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Bilateral Privacy-Utility Tradeoff in Spectrum
Sharing Systems: A Game-Theoretic Approach

Mengmeng Liu, Xiangwei Zhou, and Mingxuan Sun

Abstract—In spectrum sharing systems based on spectrum
trading, user locations are vital for the efficiency of dynamic
channel reuse. However, both primary users (PUs) and secondary
users (SUs) undertake the risk of location information leakage:
a malicious PU may illegally collect SUs’ location information
to manipulate market decisions; a malicious SU would threat a
PU’s operational privacy by inferring the PU’s location through
seemingly inoffensive queries. To protect both PUs’ and SUs’
location information in spectrum trading, a bilateral privacy
preservation framework is introduced in this paper. A game-
theoretic approach based on the Stackelberg model is proposed
to achieve the tradeoff between the privacy-preserving level and
user utility. With the proposed approach, both PUs and SUs
can maximize their utilities while maintaining their location
privacy to desired levels. Simulation results demonstrate that
the proposed approach can effectively enhance user utility gain
and strengthen user privacy guarantee by flexibly adjusting their
privacy levels in practice.

Index Terms—Location privacy, spectrum trading, Stackelberg
game, utility maximization.

I. INTRODUCTION

The proliferation of bandwidth-hungry applications has con-
tributed to an explosive increase in the demand for the radio
spectrum. Spectrum sharing has shown to be an effective and
promising technique for flexible and efficient utilization of
the scarce spectrum resources. In typical spectrum sharing
systems [2]–[4], a network of geolocation databases (GDBs) is
utilized to monitor the spectrum occupation and perform real-
time interference management [5]. To enable dynamic channel
access, each secondary user (SU) is required to report its geo-
location and device parameters to the GDB. The GDB then
combines the SUs’ information with the operational informa-
tion acquired from the primary user (PU), such as its location,
spectrum occupation, and susceptibility to interference, to
assign available spectrum resources to the SUs.

Although spectrum sharing through GDBs brings many
pragmatic advantages, it also raises potential security and
privacy issues for both PUs and SUs. On the one hand, a ma-
licious SU may be able to infer critical operational attributes
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of the incumbent system through legitimately collecting query
responses from GDBs. Since many incumbent systems of the
3.5GHz band in the U.S. and of the 2.3-2.4 GHz band in
Europe are military systems [6], tactical systems, telemetry
devices, and satellite earth stations [5], operational information
breach may lead to serious consequences, such as threats to
national security. This issue of information leakage is termed
as the operational security (OPSEC) problem and has become
a major concern in realizing shared spectrum usage in these
bands [7]. On the other hand, an untrusted commercial incum-
bent system may take advantage of being a service provider
to illegally collect SUs’ characteristic parameters and infer
users’ private information, such as user beliefs, preferences,
and shopping patterns [8], to manipulate sale strategies and
market decisions, and therefore make profits that cannot be
achieved through fair competition.

One of the key aspects of users’ information security is
the location privacy, which has recently aroused extensive
attention [9]–[13]. However, these existing studies are mainly
devoted to preserving location information for unilateral users
while assuming the other side is trustworthy. As aforemen-
tioned, both PUs and SUs may suffer from location privacy
breach during spectrum sharing, and thus preserving their
location information simultaneously is more pragmatic. Recent
work in [14] has shown that simply applying schemes designed
for unilateral users to protect the privacy of PUs and SUs
separately can result in severe utility loss for both parties.
Moreover, most studies neglect the affected user utilities due
to the added privacy preservation to location information.
However, the privacy-preserving level (PPL) and utility are
always a paradox: a higher PPL will lead to less available
spectrum to share and thus decrease both parties’ payoffs.

Motivated by the above challenging practical issues, a
privacy preservation mechanism is introduced in this paper,
adopting the celebrated differential privacy notion to protect
both PUs’ and SUs’ location information. Both PUs’ and
SUs’ PPLs are quantified in the proposed mechanism. Based
on the privacy preservation mechanism, the utility models
of PUs and SUs are constructed. The privacy cost of each
party is considered as a part of its utility model. Therefore,
the influence of different PPLs on the overall utility can be
clearly revealed. To achieve the tradeoff between user utility
and privacy preservation, a Stackelberg model-based game-
theoretic approach is applied, which allows users to adjust
their PPLs to optimal or expected values and thereby maximize
their utilities.

The main contributions of our work are summarized as
follows:
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1) To the best of our knowledge, this is the first work using
the game-theoretic approach to handle the tradeoff between the
PPLs and utilities of both PUs and SUs in spectrum sharing.

2) A novel additive noise perturbation method is proposed
based on the Gamma distribution to protect PUs’ location
information. The method contains minimum prior information
of the distribution and thereby is more consistent with the
privacy-preserving purpose.

3) Utility models for PUs and SUs are constructed. The
privacy costs are built in as part of the utility models. The
revenues and costs caused by spectrum trading are modeled
as functions of transmit radius, directly related to the PPL.
The role played by the privacy level in the overall utility is
quantified and clearly revealed in the utility models.

4) The proposed approach is generalized to multi-PU multi-
SU scenarios, where users’ possible relative location combi-
nations and the corresponding spectrum allocation strategies
are studied.

II. RELATED WORK

Three major approaches have been adopted in the existing
work of location privacy preservation: k-anonymity, differen-
tial privacy, and transformation-based approaches [15].

The k-anonymity in user location protection aims to ensure
that among a set of k points, each point is indistinguishable.
One method to realize this goal is to generate dummy locations
[16], [17]. First k − 1 false locations (dummies) are created;
then along with the real location, k queries are performed
to the database. Another method to achieve k-anonymity is
through cloaking [18]–[20]. In this method, a cloaking area
that consists of k points is created; the query sent to the
service provider is based on the cloaking area instead of
an individual user. The major drawback of the k-anonymity
based mechanisms is that unless necessary assumptions about
the adversaries’ auxiliary information are made, a system
cannot be proved to satisfy the k-anonymity condition. If any
auxiliary information can help rule out a point that is with low
probability to be a real location, the k-anonymity condition
would be violated immediately.

Another widely used approach for location privacy preser-
vation is differential privacy [21] from the statistical database
field. The goal of differential privacy is to preserve an indi-
vidual’s information while releasing synthesis information of
the entire database. This approach ensures that changing an
individual user’s information would not have a notable effect
on the query outcome. Mathematically, it can be interpreted
as follows: a query applying to two adjacent databases where
only one point differs should return a same response with
certain probabilities, and the probability ratio should be upper
bounded. A widely adopted technique to achieve differential
privacy is adding controlled random noise drawn from Lapla-
cian distribution to the query output. The major advantage of
differential privacy is that the privacy guarantee is indepen-
dent of attackers’ auxiliary information. Two representative
studies of applying differential privacy to location information
protection are [22] and [23]. In [22], it is shown that by
using an aggregate data generation mechanism, the statistical

information for commuting pattern can be released while
being maintained differentially private. In [23], the quadtree
spatial decomposition method is adopted to achieve differential
privacy in location pattern mining.

In transformation-based mechanisms, the user location is
made completely invisible to the service provider. To achieve
this goal, all the data in a query process are transformed to
a different space, usually with cryptographic technique, and
the data can be mapped back to spatial information only
by users [24], [25]. The data saved in the database as well
as the location information sent by the user are encrypted.
By employing private information retrieval techniques, service
provider can return information concerning the encrypted loca-
tion without divulging which exact location it is related to. The
transformation-based approach, however, is computationally
demanding and requires data in service provider side to be
encrypted, which makes this technique hard to be employed
by service providers that need to access the real data.

Meanwhile, the majority of the existing work dealing with
location privacy issues in spectrum sharing focuses on unilat-
eral privacy preservation. For example, the issue of protecting
PUs’ location information is studied in [6], [26]–[28], and the
problem of SUs’ location information leakage is discussed in
[29]–[33]. Few studies, however, address the bilateral location
privacy protection for both parties.

