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Abstract—Multivariate Hawkes processes have been widely
used in many applications such as crime detection and disaster
rescue forecast to model events that exhibit self-exciting prop-
erties. One of the biggest challenges is that data collected from
real world is usually incomplete, and even biased. The training
of a machine learning model using such data can introduce
biased predictions. For example, event hotspot predictions using
biased data can make the visibility of minority groups (e.g.,
communities of racial minorities) more apparent. While there
have been some explorations in developing Hawkes processes for
event data, none of those methods deals with incomplete biased
data where events of certain markers (e.g., events reported from
racial minorities) may be missing or heavily underrepresented.
In this paper, we propose a novel Multivariate Hawkes model to
tackle the incomplete biased data challenge. First, we assume
that there is possibility that events can be missing between
any two observed events and we define a novel likelihood
function integrating missing window probabilities. A Markov
Chain Monte Carlo (MCMC) sampling framework is used to
generate virtual event data probabilistically in missing windows.
Second, we propose to incorporate event marker features such
as geographic information to regularize the infectivity kernel
matrix between markers. In such a way, the MCMC sampler
is encouraged to generate more virtual events with markers that
are biased. Both observed and virtual events will contribute to
the model estimation through maximizing the log-likelihood. We
carry on experiments over several real-world datasets, and our
model improves prediction accuracy in comparison with the state-
of-arts.

Index Terms—Multivariate point process, Hawkes processes,
incomplete biased data.

I. INTRODUCTION

Temporal event sequences associated with different markers
(e.g., location indices, patient ids) are observed in various
applications such as criminology, epidemiology, and social-
network studies. For example, rescue request events with time-
stamps and geo-tags are collected from social media such as
Twitter, which can be used for rapid flood mapping, damage
assessment, and situation awareness. Similarly, burglary event
data collect the time and location of each reported event. In
epidemiology, the time stamps along with the patient ids who
are infected by a certain disease are recorded. Such time series
usually exhibit mutually exciting patterns of diffusion. For

example, the occurrence of a rescue event is likely to increase
the likelihood of another in nearby space and time. Similarly,
patients infected by an infectious disease might also spread
the disease to their neighbors. We are interested in discovering
correlations among events and predicting future events, e.g.,
answering questions such as when an event is likely to happen
and where it will take place.

Multivariate Hawkes processes (MHP) are widely used for
capturing mutually exciting patterns between event sequences.
Specifically, Multivariate Hawkes processes assume that an
event triggers a set of subsequent offspring events correlated
in time and markers. Temporal kernels are used to model self-
exciting effects. An infectivity kernel matrix is used in mul-
tivariate Hawkes to specify the correlation between different
markers. A larger similarity between two markers indicates
that events from those two markers can excite each other more.
Multivariate Hawkes processes have been used to model many
different applications such as predictive finance [1], predictive
crimes [2]–[4], and predictive online user behaviors [5]–[9].

One of the biggest challenges for event modeling is that
data collected from real word is usually incomplete, and even
biased. For example, in rescue event predictions, it has been
reported that higher disaster-related Twitter-use communities
tend to be of higher socioeconomic status [10]. Some regions
of lower socioeconomic status may be severely flooded. How-
ever, Twitter rescue data collected from these regions might
be heavily under-represented. It is known that MHPs suffer
from the amount of training data, and the excitation patterns
learned by MHPs from incomplete sequences can be unreliable
[11]. Moreover, MHPs trained on incomplete and biased data
can lead to inaccurate and unfair predictions. For example,
by using a Hawkes model trained on biased Twitter data, the
regions that are at risks but have fewer Twitter events may be
predicted as lower risk regions.

While there have been some explorations in enhancing
Hawkes processes for incomplete data, most of them ignore
the data bias and assume events are missing in certain time
windows regardless of event markers. For example, a data syn-
thesis method [11] is proposed to enhance Hawkes processes
for double-censored data, which assumes events before or after
the observed time are missing. A recent attempt [4] assumes
that events from hidden nodes (e.g., unknown markers) are978-1-6654-3902-2/21/$31.00 ©2021 IEEE



unobserved during a given time period, which can excite or
be excited by events of observed markers. However, none
of those methods deals with incomplete biased data, where
events associated with any marker can be missing in any
time window and events of certain markers may be heavily
underrepresented.

In this paper, we proposed a novel method to learn multi-
variate Hawkes processes from incomplete biased data. First,
we relax the assumption in the existing work that data are
only missing in a certain time window. Instead, we assume
that there is possibility that events can be missing between
any two observed events. We define a missing probability for
each interval, which depends on the time elapsed between
two observed events and the feature associated with each
marker. We proposed a novel likelihood function integrating
missing window probabilities. A Markov Chain Monte Carlo
(MCMC) sampling framework is used to generate virtual event
data probabilistically in missing windows. Second, to mitigate
the biased problem where events of some markers are more
incomplete than others, we propose to incorporate marker
features such as geographic information to regularize the
infectivity kernel matrix between markers. In such a way, the
MCMC sampler is encouraged to generate more virtual events
with markers that are biased. In summary, both observed and
virtual events will contribute to the model estimation through
maximizing the log-likelihood.

II. RELATED WORK

Hawkes processes, which are capable of modeling self-
excited event sequences, have been widely used in various
applications including earthquake prediction [12], predictive
policing [13], and hazard rate prediction [3], [14]. In com-
parison with traditional spatio-temporal modeling approaches,
Hawkes processes show better prediction accuracy for predict-
ing event hazard rates and ranking event hotspots [15]. Some
neural temporal point processes such as recurrent marked tem-
poral point process (RMTTP) [8] and neurally self-modulating
multivariate point process (N-SM-MPP) [16] are proposed to
model event sequences. Recently, a particle smoothing method
by a bidirectional continuous-time LSTM is proposed in [17]
to impute missing events for neural temporal point processes.
However, these models do not explicitly recover the excitation
influences between markers.

