
Proceedings of the ASME 2021
International Mechanical Engineering Congress Exposition

IMECE2021
November 1 – 5, 2021, Virtual, Online

IMECE2021-70463

DEFORMATION MANIFOLD LEARNING MODEL FOR DEFORMATION OF
MULTI-WALLED CARBON NANO-TUBES: EXPLORING THE LATENT SPACE

Upendra Yadav
Shashank Pathrudkar

Mechanical Engineering - Engineering Mechanics

Michigan Technological University

Houghton, MI, USA

Susanta Ghosh⇤

Mechanical Engineering - Engineering Mechanics

and

The Center for Data Sciences

Michigan Technological University

Houghton, MI, USA

ABSTRACT
A novel machine learning model is presented in this work

to obtain the complex high-dimensional deformation of Multi-

Walled Carbon Nanotubes (MWCNTs) containing millions of

atoms. To obtain the deformation of these high dimensional sys-

tems, existing models like Atomistic, Continuum or Atomistic-

Continuum models are very accurate and reliable but are compu-

tationally prohibitive for these large systems. This high computa-

tional requirement slows down the exploration of physics of these

materials. To alleviate this problem, we developed a machine

learning model that contains a) a novel dimensionality reduction

technique which is combined with b) deep neural network based

learning in the reduced dimension. The proposed non-linear di-

mensionality reduction technique serves as an extension of func-

tional principal component analysis. This extension ensures that

the geometric constraints of deformation are satisfied exactly and

hence we termed this extension as constrained functional princi-

pal component analysis. The novelty of this technique is its abil-

ity to design a function space where all the functions satisfy the

constraints exactly, not approximately. The efficient dimension-

ality reduction along with the exact satisfaction of the constraint

bolster the deep neural network to achieve remarkable accu-

racy. The proposed model predicts the deformation of MWCNTs

very accurately when compared with the deformation obtained

through atomistic-physics-based model. To simulate the complex

high-dimensional deformation the atomistic-physics-based mod-

⇤Address all correspondence to this author.

els takes weeks high performance computing facility, whereas the

proposed machine learning model can predict the deformation

in seconds. This technique also extracts the universally domi-

nant pattern of deformation in an unsupervised manner. These

patterns are comprehensible to us and provides us a better ex-

planation on the working of the model. The comprehensibility of

the dominant modes of deformation yields the interpretability of

the model.

NOMENCLATURE
Nw Number of walls
j0 Configuration map from parametric domain to the local ref-

erence configuration
j Configuration map from parametric domain to the deformed

configuration
F Deformation map
Ncs Number of cross-sections
x1,x2,x3 Representation of a point in parametric domain
m m-th wall in a MWCNT
n n-th cross-section along the length
r Radial deformation
q Parameter defining the circumferential direction
N Length of data set
g Function representing the geometric constraint
µ Mean of the data set
v Covariance of the data set
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yk k-th eigenfunction of the covariance function or k-th most
dominant mode of variation

B Basis set out of which initial basis function must be chosen
to perform functional principal component analysis while
satisfying the constrain exactly

f Chosen basis functions from the Hilbert space or B
c̄ik Coefficients of Functional principal components

INTRODUCTION
Carbon nanotubes have shown remarkable optical, elec-

tronic, and physical properties. Moreover, the deformation con-
figuration that they achieve on loading influences their electronic
properties, leading to a large number of applications including
nanoelectromechanical systems (NEMS) [1, 2, 3]. In various ex-
periments, a wavelike pattern has been seen when multi-walled
carbon nanotubes undergo loading [4, 2]. These wavelike pat-
terns are termed as rippling. The most important factor responsi-
ble for rippling pattern is the low bending modulus of MWCNTs
as they act as crystalline membranes. Contrary to that, inter-wall
interaction or the Van der Waals interaction between two con-
secutive walls in MWCNTs provide the stiffness against bend-
ing. On loading, MWCNTs obtain the configuration at which the
combination of in-plane strain energy density and Van der Waals
interaction energy reaches to a minimum, leading to a rippling
pattern. These configurations are considered at equilibrium con-
figuration.