Recently, the issue of balancing the user utility and privacy
cost draws great attention in the privacy-preserving study. In
[34], the privacy-utility tradeoff in terms of design options for
the Spectrum Access System and privacy strategies of the PUs
is studied. The problem is formulated as environmental sens-
ing capability estimation and solved with machine learning
methods. In [35], the tradeoff between energy cost and privacy
protection strength is considered, and the balance is achieved
by the design of adjustable system coefficients. However, the
costs introduced by different PPLs are not quantified, and thus
the analysis of privacy impacts can be difficult.

In [14] and [36], a utility maximization protocol, UMax,
is proposed to maximize PUs’ and SUs’ utilities while main-
taining privacy guarantee. Our work is different from [14] and
[36] in three aspects. First, in [14] and [36], the expectation
of a random length added to protect the PU’s location is
used as the PPL, but this measure is not sufficient. Since the
random length is drawn from an exponential distribution, the
expectation yields the scale parameter of the density, which
can reveal the shape of the distribution but not the magnitude
of the random length. As a result, the influences of changing
PPLs on users’ overall utilities cannot be explicitly shown. In
our work, we use the upper bound of the distance to sanitize
the location as the PPL. In this way, the privacy strength
can be clearly revealed through its upper bound, and the
influence of privacy preservation on the overall utility can be
easily controlled by adjusting the upper bound, i.e., the PPL.
Second, in [14] and [36], the privacy cost is modeled as a
reciprocal function of the PPL, which is against the intuition
and their statement that a higher PPL leads to a lower privacy
cost. In our work, we model the privacy cost as a quadratic
function of the PPL. Therefore, the privacy cost increases
as the PPL raises. Moreover, the quadratic form makes the
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construction of each term consistent in our model. Third, in
[14] and [36], the utility maximization problems for PUs and
SUs are modeled as separate optimization problems, and no
inner connection is built between the problems. However, in a
spectrum sharing system, the PUs and SUs are closely related,
and the decision made by one party, such as the used PPL,
should have influence on the system as a whole. In our work,
we model the utility maximization problem as a Stackelberg
game, where PUs and SUs make decisions interactively. As
a result, the optimal solution obtained in our work is the
Nash equilibrium, where both parties reach the best states,
while the solution obtained in [14] and [36] is not. The game-
theoretic approach has shown to be a powerful and efficient
tool in modeling and solving dilemmas, while no existing work
introduces this method to the privacy-utility tradeoff problem
in spectrum sharing.

III. PROBLEM FORMULATION

In this section, the spectrum sharing process without the
privacy leakage risk involved is first described. Then the
user location privacy threats are presented with the adversary
models, based on which the problem to be addressed in the
paper is formulated.

A. Dynamic Channel Access

A typical spectrum sharing system based on spectrum
trading consists of three major components: PUs, SUs, and the
database. Consider N PUs and M SUs in the system. Each
PU is authorized to operate in a distinct channel and thus
no interference exists between the PUs. As a result, they can
be decoupled and separately considered. To avoid interference
caused by the SUs, an exclusive zone exists for each PU,
within which no SU is allowed to transmit over the same
channel. Outside the exclusive zone, the SUs are allowed to
transmit with power limits.

A dynamic channel access process can be described as
follows: an SU requests a channel assignment from the system
by sending a query to the database, which includes its location
locj and channel of interest chi. The database responds to the
query with the availability of the requested channel, including
the maximum transmit power (MTP) P and the duration t in
which the SU is allowed to use the channel. The MTP can be
calculated as follows:

P =

{
f
(
d− r0P

)
, if d > r0P ,

0, if d ≤ r0P ,
(1)

where d is the distance between the SU and PU, r0P is the
radius of the PU’s exclusive zone, and f (·) is a monotonically
increasing MTP calculation function. If the SU is not allowed
to transmit, the responded MTP and duration are zeros.

B. Adversary Models and Location Privacy Threats

In the above process, both PUs and SUs may suffer from
location information leakage caused by malicious attackers.
Firstly, a malicious SU can use a series of query responses
to infer a PU’s location with certain accuracy. Suppose that

a sophisticated malicious SU can obtain the MTP calcula-
tion function adopted by the database. Then based on the
MTP calculation function, the SU can compute its maximum
transmission radius (MTR) Rj in each query. Assume that
the PU’s location coordinate is (xP , yP ) and the malicious
SU receives three query responses at three different locations,
(xi, yi), i = 1, 2, 3, as shown in Figure 1. Then the SU will be
able to accurately locate the PU and infer the corresponding
exclusive zone by solving⎧⎪⎨⎪⎩

(xP − x1)
2
+ (yP − y1)

2
=
(
r0P +R1

)2
,

(xP − x2)
2
+ (yP − y2)

2
=
(
r0P +R2

)2
,

(xP − x3)
2
+ (yP − y3)

2
=
(
r0P +R3

)2
.

(2)

Secondly, a curious database manager may pose serious loca-
tion privacy threats to SUs. In the spectrum sharing system
discussed above, an SU reports its precise location to the
database to get spectrum availability information. As a result,
a malicious PU can take advantage of this and collect the SUs’
location information. Combined with auxiliary information
obtained from public data sets, the preference and other
characteristic information of the SUs could be easily inferred
and sold to profitable enterprises. [29].

C. Problem of Interest

To protect PUs’ and SUs’ location information from mali-
cious attacks, a privacy preservation mechanism needs to be
adopted. At the same time, however, unrestrictedly raising the
PPL will significantly reduce the available transmission radius
(ATR), defined as the allowable transmission distance for SUs
without causing interference to PUs, and therefore lead to
serious utility losses for PUs and SUs. To find a solution to
the dilemma, the following questions must be answered:

1) How to design a privacy preservation mechanism in
which the PPL can be quantified and the influence of
PPL on user utility can be revealed?

2) How to achieve the tradeoff between PPL and user utility
such that both PUs and SUs can maximize their rewards
while maintaining their privacy preservation to expected
levels?

IV. BILATERAL PRIVACY PRESERVATION MECHANISM

In this section, a bilateral privacy preservation framework
is introduced based on the notion of geo-indistinguishability
to protect the location privacy for both PUs and SUs.

A. Geo-indistinguishability

Geo-indistinguishability is a privacy notion that allows users
to protect their exact locations while releasing approximate
information to get desired services in a location-based system.
It is a generalization of the differential privacy [15]. In this
paper, a modified version of geo-indistinguishability, named
γ-geo-indistinguishability (γ-GI), is adopted to protect users’
location information in a spectrum sharing scenario. The
formal definition of γ-GI is presented as follows.
γ-Geo-indistinguishability: A randomized privacy preser-

vation mechanism satisfies γ-GI if and only if for a reported
location z:
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(a) Queries to locate PU

(b) Geometric description

Fig. 1: PU location inference.

P (z | z0)
P (z | z∗0)

⩽ eγ , d (z0, z
∗
0) ⩽ l,∀l > 0,

where z0 and z∗0 are the exact locations of two users that may
report their sanitized locations as z, d (z0, z∗0) is the distance
between z0 and z∗0 , γ = δl specifies the difference level of the
probabilities that two users report a same sanitized location,
and δ determines the privacy preservation at unit distance.

The above definition shows that based on the γ-GI mecha-
nism, two users within distance l will report their locations as
z with similar probabilities, and the ratio of the probabilities is
upper bounded by eγ . Therefore, an attacker will not be able
to determine whether the user is located at z0 or z∗0 when it
obtains the user’s location z, and thereby the user’s location
privacy will not be breached.

