residual of the partial di↵erential equation

R1 := ĥt �r2
⇣
�(↵)µ+ f(ĥ)

⌘

R2 := µ̂�r2ĥ

MSER =
1

Nr

(
NrX

k=1

R1 (x
r
k, t

r
k)

2 +
NrX

k=1

R2 (x
r
k, t

r
k)

2

)
, (xr

k, t
r
k) 2 ⌦⇥ (Tn�1, Tn]

(22)

The superscript, (•)r stands for residual of the PDE.235
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• Mean squared error for backward compatibility

MSES =
1

Ns

NsX

k=1

⇣
ĥ(xs

k, t
s
k)� ĥ(xs

k, t
s
k)
⌘2

, (xs
k, t

s
k) 2 ⌦⇥ [0, Tn�1] (23)

where, ĥ(x, t) is the neural network prediction and ĥ(x, t) is the known solution through236

the neural network from the previous time steps ⌦⇥ [0, Tn�1]. The superscript, (•)s stands237

for the backward compatible solution.238

• The total mean squared error is the same as given in equation (11)239

The boundary loss (equation (21) is applied for nd = 1 on ĥ and µ̂, to represent periodic boundary240

conditions. Equation (22) describes two components of residual for two PDEs in the phase space241

form of the Cahn Hilliard equation (equation (19)). In the following sections (5 and 6), the242

results of Allen Cahn and Cahn Hilliard equations obtained using bc-PINN are presented..243

5. Results of Allen Cahn and Cahn Hilliard equations using bc-PINN in 1D244

5.1. Allen Cahn equation in one dimension245

In this section, a 1D time varying Allen Cahn equation has been considered. The PDE
for Allen Cahn equation remains the same as described in section (4.1). Since, the domain
considered is one dimensional, ⌦ 2 [�1, 1] and t 2 (0, 1]. The values of the parameters considered
in equation (13) are, c21 = 0.0001 and c2 = 5.

h(x, 0) = x2 cos(⇡x)

h(x, t) = h(�x, t), (x, t) 2 �⇥ (0, T ]

h(1)
x (x, t) = h(1)

x (�x, t), (x, t) 2 �⇥ (0, T ]

(24)

The above equation (24) gives details about the initial and boundary conditions (where �246

describes the boundary).247

5.1.1. std-PINN for Allen Cahn equation248

At first, the aforementioned Allen Cahn equation is solved using the std-PINN to demonstrate249

the challenge associated with non-linearity. The number of collocation points considered for250

training the std-PINN are 512 points for initial condition, 201 points for the boundary condition251

and 20,000 spatio-temporal points for computing the residual. The neural network architecture252

used has 4 hidden layers with 200 neurons in each layer and which is the same as given in [8].253

For training the std-PINN, we have used both ADAM and L-BFGS optimizers. Training is254

performed using 100,000 ADAM iterations and the subsequent training has been performed255

using the L-BFGS optimization method until one of the stopping criteria is met: (i) Maximum256

iterations are equal to 50,000 (ii) Maximum number of function evaluations are equal to 50,000257

(iii) Maximum number of line search steps (per iteration) equal to 50 (iv) The maximum number258

of variable metric corrections used to define the limited memory matrix are equal to 50 (v) The259

iteration stops when fk�fk+1

max(|fk|,|fk+1|,1) <= 2.22044604925e � 16,where f is the neural network260

objective function and k is the iteration number. The loss function for std-PINN is described in261

equation (3),(4) and (5). The solution of std-PINN is quite erroneous as shown in figure (3).262

In order to understand the reason for failure of the std-PINN, we analyze its prediction for the263

individual terms of the Allen Cahn equation. Figure (4) shows the individual terms of the Allen264
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Cahn equation obtained through the Chebfun method and the std-PINN. We observe that the265

std-PINN fail to predict the non-linear term (5(h3 � h)) of the Allen Cahn equation. Therefore266

we have shown that the std-PINN [8] does not work for the Allen Cahn equation that consist of267

a strongly non-linear term.268

(a)

(b)

Figure 3: (a): The reference solution (Top) and the std-PINN solution (Bottom) of the Allen Cahn equation

for the entire spatio–temporal domain. (b): Time snapshots for the reference solution ( ) and the std-PINN

solution ( ) at t = 0.25 and t = 0.75.

5.1.2. bc-PINN for Allen Cahn equation269

To overcome this limitation of std-PINN, the backward compatible PINN approach has270

been used along with ICGL and TL techniques. Therefore for the proposed bc-PINN approach,271

the loss function given in equations (11,14-17) is used for any given time segment �Tn. The272

hyper-parameters associated with training the bc-PINN are number of ADAM iterations (Niter),273

time steps per segment and number of residual collocation points (Nr) per segment.274

275
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Figure 4: Individual terms of the Allen Cahn Equation obtained through the (Left): std-PINN method (Right):

Chebfun method. h(x, t), ( ), 0.0001r2h ( ) and 5(h3 � h) ( ) at t = 0.25.

Variable Description Number

Ni Initial collocation points 128
Nb Boundary collocation points 50/segment
Nr Residual collocation points 20000/segment
Niter Number of ADAM iterations 10000/segment

Table 1: Description of Training Data for Allen Cahn Equation. The segment considered here consists of
50 time steps.