Even though the deformation configurations of MWCNTs
influences their chemical, and electronic properties, accurate and
efficient tools to obtain these complex deformed configurations
of MWCNTs are elusive. Ab-initio simulation are very accurate
but they require huge amount of computational effort to simulate
a sample containing millions of atoms. MWCNTs have also been
modelled as continuum shell which makes these model very effi-
cient but they ignore the underlying atomistic physics and hence
lack in accuracy. To achieve the accuracy of atomistic models
and efficiency of continuum models, Atomistic-Continuum (AC)
models have been developed [5, 6, 7] by integrating atomistic
and continuum models. AC models are accurate and efficient
when compared to atomistic models but still require a significant
amount of high-performance computing efforts for large MWC-
NTs. This slows down the process of exploration of the mechan-
ics of these materials.

The advent of Machine Learning (ML) can help us in allevi-
ating this bottleneck. Machine Learning (ML) methods such as
Deep Neural Networks (DNNs) [8, 9] are intensely investigated
for accelerating mechanics, and materials research [10, 11, 12],
however, so far most of the applications are limited to the pre-
diction of low-dimensional properties, such as material moduli.
Whereas, the complex deformations that MWCNTs exhibit re-
quires the prediction in high-dimensional space. While simulat-
ing MWCNTs using AC models, highest accuracy is achieved

by discretizing the domain. This discretized data lies in a high-
dimensional space [13, 7].

State-of-the-art deep learning models can predict the low
dimensional (e.g. CNN [14, 15]) or high dimensional out-
puts (e.g. Encoder-Decoder [16, 17]). But in order to predict
the high-dimensional outputs they require a high-dimensional
input. State-of-the-art DNNs cannot accurately predict high-
dimensional deformation of MWCNT from a few input features
like geometry paramters and loading conditions. The objective
of the present study is to create a ML model to accurately and
efficiently predict high-dimensional discretized deformations of
MWCNTs as output from low-dimensional inputs. This can be
achieved by reducing the dimension of output labels. A simple
dimensionality reduction technique can lead to inaccurate predic-
tions as the deformed configuration is a highly non-linear mani-
fold. Commonly used dimensionality reduction techniques [19]
such as Principal Component Analysis (PCA) and classical Met-
ric Multidimensional Scaling don’t work for the deformation of
MWCNTs as the deformation is highly non-linear and these di-
mensionality reduction techniques are based on linear models.
There exists non-linear dimensionality reduction techniques such
as Isomap, t-SNE, Locally-Linear Embedding etc. These tech-
niques are most widely used to identify the low-dimensional
non-linear manifold structure present in the data [20, 21]. An
approximate low-dimensional neighborhood graph embedded in
the high-dimension is obtained following the manifold struc-
ture of the data using the above mentioned techniques. To pre-
dict the high-dimensional deformation of MWCNTs an accurate
and smooth map with functional representation is required. The
map should also satisfy the intrinsic constraints of the deforma-
tion. Moreover, the functional representation of the mapping
also ensures the reversibility of the map from low-dimensional
to high-dimensional manifold. One such technique is Functional
Principal Component Analysis (FPCA) [22, 23]. It provides a
smooth functional representation of the data, which is analogous
to Kosambi-Karhunen-Loève Expansion [24, 25]. FPCA is used
to represent any stochastic process through a linear combination
of an infinite number of orthogonal functions. These orthogo-
nal functions are known as functional principal components and
they are analogous to principal components in the standard Prin-
cipal Component Analysis. However, it is not necessary that
these orthogonal functions satisfy any constraint and hence are
undesirable for the current work as MWCNTs has inherent peri-
odicity constraint along the circumference due to its cylindrical
structure. As a consequence FPCA yields discontinuous and er-
roneous predictions for MWCNTs.