We focus on improving Multivariate Hawkes processes,
which explicitly recover mutually exciting patterns between
different markers. There are some existing methods for im-
proving multivariate Hawkes with missing data. Tucker et al.
[18] use a Bayesian estimation procedure to get the conditional
probability of missing data, given observed data. A stitching
method is proposed in [11] to deal with the double-censored
type of missing data. It assumes sequences of events of any
type can be missing either at beginning or at the end, or at both
ends. This type of missing data can happen in the sequences of
an individual’s disease history during the lifetime. However, it
is a very specific case of the missing patterns. Recent work [4]
assumes there are events from unknown markers unobserved

during a given time period, which can excite or can be excited
by events of observed markers. Our assumption is different
with that in the stitching method [11] assuming data can
be missing only at the beginning and end of the observed
sequence. Our assumption is also different with that in [4]
assuming data are complete on observed nodes (markers) and
all the missing events are on hidden nodes (markers). Also
none of the aforementioned methods deals with incomplete
and biased data.

Standard re-sampling approaches such as oversampling and
undersampling are used to reweight data based on certain
classes, which are mostly for classification and regression
tasks. Existing methods such as bootstrapping [19] have been
used for time series to improve learning results when obser-
vations are imperfect. For point processes, Mariana Oliveira
et al. [20] propose to use a sampling weight to represent
the probability that a certain event will be selected to stay
or be replicated in the training set. This weight is a linear
combination of spatial and temporal information of an event.
This is a different re-sampling and learning strategy from
ours. First, they re-balance the training data before the model
learning stage. However, we propose a new Hawkes model that
can oversample events in underrepresented groups during the
model learning stage. Second, they use a weight to decide
whether or not an original event should be replicated or
deleted. We do not modify original data; instead we encourage
the sampler to generate more events of rare markers based on
Hawkes process parameters such as the kernel matrix and base
rates.

III. BACKGROUND

A. Multivariate Hawkes Process

Multivariate Hawkes process is used to model sequences
of mutually exciting events associated with different mark-
ers such as locations where events happened. A collection
of events with markers and time stamps during a time
window [0, T ) can be represented as a sequence x =
{(t1, l1), (t2, l2), · · · , (tn, ln)}, where 0 < ti−1 < ti < T , n
is the total number of events, and li is the marker of the event
at time ti. In many event prediction applications such as the
analysis of crime reports or disaster-related rescue requests,
an area (e.g., a city) is discretized into square grid cells,
geographic block regions, or political boundaries (e.g., ZIP
codes). Let L be the number of distinct markers and li the
index to the grid cell or zip codes, that is li ⊂ {1, 2, .., L}.

Multivariate Hawkes process can be characterized by its
conditional intensity function λl(t), which is the expected
instantaneous rate of the event of marker l at time t given
the history of all the previous events up to time t [21]. That
is λl(t) = lim∆t→0(E[Nl(t, t + ∆t)|Ht]/(∆t))]/dt, where
Nl(t, t+∆t) is the count of type l events during time [t, t+∆t],
and Ht = {(ti, li)|ti < t, li ∈ L} is the set of historical events
up to time t. The probability of a sequence x is given by

p(x) = exp(−
∑︂
l

∫︂ T

0

λl(s, hs)ds)

n∏︂
i=1

λli(ti, hti). (1)



Specifically, in a linear multivariate Hawkes process, the
conditional intensity takes the form

λl(t, ht) = µl +
∑︂
i:ti<t

ϕli,l(t− ti), (2)

where µl is the base rate of events of marker l, and ϕli,l is
the kernel function, which captures the increase in the rate of
marker l triggered by the event of marker li that occurs (t−ti)
time units ago. We can simplify (2) by introducing a special
root event (t0, l0)=(0, 0). Let the kernel for this new event be
ϕl,0 = 0,∀l ϕ0,l = µl,∀l > 0. This event “causes” the base
rate of events for each marker. Let I0

t = {i|ti < t}∪{0}. The
intensity rate can be simplified as:

λl(t, ht) =
∑︂
i∈I0

t

ϕli,l(t− ti). (3)

The kernel ϕli,l can be decomposed into two components:
an L×L non-negative matrix M and a base kernel ϕ(t). That
is:

ϕli,l = Mli,lϕ(t). (4)

The entry Mli,l in matrix M quantifies the parent-offspring
excitation rate at any time. The base kernel ϕ(t) captures the
temporal decay. Some common choices of base kernel include
exponential ϕ(t) = exp(−βt) with β > 0, and power law
ϕ(t) = (t + γ)−(1+β) with β > 0 and γ > 0. We use the
exponential kernel in our model.

We denote Φli,l(t) =
∫︁ t

0
ϕli,l(s)ds and Φli,⋆(t) =∑︁

l ϕli,l(t). Equations (1) and (3) can be combined and the
likelihood of sequence x is

p(x) = exp(−
∑︂
i:ti<t

Φli,⋆(T − ti))

n∏︂
i=1

∑︂
j:tj<ti

ϕlj ,li(ti − tj).

(5)
Given the observed historical event sequences, the model
parameters can be estimated by maximizing the joint log-
likelihood.