In table (1), initial collocation points (Ni) refer to the input spatio-temporal points where276

the initial condition is prescribed. (Nb) and (Nr) refer to the number of boundary and residual277

collocation points respectively and the output of the neural network at these points is used to278

compute the loss function. For computing the backward compatibility loss the solution predicted279

by the neural network in all the previous time steps is utilized. To reiterate, the reference280

solution is only available at the initial condition whereas for all other points in the entire domain281

the solution of the PDE is obtained through minimizing the bc-PINN loss function.282

283

The reference and predicted solution at time t = 0.25 obtained by the std-PINN and bc-PINN284

are shown in figure (5). While the std-PINN fails, the proposed bc-PINN predicts the solution285

quite accurately. The relative total errors ("total) and the total training time for std-PINN,286

XPINN, bc-PINN and bc-PINN with ICGL and TL approaches are shown in table 2. By using287

techniques like ICGL and TL we have been able to observe a significant improvement in accuracy288

and also reduction in training time. In order to implement the XPINN [14] for the time-varying289

Allen Cahn equation the entire domain has been decomposed into 5 sub-domains sequentially290

across time and each sub-domain is trained by a sub-net. Interfacial solution continuity across291

di↵erent sub-domains has also been implemented and trained using 50,000 ADAM iterations292

and L-BFGS optimizer with the same stopping criteria as bc-PINN. But the main drawback293

of XPINN in solving forward problems is that while training subnet-1 all other subsequent294

subnets are also trained which increases the computational cost. For example, before even the295

solution converges in subnet-1, subnet-2 is simultaneously being trained which searches for the296

solution of the PDE in an infinite-dimensional space in other words subnet-2 is trying to predict297

the solution with an incorrect initial condition, which has not yet converged to the correct solution.298

299

The comparison between the predicted solution using bc-PINN and the reference solution300

is shown in figure (6). This shows that the bc-PINN can accurately predict the solution for301

the entire domain. The solutions and errors by the std-PINN and bc-PINN are compared in302
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(a) std-PINN (b) bc-PINN

Figure 5: Reference ( ) and Predicted ( ) solution at time t = 0.25

Method Error("total) Training Time

std-PINN 0.9919 4.5hrs
XPINN 0.9612 4 hrs
bc-PINN 0.0701 2 hrs

bc-PINN with ICGL and TL 0.0168 0.75 hrs

Table 2: Relative total errors (equation (7)) over the entire domain with respect to Chebfun solution for
di↵erent methods.

figure (7), showing much higher accuracy by the bc-PINN. The error plots confirms high accuracy303

of bc-PINN. The error increases with time very slowly. This is due to two reasons: (i) the solution304

becomes progressively phase-separated (between zero and one) yielding greater curvatures and305

sharp phase-boundaries that are di�cult to capture, and (ii) due to the sequential nature of306

the bc-PINN approach the error accumulates with time progression, which is similar to the307

time-integrators. To illustrate the high accuracy of the bc-PINN approach, solutions and errors308

for di↵erent values of the interfacial thickness (c1) is plotted in figure (8). As we decrease the309

parameter c1, it can be seen that the error in the prediction decreases. The parameter c1 controls310

the e↵ect of the double derivative of the solution (r2 h). Therefore, as we decrease c1 the error311

due to the approximation in derivative reduces and thus the accuracy of the bc-PINN solution312

increases. In Appendix B, a new loss function including a logarithmic residual for the Allen313

Cahn equation is discussed. This new logarithmic residual bc-PINN approach and its results are314

presented in comparison with the simple bc-PINN approach without a logarithmic residual.315

5.2. Cahn Hilliard equation in one dimension316

In this section, a 1D time varying Cahn Hilliard equation has been considered. The PDE317

for Cahn Hilliard equation remains the same as described in section (4.2). Since, the domain318

considered is one dimensional, ⌦ 2 [�1, 1] and t 2 (0, 1]. The values of the parameters considered319

in equation (18) are, ↵ = 0.02 and  = 1.320

h(x, 0) = cos(⇡x)� exp
�
�4(⇡x)2

�

h(�x, t) = h(x, t), (x, t) 2 �⇥ (0, T ]

h(1)
x (�x, t) = h(1)

x (x, t) , (x, t) 2 �⇥ (0, T ]

µ(�x, t) = µ(x, t), (x, t) 2 �⇥ (0, T ]

µ(1)
x (�x, t) = µ(1)

x (x, t) , (x, t) 2 �⇥ (0, T ]

(25)
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(a)

(b)

Figure 6: (a): Reference (Top) and bc-PINN (Bottom) solutions of the Allen Cahn equation for the entire

spatio–temporal domain. (b): The Reference ( ) and the bc-PINN ( ) solutions at time t = 0.25 and

t = 0.75.