In the present work, an extension to standard FPCA is
proposed. The extension involves designing a function space
where all included functions satisfies the constraint exactly. We
named this novel technique as constrained-FPCA (c-FPCA).
The proposed c-FPCA technique benefits us in two ways.
Firstly, it alleviates the curse of dimensionality and provides a
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FIGURE 1. A DETAILED SCHEMATIC OF THE PRESENT FRAMEWORK INVOLVING THE DATA GENERATION VIA SIMULATION
AND THE PROPOSED DEFORMATION MANIFOLD LEARNING (DML) MODEL. THE DML MODEL INCLUDES: THE DIMENSIONAL-
ITY REDUCTION PERFORMED THROUGH CONSTRAINED FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS AND THE DNN-BASED
LEARNING. INPUTS AND OUTPUTS OF DNN ARRE SHOWN WITH GREEN ARROWS. YELLOW ARROWS REPRESENT THE PREDIC-
TION VIA THE DML MODEL TO OBTAIN THE DEFORMATION FOR A GIVEN INPUT [18].

low-dimensional representation in functional form. Secondly,
it enforces the existing geometric constraint exactly hence
ensuring a smooth deformation pattern in prediction. The
proposed semi-supervised ML model consists of two steps (i)
unsupervised dimensionality reduction via proposed c-FPCA
to obtain the functional principal components present in the
deformation and (ii) supervised learning (regression) via DNN
in the reduced dimension. Henceforth, the proposed ML model
will be referred to as the Deformation Manifold Learning (DML)
model. The corresponding schematic is shown in Fig. 1. The
proposed model takes the geometric information of MWCNTs
and the applied loading condition as input and predicts the
high-dimensional deformation.

The functional representation of the discrteized data also
leads to interpretability. The interpretability arises as the latent

space is comprehensible through the functions spanning it. The
proposed interpretability also allows us to understand how the
model predicts that makes it comprehensible.

DEFORMATION MANIFOLD LEARNING MODEL
As the electronic properties of MWCNTs are coupled with

their mechanical deformation, it is important to capture the
buckling pattern very accurately [26]. To generate the data
for the DML model an atomistic-continuum model (Foliation

FIGURE 2. ILLUSTRATION OF THE KINEMATICS SHOWING
THE PARAMETRIC DOMAIN, UNDEFORMED OR LOCAL REF-
ERENCE CONFIGURATION AND DEFORMED CONFIGURATION
ALONG WITH THE DEFORMATION MAPS, AND COORDINATE
AXES [18].

model [7]) is used. By using Foliation model we simulated
(5,5),(10,10), · · · ,(5Nw,5Nw) MWCNTs walls, with Nw = 10
to Nw = 40 in the increment of 5, where Nw is the number of
walls. These simulations represents the deformation pattern of
thick MWCNTs that have been seen in the experiments. These 7
simulations (Nw = 10,15, · · · ,40) are used in training.
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Kinematics of MWCNTs and Data Preparation
Following the iso-geometric analysis framework, a local ref-

erence configuration is defined through an injective map (j0)
from the parametric space. Similarly, to define the deformed con-
figuration another map (j) from parametric space to Euclidean
space, R3, is defined, as shown in Fig. 2. Hence the deformation
map can be expressed as F = j �j�1

0 . Having one simulation
data for one MWCNT is not sufficient to learn the features, hence
it is an usual practice to run multiple instances. In the proposed
work to reduce the number of simulations we decomposed the
domain obtained from the simulation into several cross-sections
(Ncs) taken at regular intervals along its length. The intrinsic pe-
riodicity in the deformations of MWCNTs along the length helps
this decomposition starategy to increase the size of data set. Fol-
lowing the decomposition technique, the total deformation of
each point (x1,x2,x3) for m-th wall at n-th cross-section of a
MWCNT can be represented through two parts, (i) an in-plane
radial deformation r(q(x1),x n

2 ,x m

3 ) in the undeformed cross-
sectional plane, and (ii) axial deformation F2((q(x1),x n

2 ,x m

3 )).