In [15], geo-indistinguishability is interpreted in the follow-
ing way: given a fixed range of radius l centered at the user’s
exact location, reducing the parameter δ narrows down the
difference between P (z | z0) and P (z | z∗0), and therefore the
user enjoys a stronger privacy. In a spectrum sharing system,

the MTP and users’ utilities are directly influenced by the
radius l of the protected range, which makes it straightforward
to focus on adjusting the radius. Therefore, we can interpret
the γ-GI as follows: given the probability difference level
γ, adjusting δ results in the protection of user location in a
different scale l; a larger l indicates that the user can obfuscate
its location information in a larger range and thus achieve
stronger privacy. As a result, users can flexibly choose their
desired privacy-preserving scale, i.e., the radius l, denoted as
the PPL.

B. Bilateral Privacy Preservation

Based on the γ-GI notion, a bilateral privacy preservation
mechanism that simultaneously protects both PUs’ and SUs’
location information is presented in the following, with the
graphical interpretation given in Figure 2.

To thwart the location inference attack to SUs, in a query
process the SU will report a randomized location generated
based on the γ-GI notion, such as (x′, y′) or (x′′, y′′) in Figure
2, instead of the exact location (x, y), along with the bound lS
of the randomized radius. Here lS is the radius of the protected
range in the γ-GI notion and adopted as the PPL for SUs.

To generate the random location, a proper distribu-
tion should be selected. It is proven in [15] that
the two-dimensional Laplacian noise can achieve geo-
indistinguishability, and thus satisfies γ-GI. The probability
density function (PDF) of a two-dimensional Laplacian distri-
bution is

f (z | z0) =
δ2

2π
e−δd(z0,z), (3)

where z0 ∈ R2 is the real location of the SU and z ∈ R2 is the
produced location using the privacy preservation mechanism.

Since the PDF of the planar Laplacian depends only on
the distance between the exact location z0 and the produced
location z, it is more convenient to convert the Cartesian
coordinates to the polar coordinates. The Laplacian PDF in
polar coordinates is

f (r, θ; δ) =
δ2

2π
re−δr, (4)

where r is the radial distance corresponding to the distance
between z0 and z in Cartesian coordinates, and θ is the angle
formed between the straight line connecting z and z0 and the
x axis of the Cartesian system.

Note that r and θ are independent of each other, and thereby
the marginal densities of the two random variables can be
obtained as

f (r; δ) =

∫ 2π

0

f (r, θ; δ) dθ = δ2re−δr (5)

and

f (θ; δ) =

∫ ∞

0

f (r, θ; δ) dr =
1

2π
, (6)

respectively. By utilizing the densities described in (5) and (6),
r and θ can be generated independently. After the point (r, θ)
is converted to the Cartesian system, a random location for
the SU can be obtained.
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It is shown in [7] that differential privacy cannot be applied
to the PU’s location preservation. Different from the protocol
that the SU reports its randomized location based on the γ-GI
notion, the PU responds with the MTP, which is translated
to a non-negative length rather than a location. Therefore, the
geo-indistinguishability notion as a variation of the differential
privacy cannot be used to protect the PU’s location privacy.
To thwart the location inference attack to PUs, an obfuscation-
based mechanism using the Gamma distribution is proposed.
As shown in Figure 2, the database adds a randomized length
rϵ, with maximum value lϵ, to the radius of the PU’s actual
exclusive zone after receiving a query. Then the MTP is
calculated based on the newly generated exclusive zone, with
radius r0P + rϵ (0 < rϵ ⩽ lϵ). The PU responds to the SU
with this sanitized exclusive zone radius R′

j . In this case, (2)
becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(xP − x1)
2
+ (yP − y1)

2
=
(
r0P + r

(1)
ϵ +R′

1

)2
,

(xP − x2)
2
+ (yP − y2)

2
=
(
r0P + r

(2)
ϵ +R′

2

)2
,

(xP − x3)
2
+ (yP − y3)

2
=
(
r0P + r

(3)
ϵ +R′

3

)2
,

(7)

which is extremely difficult to solve with a random r
(j)
ϵ in

the jth query. Specifically, each query-response round would
add an equation but also introduce one more unknown r

(j)
ϵ .

As a result, more queries/equations would not help solve (7).
Therefore, a malicious SU cannot obtain the exact distance
between the PU and itself based on the MTP. Moreover, rϵ
is truncated by lϵ, where the maximum length lϵ is updated
in each query-response round, making it more difficult to
precisely locate the PU.

To generate the random length rϵ, the Gamma distribution
is adopted:

f (rϵ;α, β) =
βαrα−1

ϵ e−βrϵ

Γ(α)
for rϵ > 0 and α > 0, β > 0,

(8)
where α is the shape parameter, β is the scale parameter, and
Γ(α) is the gamma function. The Gamma distribution is the
maximum entropy distribution and thus is least informative
and minimizes the prior information included in the distribu-
tion. Moreover, physical systems are inclined to act towards
maximum entropy configuration [37]. Therefore, it is suitable
and effective to adopt Gamma density to generate random
lengths for obfuscating PUs’ exclusive zones in practice. To
determine the shape parameter and scale parameter, we let r
in (4) to be rϵ. The integral over θ yields

fR(rϵ; δ) =

∫ 2π

0

δ2

2π
rϵe

−δrϵdθ = δ2rϵe
−δrϵ , (9)

which is the Gamma distribution with scale 1
δ and shape 2.

Note that to make it even more difficult to precisely locate
the PU, rϵ is truncated by lϵ, which may no longer be of the
maximum entropy distribution. However, the above analysis
shows that the SU will be unable to effectively locate the PU
and infer the corresponding exclusive zone, i.e., the PU can
achieve privacy in practice.

Fig. 2: Bilateral privacy preservation mechanism.

For PUs’ privacy preservation, only random radius rather
than obfuscated user location is needed. The larger the max-
imum obfuscation length lϵ is allowed, the stronger privacy
preservation the PU will enjoy. Therefore, lϵ is used to quantify
the PU’s PPL and the generated random rϵ satisfying rϵ < lϵ
is selected.

Figure 2 illustrates the overall bilateral privacy preservation
framework. The left solid circle indicates the SU’s preserved
area with PPL lS , within which a malicious PU cannot
determine the SU’s actual location. The right solid circle
represents the PU’s exclusive zone, while the dashed circle
represents the obfuscation area of the exclusive zone with
PPL lϵ, which is constructed by adding a random obfuscation
length rϵ with maximum value lϵ to the actual radius r0P of
the exclusive zone.

Intuitively, adjusting the PU’s or SU’s PPL will change the
SU’s MTP, and thus affect both parties’ utilities. Since MTP
is a monotonic increasing function of the ATR, the ATR is
adopted for simplicity to effectively analyze the influence of
privacy preservation on PUs’ and SUs’ utilities. According
to Figure 2, the MTR for the SU with location privacy
preservation is

RM = d(PU, SU ′)− r0P − lϵ − lS , (10)

where d(PU, SU ′) is the distance between the PU and the
SU’s sanitized location. To guarantee no interference to the
PU, the SU’s ATR RA should be upper bounded by RM , i.e.,
RA ⩽ RM .

V. TRADEOFF BETWEEN UTILITY AND PRIVACY LEVEL

The major concern in the bilateral privacy preservation
mechanism is how to determine the maximum obfuscation
length lϵ for the PU and the protected range radius lS for the
SU. As aforementioned, a high PPL is desired to effectively
protect user location information from leakage. However,
increasing the PPL will reduce the ATR according to (10)
and result in decreased user utilities. To tackle this dilemma,
the Stackelberg game is used to achieve the tradeoff between
the PPLs and user utilities. The single-PU-single-SU case is
studied in this section, and the generalization to the multi-PU-
multi-SU case will be given in Section VI.

A. Modeling Spectrum Sharing as Stackelberg Game
Spectrum sharing can be modeled as a Stackelberg game, in

which PUs act as the leader and SUs act as the follower. The
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Stackelberg model can be used to find the subgame perfect
Nash equilibrium (SPNE), that is, the strategy that best serves
each player given the strategies of the other players, i.e., each
player plays in a Nash equilibrium in every subgame [38].