The above equation (25) gives details about the initial and boundary conditions (where �321

describes the boundary).322

5.2.1. std-PINN for Cahn Hilliard equation323

Initially, the Cahn Hilliard equation (18) (without phase space) is solved using the std-PINN324

to demonstrate the challenge associated with high order. The neural network architecture325

used has 4 hidden layers with 200 neurons in each layer and which is the same as given in326

[8]. For training the std-PINN, we have used 20,000 collocation points and the loss function is327

minimized by using 100,000 ADAM iterations and subsequently L-BFGS optimizer until one328

of the stopping criteria are met: (i) Maximum iterations are equal to 50,000 (ii) Maximum329

number of function evaluations are equal to 50,000 (iii) Maximum number of line search330

steps (per iteration) equal to 50 (iv) The maximum number of variable metric corrections331

used to define the limited memory matrix are equal to 50 (v) The iteration stops when332

fk�fk+1

max(|fk|,|fk+1|,1) <= 2.22044604925e� 16,where f is the neural network objective function and k333
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(a) Predicted solution (top) and relative error (bottom) obtained using std-PINN

(b) Predicted solution (top) and relative error (bottom) obtained using bc-PINN

Figure 7: Solution and relative error associated with respect to the reference solution for Allen Cahn equation.
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(a) Predicted solution (top) and relative error (bottom) obtained using bc-PINN for c21 = 0.00001

(b) Predicted solution (top) and relative error (bottom) obtained using bc-PINN for c21 = 0.00005

Figure 8: Solutions and relative errors of the Allen Cahn equation for di↵erent c21 (of equation (13)) obtained by

the bc-PINN method.
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(a)

(b)

Figure 9: (a): The reference solution (Top) and the std-PINN solution (Bottom) of the Cahn Hilliard equation

for the entire spatio–temporal domain. (b): Time snapshots for the reference solution ( ) and the std-PINN

solution ( ) at t = 0.12 and t = 0.37.

is the iteration number. The loss function for std-PINN is described in equation (3), (4) and (5).334

The solution predicted after training is shown in figure (9) and it can be observed that there is335

significant mismatch between the std-PINN prediction and the reference solution.336

337

The two possible reasons for the inaccurate solution are strong non-linearity and the high338

order derivative terms (fourth order). In PINN the derivatives are approximated using automatic339

di↵erentiation. It has been shown that as the order of the derivative increases the complexity in340

automatic di↵erentiation increases and it becomes computationally expensive [9]. In order to341

overcome the di�culty in approximating the higher order derivative via automatic di↵erentiation,342

we adopt the phase space representation in the proposed bc-PINN.343
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5.2.2. bc-PINN for Cahn Hilliard equation344

In this section, we introduce the bc-PINN approach with a phase space representation for345

solving the Cahn Hilliard Equation (equation (19). Additionally we have used the ICGL and TL346

techniques as described in sections (3.2, 3.3). Therefore, there are two outputs of the neural347

network ĥ(x, t) and µ̂(x, t) in the present method. The input features are the spatio–temporal348

variables (x, t). The modified loss function for the coupled phase space system includes an349

error on initial condition, error on the boundary conditions and error on the residual. In350

addition it will have the error for the backward compatibility. Therefore, the total loss function351

(equation (11)) for any time segment �Tn is sum of all the aforementioned errors given in352

equation (20–23).353

354

Variable Description Number

Ni Initial collocation points 128
Nb Boundary collocation points 20/segment
Nr Residual collocation points 10000/segment
Niter Number of ADAM iterations 10000/segment

Table 3: Description of training data for Cahn Hilliard equation. 20 time steps/segment have been considered

and the amount of collocation points generated remains same and doesn’t increase as we progress through time.

Table 3 describes the values of the hyper-parameters used in bc-PINN. Ni and Nb refers to355

the number of points considered to enforce the initial and boundary condition respectively. Nr356

is the number of residual collocation points per time segment and Niter is the number of ADAM357

iterations used to train the neural network per time segment. As described in section 5.1.2,358

only the reference solution at the initial points (Ni) is used to compute the initial loss and for359

computing the remaining terms in loss function (equation (20-23)) the output of the neural360

network (predicted solution of the PDE) is used.361

362

The accuracy of the proposed bc-PINN approach is shown by comparing it against the363

reference solution obtained by the chebfun method in figure (10). This shows that the phase364

space representation with bc-PINN can closely match the reference solution for the Cahn Hilliard365

equation. The relative total error ("total) obtained for the bc-PINN solution is 0.0186 whereas for366

the std-PINN solution the error is 0.8594. It is evident from the error plots given in figure (11)367

that a more accurate solution is obtained by using the bc-PINN compared to std-PINN. The368

higher accuracy can be accredited to the fact that approximating lower order derivatives using369

automatic di↵erentiation is much simpler. One key observation to note is that the solution in370

the nth time segment takes the solution at time Tn�1 from the (n� 1)th time segment as initial371

condition. Thus, only the error at the end point in a time segment is propagated to the next time372

segment. For instance, only the error at the time Tn�1 in (n� 1)th time segment is propagated373

to the next time segment. Errors at all other time steps in (n � 1)th time segment does not374

propagate to the nth time segment. This can be observed in figure (11b), even though the error375

at time 0.01 is quite high but since this is not the end point of the time segment [0, 0.05] it does376

not propagate with time. The error in the first time segment can be further reduced by using377

more iterations and the accuracy of the total solution can be improved. To further demonstrate378

the e↵ectiveness of the current phase space backward compatible training approach, we have379

taken di↵erent values of the parameter (↵) and compared the predicted solutions with the380

reference solutions generated using chebfun which is shown in figure (12). The proposed phase381

space representation with bc-PINN approach can be extended to any partial di↵erential equation382

consisting higher order derivatives and non-linearity.383
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(a)