Dimensionality Reduction through Proposed Con-
strained-FPCA

The dataset {ri(q)}N

i=1 represents the radial deformation of
the deformed configuration of MWCNT cross-sections, where
the cross-sections of the MWCNTs are given by the mapped
(x1,x3) planes for different x2. Energy of deformed MWCNT
is a function of curvature of its walls. Therefore, to ensure
smoothness of the deformation map, we assume that the radial
deformations of each tube are sampled from a stochastic pro-
cess R(q), q 2 T = (0,2p), such that its second derivative is
square-integrable. We suppose that R(q) can take any of the
values ri(q) 2 H

2(T ), i = 1, · · · ,N, such that g(ri(q)) = 0.
Where g(ri(q)) = 0, is a geometric constraint on the deforma-
tion of MWCNTs and H

2(T ) is Hilbert space. We denote the
L

2(T ) inner product of functions fi , f j 2H
2(T ) with hfi,f ji :R

T fi(q)f j(q)dq .
Let the mean and the covariance functions of R(q) be de-

noted by µ(q) and v(q ,J) = Cov(R(q),R(J)). Invoking the
Kosambi-Karhunen-Loève Expansion theorem [24, 25], the cen-
tered process can be expressed as R(q)�µ(q) = Â•

k=1 c̄k yk(q).
Here, c̄k = h(R(q)� µ(q)),y(q)i. Where yk(q), k = 1,2, · · · ,
are the orthonormal eigenfunctions of the following eigenvalue
problem

R
T v(q ,J)y(q)dJ = l y(q).

These eigenfunctions, yk(q), are referred to as functional
principal components (functional-PCs) hereafter. Assuming a fi-
nite set of eigenfunctions is sufficient to approximate the cen-
tered stochastic process, R(q)�µ(q), its i-th sample can be writ-
ten as

ri(q)�µ(q)⇡
K

Â
k=1

c̄ik yk(q), i = 1, · · · ,N (1)

Interpretation of eigenfunctions: The k-th eigenfunction yk is
the k-th most dominant mode of variation orthogonal to {yi}k�1

i=1 .
Solving an eigenvalue problem in H

2(T ) while satisfying a
constraint can be a difficult task, therefore, we choose a con-
venient finite-dimensional basis and look for solutions in terms
of that predefined basis. In case of deformed MWCNTs, defor-
mation configurations of MWCNTs have geometric constraints
that need to be satisfied by the eigenfunctions and hence also
needs to be satisfied by the basis. Therefore, any arbitrary ba-
sis will not work. FPCA with an arbitrary basis will not satisfy
the constraint of MWCNT and would not work. We choose a
basis B =

�
fk 2H

2(T ), g(fk) = 0, k = 1, · · · ,K
 

. We encode
the geometric constraint (periodicity constraint) of the deforma-
tion of MWCNTs via the function g(fk) = 0, which is crucially
important and specializes the FPCA for the present system. We
call this novel technique constrained-FPCA (c-FPCA).

We rewrite the data set, {ri(q)}N

i=1, the eigenfunction y(J),
and the covariance function v(J ,q) in terms of the basis B
and solve the aforementioned eigenvalue problem to obtain the
functional-PCs, yk(J). The function ri(q) is represented in
terms of functional-PCs using the Eq. 1 and their correspond-
ing coefficients (c̄ik), that are referred here as coefficients of
functional-PCs (CoFPCs). The dimension of the problem is sig-
nificantly reduced by obtaining a K (number of functional-PCs)
much smaller than the size of the discretized ri(q).

Learning in the Latent Dimension through Deep Neural
Networks

Deep Neural Networks (DNNs) are used here to map the
MWCNT geometry parameters and Boundary conditions to its
deformation in the latent dimension (CoFPCs). The 4 In-
puts for the proposed DNN are: Geometry parameters (i) to-
tal number of walls in the MWCNT (Nw), (ii) the wall number
(m,m = 1, · · · ,Nw), and (iii) the length coordinate (F2(x n

2 ),n =
1, · · · ,Ncs); (iv) Boundary Conditions: Angle of twist (Q) or Cur-
vature (k), per unit length. The dimension of the output layer is
the number of CoFPCs(K), which is decided based on the per-
centage of variation captured by Functional-PCs.