B. Sampling Method

A Hawkes process can be viewed as generation processes
of parent events and offspring events, which forms a latent
branching structure. The first generation of parents follows an
inhomogeneous Poisson process. Each parent event generates
a set of children events independently. At time t, the rate of
an event with marker l is the sum of the rates of any previous
event generating a child with marker l at time t. That is,
each parent (ti, li) generates off-springs (t, l) with intensity
λl according to (2).

An unconditional sampler generates events with markers
(e.g., 1, 2, ..., L) recursively. It starts with a root event of
marker 0 at time 0, and samples “children” events from base
rates until time T . Each of these children recursively generates
its own “children” events based on the kernel function.

A recent study [4] builds a more effective Metropolis-
Hastings sampler based on the unconditional sampler with
two sets of auxiliary variables: “parent structure” and “virtual

events”. Firstly, denote parent auxiliary variable as a =
{a1, · · · , an}, where ai is the index of the parent of event
with index i. These variables indicate the “parent-children”
relationship in the branching structure of Hawkes process. The
joint distribution of the sequence x and the variable a is

p(x, a) =

n∏︂
i=1

ϕlai,li(ti − tai) exp(−Φli,⋆(T − ti)). (6)

It is obvious that the equation
∑︁

a p(x, a) = p(x) (from (5))
holds.

The second set of auxiliary variables consist of a
set of virtual events, which are children sampled from
observed and root events and unable to generate their
own children events. They can be represented by x̃ =
{(t̃1, l̃1), (t̃2, l̃2), . . . , (t̃ñ, l̃ñ)}. Let ãi denote the index of the
parent (a real event) of the ith virtual event. The complete
joint distribution over all auxiliary variables is

p(x, a, x̃, ã) =
n∏︂

i=1

exp[−(κ+ 1)Φli,⋆(T−ti)]

×
n∏︂

i=1

ϕlai,li(ti − tai)

ñ∏︂
i=1

κ · Φlãi
,l̃i
(t̃i − tãi

)),

(7)

where κ is a parameter, which determines the rate of generat-
ing a virtual event.

The MCMC sampler maintains a state of {x, a, x̃, ã}.
Among all types of events, the root event (marker 0), observed
events, and sampled events are members of {x}. Virtual events
are members of {x̃}. At each iteration, an event is randomly
picked from the set x ∪ x̃ and the states of the sampler are
updated by three moves. The first move is named “virtual
children”. If the picked event is from x, it can generate virtual
children and increase the pool of x̃. The second move is called
“virtualness”. If the picked event is from x̃, it will change the
event from state x̃ to x, and call these events sampled events.
Sampled events can generate its own “children events” in later
interactions. The third move is “parent”, which updates parent-
child relationship of non-root event from x to maximize the
joint likelihood. Both sets of auxiliary variables contribute to
the estimation of Hawkes processes with unobserved events.

IV. OUR PROPOSED APPROACH FOR INCOMPLETE AND
BIASED DATA

We tackle the incomplete and biased data challenge from
two perspectives. First, we assume that there is possibility
that events can be missing between any two consecutive
observed events. The possibility depends on the previous
history, the time elapse between the two observed events,
and the association between their markers. For example, if
the estimated probability of observing an event in a time
window is high but there are no observations, the probability
of some events missing in the window is high. The proposed
model with missing window probability is defined in Section
IV-A. Second, to mitigate the bias issue where events of



some markers are more incomplete than others, we propose
to incorporate marker features such as geographic information
to regularize the infectivity kernel matrix between markers. In
such a way, a MCMC sampler is encouraged to generate more
virtual events with markers that are biased. Infectivity matrix
regularization is described in Section IV-B1.

Fig. 1. Missing Window. Each blue arrow represents an observed event; each
red dot represents a virtual event; the darkness of shade represents how likely
an event can be missing in the corresponding time window. (The lightest
colored U11 is with the smallest possibility to have missing data). Dash lines
represent parent-child relationship.

A. Missing Window Probability

A collection of n events x = {(t1, l1), (t2, l2), · · · , (tn, ln)}
are observed during a fixed time period [0, T ), where events
are ordered by time 0 < ti−1 < ti < T and li is the marker
(e.g., location) of the event at time ti. For each marker li, we
assume events can be missing at any time window between
two observed events. We define Uij = [sij , eij ] as the j-th
unobserved time window associated with marker li, where sij
is the start time of Uij and eij is the end time of Uij .

For example, in Fig. 1, two events x = {(t1, l1), (t2, l2)}
of different markers l1, l2 are observed during the time
period [0, T ). Take rescue request events as an example, event
markers are the ZIP codes where requests are sent out. One
event with marker l1 occurs at time t1 and another event with
marker l2 happens later at time t2. In this example, U11 =
[0, t1] and U12 = [t1, T ) are the first and second missing
windows associated with marker l1. Similarly, U21 = [0, t2]
and U22 = [t2, T ) are the first and second missing windows
associated with marker l2. Suppose event (t1, l1) is likely to
trigger another event of marker l2 at t′ ∈ [0, t2] = U21 but
the event is unobserved. We say that the missing window U21

covers the event and the probability of this event occurring
in U21 is PU21 . Similarly, the event (t2, l2) may trigger other
events that fall in the missing window U12 with probability
PU12

.
Intuitively, the probability of event (t′, li) being missing

should depend on the historical events before U21, the length
of missing window U21, and some prior knowledge of its
marker l2, if available. Note that conditional intensity function
λ is defined as the limit of the expected number of events in
[t, t+∆t] given the history Ht of all the events up to time t

[21], that is λl(t) = lim∆t→0(E[Nl(t, t+∆t)|Ht]/(∆t))]/dt.
We propose that the missing window probability should be
proportional to the expected number of events in missing
window Uij , given the historical observed events before the
end of the missing window.