(b)

Figure 10: (a): Reference (Top) and bc-PINN (Bottom) solutions of the Cahn Hilliard equation for the entire

spatio–temporal domain. (b): The Reference ( ) and the bc-PINN ( ) solutions at time t = 0.02 and

t = 0.97.
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(a) Solution (top) and relative error (bottom) via std-PINN

(b) Solution (top) and relative error (bottom) via bc-PINN

Figure 11: Solution and error associated with respect to the reference solution for Cahn Hilliard equation.
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(a) Solution (top) and error (bottom) for ↵ = 0.01

(b) Solution (top) and error (bottom) ↵ = 0.005

Figure 12: Solution and relative errors of the Cahn Hilliard equation for di↵erent parameters (↵ of equation (18))

obtained by the bc-PINN method.
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6. Results of Allen Cahn and Cahn Hilliard equations using bc-PINN in 2D384

In this section, the Allen Cahn and Cahn Hilliard equations are solved in two dimensions385

using the proposed bc-PINN scheme. Solving the Allen Cahn and Cahn Hilliard equations in 2D386

is more computationally intensive than in 1D. Thus in order to solve the 2D equations, the387

bc-PINN technique has been implemented along with the ICGL and TL techniques as proposed388

in section (3).389

390

6.1. Allen Cahn equation in two dimensions391

In this section, a two dimensional time varying Allen Cahn equation has been considered.392

The PDE for Allen Cahn equation remains the same as described in section (4.1). The values of393

the parameters considered in equation (13) are, c21 = 0.0001 and c2 = 1. To demonstrate the394

proposed method following two IBVPs have been considered :395

IBVP-1: The PDE used is the same as that given in equation (13). The domain for the IBVP396

is taken as x⇥t 2 [0, 1]2⇥(0, 1]. The initial condition chosen is, sin(4⇡x1) cos(4⇡x2), where,397

(x1, x2) are points in the domain [0, 1]2.The boundary conditions have been considered to398

be periodic, h(d�1)(x, t) = h(d�1)(�x, t), for d = 1, 2399

IBVP-2: The PDE used is the same as that given in equation (13). The domain for the400

IBVP is taken as x⇥ t 2 [0, 1]2 ⇥ (0, 2]. The initial condition chosen is a random doubly401

periodic function where the maximum amplitude is 0.3. The boundary conditions have402

been considered to be periodic, h(d�1)(x, t) = h(d�1)(�x, t), for d = 1, 2403

6.1.1. bc-PINN for Allen Cahn equation in two dimensions404

First in order to solve IBVP-1, the ICGL technique has been using along with bc-PINN. The405

loss function for ICGL and bc-PINN remains the same as described in equations (12, 14-17).406

Furthermore, as described in section (3.6), Chebfun is used to obtain the reference solution.407

Here, the spatial domain has been discretized into a grid containing 64 points along each408

axis and the temporal domain has been discretized into 101 grid points. The neural network409

architecture has 3 input neurons and consists of 6 hidden layers with 128 neurons in each layer.410

The output layer contains only one neuron for the output/solution of the PDE (h). Following, to411

solve the IBVP-1, bc-PINN is used along with with the ICGL technique. The loss function has412

been optimized using both ADAM and L-BFGS optimizers. 15,000 ADAM iterations (20% for413

MSESI and 80% for MSE�Tn) and 10,000 LBFGS iterations are used for every time segment.414

Apart from the maximum iterations other stopping criteria for L-BFGS remain the same as415

those mentioned in section (3.4) (criteria ii - v). The total number of collocation points used to416

train the bc-PINN for IBVP-1 are given in table 4. The total error in prediction ("total), using417

bc-PINN with ICGL is 2.5%. Whereas, the total error in prediction using bc-PINN without418

ICGL is more than 95%. Figure (13) shows the evolution of solution as time increases.419

420

Ni Initial collocation points 4096
Nb Boundary collocation points 640 per segment
Nr Residual collocation points 20,000 per segment

Table 4: Description of training data for 2D Allen Cahn equation (IBVP - 1). 20 time steps/segment have been

considered and the amount of collocation points generated remains same and doesn’t increase as we progress

through time.
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Figure 13: Reference and bc-PINN predicted solution of the 2D Allen Cahn equation (IBVP-1) at di↵erent time

snapshots (a) t = 0 , (b) t = 0.5 , (c) t = 1

To demonstrate bc-PINN with (ICGL and TL), IBVP-2 has been considered. The loss function for421

ICGL, initial condition, and boundary condition remains the same as described in equations (12,422