Let SPSPSP denote the PU’s strategy set and SSSSSS denote the
SU’s strategy set. For a predicted strategy s0S ∈ SSSSSS chosen by
the SU, the PU will select a response strategy s∗P ∈ SPSPSP that
maximizes its own payoff UP :

s∗P = argmaxsP∈SPSPSP
UP {(sP ; sS)|sS = s0S}. (11)

After observing the PU’s strategy s∗P , the SU picks the
expected strategy s∗S ∈ SSSSSS , with which the SU achieves its
maximum payoff:

s∗S = argmaxsS∈SSSSSS
US{(sS ; sP )|sP = s∗P }. (12)

In this paper, the PU’s strategy set is defined as

SPSPSP = {lϵ| lϵ ⩾ rϵ > 0, rϵ ∼ Γ(2,
1

δ
)}. (13)

The SU’s strategy set is defined as

SSSSSS = {lS | P (z|z0)
P (z|z∗0)

⩽ eγ , d(z0, z
∗
0) ⩽ lS , γ = δlS}. (14)

Since the Stackelberg game is solved via backward induc-
tion [39], the most probable response of the SU should be
calculated first given any strategy of the PU to compute the
SPNE. With the predicted best response of the SU, the PU
chooses l∗ϵ that maximizes its utility. After knowing the PU’s
strategy, the SU selects the anticipated strategy l∗S accordingly.
Therefore, the equilibrium of the Stackelberg game can be
obtained as (l∗ϵ , l

∗
S) such that{

UP (l
∗
ϵ , l

∗
S) ⩾ UP (lϵ, lS),

US(l
∗
ϵ , l

∗
S) ⩾ US(lϵ, lS),

∀lϵ ∈ SPSPSP , ∀lS ∈ SSSSSS . (15)

B. Utility Functions

To construct a meaningful utility function with respect to the
privacy level, the following conditions must be satisfied: first,
the obtained privacy level based on the utility function must
be non-negative; second, the obtained privacy level should be
proportional to the distance between the PU and SU, and the
available transmit radius for the SU; third, the obtained privacy
level must be within a certain range, not too small or too large,
to make the results meaningful in practice. A quadratic form
is used in modeling user utility in spectrum sharing, which
makes the construction of each term consistent in our model.

Consider the example as shown in Figure 1. Each user in the
figure can be a base station or access point of a cellular system,
serving end users around it. The PU is the license holder of
the spectrum so it can utilize the spectrum to serve its end
users and share with the SU via spectrum trading. Therefore,
the PU’s utility is composed of four parts that are relevant to
the privacy level: revenues from its own data transmission to
serve its end users, payoffs from selling spectrum to the SU,
performance loss due to the shared spectrum with the SU, and
the cost for privacy preservation. As a result, the PU’s utility
function is defined as

UP = PP
R + Psell − Plost − CP

prv. (16)

The construction of each term in (16) is based on the quadratic
form stated above and the observations from the example: the
PU’s data transmission revenue PP

R is modeled as a function
of its exclusive zone, that is, PP

R = kPRπ(r
0
P )

2, where kPR is
the unit revenue of data transmission, within which the PU
can transmit signals and therefore gain payoffs by providing
services; Psell and Plost, denoting the PU’s revenue and cost
due to spectrum trading, respectively, are modeled as functions
of the ATR, i.e., Psell = kTπ(dPS − r0P − lϵ − 2lS)

2,
Plost = klostπ(dPS − r0P − 2lϵ − 2lS)

2, where kT is the unit
spectrum trading price, dPS is the distance between the PU
and SU, and klost is the coefficient of the PU’s performance
loss; CP

prv, defined as the PU’s privacy cost, is modeled as a
function of its PPL lϵ, i.e., CP

prv = kPprvl
2
ϵ , where kPprv is the

PU’s privacy preservation coefficient. Note that the minimum
distance between the preserved area of the SU and the obfusca-
tion area of the exclusive zone of the PU is dPS−r0P −le−lS .
As the SU only reports its sanitized location along with the
bound lS of the randomized radius, dPS − r0P − le − 2lS is
the minimum radius of the traded spectrum area perceived by
the PU, within which the SU can always transmit and provide
services. Similarly, dPS−r0P−2le−2lS is the minimum radius
of the traded spectrum area (dPS − r0P − lϵ − 2lS) reduced by
lϵ, where the PU can no longer use for its own transmission
due to spectrum trading. Therefore, the utility function of the
PU becomes

UP = kPRπ(r
0
P )

2 + kTπ(dPS − r0P − lϵ − 2lS)
2

− klostπ(dPS − r0P − 2lϵ − 2lS)
2 − kPprvl

2
ϵ . (17)

The coefficient of Psell, i.e., kT , should be larger than the
coefficient of Plost, i.e., klost, such that PUs are willing to
share their spectrum with SUs. However, kT should not be
much larger than klost; otherwise PUs will prefer selling
spectrum rather than providing services themselves, which
may cause service disruption. The distance d PS does not
have to be the exact distance between the PU and SU, which
can be an approximated value calculated and also reported by
the PU.

Similarly, the SU’s utility function consists of three parts
relevant to the privacy level: rewards gained through its data
transmission to serve end users, payment for accessing the
spectrum, and cost for location privacy preservation. The SU’s
utility function is defined as

US = PS
R − Pbuy − CS

prv, (18)

where PS
R denotes the SU’s rewards obtained by providing

services with the acquired spectrum, modeled as a function of
the transmit radius accessible to the SU, i.e., PS

R = kSRπ(dPS−
r0P − lϵ − lS)

2, where kSR is the SU’s unit reward; Pbuy is the
SU’s payment for utilizing the channel, which is equal to Psell

in the single-PU-single-SU scenario; CS
prv is the SU’s privacy-

preserving cost, modeled as a quadratic function of the SU’s
PPL lS , i.e., CS

prv = kSprvl
2
S , where kSprv is the SU’s privacy

preservation coefficient. Therefore, the utility function of the
SU becomes

US = kSRπ(dPS − r0P − lϵ − lS)
2

− kTπ(dPS − r0P − lϵ − 2lS)
2 − kSprvl

2
S . (19)
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(17) and (19) show that by altering users’ PPLs lϵ and
lS , user utilities UP and US will change accordingly. The
influence of the PPL on a user’s utility can thus be revealed
and quantified. To capture the value that a PU or SU holds for
achieving more privacy, the coefficient of the last term in the
utility function of (17) or (19) can be generally adjusted. In the
case that a user favors more towards privacy, the coefficient
kPprv or kSprv can be set to a negative value.

C. Stackelberg Equilibrium

Since users’ utilities are affected by the PPLs that they
choose, it is desired to find out the optimal PPLs that maximize
both parties’ profits. The solution is proposed based on the
Stackelberg game. Note that the number of parameters in
the above utility models is minimized in the sense that only
the parameters that determine the unit price and the unit
performance loss are kept and no extra parameter is used.
These coefficients also introduce flexibility to the model. In
practice, the designer can freely determine the coefficients of
each term in the utility models, as long as the coefficients
satisfy the constraints given in the following theorems, to make
the user utility models suitable for a specific scenario.

In a Stackelberg model, the follower’s probable strategy
is first computed to achieve the SPNE. Given the spectrum
sharing scenario, the SU’s anticipated PPL is first determined
according to Theorem 1.

Theorem 1. When 0 < kT < kSR < 2kT , there exists an
optimal solution l∗S to the following problem

argmaxlS∈SSSSSS
US

subject to lS > 0, where US = kSRπ(dPS − r0P − lϵ − lS)
2 −

kTπ(dPS − r0P − lϵ − 2lS)
2 − kSprvl

2
S , ∀lϵ > 0. The optimal

solution is

l∗S =
(2kTπ − kSRπ)(dPS − r0P − lϵ)

4kTπ + kSprv − kSRπ
.

