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OPTIMAL CHEMOTHERAPY FOR BRAIN TUMOR GROWTH IN A
REACTION-DIFFUSION MODEL\ast 

MOHSEN YOUSEFNEZHAD\dagger , CHIU-YEN KAO\ddagger , AND SEYYED ABBAS MOHAMMADI\S 

Abstract. In this paper we address the question of determining optimal chemotherapy strate-
gies to prevent the growth of brain tumor population. To do so, we consider a reaction-diffusion
model which describes the diffusion and proliferation of tumor cells and a minimization problem
corresponding to it. We shall establish that the optimization problem admits a solution and obtain
a necessary condition for the minimizer. In a specific case, the optimizer is calculated explicitly,
and we prove that it is unique. Then, a gradient-based efficient numerical algorithm is developed in
order to determine the optimizer. Our results suggest a bang-bang chemotherapy strategy in a cycle
which starts at the maximum dose and terminates with a rest period. Numerical simulations based
upon our algorithm on a real brain image show that this is in line with the maximum tolerated dose
(MTD), a standard chemotherapy protocol.
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1. Introduction. Brain tumor remains one of the most lethal diseases, causing
many deaths worldwide every year. Glioblastoma multiforme (GBM) is a highly
invasive brain tumor, producing life expectancies from 6 to 12 months [2, 7, 12, 25].
An essential component of the postoperative treatments administered to patients is
chemotherapy [1]. Indeed, most patients will first undergo a surgical procedure for
diagnostic and treatment purposes. Then, the recurrence of the tumor, even after
radical excision, makes postoperative therapeutic strategies such as radiotherapy and
chemotherapy a necessity to reduce tumor progression [23]. To increase the survival
rate of patients, it is necessary to develop novel therapies to improve conventional
treatments.

Mathematical modeling is a viable tool which can be used to develop a better
understanding of how different parameters contribute to GBM growth [13, 23, 25, 30,
31, 32]. In addition to predicting disease progression, simulation can be extremely
helpful in analyzing factors that may contribute to the disease growth and control of
postoperative treatment [15, 23, 25]. Spatial macroscopic models that rely on partial
differential equations (PDEs) have been used vastly to describe the proliferation and
invasion of the tumor cells' density in the brain tissue; see [26, 28, 30, 32] and the
references therein.

In this paper, we consider a reaction-diffusion model proposed in [26] which de-
scribes the diffusion and proliferation of tumor cells in addition to the effects of
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1078 M. YOUSEFNEZHAD, C.-Y. KAO, AND S. A. MOHAMMADI

precisely delivered chemotherapy. To do so, let \~u(x, t) be the tumor cell density\bigl( 
cell \cdot mm - 3

\bigr) 
in the whole brain domain, \Omega ; then the rate of change of the tumor cell

density with chemotherapy can be considered in the following way:

\~ut = diffusion + net increase due to proliferation - death due to chemotherapy,

which is a conservation equation for the population [21, 22]. We consider the following
equation with a logistic growth term and a net proliferation rate \rho > 0

\bigl( 
day - 1

\bigr) 
in

the brain domain \Omega :

(1.1) \~ut  - \nabla \cdot (D(x)\nabla \~u) = \rho 

\biggl( 
1 - \~u

K

\biggr) 
\~u in \Omega ,

where K
\bigl( 
cell \cdot mm - 3

\bigr) 
represents the carry capacity of the tissue, which provides an

upper limit on the number of tumor cells capable of occupying any cubic millimeter
of brain. The function D(x)

\bigl( 
mm2 \cdot day - 1

\bigr) 
is the diffusion coefficient at the position

x, and there is a constant \theta such that

D(x) \in L\infty (\Omega ), D(x) > \theta > 0.(1.2)

We assume that \Omega can be partitioned into two subregions corresponding to tumor
tissue and healthy tissue. According to [29], in order to consider the effect of the
chemotherapy, we add a loss term corresponding to it on the right-hand side of (1.1),
and we arrive at the following equation:\left\{         