14-17). The total loss function also remains the same as given in equation (11). The optimization423

of the loss function is performed using both ADAM and L-BFGS optimizers. For minimizing424

the loss function in the first segment 30,000 ADAM iterations and 10,000 LBFGS iterations are425

used. From the second segment 40,000 ADAM iterations and 10,000 LBFGS iterations are used426

in optimizing the bc-PINN loss function. Apart from the maximum iterations other stopping427

criteria for L-BFGS are the same as mentioned in section (3.4) (criteria ii - v). Also, during428

the minimization process in each time segment, 20% of the total ADAM iterations are used429

to implement the ICGL technique. The neural network architecture remains the same as that430

used for solving IBVP - 1 (3 input neurons, 6 hidden layers with 128 neurons, and 1 output).431

Following, the TL technique has been implemented by freezing the parameters obtained after432

solving the IBVP-1. Initially, only a single layer is fixed. As the training progresses through433

di↵erent time segments the number of layers frozen has been slowly incremented. Table (5) gives434

details about the number of collocation points and the time segment details. From figure (14) it435

can be observed that the bc-PINN prediction matches well with the reference solution, whereas436

the std-PINN cannot solve this using the same number of collocation points.437

Ni Initial collocation points 4096
Nb Boundary collocation points 1600 per segment
Nr Residual collocation points 30,000 per segment

Table 5: Description of training data for 2D Allen Cahn equation (IBVP - 2). 50 time steps/segment have been

considered and the amount of collocation points generated remains same and doesn’t increase as we progress

through time.
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Figure 14: Reference and bc-PINN predicted solution of the 2D Allen Cahn equation (IBVP-2) at di↵erent time

snapshots (a) t = 0 , (b) t = 1.2 , (c) t = 2

6.2. Cahn Hilliard equation in two dimensions438

In this section, a two dimensional time varying Cahn Hilliard equation has been considered.439

The PDE for the Cahn Hilliard equation remains the same as described in section (4.2). The440

values of the parameters considered in equation (19) are, (↵,) = (0.02, 1). To demonstrate the441

applicability of bc-PINN for 2D Cahn Hilliard, the following two IBVP’s has been considered:442

IBVP-1: The PDE used is the same as that given in equation (19). The domain for the IBVP443

is taken as x⇥t 2 [0, 1]2⇥(0, 0.005]. The initial condition chosen is, 0.4 cos(3⇡x1) cos(3⇡x2),444

where, (x1, x2) are points in the domain [0, 1]2. Homogeneous Neumann boundary conditions445

have been considered.446

IBVP-2: The PDE used is the same as that given in equation (19). The domain447

for the IBVP is taken as x ⇥ t 2 [0, 1]2 ⇥ (0, 0.005]. The initial condition chosen is,448

0.4 cos(4⇡x1) cos(4⇡(x1 + x2)), where, (x1, x2) are points in the domain [0, 1]2. Periodic449

boundary conditions have been considered.450

IBVP-3: The PDE used is the same as that given in equation (19). The domain for451

the IBVP is taken as x ⇥ t 2 [0, 1]2 ⇥ (0, 0.00375]. The initial condition chosen is a452

random doubly periodic function where the maximum amplitude is 0.5. Periodic boundary453

conditions have been considered.454

6.2.1. bc-PINN for Cahn Hilliard equation in two dimensions455

As described in section (3), the ICGL technique has been used along with bc-PINN to solve456

IBVP-1. A key point to be noted here is that the loss function for ICGL remains the same as457

that in equation (12). Therefore, the total loss function (equation (11)) for any time segment458

�Tn is a sum of all the aforementioned errors given in equation (20–23).459

460
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Further in order to generate the reference solution for IBVP-1, a cosine transform has been461

utilized as given in [56]. Here, the spatial domain is discretized into a grid containing 64 points462

along each axis. The temporal domain is discretized into 201 grid points. The neural network463

architecture has 3 input neurons and consists of 5 hidden layers with 128 neurons in each layer.464

Two output neurons have been taken to represent the output/solution of the PDE and the phase465

space term (h, µ). The minimization of bc-PINN loss function has been performed using ADAM466

and L-BFGS optimizers. The number of ADAM iterations are 30,000 for the first segment and467

for all the later segments 50,000 iterations have been used. The maximum number of L-BFGS468

iterations are 15,000 per segment and the other stopping criteria are the same as those mentioned469

in section (3.4) (criteria ii - v). The details of collocation points used to train the bc-PINN for470

IBVP1 are given in table (6). Figure (15), shows the evolution of h(x, t) with time and there’s a471

good match between the predicted and reference solution.

Ni Initial collocation points 4096
Nb Boundary collocation points 1600 per segment
Nr Residual collocation points 50,000 per segment

Table 6: Description of training data for 2D Cahn Hilliard equation (IBVP-1). 50 time steps/segment have been

considered and the amount of collocation points generated remains same and doesn’t increase as we progress

through time.
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Figure 15: Reference and bc-PINN predicted solution of the 2D Cahn Hilliard equation (IBVP-1) at di↵erent

time snapshots (a) t = 0 , (b) t = 0.003 , (c) t = 0.005

In order to demonstrate bc-PINN with (ICGL and TL), IBVP-2 has been considered. To solve473

the IBVP-2, the loss function for ICGL, initial condition and boundary condition remain the474

same as described in equations (12, 20-23, 11). To generate the reference solution for IBVP-2475

and IBVP-3, an explicit time stepping scheme is used for time integration and a 9-stencil finite476

di↵erence method for computing the spatial derivatives. Here, the spatial domain is discretized477
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Ni Initial collocation points 4096
Nb Boundary collocation points 1600 per segment
Nr Residual collocation points 50,000 per segment