The proof of Theorem 1 is given in Appendix A. The
condition 0 < kT < kSR < 2kT in Theorem 1 indicates that the
SU’s unit reward is chosen larger than the spectrum unit price
but no more than twice of the spectrum unit price. Theorem 1
shows that given any PPL lϵ picked by the PU, the SU’s best
strategy is to set its PPL lS as l∗S presented in the theorem.

Note that the SU’s optimal PPL l∗S obtained in this step
is expressed as a function of the PU’s PPL lϵ. With the
information of the SU’s predicted PPL, the best response
function of the PU can be found. The optimal PPL l∗ϵ for
the PU can be determined according to Theorem 2.

Theorem 2. When 0 < klost < kT < 2klost, there exists an
optimal PPL l∗ϵ to the following problem

argmaxlϵ∈SPSPSP
UP

subject to lϵ > 0, where UP = kPRπ(r
0
P )

2 + kTπ(dPS − r0P −
lϵ − 2l∗S)

2 − klostπ(dPS − r0P − 2lϵ − 2l∗S)
2 − kPprvl

2
ϵ and

l∗S = f(lϵ). The optimal solution is

l∗ϵ =
[klostπ(2− 2ξ)(1− 2ξ)− kTπ(1− 2ξ)2](dPS − r0P )

klostπ(2− 2ξ)2 + kPprv − kTπ(1− 2ξ)2
,

where ξ =
2kTπ−kS

Rπ

4kTπ+kS
prv−kS

Rπ
.

The proof of Theorem 2 is given in Appendix B. The condi-
tion 0 < klost < kT < 2klost indicates that the unit spectrum
trading payoff is chosen higher than the unit performance loss
but no more than twice of the unit performance loss. The PPL
l∗ϵ presented in Theorem 2 is the PU’s best response to the
reaction of the SU in the equilibrium. After observing the PU’s
strategy l∗ϵ , the SU’s actual PPL can be found by substituting
l∗ϵ into the response function in Theorem 1, which yields

l∗S =
ξ[klostπ(2− 2ξ) + kPprv](dPS − r0P )

klostπ(2− 2ξ)2 + kPprv − kTπ(1− 2ξ)2
.

According to the above analysis, the Stackelberg game
for spectrum sharing can be summarized as follows: after
receiving the SU’s query, the PU responds to the SU with
its expected PPL l∗ϵ ; after observing the PU’s strategy, the SU
sets its PPL to be l∗S . At this point, both parties achieve the
equilibrium (l∗ϵ , l

∗
S) of the Stackelberg game, where both the

PU’s and SU’s utilities are maximized while their location
privacy is preserved to a satisfactory level.

VI. UTILITY AND PRIVACY LEVEL TRADEOFF FOR
MULTI-PU-MULTI-SU CASE

In this section, the Stackelberg model for utility-privacy
tradeoff is generalized to the case of multiple PUs and multiple
SUs. The multi-user case is more complicated, where the
combinations of multiple locations among PUs and SUs are
possible. As the relative locations of PUs and SUs vary, the
influence of possible interference and transmission limitation
on the privacy levels and user utilities will be discussed.

Since different PUs occupy different channels and allocate
their spectrum separately, the multi-PU-multi-SU problem
can be reduced to the single-PU-multi-SU problem. To start
with, the single-PU-two-SU case is considered. There are two
possible cases for spectrum sharing between one PU and
two SUs: 1) after spectrum allocation, the SUs’ allowable
transmission ranges do not overlap; 2) the SUs’ transmission
ranges overlap with high possibility. Note that when there are
multiple SUs requesting the same channel, the PU can estimate
its distances to the SUs after receiving SUs’ transmitted query
messages, through which the PU can tell whether the SUs will
interfere with the PU and other SUs or not.

In Case 1, the SUs will not interfere with each other when
they both access the channel with full ATR, as shown in Figure
3.

In this case, the PU’s utility can be defined as

UP = PP
R + PSU1

sell + PSU2
sell − PSU1

lost − PSU2
lost − CP

prv, (20)

where PSU1
sell and PSU2

sell are the PU’s payoffs by trading its
spectrum to SU1 and SU2, respectively, and PSU1

lost and PSU2
lost

are the PU’s performance losses due to the shared spectrum
with SU1 and SU2, respectively. Accordingly, the PU’s utility
can be expressed as

UP = kPRπ(r
0
P )

2 + kTπ(dPS1 − r0P − lϵ − 2lS1)
2

+ kTπ(dPS2 − r0P − lϵ − 2lS2)
2

− klostπ(dPS1 − r0P − 2lϵ − 2lS1)
2

− klostπ(dPS2 − r0P − 2lϵ − 2lS2)
2 − kPprvl

2
ϵ ,(21)
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Fig. 3: SUs do not interfere with each other.

where dPS1 is the distance between the PU and SU1, lS1 is
SU1’s PPL, dPS2 is the distance between the PU and SU2,
and lS2 is SU2’s PPL.

Since both SUs can access the spectrum with full ATR, the
utility model of each SU is defined in the same way as (18).
Each SU’s utility can be expressed as

USi = kSi
R π(dPSi − r0P − lϵ − lSi)

2

− kTπ(dPSi − r0P − lϵ − 2lSi)
2 − kSi

prvl
2
Si, (22)

where USi represents the utility of SUi, (i = 1, 2), kSi
R is the

unit reward, and kSi
prv is the privacy preservation coefficient.

Based on the user utility functions above, the multi-player
Stackelberg game [40] is used to achieve the SPNE. Similar
to the two-player Stackelberg model, the best responses of the
SUs are first determined in Theorem 3 via backward induction.

Theorem 3. When 0 < kT < kS1
R < 2kT and 0 < kT <

kS2
R < 2kT , there exists an optimal solution

(
l∗S1, l

∗
S2

)
to the

following problem

argmaxlS1∈SS1SS1SS1
US1

and
argmaxlS2∈SS2SS2SS2

US2

subject to lS1 > 0 and lS2 > 0, where US1 = kS1
R π(dPS1 −

r0P − lϵ− lS1)
2− kTπ(dPS1− r0P − lϵ− 2lS1)

2− kS1
prvl

2
S1 and

US2 = kS2
R π(dPS2 − r0P − lϵ − lS2)

2 − kTπ(dPS2 − r0P − lϵ −
2lS2)

2 − kS2
prvl

2
S2,∀lϵ > 0. The optimal solution is

l∗S1 =
(2kTπ − kS1

R π)(dPS1 − r0P − lϵ)

4kTπ + kS1
prv − kS1

R π

and

l∗S2 =
(2kTπ − kS2

R π)(dPS2 − r0P − lϵ)

4kTπ + kS2
prv − kS2

R π
.

The proof of Theorem 3 is similar to that of Theorem 1.
Since both SUs can fully access the spectrum as much as
the ATR, their best PPLs can be calculated independently. By
replacing dPS , kSR, and kSprv with dPSi, kSi

R , and kSi
prv, i =

1, 2, we can easily obtain the above results.

With the knowledge of the two SUs’ predicted best PPLs(
l∗S1, l

∗
S2

)
, the PU’s optimal PPL can be found according to

Theorem 4.

Theorem 4. When 0 < klost < kT < 2klost, there exists an
optimal PPL l∗ϵ to the following problem

argmaxlϵ∈SPSPSP
UP

subject to lϵ > 0, where UP = kPRπ(r
0
P )

2+kTπ(dPS1−r0P −
lϵ − 2l∗S1)

2 + kTπ(dPS2 − r0P − lϵ − 2l∗S2)
2 − klostπ(dPS1 −

r0P −2lϵ−2l∗S1)
2−klostπ(dPS2− r0P −2lϵ−2l∗S2)

2−kPprvl
2
ϵ ,

l∗S1 = f1(lϵ), and l∗S2 = f2(lϵ). The optimal solution is

l∗ϵ =
U1

klostπ(Ω1 +Ω2) + kPprv − kTπ(Γ1 + Γ2)
,

where U1 = klostπ[
√
Γ1Ω1(dPS1 − r0P ) +

√
Γ2Ω2(dPS2 −

r0P )]−kTπ[Γ1(dPS1−r0P )+Γ2(dPS2−r0P )], Γ1 = (1−2ϕ1)
2,

Ω1 = (2 − 2ϕ1)
2, Γ2 = (1 − 2ϕ2)

2, and Ω2 = (2 − 2ϕ2)
2,

with ϕ1 =
2kTπ−kS1

R π

4kTπ+kS1
prv−kS1

R π
and ϕ2 =

2kTπ−kS2
R π

4kTπ+kS2
prv−kS2

R π
.