Formally, let t′ be the time of a possible missing event.
Denote H(eij) = {(tk, lk)|tk < eij , lk ∈ L} as the historical
events before the end of missing window eij . The probability
PUij

of an event missing in a time window Uij is defined
as the probability of next arrival time in Uij given historical
events before Uij :

PUij = P (tsij < t′ < teij |H(eij))

= 1− P (No events happen in Uij |H(eij))

= 1− exp[−
∫︂ teij

tk

λli(s)ds]

= 1− exp[−
∫︂ teij

tk

∑︂
k

Φlk,li(s− tk)ds]

= 1− exp[−Φ⋆,li(teij − tk)].

(8)

With this definition, a larger value of PUij
suggests a higher

probability of a next arrival event missing in Uij than in other
time windows.

We adopt a MCMC sampler similar to the one described in
Section III-B to estimate model parameters but integrate PUij

into the likelihood of event sequences. The sampler is also
based on auxiliary variables such as x̃, ã. The joint likelihood
function will guide the sampler in three moves. Since virtual
events x̃ and sampled events (part of x, changed from virtual
events by “virtualness” move) are children sampled from either
root events or observed events, they must fall into some
unobserved time windows. We propose to weigh these events
by the probabilities of missing windows where they fall into.
In such cases, those events that fall into the window Uij that
are too short or too early to have a parent event (close to 0)
will be down-weighted. For example, U11 in Fig. 1 is the first
missing window on l1, there is no historical observed event
before U11 except for the root event. Therefore, no potential
parents could generate children events during this window.

Formally, let 1(tĩ ∈ Ul̃i,j
) be an indicator function, which

takes value 1 if sampled events t̃i fall into the j-th missing
window of marker l̃i, and 0 otherwise. Now we multiply the
corresponding PUij

to each sampled event, and update the
likelihood as:

p(x, a, x̃, ã)=

n∏︂
i=1

exp[−(κ+1)Φli,⋆(T−ti)]×
n∏︂

i=1

ϕlai,li(ti−tai)

×
ñ∏︂

i=1

[κ · Φlãi
,l̃i
(t̃i−tãi

)) ·
∑︂
j

PUl̃i,j
· 1(tĩ ∈ Ul̃i,j

)].

(9)

B. Learning from Biased Data

Events associated with different markers (e.g., location
indices) can be highly biased. For example, rescue events
mostly appear in the top one or two hotspots, and events from



regions of lower socioeconomic status are underrepresented. In
the previous section, virtual events are generated in missing
windows to improve model parameter estimation. To further
tackle the bias challenge, we propose to enforce our sampler
to generate more virtual events with markers that are short of
data, so that the model learned using augmented data is more
accurate in prediction. To correct event data with underrep-
resented markers, we propose to incorporate marker features
such as geographic and demographic information to guide the
learning of the Hawkes process parameters. Intuitively, we can
define markers with similar features as neighbors. For exam-
ple, in flood rescue events, markers (e.g., location indices)
with similar flooding levels may be considered neighbors. If
events of marker li are rare but we observe more events of
markers that are neighbors to li, we consider that marker li is
likely biased. We propose to utilize such neighbor information
to regularize the parameters of the Hawkes processes.

1) Regularization: As described in (4), the infectivity ma-
trix M characterizes the excitation rates between markers
at any time. Ideally, if data are observed fully with no
bias, the infectivity matrix can be learned to fit the event
excitation patterns. However, in case of incomplete biased
data, the matrix M may not fully capture the underlying
infectivities. In such cases, we would like to regularize M
from the prior knowledge such as the similarities between
markers. Markers are defined to be neighbors if they have
similar features. The details are described in Section IV-B2. If
markers are neighbors, the events associated with the markers
should have similar behaviors in exiting children events or
be excited by parents. Specifically, if markers l and l′ are
neighbors, they should have similar impacts on other markers
(i.e., Ml· is close to Ml′·). They should be influenced by other
markers in a similar way (i.e., M·l is close to M·l′ ). This
regularization helps to learn clusters in events. By integrating
the regularization into Hawkes model estimation, our sampler
in Section IV is able to generate more events for a marker
that is underrepresented but is a neighbor to some markers
with high volumes of events, and to generate fewer events for
a marker that is less biased and is similar to markers with low
event densities.

Formally, we define our pairwise regularization term as:

E(M) =

L∑︂
l=1

∑︂
l′∈N(l)

||M·l −M·l′ ||2F + ||Ml· −Ml′·||2F , (10)

where N(l) is the set of neighbors of marker l, M·l ∈ RL is
the l-th column vector of infectivity matrix M , and Ml· ∈
RL is the l-th row vector. We name it our L2 regularization.
We also include L1 regularization on M defined as ||M ||1 =∑︁

l,l′ |Ml,l′ | to enforce sparsity.
Let Θ denote all the parameters in the Hawkes process (i.e.,

µl, M , β, etc.), the learning problem is

min
Θ

−Log(p(x, a, x̃, ã))Θ + α1||M ||1 + α2E(M). (11)

After model initialization, the learning process includes the
following: we sample data with the MCMC sampler given
current model parameters. Then we calculate the negative
log-likelihood in (11). We use the gradient descent method
to update model parameters to minimize the negative log-
likelihood. We repeat this process until (11) is minimized and
stable.