\~ut  - \nabla \cdot (D(x)\nabla \~u) = \rho 

\biggl( 
1 - \~u

K

\biggr) 
\~u - C(t)\~u, (x, t) \in \Omega \times (0, T ),

\partial \~u

\partial n
= 0, (x, t) \in \partial \Omega \times (0, T ),

\~u(x, 0) = \~u0(x), x \in \Omega ,

(1.3)

where C(t)
\bigl( 
day - 1

\bigr) 
denotes the distribution of the chemotherapy on the tissue during

the time interval [0, T ], 0 < T < \infty , and \~u0(x) is the tumor cell density at the
beginning. Indeed, C(t) defines the temporal profile of the chemotherapy in the single
cycle [0, T ]. The zero flux boundary condition prevents cells from leaving the brain
domain at its boundary. For the sake of simplicity in our notation, we set u = \~u

K ,
and so (1.3) transforms into the following equation:\left\{       

ut  - \nabla \cdot (D(x)\nabla u) = \rho (1 - u)u - C(t)u, (x, t) \in \Omega \times (0, T ),
\partial u

\partial n
= 0, (x, t) \in \partial \Omega \times (0, T ),

u(x, 0) = u0(x), x \in \Omega .

(1.4)

In order to avoid unacceptable toxicity, assume that the maximum of chemother-
apy allowable at time t is A > 0, and the total amount of chemotherapy effort on
[0, T ] is considered to be B > 0. Therefore, we should consider the chemotherapy
function in the following admissible set:

\scrM =

\Biggl\{ 
C(t) \in L\infty (0, T ) | 0 \leq C(t) \leq A,

\int T

0

C(t) dt = B

\Biggr\} 
.(1.5)

Actually, B is the mean value of the chemotherapy over a cycle, and A is the highest
applicable chemotherapy. It is well known that \scrM is convex and weakly compact
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OPTIMAL CHEMOTHERAPY FOR BRAIN TUMOR 1079

in L2(\Omega ) [6]. As the solution u of (1.4) depends on C, we use the notation uC to
emphasize this dependence.

From a biological point of view, it is interesting to know how the chemotherapy
affects the population size of tumor cells. More precisely, our goal is to determine
optimal chemotherapy strategies to prevent the growth of tumor population. Indeed,
we want to find an optimal strategy which minimizes the population size of tumor
cells. Consider

\scrJ (C) =

\int T

0

\int 
\Omega 

uC(x, t)dxdt,

the total population of tumor cells in the time interval [0, T ], as our objective func-
tional; we should find a solution for the following minimization problem:

min
C\in \scrM 

\scrJ (C).(1.6)

We shall prove that (1.6) admits a solution invoking a direct approach of calculus
of variation. By obtaining the derivative of the functional \scrJ (C) with respect to C and
defining an adjoint problem, a necessary condition for the minimizer is determined.
In the diffusion-free case that (1.4) is reduced to an ODE form, the optimizer is
calculated explicitly, and it is proved that the solution is unique. Then, a gradient-
based numerical algorithm is developed in order to compute the optimizer. Numerical
illustrations reveal the efficiency and applicability of the method.

The question of how chemotherapy protocols should be scheduled to optimize
their effect has been investigated in many studies; see [3, 4, 5, 14, 15, 19, 20, 10],
to name just a few. They yield the concept of the maximum tolerated dose (MTD),
a commonly used chemotherapy protocol in medical practice [29]. In line with the
previous studies and clinical experiments, the results of this paper confirm the MTD
strategy, which typically includes repeated cycles of chemotherapy at the MTD with-
out causing unacceptable toxicity. The optimal solution of (1.6) suggests a bang-bang
chemotherapy strategy in a cycle which starts at the maximum dose and terminates
with a rest period. Employing this strategy, we observe that during the time that
chemotherapy is being administered, the population size of tumor cells is decreas-
ing, while the tumor continues to grow with no chemotherapy. We illustrate this
phenomenon with a numerical simulation based upon our algorithm on a real brain
image.

2. Preliminaries. In what follows, \Omega is a bounded smooth domain in the real
d-space \BbbR d. For a given fixed time 0 < T < \infty , let us denote QT = \Omega \times (0, T ).
We denote by Hk(\Omega ), where k is a positive integer, the set of all functions u defined
in \Omega such that all of its distributional derivatives of order s \leq k belong to L2(\Omega ).
Furthermore, Hk(\Omega ) is a Hilbert space with the following norm:

\| v\| Hk(\Omega ) =

\left(  \sum 
s\leq k

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \partial sv\partial xs
dx

\bigm| \bigm| \bigm| \bigm| 2
\right)  1/2

.