The proof of Theorem 4 is provided in Appendix C. The
PPL l∗ϵ obtained in Theorem 4 is the PU’s best PPL to the
reactions of the two SUs in equilibrium. After receiving the
PU’s PPL, the SUs’ best responses can be decided by substi-
tuting l∗ϵ into their response functions described in Theorem
3, which yields

l∗S1 =
ϕ1U2

klostπ(Ω1 +Ω2) + kPprv − kTπ(Γ1 + Γ2)

and

l∗S2 =
ϕ2U3

klostπ(Ω1 +Ω2) + kPprv − kTπ(Γ1 + Γ2)
,

where U2 = [klostπ(
√
Ω1+Ω2)+kPprv−kTπΓ2](dPS1−r0P )−

(klostπ
√
Γ2Ω2−kTπΓ2)(dPS2− r0P ) and U3 = [klostπ(Ω1+√

Ω2) + kPprv − kTπΓ1](dPS2 − r0P ) − (klostπ
√
Γ1Ω1 −

kTπΓ1)(dPS1 − r0P ).
Therefore, in the single-PU-two-SU spectrum sharing case

where both SUs can fully access the spectrum without inter-
ference to each other, the Stackelberg game can be described
as follows: after receiving the SUs’ queries, the PU responds
to the two SUs with its desired PPL l∗ϵ ; after seeing the
PU’s response, the two SUs choose their PPLs to be l∗S1

and l∗S2, respectively. At this point, the PU and SUs reach
the equilibrium (l∗ϵ , l

∗
S1, l

∗
S2) of the Stackelberg game, where

all the users achieve the desired PPLs and their utilities are
maximized.

In Case 2, the two SUs are located relatively close to each
other. If they access the spectrum with the ATR determined
in the above case, it is highly likely that the two SUs will
interfere with each other. Two possible circumstances may
occur in this case: 1) both SUs can still access the spectrum
simultaneously, but their ATR needs to be reduced; 2) the two
SUs are extremely close to each other, such that only one SU
is allowed to transmit at one time. The graphical illustration
is given in Figure 4.

For the first circumstance, the utility composition of the PU
and SUs can be described as in (20) and (18). By modeling
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(a) Both SUs can access the spectrum

(b) Only one SU is allowed to transmit

Fig. 4: Two SUs interfere each other with high possibility.

spectrum sharing as a Stackelberg game, the best PPLs of
the SUs and PU can be determined by Theorems 5 and 6,
respectively, using backward induction.

Theorem 5. There exists an optimal solution
(
l∗S1, l

∗
S2

)
to the

following problem

argmaxlS1∈SS1SS1SS1
US1

and
argmaxlS2∈SS2SS2SS2

US2

subject to lS1 > 0, lS2 > 0, 0 ⩽ RS1 < dPS1− r0P − lϵ− lS1,
and 0 ⩽ RS2 < dPS2−r0P−lϵ−lS2, where US1 = kS1

R πR2
S1−

kTπ(RS1−lS1)
2−kS1

prvl
2
S1 and US2 = kS2

R πR2
S2−kTπ(RS2−

lS2)
2 − kS2

prvl
2
S2,∀lϵ > 0. The optimal solution is

l∗S1 =
kTπRS1

kTπ + kS1
prv

and
l∗S2 =

kTπRS2

kTπ + kS2
prv

.

The proof of Theorem 5 is presented in Appendix D.
RS1 and RS2 are the actual transmit radii of SU1 and SU2,
respectively. The two conditions on RS1 and RS2 indicate that
when the two SUs may interfere with each other, they are not
allowed to transmit with full ATR as in Case I. The actual
transmit region must be reduced to avoid interference.

With the SUs’ predicted PPLs
(
l∗S1, l

∗
S2

)
, the PU’s optimal

PPL can be calculated.

Theorem 6. There exists an optimal solution (l∗ϵ , R∗
S1, R∗

S2)
to the following problem

argmaxRS1, RS2, lϵ∈SPSPSP
UP

subject to RS1+RS2 ⩽ d12, RS1+r0P+lϵ < dPS1, and RS2+
r0P + lϵ < dPS2, where UP = kPRπ(r

0
P )

2+kTπ(RS1− l∗S1)
2+

kTπ(RS2 − l∗S2)
2 − klostπ(RS1 − lϵ − l∗S1)

2 − klostπ(RS2 −
lϵ − l∗S2)

2 − kPprvl
2
ϵ , lϵ > 0.

The solution can be obtained by applying the gradient
descent method [41]. Here d12 is the distance between the two
SUs as shown in Figure 4a. It can be calculated based on the
law of cosines: d12 =

√
d2PS1 + d2PS2 − 2dPS1dPS2 cosϑ,

where ϑ is the angle formed between the line PU-SU1 and
the line PU-SU2.

After receiving the PU’s response, the SUs’ best PPL
(l∗S1, l

∗
S2) can be obtained by substituting R∗

S1 and R∗
S2 into

the results presented in Theorem 5. Therefore, both parties
reach the equilibrium (l∗ϵ , l

∗
S1, l

∗
S2) of the Stackelberg game.

If the two users are very close to each other and their
privacy-preserving ranges overlap, as shown in Figure 4b, the
PU will allow only one SU to access the spectrum based on
which SU can bring the PU higher payoffs.

According to the Stackelberg model, the predicted PPLs of
the SUs are first calculated separately. In this circumstance,
the determination of the SUs’ anticipated PPLs is the same
as in Case 1 describe by Theorem 3. The best PPLs l∗S1 and
l∗S2 thereby can be obtained using the results provided in the
theorem. With the information of the predicted PPLs of the
SUs, the PU decides its optimal PPL and which SU to trade
the spectrum with according to Theorem 7.

Theorem 7. When 0 < klost < kT < 2klost, there exists an
optimal PPL l∗ϵ to the following problem

argmaxlϵi∈SPSPSP
UPSi

subject to lϵi > 0, where UPSi = kPRπ(r
0
P )

2 + kTπ(dPSi −
r0P − lϵi− 2l∗Si)

2−klostπ(dPSi− r0P − 2lϵi− 2l∗Si)
2−kPprvl

2
ϵi,

(i = 1, 2) and l∗Si = fi(lϵi). The optimal solution is

l∗ϵ = {l∗ϵi|max{UPSi, i = 1, 2}},

where l∗ϵi =
[klostπ(2−2ξi)(1−2ξi)−kTπ(1−2ξi)

2](dPSi−r0P )
klostπ(2−2ξi)2+kP

prv−kTπ(1−2ξi)2
with

ξi =
2kTπ−kSi

R π

4kTπ+kSi
prv−kSi

R π
.

The proof of Theorem 7 is similar to that of Theorem 2.
UPSi and lϵi are the PU’s utility and PPL when it shares
its spectrum with SUi, i = 1, 2. After deciding which SU
is selected to trade the spectrum with and the corresponding
optimal PPL l∗ϵ , the PU will notify the two users of the
decision. The SU that is allowed to transmit then sets its best
strategy as l∗Si =

(2kTπ−kSi
R π)(dPSi−r0P−l∗ϵ )

4kTπ+kSi
prv−kSi

R π
, i =1 or 2. Now

the PU and the selected SU reach the SPNE (l∗ϵ , l
∗
Si).