Table 7: Description of training data for 2D Cahn Hilliard equation (IBVP-2,IBVP-3). 25 time steps/segment

have been considered and the amount of collocation points generated remains same and doesn’t increase as we

progress through time.
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Figure 16: Reference and bc-PINN predicted solution of the 2D Cahn Hilliard equation (IBVP-2) at di↵erent

time snapshots (a) t = 0 , (b) t = 0.003 , (c) t = 0.005

into a grid containing 64 points along each axis, whereas, the temporal domain is discretized478

into 101 grid points. The neural network architecture has 3 input neurons and consists 5 hidden479

layers with 128 neurons in each layer. Two output neurons have been taken to represent the480

output/solution of the PDE and the phase space term (h, µ). The neural network architecture481

remains the same as that used for solving IBVP - 1 (3 input neurons, 5 hidden layers with 128482

neurons and 2 outputs). Following, the TL technique has been implemented for IBVP2 by483

freezing the parameters obtained after solving the first segment of IBVP-1. Initially, only a484

single layer is fixed and as the training progresses through di↵erent time segments the number485

of layers frozen has been incremented by one after every time segment. The minimization of486

bc-PINN loss function for IBVP-2 has been performed using ADAM and L-BFGS optimizers.487

The number of ADAM iterations are 50,000 for all the segments. The maximum number of488

L-BFGS iterations are 75,000 per segment and the other stopping criteria are same as those489

mentioned in in section (3.4) (criteria ii - v). The details of collocation points used to train the490

bc-PINN for IBVP-2 are given in table (7). Figure (16) shows the evolution of h(x, t) with time.491

492

Despite using all the aforementioned techniques (ICGL, TL and weighting of the loss function)
the solution doesn’t converge e�ciently for IBVP-3. This is because the initial condition in this
case is random and the evolution is complex. Therefore, we have used a sum of L1 norm and L2

norm of the individual error terms in the total loss function. The reason behind using such a

27
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Figure 17: Reference and bc-PINN predicted solution of the 2D Cahn Hilliard equation (IBVP-3) at di↵erent

time snapshots (a) t = 0 , (b) t = 0.002 , (c) t = 0.005

loss function is that, when the error is small the penalization due to L1 norm is more than L2

norm. Thus, as given in equation (26) a combination of L1 norm + L2 norm has been used to
solve the IBVP-3.

MSE�Tn = wi (MSEI +MAEI ) + wb (MSEB +MAEB )+

wr (MSER +MAER) + ws (MSES +MAES )
(26)

Here, MAEI , is the mean absolute error on the initial condition ; MAEB , is the mean absolute493

error on the boundary condition; MAER, is the mean absolute error on the residual (R1, R2) as494

given in equations (22); MSES ; is the mean absolute error on backward compatibility;495

496

Other hyper–parameters like neural network architecture, number of training iterations, number497

of collocation points etc. remain the same as those used for solving IBVP-2. The only di↵erence498

is that the TL technique has been implemented for IBVP-3, by using the parameters obtained499

after solving the first segment of IBVP-2. Considering the complexity of the Cahn Hilliard500

equation from figure (17) it can be observed that the bc-PINN prediction matches the reference501

solution remarkably well.502

7. Conclusions503

A new PINN approach (named as bc-PINN) has been proposed for solving the Allen Cahn504

and Cahn Hilliard equations, however, the methodology in general should be applicable to505

any PDE. The bc-PINN re-trains the neural network over successive time segments while506

satisfying the solution for all previous time segments. Additionally, bc-PINN incorporates507

two new techniques to improve the accuracy and e�ciency of training. Firstly, while solving508

a boundary value problem using bc-PINN, the initial condition of that segment is used to509

bring the neural network map closer to the true map. Secondly, a transfer learning approach510

28



is implemented to accelerate training, where the parameters learned from previous training511

are used to train a subsequent segment or a new initial condition. In addition by using512

a phase space representation for the Cahn Hilliard equation, better convergence has been achieved.513

514

The key advantages of bc-PINN are summarized below. The proposed bc-PINN method can515

provide an accurate solution for nonlinear or higher–order PDEs such as the Cahn Hilliard and516

Allen Cahn equations in 1D and 2D. Moreover, the proposed method can achieve high accuracy517

by using fewer collocation points compared to std-PINN. Despite the segmentation of the time518

domain, it uses only one neural network and provides a continuous solution for the entire519

spatio–temporal domain. The proposed backward compatibility scheme may enhance many other520

machine learning approaches applied to complex systems represented by time dependent PDEs.521

522

The code accompanying this manuscript would be available on Github repository:523

https://github.com/vmattey/bc-PINN524
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Appendix A. Hyper-parameter selection for bc-PINN532

As discussed in section 5 and 6, the proposed method has a number of hyper-parameters like533

number of ADAM iterations (Niter per segment), time steps per segment, number of collocation534

points (Nr) etc. The accuracy of the bc-PINN’s solution depends on proper choice of these535

hyper-parameters. To optimize each of the hyper-parameters, various cases and metrics like536

computational time and accuracy have been considered. In the current section, we chose the537