DNN(N ) [8] is a function of weights w̄ and biases b that
maps features xi to labels yi. The objective is to update the
weights w and biases b in order to minimize the dissimilarity
between true labels y and predicted labels ŷ, defined by a cost
function J (y, ŷ):

min
w̄

J (y,N (xi, w̄)) (2)

Updating the weights w̄ and biases b is done iteratively by
using Stochastic Gradient Descent (SGD) and Backpropagation
algorithm [27]. Once trained, the network can be used to predict
outputs yi = N (xi, w̄) for given new inputs xi by using forward
propagation technique.
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If not properly trained DNNs tend to work accurately for
training data but fail to predict for testing data. This condition
is termed as overfitting and hinders generalization (accurate pre-
diction for new inputs). To alleviate the overfitting we have used
multiple regularization [28,29] and normalization [30] strategies.
Inputs are normalized using z-score normalization. Along with
that, we use early stopping to cease training when validation loss
starts to increase. We used elastic net regularization which is a
combination of L1 and L2 regularization. Details of these tech-
niques are as follows,

Early Stopping: Number of epochs used for training pur-
poses was set at a maximum limit of 2000, however, early stop-
ping was used with a “patience” of 100 epochs to avoid over-
fitting of the network [28, 31]. Use of early stopping ensured
generalization performance of our model but to further improve
performance for test data we used naive elastic net regulariza-
tion [29].

Elastic Net Regularization: A combination of L1 and L2
regularization called elastic net regularization [29] is used, which
overcomes the individual drawbacks of L1 and L2 regulariza-
tion. The cost function including L1 and L2 regularization can
be written as

J̃ (y,N (xi, w̄)) = J (y,N (xi, w̄))+aW(w̄) a 2 R

Where W(w̄) = ||w̄||L1 and W(w̄) = ||w̄||L2 for L1 and L2 reg-
ularization respectively. The cost function for elastic net regular-
ization can be written as

J̃ (y,N (xi, w̄))= J (y,N (xi, w̄))+a1W(||w̄||1)
+a2W(||w̄||2)

a1,a2 2 R

We also performed a resampling procedure of k-fold cross-
validation on the data set to validate the performance of the
model on independent fractions of the data set [32].

The DNN architectures used in our work consist of approxi-
mately 40 thousand learning parameters, 6 hidden layers of vary-
ing sizes between 64 to 128 neurons each. The activation func-
tion used was ReLU. The optimizer used was Adam optimizer.
We trained three DNNs for predicting the following deforma-
tions of MWCNTs: (i) In-plane deformation under torsion, (ii)
in-plane, and (ii) out-of-plane (axial) deformation under bend-
ing. Unlike torsion, in bending the axial deformation is not neg-
ligible, hence we have used two DNNs for in-plane and axial
deformations.

RESULTS
Dimensionality Reduction

The proposed c-FPCA reduces the dimension of the defor-
mation, moreover it also extracts the most dominant modes of de-
formation present in the data set. Based on the accuracy required
the number of functional-PCs can be chosen. In order to achieve
the reduced dimension we started with 64 basis functions to rep-
resent data set where each data set size was up to several hundred.
From those 64 basis function, only 16 and 6 functional-PCs are
required to capture 99.9% variability for torsion and bending re-
spectively and 14 and 4 functional-PCs are required to capture
99% variability for torsion and bending respectively, as shown in
Fig. 3. This demonstrates up to two orders of magnitude dimen-
sionality reduction via the current method. This dimensionality
reduction with high-accuracy of c-FPCA improves the accuracy
of DNNs as it need to learn in significantly reduced dimensions.