Note that although the multi-user case is generalized from
the single-PU-single-SU case, the results obtained for the latter
cannot be simply degenerated from the former. For example,
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the utility models of the PU in these cases are quite different;
therefore, the PU privacy level in the single-PU-single-SU case
has to be recalculated rather than being directly degenerated
from the results in the multi-user case.

VII. SIMULATION RESULTS

In this section, simulation results are presented to demon-
strate the performance of the proposed approach.

A. Simulation Setup

To produce the sanitized location of the SU, (r, θ) is first
generated based on the density functions in (5) and (6).
Note that r and θ can be generated separately as they are
independent. The marginal PDF of θ is a constant value 1

2π , so
θ can be produced from a uniform distribution on the interval
[0, 2π]. To generate r, its cumulative density function (CDF)
needs to be specified:

C (r) =

∫ r

0

δ2ρe−δρdρ = 1− (1 + δr)e−δr.

Accordingly, a random number b is first generated from a
uniform distribution on the interval [0, 1]. Then r is produced
as

r = C−1 (b)

with the Lambert W function, i.e., the W−1 branch of the
inverse of function f(x) = xex. Given an SU’s accurate
location zzz = (x, y), its sanitized location can be produced
as z′z′z′ = (x+ r cos θ, y + r sin θ).

In the simulation, the distance unit is kilometer (km). The
PU’s actual exclusive zone radius r0P is 1.5 km. The PU’s unit
revenue is kPR = 3, unit spectrum trading price is kT = 1, unit
performance loss is klost = 0.8, and privacy cost coefficient
is kPprv = 1. In the single-PU-single-SU case, the SU’s unit
reward kSR is set to be 1.5, and privacy cost coefficient kSprv is
set to be 1. In the multi-PU-multi-SU case, all SUs’ parameters
are set to be the same as in the single-PU-single-SU case.

B. Performance Evaluation

To illustrate the superiority of the proposed approach, we
compare our approach with the approach that the PUs and
SUs choose predefined fixed PPLs to preserve their location
information. The value of the fixed PPL is set as a fixed
number that does not change as the distance between the
PU and SU increases. Local search is used in the simulation
to select fixed PPLs that result in better utilities to compare
with the optimal PPL case. The performance of the proposed
approach is evaluated from three aspects: 1) PUs’ utility
achievements are compared in different location settings where
the relative distances between the PUs and SUs vary; 2)
SUs’ utility achievements are compared in different location
settings; 3) with 15 PUs and 30 SUs randomly deployed in a
certain region, the PUs’ utility achievements with the optimal
PPLs and predefined PPLs are compared.

In Figure 5, the user utilities with the optimal PPL and
fixed PPLs in the single-PU-single-SU case are shown. Figure
5a gives the PU’s utility comparison and demonstrates that

(a) PU utility comparison

(b) SU utility comparison

Fig. 5: Performance comparison in the single-PU-single-SU
case.

the PU with the optimal PPL can achieve significantly higher
utility than the PU using a fixed PPL. And as the distance
between the PU and SU becomes larger, the PU with the
optimal PPL has a higher utility gain. This is because in our
proposed approach, the PU can adjust its PPL to a desired
level based on the distance to the SU and maximize its utility.
When the distance between the PU and SU becomes small, the
utility difference between the PU with the optimal PPL and the
PU using a fixed PPL is small. This is because when the SU is
close to the PU, the ATR for the SU is small. As a result, the
PU with either adjustable PPL or fixed PPL can only achieve
a low utility. The utilities of the SU with different privacy
preservation mechanisms are given in Figure 5b. As shown in
the figure, the SU that follows the PU’s strategy achieves much
higher utility than the SU that maintains its fixed PPL after
the PU decides its optimal strategy. As the distance between
the PU and SU increases, the utility difference becomes more
obvious. This is because the SU that adjusts its PPL based
on the PU’s strategy reaches the Nash equilibrium of the
Stackelberg game, where the objective function, i.e., its utility,
can be maximized. When the distance between the PU and SU
is small, the SU utility difference is not significant, which is
similar to the PU’s situation shown in Figure 5a. Due to the
small ATR for the SU, neither mechanism can achieve a very
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(a) PU’s privacy level.
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(b) SU’s privacy level.

Fig. 6: Users’ optimal privacy levels in the single-PU-single-
SU case.

large utility. To show the influence of different fixed PPLs on
user utilities, we also increase the fixed PPLs (baseline) by
one unit for both the PU and SU. It can be seen that when the
values of the fixed PPLs increase by one unit, the SU does not
experience a significant change on the utility, while the utility
of the PU adopting the fixed PPL declines significantly.

The optimal PPLs obtained for the PU and SU in different
location settings are presented in Figure 6a and Figure 6b,
respectively. It can be seen that the optional PPL is around
10% of the distance between the PU and SU, neither too
small nor too large, satisfying the condition on the obtained
privacy level discussed at the beginning of Section V-B.
As the distance between the PU and SU becomes further,
the allowable maximum obfuscation lengths for both parties
become larger, which indicates that the users can protect their
locations within a broader range. Combined with the results
in Figure 5a and Figure 5b, this PPL increase will not cause
utility decline, since the ATR also grows as the SU is further
from the PU.

In Figure 7, the user utilities based on the proposed ap-
proach and the baseline are compared in the single-PU-two-
SU case, where the SUs can transmit with full ATR and do
not interfere with each other, corresponding to the theoretical
analysis given by Case 1 in Section VI. Figure 7a displays

(a) PU utility comparison
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Fig. 7: Performance comparison in the single-PU-two-SU case
when the two SUs do not interfere with each other.

the PU’s utilities with the x-axis representing the distance
between the PU and SU1, and y-axis representing the distance
between the PU and SU2. It is obvious that the PU with
the optimal PPL has significantly higher utilities over the PU
with a fixed PPL. Figure 7b displays the SUs’ utilities. In
the single-PU-two-SU case where both SUs can access the
spectrum, the SUs play equivalent roles, and the results are
similar to those presented in Figure 5b. It can be seen that
the SUs following the PU’s strategy and choosing the optimal
PPL achieve obviously higher utilities than the SUs using fixed
PPLs. Note that the curves start from the distance of 3 km.
This is because when the SUs are very close to the PU, they
can be in the PU’s exclusive zone and not allowed to transmit.

The utility comparison results when the SUs are relatively
close to each other and cannot transit with full ATR are shown
in Figure 8, corresponding to the theoretical analysis in the
first circumstance of Case 2 in Section VI. The results indicate
that the users, including both the PU and SUs, adopting the
proposed privacy preservation mechanism can achieve higher
utilities than the users using fixed PPLs. It should be noted
that in this case, both the PU’s and SUs’ utilities are lower
than those shown in Figure 7. This is because the SUs’ actual
ATR is reduced in this case to avoid possible interference with
each other. As a result, the PU’s trading payoffs and the SUs’
service rewards decrease.

When the two SUs requesting for the same channel are too
close to each other, only one SU is allowed to transmit and
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Fig. 8: Performance comparison in the single-PU-two-SU case
when both SUs transmit with ATR reduction.

the utility comparison results in this case are shown in Figure
9, corresponding to the theoretical analysis in the second
circumstance of Case 2 in Section VI. Figure 9a gives the
PU’s utility comparison. It can be seen that the PU using the
proposed mechanism to adjust its PPL in the query process
achieves a higher utility than the PU utilizing a fixed PPL.
Figure 9b gives the bar plot of the utility of the selected
SU, i.e., the SU permitted by the PU to access the desired
channel. It is obvious that the SU adopting the proposed
privacy preservation mechanism achieves a higher utility than
the SU using a predefined PPL.

In Figure 10a, a more practical scenario is depicted, where
15 PUs and 30 SUs are randomly deployed in an area of
Los Angeles, with the hexagrams representing the PUs and
the crosses representing the SUs. Figure 10b gives each PU’s
utility in the proposed privacy preservation mechanism and the
baseline. The comparison shows that the proposed mechanism
results in a higher utility in comparison with the baseline for
all the PUs.