2) Define Neighbors: We use features of markers to help
define their neighbors. The choice of features depends on
domain applications. For example, in Houston rescue data,
each marker is a location index, we can use geographic
information and population information to define neighbors of
markers. Assume there are n total features, each marker can
be represented as an n-dimensional vector. We can calculate
the similarity scores between different markers. Then for each
marker li, we pick the ones with highest k similarity scores
to be the neighbors of li. The neighbor size can be chosen via
cross validation.

We adopt cosine similarity to be the similarity measure-
ment for defining the neighbors in our experiments. Cosine
similarity is one of the most popular metrics. Given two
n-dimensional instance a = (a1, ..., an) ∈ Rn and b =
(b1, ..., bn) ∈ Rn, the similarity is defined as:

Scos(a, b) =

∑︁n
i=1 ai · bi√︁∑︁n

i=1 a
2
i ·

√︁∑︁n
i=1 b

2
i

. (12)

Integrating marker features into model regularization also
helps us learn whether or not specific features are associated
with data bias. If the prediction results get better and there
are more predictions on minority classes, we can conclude
that using those features can help reduce data bias. Otherwise,
those features may be not correlated with data bias.

V. EXPERIMENTS

A. Data

We evaluate our methods on three real-world datasets and
provide the summary in table I.

The first dataset “Chicago” contains gang-related events
from 1965 through 1995 filtered from a homicide report
provided by the Chicago Police Department [22]. The details
of “gang-related” event data are described in existing studies
[4], [23]. Each gang-related homicide event is associated with
a timestamp and a marker (e.g., a location index) to indicate
the community where the event occurs. There are 77 Chicago
communities and 2195 events. A unit time t is a day. Similar
to [4], we use data in year 1993 and 1994 as training data and
data in 1995 for testing. There are no available features for
Chicago communities.

The second dataset “Dallas” is obtained from Kaggle1,
which contains different types of crime incidences collected
for around 3 years from the Dallas Police Department. We fo-
cus on “ROBBERY OF BUSINESS” events for a length of 380
days. Each robbery incident is an event with the corresponding
ZIP code as its marker. For demographic features associated

1https://www.kaggle.com/carrie1/dallaspolicereportedincidents



with each marker, we count the number of events reported by
three races (i.e., Black, White, and Hispanic/Latino). There
are 2058 events and we use 80% data for training and the rest
for testing.

The third dataset is “Houston” rescue data2, which contains
social media rescue requests from locations around Harris
county in Houston area during the Hurricane Harvey. Each
rescue request contains a time stamp and a corresponding ZIP
code as the event marker. There are 1182 events during 26
hours. We use the first 21 hour data (about 70% events) as
the training data and the last 5 hour data as the testing data.
We collect the race population statistics from American Fact
Finder3. We get geographic and social vulnerability variables
such as flooding zone, flood depth, civilian unemployed, per
capital GDP, minority, population as features for each marker
(i.e., ZIP code) from U.S. census data.

Specifically, Houston flood rescue data are highly biased.
For example, the adjacent regions with ZIP codes 77044 and
77049 have similar mean flood depth and population. However,
there are about 230 rescue tweets from ZIP code 77044 in one
day and only 68 tweets from 77049. Those two regions are in
the same level of flooding vulnerability but have imbalanced
representations in Twitter events.

B. Biased Training Data

We create biased datasets to demonstrate that our method
can improve prediction accuracy even if the training data are
highly biased. Specifically, we consider the original data as
full data and split it into a training set and a test set. Then
we follow different strategies to create biased training sets
from the full training set. We will train different models on
the biased training sets, and evaluate the models on the same
complete test set.

We design a top-K strategy to create a biased training set
based on the total number of events per marker. Specifically,
we rank markers by the number of events associate with them.
In some cases, top-ranked markers (e.g., hotspots) contain
a large percentage of events. For example, in the Houston
data, top 1 hotspot contains 50% of total events. Using a top-
K strategy, we first select all events of top k markers (e.g.,
events from hotspots), and then sub-sample events of the rest
of markers randomly with a given rate (e.g., 60%). As the
selection rate decreases from 60% to 20%, the events become
more imbalanced among different markers. Therefore, we can
evaluate models on data with different degrees of bias.

C. Evaluation Metrics

We evaluate the accuracy of predicted markers li of the
testing event at time t based on historical events H(ti). The
Hawkes model parameters are estimated using the training data
before time t. At each unique time unit t in the test event set,
the model can sample a set of events associated with different
markers. The most probable marker is the one with the highest
probability.

2https://data.world/sya/harvey-rescue-doc
3https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml

Precision, Recall and F-1 We calculate the average pre-
cision, recall and F-1 score for all time units in the testing
cases. At each testing time unit, we consider a prediction is
correct, only if the highest ranked marker (by probability) is
the same with ground truth. For datasets (Houston and Dallas)
with multiple ground-truth markers (e.g., multiple ground-truth
ZIP codes in the same time unit), we consider the prediction
is correct as long as the highest ranked marker is one of the
ground-truth markers.

1) Precision: Precision is the number of correct predictions
divided by the number of event markers sampled.

2) Recall: Recall is the number of correct predictions
divided by the number of ground-truth markers.

3) F-1 score: F-1 score is harmonic mean of precision and
recall.

MAP, MAR and MRR Markers are ranked from the
highest to the lowest by the predicted probabilities. Since
accuracy at the top are more appropriate for imbalanced
data to address or alleviate the minority bias, we use top-k
mean average precision (MAP), mean average recall (MAR)
and mean reciprocal rank (MRR) to evaluate the prediction
accuracy. Rank k can be chosen to fit different applications.
For example, considering that the rescue resources are usually
limited during each short time unit, we can predict locations
that need the most help. In our case, Houston data has multiple
ground-truth markers at one time unit (i.e., requests from
multiple locations at the same time). We choose top-2 MAP,
MAR and MRR in the experiment.