5 10 15
0

50

100
99%

5 10 15
0

50

100
99%

FIGURE 3. CUMULATIVE % VARIANCE CAPTURED BY PRIN-
CIPAL COMPONENTS FOR MWCNTs UNDER (a) TORSION AND
(b) BENDING [18].

FIGURE 4. CORRELATION PLOTS FOR TEST SET CoFPCS OF
(a) IN-PLANE DEFORMATION IN TORSION, (b) IN-PLANE AND
(c) OUT-OF-PLANE DEFORMATION IN BENDING. THE CORRE-
SPONDING CORRELATION VALUES ARE 0.9943, 0.9931 AND
0.9991 RESPECTIVELY [18].

Accuracy
Once the dimensionality reduction is performed on the data

set, the prediction by the DNN becomes very accurate for a given
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FIGURE 5. (a-i, a-ii) DEFORMATION PATTERN OBTAINED FOR
30 WALLED CNT UNDER TWISTING TWISTED VIA AC (LEFT)
AND DML (RIGHT) MODEL. (b-i, b-ii) COLORMAP REPRESENT-
ING THE RADIAL DEFORMATION. (c-i, c-ii) REPRESENTS THE
CROSS-SECTION COMPARISON ALONG THE LENGTH AND
DEMONSTRATES THAT THE DML MODEL IS ABLE TO PRE-
DICT THE WAVE NUMBER ALONG THE LENGTH VERY ACCU-
RATELY.

FIGURE 6. CROSS SECTION OF TWISTED 10, 20, 30 AND 40
WALLED TUBE OBTAINED USING ATOMISTIC-CONTINUUM
SIMULATION( ) AND DML MODEL ( ). ONLY ALTERNATE
WALLS ARE SHOWN FOR CLARITY.

MWCNT and loading. The DNN predicts the CoFPCS which lie
in the latent space. Through CoFPCS the cross-sections of indi-
vidual walls are obtained through inverse of c-FPCA. Similarly
the cross-section is obtained by adding all the walls. These cross-
sections are then concatenated along the length to obtain the 3D
deformation pattern of MWCNTs. The accuracy in prediction of
CoFPCS via DNN is of utmost important. To make the DNNs
predict accurately we have adopted the following strategies: (i)
regularization techniques, and (ii) features-normalization.

The high accuracy of DNNs is demonstrated through ex-
cellent correlation coefficient (R > 0.993) for the test data as
shown in Fig. 4 and very low relative-mean squared error (order
of 10�4) for the validation data.

We compared the deformation pattern obtained from DML
model with the atomistic-continuum model for two types of sys-
tems: (i) known MWCNTs (10, 15, 20, 25, 30, 35, 40 walled) but
unknown loading, (ii) unknown MWCNTs and unknown load-
ing. Comparison of the deformation patterns under torsion and
bending obtained through AC and DML models are provided for

Atomistic Predicted

(a-i) (a-ii)

(b-i) (b-ii)

FIGURE 7. DEFORMATION PATTERN FOR 40 WALLED
MWCNT UNDER BENDING OBTAINED VIA AC AND DML
MODEL. THE CORRESPONDING COLORMAP REPRESENTING
THE RADIAL DEFORMATION OBTAINED VIA AC AND DML
MODEL.

FIGURE 8. CROSS SECTIONs OF BENT 20 WALLED TUBE OB-
TAINED USING ATOMISTIC-CONTINUUM SIMULATION( )
AND DML MODEL ( ). ONLY ALTERNATE WALLS ARE
SHOWN FOR CLARITY.