The space Lp(0, T ;Hk(\Omega )), p > 1, consists of all functions v such that for almost every
t \in (0, T ), the element v(t) = v(x, t) belongs to Hk(\Omega ). Furthermore, Lp(0, T ;Hk(\Omega ))
is a normed space with the norm

\| v\| Lp(0,T ;Hk(\Omega )) =

\Biggl( \int T

0

\| v(t)\| p
Hk(\Omega )

dt

\Biggr) 1/p

.
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1080 M. YOUSEFNEZHAD, C.-Y. KAO, AND S. A. MOHAMMADI

Let H1(\Omega )\ast be the dual space of H1(\Omega ). A solution of (1.4) is defined in the weak
sense as follows.

Definition 2.1. We say a function u \in L2
\bigl( 
0, T ;H1(\Omega )

\bigr) 
with ut \in L2(0, T ;H1(\Omega )\ast )

and u(x, 0) = u0(x) is a weak solution of (1.4) if

(2.1)

\int 
\Omega 

ut\phi dx+

\int 
\Omega 

D(x)\nabla u \cdot \nabla \phi dx =

\int 
\Omega 

(\rho (1 - u)u - C(t)u)\phi dx

for all \phi \in H1(\Omega ) and almost every 0 \leq t \leq T .

The following theorem addresses the existence and uniqueness of solutions to
(1.4). For a proof, the reader is referred to [9].

Theorem 2.2. Let 0 < T <\infty , u0 \in L\infty (\Omega ) \cap H1(\Omega ), and u0(x) \geq 0. Then, for
each C \in \scrM there is a unique nonnegative weak solution u = uC(x, t) of the problem
(1.4). Moreover, there exists a constant M > 0 which depends only on \theta , A, | \Omega | , T ,
d, and \| u0\| L\infty (\Omega ) such that \| u\| L\infty (QT ) \leq M.

Hereafter in this paper, M is a generic positive constant independent of u and C.
The following lemma is needed for our later investigation.

Lemma 2.3. Let C \in \scrM and u = uC be the unique nonnegative solution of (1.4)
corresponding to C. Then there exists a positive constant M independent of u and C
such that \| u\| L\infty (0,T ;L2(\Omega )) + \| u\| L2(0,T ;H1(\Omega )) + \| ut\| L2(0,T ;H1(\Omega )\ast ) \leq M.

Proof. Multiplying (1.4) by u and integrating over \Omega , for all t \in (0, T ), we obtain

1

2

d

dt

\int 
\Omega 

u2dx+

\int 
\Omega 

D(x)| \nabla u| 2 dx+

\int 
\Omega 

\rho u3 dx+

\int 
\Omega 

C(t)u2 dx = \rho 

\int 
\Omega 

u2 dx.(2.2)

From the above equality and the fact that u \geq 0, we obtain the following inequality:

d

dt

\int 
\Omega 

u2dx \leq 2\rho 

\int 
\Omega 

u2 dx.(2.3)

Using (2.3) and Gr\"onwall's inequality, we deduce that for all 0 \leq t \leq T

\| u(t)\| 2L2(\Omega ) \leq e2\rho t\| u0\| 2L2(\Omega ),

and so we infer that

\| u\| L\infty (0,T ;L2(\Omega )) \leq e\rho T \| u0\| L2(\Omega ), \| u\| 2L2(0,T ;L2(\Omega )) \leq 
1

2\rho 

\bigl( 
e2\rho T  - 1

\bigr) 
\| u0\| 2L2(\Omega ).

(2.4)

Returning again to (2.2), we integrate from 0 to T and employ (1.2) to find

\theta 

\int T

0

\int 
\Omega 

| \nabla u| 2 dxdt \leq 
\int T

0

\int 
\Omega 

D(x)| \nabla u| 2 dxdt \leq 1

2
\| u0\| 2L2(\Omega ) + \rho \| u\| 2L2(0,T ;L2(\Omega )),

and so in view of (2.4) we obtain

\| \nabla u\| 2L2(0,T ;L2(\Omega )) \leq 
e2\rho T

2\theta 
\| u0\| 2L2(\Omega ).(2.5)

D
ow

nl
oa

de
d 

04
/2

6/
22

 to
 1

34
.1

73
.1

79
.1

06
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CHEMOTHERAPY FOR BRAIN TUMOR 1081

Then, from (2.4) and (2.5) we deduce \| u\| L2(0,T ;H1(\Omega )) \leq M. Multiplying (1.4) by

\phi \in L2
\bigl( 
0, T ;H1(\Omega )

\bigr) 
and integrating over \Omega \times (0, T ) give\int T

0

\int 
\Omega 

ut\phi dxdt =  - 
\int T

0

\int 
\Omega 

D(x)\nabla u \cdot \nabla \phi dxdt+ \rho 

\int T

0

\int 
\Omega 

u\phi dxdt

 - \rho 

\int T

0

\int 
\Omega 

u2\phi dxdt - 
\int T

0

\int 
\Omega 

Cu\phi dxdt.