1) Mean Average Precision@2: We calculate precision at
top 2 of the predicted markers, then average over all
test cases. We claim if a predicted marker is any of the
multiple ground-truth ones, it is a correct prediction.

2) Mean Average Recall: We calculate recall at top 2 of
the predicted markers and average over all test cases.

3) Mean Reciprocal Rank: We compute the rank of each
ground-truth markers and calculated the reciprocal rank
score by rr = 1

rank and average over all test cases.

D. Baselines

We compare our method with two baseline methods and
their variations:

Stitch Method The work [11] assumes an observed se-
quence is double censored. It is proposed to stitch multiple
short sequences with probabilities proportional to the similari-
ties between those short sequences. The similarity depends on
the proximity between the start of a sequence and the end of
another sequence. It also depends on features associated with
sequence markers.

Hidden Nodes We use “Hidden Nodes” to refer to the
sampling method [4], in which it is assumed there exists
hidden nodes (unobserved markers) that affect distribution of
events and therefore introduce extra nodes and generate sample
events from and onto these hidden nodes. We set 5 hidden
nodes, the same with [4] for Chicago crime data. For Houston
rescue data, we choose the size of hidden nodes that can give
the best prediction result.



TABLE I
DATASET DESCRIPTION.

Dataset Events Geo-Type Unique-IDs Time Neighborhood Features
Chicago 2195 ZIP Code 77 901d NA
Dallas 2058 ZIP Code 74 380d Demographics (e.g., race)

Houston 1182 ZIP Code 106 26h Demographics, Geographical (e.g., flood zone)

TABLE II
PARAMETERS INITIALIZATION.

Dataset µ κ max init M α1 α2

Chicago 0.011 2 0.0056 150000 200000
Dallas 0.03 2 0.005 5000 100000

Houston 0.011 2 0.0056 1500 4500

TABLE III
PREDICTION OF NEXT EVENT LOCATION FOR HOUSTON RESCUE.

Methods
Top K Metrics Biased Stitch Hidden WithL2 Full

Nodes (ours)
Precision 0.2239 0.2027 0.2696 0.5383 (99.6%) 0.2346

Top 1 Recall 0.1883 0.2804 0.1711 0.3624 (29.2%) 0.2102
F-1 0.1794 0.1771 0.1801 0.4033 (123.9%) 0.1940

Precision 0.2708 0.3622 0.2643 0.5294 (46.1%) 0.2346
Top 2 Recall 0.1898 0.2061 0.1363 0.3588 (74.1%) 0.2102

F-1 0.1930 0.3092 0.2143 0.3990 (29.1%) 0.1940
Precision 0.2767 0.3027 0.2653 0.4489 (48.3%) 0.2346

Top 3 Recall 0.1580 0.1850 0.1376 0.3112 (68.3%) 0.2102
F-1 0.2386 0.2729 0.2156 0.3353 (22.9%) 0.1940

Precision 0.2272 0.2810 0.2505 0.4777 (70.0%) 0.2346
Top 5 Recall 0.1768 0.2164 0.1499 0.3287 (51.9%) 0.2102

F-1 0.1670 0.2166 0.1529 0.3602 (66.3%) 0.1940

Full We assume the original event sequences are complete
(no missing data) and train multivariate Hawkes models with-
out sampling events.

Biased We train multivariate Hawkes models with biased
data created by Section V-B as it is complete (no missing
data).

We compare those methods with our model. Specifically,
our model has two variations. NoL2 is our re-balanced
method without pairwise-similarity regularization on infectiv-
ity matrix. WithL2 is our re-balanced method with pairwise-
similarity regularization on infectivity matrix.

In general, model “Full” is the reference method. Model
“Biased” is expected to be the worst since the model can
be misled by biased data. Other methods such as “Stitch”,
“Hidden Nodes”, our “NoL2”, and our “WithL2” attempt
to either fill incompleteness or re-balance the data. Those
methods should be better than “Biased” or even “Full”.

For each dataset and method, we tune the parameters to
achieve the best. For example, for our model, we tune regu-
larization parameters α1 and α2, the initialization of infectivity
matrix M , and virtual rate κ, etc.

E. Results

1) Top-1 with different subsampling rates: In this ex-
periment, for each dataset, we would like to compare the
improvements of each method for three different levels of bias.
We use top-1 strategy where we keep all the events of top-1
marker and select 20%, 40% and 60% of the rest. We plot rank

2 MAP, rank 2 MAR and MRR for Chicago data in Fig. 2,
Houston data in Fig. 3 and Dallas data in Fig. 4.

For all three datasets, our method “WithL2” outperforms
almost all the others in most of the metrics. The second
best model is our method “NoL2” without pairwise-similarity
regularization. This means that our sampler alone without the
help of regularizer can re-balance the biased data and generate
better results than baseline methods. With the help of the
neighborhood information and regularization, our sampler can
generate more useful data and learn a better model. Method
“Full” stays the same across different bias levels as it is trained
on the same complete data. For other methods, as training data
become less biased (e.g., 20% to 60%), the prediction accuracy
on the test set improves in general.

Specifically, for “Chicago” in Fig. 2, “WithL2” outperforms
all other methods in all metrics for 40% and 60% sampled
data. It is bellow “Full” for 20% sampled data, but still the
highest one, in comparison with other baseline methods. This
suggests that our method can mitigate extreme biased data.