Atomistic

Predicted

FIGURE 9. COMPARISON OF DEFORMATION CONFIGURA-
TIONS OBTAINED VIA AC (TOP) AND DML (BOTTOM) MOD-
ELS FOR 27 WALLED CNT UNDER TORSION. THIS COMPARI-
SON DONE FOR UNKNOWN MWCNT AND UNKNOWN LOAD-
ING CONDITION AS THE DML MODEL HAS NO INFORMATION
ABOUT 27 WALLED CNT [18].

the known and unknown MWCNTs in Fig.5, Fig.7 and in Fig. 9,
Fig. 10 respectively. The deformation obtained through the pro-
posed DML model matches remarkably well with the AC model
for unknown loading. The match of deformation is very accurate
even for the unknown MWCNT (32 walled) and the loading (as
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Atomistic

Predicted

FIGURE 10. COMPARISON OF DEFORMATION CONFIGURA-
TIONS OBTAINED VIA AC (TOP) AND DML (BOTTOM) MOD-
ELS FOR 31 WALLED CNT UNDER BENDING. THIS COMPARI-
SON DONE FOR UNKNOWN MWCNT AND UNKNOWN LOAD-
ING CONDITION AS THE DML MODEL HAS NO INFORMATION
ABOUT 31 WALLED CNT [18].

long as the unknown MWCNT is within the range of the train-
ing data). This obviates the need for AC simulations for such
MWCNTs, yielding huge computational savings. However, if an
MWCNT lies way outside the regime of the training data (10,
15, 20, 25, 30, 35, 40 walled CNTs) its accuracy might go down
since the MWCNT might exhibit a deformation pattern that the
DNN is not aware of as it doesn’t occur in the training.

The maximum relative L2 error is found to be ⇡ 1% for the
32-walled CNT (an unknown MWCNT under unknown loading).

The proposed model is significantly more computationally
efficient than the AC model. Inference via the proposed model
(upon training), requires only about ten seconds for an unknown
MWCNT at all loading, whereas AC simulations for the same
systems requires tens or hundreds of total CPU hours in parallel
processing.

Discontinuity in Longitudinal Direction
As mentioned in the ’Kinematics of MWCNTs and

Data Preparation’ section we discretize the high dimensional
MWCNT by taking several cross sections. Nonlinear dimension-
ality reduction technique, c-FPCA is used on the cross sections
to obtain coFPCs that are then used as labels for the deep neural
network. Once trained, we predict the coFPCs for new inputs and
map them to cross sections (predicted) using inverse c-FPCA.
We collocate these predicted cross sections along the longitudi-
nal axis of tube to obtain deformed tube as shown in figure 11.

The smoothness of the predicted tube depends on accurate
prediction of each and every cross section. Inaccurate prediction
of any cross section will result in discontinuity along the length
of the tube as shown in Fig. 12. Accurate prediction of cross

FIGURE 11. PREDICTED INDIVIDUAL CROSS SECTIONS
(TOP) AND OBTAINED TUBE FROM THE PREDICTED CROSS
SECTIONS (BOTTOM) . ONLY 5 CROSS SECTIONS ARE SHOWN
HERE FOR SAKE OF SIMPLICITY. AXIS IS Y DIRECTION IS
SCALED BY A FACTOR OF 5.

section has 2 attributes, (i) accurate crests and troughs predic-
tion and (ii) accurate orientation w.r.t to succeeding and previous
cross section. These requirements on the prediction of cross sec-
tions can limit the smoothness of predicted tube obtained using
the proposed model. Addressing this challenge and eliminate
these stringent requirements on cross section prediction is the
future scope of this work.

FIGURE 12. PRELIMINARY DML MODEL YIELDS UNDE-
SIRED DISCONTINUITY ALONG THE LENGTH OF A TWISTED
MWCNT. COMPARE AGAINST SMOOTH TWISTED MWCNT BY
AC SIMULATION IN FIG. 5 , USED IN TRAINING. COLOR INDI-
CATES RADIAL DEFORMATION, RED IS FOR OUTWARD BLUE
IS FOR INWARD.
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Latent Space Exploration