Now, using inequalities (2.4) and (2.5), we obtain\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

\int 
\Omega 

ut\phi dxdt

\bigm| \bigm| \bigm| \bigm| \bigm| \leq M\| \phi \| L2(0,T ;H1(\Omega )).

Therefore, it is deduced that

\| ut\| L2(0,T ;H1(\Omega )\ast ) \leq M.(2.6)

In view of (2.4) and (2.6),

\| u\| L\infty (0,T ;L2(\Omega )) + \| u\| L2(0,T ;H1(\Omega )) + \| ut\| L2(0,T ;H1(\Omega )\ast ) \leq M

is obtained.

We close this section by considering (1.4), the diffusion-free case that its solution
does not depend on spatial variables. Indeed, it is recast into the ODE

(2.7) u\prime = \rho u - \rho u2  - C(t)u, u(0) = u0.

It is easy to check that

u(t) =
u0 e

\int t
0
\rho  - c(s) ds

1 + \rho u0
\int t

0
e
\int s
0
\rho  - c(s) ds ds

(2.8)

is an absolute continuous function which satisfies (2.7) almost everywhere. Moreover,
one can verify that

(2.9)
u0e

 - B

1 + u0e\rho T
\leq u(t) \leq u0e

\rho T .

Using standard methods of theory of ODEs (see [8]), we can prove that (2.7) has a
unique solution. However, it is noteworthy that the uniqueness of a solution for (2.7)
can be obtained in view of the fact that a solution of (1.4) is unique; see Theorem 2.2.
Let u = u(t) be a solution of (2.7), and consider the function v(x, t) over QT such
that v(., t) = u(t) with v(x, 0) = u0. The function v(x, t) is a constant function in its
spatial variables over \Omega . Now, we observe that v(x, t) satisfies (1.4) with the initial
condition u(x, 0) \equiv u0 due to the fact that \nabla v(., t) \equiv 0 and u(t) is the solution of
(2.7). This reveals that u(t) is the unique solution of (2.7) since v(x, t) is the unique
solution of (1.4) with the initial condition u(x, 0) \equiv u0.

3. Existence of an optimal solution. This section is devoted to the existence
of a solution for the minimization problem (1.6).

Theorem 3.1. Assume that 0 < T < \infty , u0 \in L\infty (\Omega ) \cap H1(\Omega ), and u0 is non-
negative. There exists an optimal solution C\ast \in \scrM for the problem (1.6).
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Proof. Due to the nonnegativity of uC , we have \scrJ (C) \geq 0. Therefore, we observe
that

0 \leq \gamma = inf
C\in \scrM 

\scrJ (C) <\infty .

Suppose \{ Ci\} \infty 1 \subset \scrM is a minimizing sequence, i.e.,

lim
i\rightarrow \infty 

\scrJ (Ci) = inf
C\in \scrM 

\scrJ (C),

and ui = uCi(x, t) is the unique solution of (1.4) corresponding to Ci. Employing
Lemma 2.3, we have

\| ui\| L\infty (0,T ;L2(\Omega )) + \| ui\| L2(0,T ;H1(\Omega )) + \| \partial tui\| L2(0,T ;H1(\Omega )\ast ) \leq M, i = 1, 2, 3, . . . .
(3.1)

Also, we see that

\| Ci\| L\infty (0,T ) \leq A for i = 1, 2, 3, . . . ,(3.2)

due to (1.5). Invoking (3.1) and (3.2) and by passing to a subsequence, one infers
that there are u\ast \in L2(0, T ;H1(\Omega )) and C\ast \in \scrM such that

ui \rightharpoonup u\ast weakly in L2(0, T ;H1(\Omega )),(3.3)

\partial tui \rightharpoonup \partial tu
\ast weakly in L2(0, T ;H1(\Omega )\ast ),(3.4)

ui \rightarrow u\ast strongly in L2(QT ).(3.5)

Furthermore, we have

(3.6) Ci \rightharpoonup C\ast with respect to the weak star topology on L\infty (0, T ).