Our method “WithL2” performs the best in Houston data
for all metrics and all levels of bias except for MRR at 20%
(Fig. 3). Stitch method is the best in MRR at 20% bias level
and the same as our method “WithL2” at 40% and 60% levels.
The model “Full” trained by original data performs not even
as good as the one trained on biased data. It suggests that
Houston data may be noisier and may contain redundant data.
Methods such as “WithL2”, “NoL2” and “Hidden Nodes”
generate more balanced data from biased data and achieve
better prediction performance than original data.

In Dallas data, our method again outperforms other meth-
ods. Similar trends are observed in Fig. 4. Specially in MAR
graph, “WithL2” is the only method that can compete with
“Full”.

2) Top-K with different K: We keep events from top 1 to
top 5 locations and randomly sample 60% of the rest of data
as biased training data. We compare prediction accuracy in
terms of precision, recall and F-1 score.

We compare methods on Houston rescue data. Because
events happen in multiple locations in each hour, a prediction
is correct if it is any one of the ground-truth locations. The
results are shown in table III. First, “Biased” performs worst
for most of Top K settings in all three metrics. This suggests
when data are biased, the model trained on biased data is
distorted. Second, our method “WithL2” performs the best
in all Top K settings of all three metrics. We also show
the percentage of improvement of our method in comparison
with the second best baseline. For example, our method has a
precision of 0.5383 in Top 1 setting. In comparison with the



Fig. 2. Chicago Rank 2 MAP, MAR and MRR.

Fig. 3. Houston Rank 2 MAP, MAR and MRR.

Fig. 4. Dallas Rank 2 MAP, MAR and MRR.

baseline “Hidden node”, we improve 99.6%.
We try different sets of parameter initialization and choose

the set that makes gradient descent efficient and stable. We set
parameters as shown in table II for our method. Our code is
available at Github4.

VI. CASE STUDY

In this section, we explore the effect of different choices of
features in defining “neighborhood” of markers on Houston
rescue data. In Houston rescue data, we have side information
for each ZIP code, including “% flood zone”, “Mean flood
depth”, “Civilian unemployed”, “Per capita GDP”, “Minority”,
and “Population”.

First, we use only flood related information to define
neighbors and regularize the model. That is assuming that ZIP
codes with similar flood areas and depths should have similar
rescue requests. Pairwise regularization will force the sampler

4https://github.com/Zihan-Zhou/BiasedIncomp MHP

to generate more events in a location that is short of data but
has a similar flood situation with locations with many request
events.

The second choice of features is “Civilian unemployed”
and “Per capita GDP”. Using these two features is assuming
locations with similar economic status should have similar
rescue requests. This assumption is based on the intuition
that if two ZIP codes are similar in economic status, similar
numbers of people should send rescue requests. This way, it
can mitigate the bias due to the fact that some people may be
not used to send rescue requests through social media.

The third choice of features is the combination of “Minor-
ity” and “Population”. “Minority” is the percentage of minority
in a ZIP code, and “Population” is the total number of people
in a ZIP code. Using these two features to define neighbor
assumes that if two ZIP codes have similar population with
similar percentages of minority people, they should have
similar numbers of request events. This way we can test if
the data bias is associated with minority groups.



(a) (b)

Fig. 5. Houston map with flood level.

(a) (b)

Fig. 6. Houston map with economic situation.

(a) (b)

Fig. 7. Houston map with minority population.



For each choice of features, we visualize the top-20 detected
hotspots using baseline “Biased” and ours “WithL2” with the
set of features. Blue dots represent the predicted top ZIP codes
using baseline “biased”. Orange dots represent the predicted
top ZIP codes using our method. The dots of both blue and
red indicate that the locations are captured in both ranking
lists.

The background in Fig. 5(a) shows the map of Houston area
with ZIP codes colored by “% of flood zone”. Our prediction
has 31% locations with high flooding level, compared to 15%
using “biased” baseline. This indicates that our method can
guide the sampler to sample more data in high-level flood zone
areas. Similar trends are observed in Fig. 5(b). The original
data distribution shows that some regions in high “% flood
zone” and high “mean flood depth” are short of data. Our
method mitigates the bias issue and predicts more events in
these regions.

Fig. 6(a) shows the predicted ZIP codes by integrating
feature “Per capita GDP”. 10% of ZIP codes predicted by our
method belong to regions of top-2 level of GDP, compared
to 0% by “Biased” baseline. Original data distribution by five
levels of GDP shows that the data are short in high level GDP.
Our method mitigates this issue and predicts more on high
level GDP. Similar trends are observed in Fig. 6(b), where we
have more predictions on low unemployment regions.

Fig. 7(a) shows Houston map with different levels of mi-
nority rates and Fig. 7(b) is the map with different population
levels. Our predictions concentrate more on regions with
higher minority rates.

VII. CONCLUSION

To our best knowledge, we are the first to propose a
novel learning method for multivariate Hawkes processes
from incomplete biased data. We carry on experiments over
several real-word datasets, and our model improves prediction
accuracy in comparison with the state-of-arts. In case studies,
we demonstrate the results of incorporating different event
marker features, which provides valuable discussions for the
adaptation of Hawkes processes in fairness sensitive domains
such as crime and disaster management. Our proposed method
can help government agencies design a fair allocation of public
sources, especially for the disadvantaged classes of individuals
or communities.

VIII. ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under Grant No. 1927513 and No. 1943486.

REFERENCES

[1] E. Bacry, I. Mastromatteo, and J.-F. Muzy, “Hawkes processes in fi-
nance,” Market Microstructure and Liquidity, vol. 1, no. 01, p. 1550005,
2015.