Herein, we explore the model-based-interpretability (as de-
fined in [33]) of the proposed model by examining the princi-
pal modes and their coefficients present in the latent space. The
proposed DML model is able to extract the dominant (principal)
modes of deformation and their relative contribution in an unsu-
pervised manner. Fig. 13 shows few principal components. The
top row shows the principal components obtained for torsion.
These principal components resemble with the rippling deforma-
tion that occur in MWCNT during torsional loading. Similarly,
the bottom row in Fig. 13 represents the principal components for
bending which resemble to the diamond buckling pattern. The
similar pattern can be seen from the atomistic results too. These
key features are obtained through constrained-Functional Princi-
pal Component Analysis. So far these key deformed patterns
were approximately-identified manually for individual MWC-
NTs, whereas in the present work these principal components
of deformation are automatically identified. The automatically
identified most dominant modes of deformation shows qualita-
tive similarity with those identified manually in [26,6,34]. These
functional-PCs are universal since they are obtained from the en-
tire data set. This fact enhances the model’s predictive capabil-
ity on unseen MWCNTs and hence explains the generalizability
(performance for unseen MWCNTs) of the model. Once the di-
mensionality of the output is reduced, the DNNs also learn the
reduced dimension and predicts the deformation very accurately.
The proposed c-FPCA not only enables us to comprehend the
principal modes of deformation but also increases the accuracy
of DNN which leads to better and smooth prediction of high-
dimensional deformation of MWCNTs.

FIGURE 13. FUNCTIONAL PRINCIPAL COMPONENTS OF
MWCNTS UNDER TORSION (TOP) AND BENDING (BOTTOM)
OBTAINED FROM CONSTRAINED FUNCTIONAL PRINCIPAL
COMPONENT ANALYSIS [18].

Computational Details
DNNs used in DML model are built and trained in Ten-

sorflow 1.1.14 on Python 3.6. We used the Bridges facility
available at Pittsburgh Supercomputing Center for training pur-
poses. Bridges’ GPU-AI partition consists of NVIDIA Tesla
V100 GPU, which was used for training purposes. The time
required per iteration was ⇡ 12s and ⇡ 8s for DNNs used for
MWCNTs under torsion and bending respectively.

MWCNT simulations were performed using an in-house
FORTRAN code which is based on foliation model [7]. We used
XSEDE-Bridges supercomputer for MWCNT simulations which
is equipped with Intel Haswell (E5-2695 v3) CPUs with 14 cores
per CPU running at 2.3-3.3 GHz with 128GB RAM and 35MB
cache. Postprocessing of the simulation data was performed
on the same system. We used an in-house desktop system: 2
processors, 18-core Intel Xeon Gold 5220 CPU running at 2.20
GHz with 64 GB RAM, 24.65MB cache and 512 GB SATA SSD
for i) Discretization of the data and other data preparation tasks
ii) Non-Linear dimensionality reduction iii) Inference from the
Deep Neural Network iv) Plotting the high dimensional deforma-
tion data. Discretization of the data was performed in MATLAB.
Dimensionality reduction was done using an in-house non-linear
dimensionality reduction code.

CONCLUSION AND DISCUSSIONS
In this study, a novel interpretable machine learning model is

proposed, which predicts high-dimensional deformed configura-
tions of MWCNTs accurately and efficiently using only 4 inputs.
This work introduces a novel dimensionality reduction technique
that extends FPCA to respect the constraints of MWCNT defor-
mation exactly. The dimensionality reduction obtained through
this not only improves accuracy in low-dimensional representa-
tion of deformation but also enables accurate prediction of high-
dimensional deformation of MWCNTs. The dimensionalilty re-
duction technique enables us to represent the data in functional
representation and hence allows the generability. This gener-
ability leads to remarkably accuracy for unknown MWCNTs
and unknown loading. The proposed DML model completely
eliminates the need of expensive AC simulations for MWCNTs
(within the trainind data regime), yielding a massive gain in com-
putational efficiency. The functional representation of the most
dominant modes of deformation or the principal components are
comprehensible and thus help to elucidate how the model pre-
dicts high-dimensional deformation through learning the space
of functional-PCs, yielding interpretability [18].
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