Cahn Hilliard equation as the canonical example for all the analysis performed. Table (A.8)538

describes the optimum parameters required to train 100 steps. The optimum parameters are539

chosen to achieve an accurate solution while balancing the computational cost as shown in540

figure (A.18). It can be also seen that as the number of collocation points and number of541

iterations are increased the accuracy increases. Therefore, a segment size of 10 steps with 5000542

collocation points and 10000 iterations per time segment has been chosen.543

544

In general the bc-PINN framework is robust enough to handle any arbitrary length of time545

segments and any number of time segments. One e↵ective way for choosing a minimum time546

segment is to try training the bc-PINN initially for a specific length of time segment where the547

accuracy doesn’t get a↵ected. Based on this minimum length of time segment the total number548

of time segments can be chosen depending on the length of the total time domain.549

Model Time steps/segment Nr Niter

A 10 5000 10000
B 10 5000 20000
C 10 10000 10000
D 10 10000 20000
E 25 5000 10000
F 25 5000 20000
G 25 10000 10000
H 25 10000 20000

Table A.8: Parameter combinations for choosing the optimum segment size, collocation points and number of

ADAM iterations to apply the bc-PINN technique for Cahn Hilliard equation.

Appendix B. bc-PINN with a logarithmic residual for Allen Cahn Equation550

In this section we show how the bc-PINN with logarithmic residual compares against the551

std-PINN and bc-PINN without the logarithmic residual. The loss function for the bc-PINN552

with a logarithmic residual is same as the bc-PINN except the equation(16) is replaced by the553

following loss term for the residual of the PDE:554

R := ĥt � c21 r2ĥ+ f(ĥ)

MSE(ln)
R =

1

Nr

NrX

k=1

ln
�
1 + (R(xr

k, t
r
k))

2
�
, (xr

k, t
r
k) 2 ⌦⇥ (Tn�1, Tn]

(B.1)

It turns out that the bc-PINN with a logarithmic residual is more accurate than the bc-PINN555

without the logarithmic residual. A possible explanation is that the logarithmic function reduces556

the relative weight on the MSER, which would have larger inaccuracy due to its derivative and557

nonlinear terms. Thus the initial and boundary terms are satisfied more accurately, which in558
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Figure A.18: Relative error (") and time taken for various models given in table (A.8).

(a) bc-PINN (b) bc-PINN with log residual

Figure B.19: Reference ( ) and Predicted ( ) solution at time t = 0.25

Method Error(")
std-PINN 0.9919
bc-PINN 0.0701

bc-PINN with logresidual 0.03

Table B.9: Relative errors (equation (7)) over the entire domain with respect to Chebfun solution for
di↵erent methods.

turn yields a more accurate solution. This explanation is substantiated by the fact that when559

the logarithmic function is used on all of the four terms in the loss function then the accuracy560

decreases.561

Appendix C. Minimization of the bc-PINN loss function562

In section 3.4, we have described the learning rates and stopping criteria for the ADAM and563

LBFGS optimizer that are utilized to train the bc-PINN. Figure (C.20) shows the minimization564

of the loss function (equation (11)) while training the bc-PINN for 1D Cahn Hilliard equation in565
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time segment [0.45, 0.5].566

Figure C.20: Loss vs Iterations (Top): using ADAM optimizer (Bottom): using the LBFGS optimizer for training

the time segment [0.45, 0.5] of the Cahn Hilliard equation.

Appendix D. Data driven identification of parameters for PDEs using bc-PINN567

The framework of bc-PINN is versatile and can be applied to both forward and inverse568

problems. Data driven methods for inverse problems have been shown to be extremely e↵ective569

[57, 24, 58, 59]. Especially in situations where only partial physics and noisy data are present570

physics informed neural networks perform well. In this section, the performance of std-PINN [8]571

and bc-PINN for non-parametric PDEs and parametric PDEs has been showcased. For the572

non-parametric PDE case, Allen Cahn equation which has been described in section 4 will be573

considered as the canonical example. Finally for the parametric PDE, burgers equation with a574

time-varying parameter has been considered.575

576

Consider a general, mth order partial di↵erential equation with parameters �1,�2 etc. as given
in equation (D.1).

ht = F (h(x, t), h(1)
x (x, t) , h(2)

x (x, t), · · · , h(m)
x (x, t),�1,�2, · · · ,�n) , x 2 ⌦ ⇢ RD , t 2 (0, T ]

(D.1)
In equation (D.1), we are interested in finding the parameters �1,�2 · · ·�n. These parameters577

are learnt by defining them as trainable parameters to the physics informed neural networks.578

Therefore the loss function can be written as579
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• Mean squared error on the observed data
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ĥ(xo

k, t
o
k)� ho

k

⌘2
, (xo

k, t
o
k) 2 ⌦⇥ (0, T ] (D.2)

• Mean squared error of the residual at observed data points

R := ht � F (h(x, t), h(1)
x (x, t) , h(2)

x (x, t), · · · , h(m)
x (x, t),�1,�2, · · · ,�n)
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(D.3)

where ĥ(xo
k, t

o
k) is the neural network output and ho

k is the observed data at (xo
k, t

o
k). Here,580

the superscript, (•)o stands for observed data.581

• The total mean squared error for the inverse std-PINN is given as

MSE = MSEo +MSEoR (D.4)