A direct comparison with [14], [36] is difficult because (a)
the system models and settings are different, (b) the privacy
levels of the PUs and SUs are measured in different ways,
and (c) some of the parameters used in the utility models
of [14] and [36] are unavailable. However, we make a best-
effort comparison of the user utility enhancement in percentage
shown in Figure 11 between our work and [14], [36] where
the PU’s utility is based on Fig. 14b in [36] and the SU’s

5 10 15 20 25 30

Distance between PU and SU / km

0

50

100

150

200

250

300

350

U
ti
lit

y
 o

f 
P

U

optimal PPL

fixed PPL

(a) PU utility comparison

5 10 15 20 25 30

Distance between PU and selected SU / km

0

20

40

60

80

100

120

140

160

180

U
ti
lit

y
 o

f 
S

e
le

c
te

d
 S

U

optimal PPL

fixed PPL

(b) SU utility comparison

Fig. 9: Performance comparison in the single-PU-two-SU case
when only one SU is allowed to transmit.

(a) Topology of a real-world scenario
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Fig. 10: PU utility comparison with random deployment.
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(a) PU utility enhancement comparison

(b) SU utility enhancement comparison

Fig. 11: User utility enhancement comparison.

utility is obtained in the case where SU follows to choose
the optimal PPL. Figure 11a provides the utility enhancement
comparison of 10 PUs in the multi-PU-multi-SU case. It can
be seen that the majority of the PUs enjoy a higher utility
enhancement with our method, and a PU even experiences
an 85% increase in its utility. Figure 11b gives the utility
enhancement comparison of the SU in the single-PU-single-
SU case. It can be seen that when the distance between the
PU and SU is short, below 6 km, the method in [14] and
[36] helps the SU achieve more utility enhancement. However,
when the distance between the PU and SU exceeds 6 km, the
SU in our method achieves much better utility enhancement.
Furthermore, as the distance increases, the utility enhancement
achieved with our method grows significantly, while the utility
enhancement suffers a slight decrease with the method in
[14] and [36]. Therefore, both parties experience higher utility
enhancements with our method.

VIII. CONCLUSIONS

In this paper, a novel bilateral location privacy preservation
mechanism for users participating in spectrum sharing is

proposed. With this privacy preservation mechanism, PUs and
SUs can flexibly adjust their privacy preservation to optimal
levels such that their utilities are maximized and their location
information is protected within desired ranges. Furthermore,
users’ privacy costs are built in as part of their utility models in
the proposed mechanism. In this way, the influence of privacy
preservation to the overall utilities is quantified. As a result,
the decision maker can effectively control the privacy cost by
adjusting the PPL in practice. Simulation results demonstrate
the effectiveness of the proposed approach.

APPENDIX A
PROOF OF THEOREM 1

Proof: Given ∀lϵ > 0, taking the second-order derivative
of US in (19) with respect to lS yields

∂2US

∂l2S
= −8kTπ − 2kSprv + 2kSRπ.

It is obvious that ∂2US

∂l2S
is negative on the interval (0, ∞), i.e.,

US is strictly concave. Therefore, US has at most one global
maximum and the lS that yields the global maximum is the
optimal solution.

Taking the first-order derivative of US in (19), we have

∂US

∂lS
=

∂

∂lS
{kSRπ(dPS − r0P − lϵ − lS)

2

− kTπ(dPS − r0P − lϵ − 2lS)
2 − kSprvl

2
S}

= −2kSRπ(dPS − r0P − lϵ − lS)

+ 4kTπ(dPS − r0P − lϵ − 2lS)− 2kSprvlS .

Let ∂US

∂lS
= 0. l∗S can be obtained.

APPENDIX B
PROOF OF THEOREM 2

Proof: Given the SU’s best reaction l∗S expressed as a
function of the PU’s PPL lϵ in Theorem 1, the PU’s utility
function in (17) becomes

UP = kPRπ(r
0
P )

2 + kTπ
(
dPS − r0P − lϵ

− 2
(2kTπ − kSRπ)(dPS − r0P − lϵ)

4kTπ + kSprv − kSRπ

)2

− klostπ
(
dPS − r0P − 2lϵ

− 2
(2kTπ − kSRπ)(dPS − r0P − lϵ)

4kTπ + kSprv − kSRπ

)2

− kPprvl
2
ϵ .

Taking the second-order derivative with respect to lϵ yields

∂2UP

∂l2ϵ
= −2klostπ

(
4kTπ + 2kSprv

4kTπ + kSprv − kSRπ

)2

− 2kPprv

+ 2kTπ

(
kSRπ + kSprv

4kTπ + kSprv − kSRπ

)2

.

It can be easily shown that ∂2UP

∂l2ϵ
is a constant and negative

on the interval (0,∞). As a result, UP is a strictly concave
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downward function, and has one and only one global maxi-
mum. Therefore, the value of lϵ achieving the maximum is the
optimal PPL for the PU.

Taking the first derivative of UP , we have

∂UP

∂lϵ
= −2kTπ(1− 2ξ)2(dPS − r0P ) + 2kTπ(1− 2ξ)2lϵ

+ 2klostπ(1− 2ξ)(2− 2ξ)(dPS − r0P )

− 2klostπ(2− 2ξ)2lϵ − 2kPprvlϵ.

Let ∂UP

∂lϵ
= 0. l∗ϵ can be obtained.

APPENDIX C
PROOF OF THEOREM 4

Proof: Provided the SUs’ predicted best responses(
l∗S1, l

∗
S2

)
in Theorem 3, the PU’s utility function becomes

UP = kPRπ(r
0
P )

2+kTπ[dPS1−r0P −lϵ−2ϕ1(dPS1−r0P −lϵ)]
2

+ kTπ[dPS2−r0P −lϵ−2ϕ2(dPS2−r0P −lϵ)]
2

− klostπ[dPS1−r0P −2lϵ−2ϕ1(dPS1−r0P −lϵ)]
2

− klostπ[dPS2−r0P −2lϵ−2ϕ2(dPS2−r0P −lϵ)]
2−kPprvl

2
ϵ .

Taking the second derivative of UP with respect to lϵ yields

∂2UP

∂l2ϵ
= −2klostπ[(

4kTπ+2kS1
prv

4kTπ+kS1
prv−kS1

R π
)2

+ (
4kTπ+2kS2

prv

4kTπ+kS2
prv−kS2

R π
)2]−2kPprv

+ 2kTπ[(
kS1
R π+kS1

prv

4kTπ+kS1
prv−kS1

R π
)2+(

kS2
R π+kS2

prv

4kTπ+kS2
prv−kS2

R π
)2].

It can be shown that ∂2UP

∂l2ϵ
is negative on the interval (0, ∞).

Therefore, UP is strictly concave on (0, ∞) with one and
only one global maximum, and the value of lϵ that achieves
the maximum is the optimal PPL for the PU. Taking the first
derivative of UP , we have

∂UP

∂lϵ
= −2kTπΓ1(dPS1−r0P )−2kTπΓ2(dPS2−r0P )

+ 2kTπΓ1lϵ+2kTπΓ2lϵ+2klostπ
√
Γ1Ω1(dPS1−r0P )

+ 2klostπ
√
Γ2Ω2(dPS2−r0P )−2klostπΩ1lϵ

− 2klostπΩ2lϵ−2kPprvlϵ.

Let ∂UP

∂lϵ
= 0. l∗ϵ can be obtained.

APPENDIX D
PROOF OF THEOREM 5

Proof: Taking the second derivative of USi with respect
to lSi (i =1, 2), we have

∂2USi

∂l2Si

= −2kTπ − 2kSi
prv.

Since ∂2USi

∂l2Si
is a constant that is negative on the interval

(0,∞), USi is strictly concave with one and only one global
maximum. The lSi that yields the maximum is the optimal
solution.

By taking the first derivative ∂USi

∂lSi
and setting it to zero, we

can obtain the results.
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