[2] G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and
G. E. Tita, “Self-exciting point process modeling of crime,” Journal of
the American Statistical Association, vol. 106, no. 493, pp. 100–108,
2011.

[3] S. Linderman and R. Adams, “Discovering latent network structure in
point process data,” in Proc. of the International Conference on Machine
Learning (ICML), 2014, pp. 1413–1421.

[4] C. R. Shelton, Z. Qin, and C. Shetty, “Hawkes process inference with
missing data,” in Proc. of the AAAI Conference on Artificial Intelligence,
2018.

[5] K. Zhou, H. Zha, and L. Song, “Learning triggering kernels for multi-
dimensional hawkes processes,” in International Conference on Machine
Learning. PMLR, 2013, pp. 1301–1309.

[6] J. R. Zipkin, F. P. Schoenberg, K. Coronges, and A. L. Bertozzi, “Point-
process models of social network interactions: Parameter estimation
and missing data recovery,” European journal of applied mathematics,
vol. 27, no. 3, pp. 502–529, 2016.

[7] M.-A. Rizoiu, Y. Lee, S. Mishra, and L. Xie, “Hawkes processes for
events in social media,” in Frontiers of Multimedia Research, 2017, pp.
191–218.

[8] N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and
L. Song, “Recurrent marked temporal point processes: Embedding
event history to vector,” in Proc. of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 2016,
pp. 1555–1564.

[9] J. Shang and M. Sun, “Local low-rank Hawkes processes for temporal
user-item interactions,” in Proc. of the IEEE International Conference
on Data Mining (ICDM), Nov. 2018, pp. 427–436.

[10] L. Zou, N. Lam, S. Shams, H. Cai, M. A. Meyer, S. Yang, K. Lee, S.-J.
Park, and M. A. Reams, “Social and geographical disparities in Twitter
use during Hurricane Harvey,” International Journal of Digital Earth,
pp. 1–19, 2018.

[11] H. Xu, D. Luo, and H. Zha, “Learning Hawkes processes from short
doubly-censored event sequences,” in Proc. of the International Confer-
ence on Machine Learning (ICML), 2017, pp. 3831–3840.

[12] M. J. Werner, A. Helmstetter, D. D. Jackson, and Y. Y. Kagan, “High-
resolution long-term and short-term earthquake forecasts for California,”
Bulletin of the Seismological Society of America, vol. 101, no. 4, pp.
1630–1648, 2011.

[13] G. Mohler, R. Raje, J. Carter, M. Valasik, and J. Brantingham, “A
penalized likelihood method for balancing accuracy and fairness in
predictive policing,” in Proc. of the IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2018, pp. 2454–2459.

[14] E. W. Fox, M. B. Short, F. P. Schoenberg, K. D. Coronges, and
A. L. Bertozzi, “Modeling e-mail networks and inferring leadership
using self-exciting point processes,” Journal of the American Statistical
Association, vol. 111, no. 514, pp. 564–584, 2016.

[15] G. Mohler, J. Carter, and R. Raje, “Improving social harm indices
with a modulated hawkes process,” International Journal of Forecasting,
vol. 34, no. 3, pp. 431–439, 2018.

[16] H. Mei and J. M. Eisner, “The neural hawkes process: A neurally
self-modulating multivariate point process,” in Proc. of the Annual
Conference on Neural Information Processing Systems (NeurIPS), 2017,
pp. 6754–6764.

[17] H. Mei, G. Qin, and J. Eisner, “Imputing missing events in continuous-
time event streams,” in International Conference on Machine Learning.
PMLR, 2019, pp. 4475–4485.

[18] J. D. Tucker, L. Shand, and J. R. Lewis, “Handling missing data in self-
exciting point process models,” Spatial statistics, vol. 29, pp. 160–176,
2019.

[19] Y. Guan and J. M. Loh, “A thinned block bootstrap variance estimation
procedure for inhomogeneous spatial point patterns,” Journal of the
American Statistical Association, vol. 102, no. 480, pp. 1377–1386,
2007.

[20] M. Oliveira, N. Moniz, L. Torgo, and V. S. Costa, “Biased
resampling strategies for imbalanced spatio-temporal forecasting,” in
2019 IEEE International Conference on Data Science and Advanced
Analytics (DSAA). IEEE, 2019, pp. 100–109. [Online]. Available:
https://doi.org/10.1109/dsaa.2019.00024

[21] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point
Processes: Volume II: General Theory and Structure. Springer Science
& Business Media, 2007.

[22] C. R. Block, R. L. Block, and I. C. J. I. Authority, “Homicides
in chicago, 1965-1995,” Inter-university Consortium for Political and
Social Research [distributor], vol. 32, 2005.

[23] A. Papachristos, “Murder by structure: Dominance relations and
the social structure of gang homicide,” American Journal of
Sociology, vol. 115, no. 1, pp. 74–128, 2009. [Online]. Available:
http://www.jstor.org/stable/10.1086/597791

https://doi.org/10.1109/dsaa.2019.00024
http://www.jstor.org/stable/10.1086/597791

	Introduction
	Related Work
	Background
	Multivariate Hawkes Process
	Sampling Method

	Our Proposed Approach for Incomplete and Biased Data
	Missing Window Probability
	Learning from Biased Data
	Regularization
	Define Neighbors


	Experiments
	Data
	Biased Training Data
	Evaluation Metrics
	Baselines
	Results
	Top-1 with different subsampling rates
	Top-K with different K


	Case Study
	Conclusion
	Acknowledgement
	References