The equations (D.2,D.3,D.4) represent the total loss function of std-PINN for inverse identification582

of parameters. In order to implement the bc-PINN scheme for inverse problems, the domain583

has been divided into multiple segments as shown in figure (D.21). To identify the parameters584

in a particular time segment, the residual has been minimized only on the observed data in585

that particular segment. Additionally, to implement the backward compatibility scheme the586

solution of all the previous segments is satisfied simultaneously. Moreover, the parameters for587

nth time segment are initialized from the parameters learned in the (n � 1)th time segment.588

This framework helps in identifying the parameters of the PDE in a given segment and also589

learning the solution in the entire domain. The loss function for parameter identification using590

the bc-PINN framework is as follows:591

!"−1!0 = 0 !" !"+1 !!2!1

Figure D.21: Illustration of the proposed backward compatibility scheme that satisfies the data observed in the

previous time segments at the same time learning the observed data and parameters in a particular segment.
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• Mean squared error on the observed data
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• Mean squared error of the residual at observed data points

R := ht � F (h(x, t), h(1)
x (x, t) , h(2)

x (x, t), · · · , h(m)
x (x, t),�1,�2, · · · ,�n)

MSEoR =
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k=1

(R(xo
k, t

o
k))

2 , (xo
k, t

o
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(D.6)

• Mean squared error on the previous segments observed data

MSEos =
1

Nos

NosX

k=1

⇣
ĥ(xos

k , tosk )� hos
k

⌘2
, (xos

k , tosk ) 2 ⌦⇥ [0, Tn�1] (D.7)

where ĥ(xos
k , tosk ) is the neural network output and hos

k is the observed data at (xos
k , tosk ).592

Here, the superscript, (•)os stands for observed data in the previous time segments.593

• Total mean squared error for inverse bc-PINN is given as

MSE�Tn = MSEo +MSEoR +MSEos (D.8)

Appendix D.1. Parameter identification of Allen Cahn equation 1D594

The Allen Cahn as described in earlier sections is a very widely used PDE in material science595

for studying the di↵usion separation process. Therefore inverse identification of the Allen Cahn596

equation is essential to understand the governing physics of a process. Let us consider the explicit597

form of Allen Cahn equation598

ht = �1r2h+ �2(h
3 � h), t 2 (0, T ], x 2 ⌦ ⇢ R (D.9)

Using the proposed framework of bc-PINN for inverse problems, the parameters learned are599

compared against std-PINN. To generate the required data set, random points have been sampled600

from the reference solution of Allen Cahn equation. The reference solution is computed as given601

in section (3.6). Also to test the e↵ectiveness of both the methods noise has been added to602

the reference solution. Table (D.10) shows the parameter values obtained using std-PINN and603

bc-PINN.604

Predicted �1

(True value : 1e-04)
Predicted �2

(True value : 5)

Total relative error
in the predicted

solution
Noise (%) bc-PINN PINN bc-PINN PINN bc-PINN PINN

0 1.504e-04 1.522e-04 5.03237 5.01081 0.0068 0.0062
2 1.375e-04 7.592e-05 4.98174 4.98214 0.0078 0.0070

Table D.10: True and Predicted parameters using bc-PINN and std-PINN for the 1D Allen Cahn equation.
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Appendix D.2. Parameter identification of Burgers equation with a time-varying parameter605

This section highlights the ability of the proposed bc-PINN framework for solving parametric606

PDEs. Most of the real world systems are governed by parametric PDEs. The explicit parametric607

form of burgers equation is as follows:608

ht = �1(t)hhx + �2hxx (x, t) 2 [�8, 8]⇥ (0, 10] (D.10)

where, �1(t) is a time varying parameter and, �2 is a constant value equal to 0.1. The reference609

solution has been computed as given in [57].610

�1(t) =

8
>>>>>><

>>>>>>:

1.00 0  t < 2

0.75 2  t < 4

0.50 4  t < 6

0.75 6  t < 8

1.00 8  t < 10

(D.11)

Using the proposed framework of bc-PINN for inverse problems, the parameters of the parametric611

burgers equation are learnt using an arbitrary length of time segment. In the present example612

the total time domain has been discretized into 256 time steps. Therefore, in order to identify613

the time varying parameter (�1) an arbitrary time segment of 10 steps has been chosen. In614

order to identify the parameter �1, all the observed data within the 10 steps segment has been615

considered. A similar procedure has also been adopted for identifying the parameter �2.616

Figure D.22: ‘�1’ learned using the bc-PINN and std-PINN approach for the parametric burgers equation

From figure (D.22,D.23), it can be observed that the predicted parameters follow a trend617

similar to the true values. The main advantage of inverse bc-PINN scheme is that without any618

prior knowledge, the nature of a PDE (contant or time-varying) can be identified. Moreover, the619

values of the time varying parameters can be obtained without any prior information about the620

time segments over which its constant.621
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Figure D.23: ‘�2’ learned using the bc-PINN and std-PINN approach for the parametric burgers equation
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