We show that indeed C\ast \in \scrM . In view of (3.6), it is inferred that
\int T

0
C\ast (t)dt = B.

Let E = \{ t \in [0, T ] : C\ast (t) < 0\} , and assume that | E| > 0. We observe that

0 \leq lim
i\rightarrow \infty 

\int T

0

Ci(t)\chi E(t)dt =

\int T

0

C\ast (t)\chi E(t)dt < 0,

which is a contradiction. Hence, we have C\ast (t) \geq 0 for t \in [0, T ]. A similar argument
establishes that C\ast (t) \leq A for t \in [0, T ]. Therefore, we have C\ast \in \scrM .

For each \phi \in L2
\bigl( 
0, T ;H1(\Omega )

\bigr) 
the solution ui satisfies\int T

0

\int 
\Omega 

\partial tui\phi dxdt+

\int T

0

\int 
\Omega 

D(x)\nabla ui \cdot \nabla \phi dxdt(3.7)

=

\int T

0

\int 
\Omega 

\rho ui (1 - ui)\phi dxdt - 
\int T

0

\int 
\Omega 

Ci(t)ui\phi dxdt.

Applying (3.3)--(3.5), it is deduced that\int T

0

\int 
\Omega 

\partial tui\phi dxdt\rightarrow 
\int T

0

\int 
\Omega 

\partial tu
\ast \phi dxdt,\int T

0

\int 
\Omega 

D(x)\nabla ui \cdot \nabla \phi dxdt\rightarrow 
\int T

0

\int 
\Omega 

D(x)\nabla u\ast \cdot \nabla \phi dxdt,(3.8) \int T

0

\int 
\Omega 

\rho ui\phi dxdt\rightarrow 
\int T

0

\int 
\Omega 

\rho u\ast \phi dxdt,
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OPTIMAL CHEMOTHERAPY FOR BRAIN TUMOR 1083

while i\rightarrow \infty .
Recall that ui(x, t) \rightarrow u\ast (x, t) almost everywhere on QT using (3.5), and we

know that \| ui\| L\infty (QT ) \leq M employing Theorem 2.2. Then one can conclude that
\| u\ast \| L\infty (QT ) \leq M . In view of Theorem 2.2, (3.3), and (3.5) as i\rightarrow \infty , we obtain\bigm| \bigm| \bigm| \bigm| \int T

0

\int 
\Omega 

\Bigl( 
u2
i  - u\ast 2

\Bigr) 
\phi d\bfx dt

\bigm| \bigm| \bigm| \bigm| \leq \bigm| \bigm| \bigm| \bigm| \int T

0

\int 
\Omega 

ui (ui  - u\ast )\phi d\bfx dt

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \int T

0

\int 
\Omega 

(ui  - u\ast )u\ast \phi d\bfx dt

\bigm| \bigm| \bigm| \bigm| 
\leq M\| ui  - u\| L2(QT )\| \phi \| L2(QT ) +

\bigm| \bigm| \bigm| \bigm| \int T

0

\int 
\Omega 

(ui  - u\ast )u\ast \phi d\bfx dt

\bigm| \bigm| \bigm| \bigm| \rightarrow 0.(3.9)

Also, we have

\int T

0

\int 
\Omega 

(Ciui  - C\ast u\ast )\phi dxdt =

\int T

0

\int 
\Omega 

(Ci  - C\ast )ui\phi dxdt+

\int T

0

\int 
\Omega 

(ui  - u\ast )C\ast \phi dxdt.

(3.10)

Equation (3.3) yields \int T

0

\int 
\Omega 

(ui  - u)C\ast \phi dxdt\rightarrow 0(3.11)

when i\rightarrow \infty . Moreover, we observe that\int T

0

\int 
\Omega 

(Ci  - C\ast )ui\phi d\bfx dt =

\int T

0

\int 
\Omega 

(Ci  - C\ast ) (ui  - u\ast )\phi d\bfx dt+

\int T

0

\int 
\Omega 

(Ci  - C\ast )u\ast \phi d\bfx dt

\leq M\| ui  - u\| L2(QT )\| \phi \| L2(QT ) +

\int T

0

\int 
\Omega 

(Ci  - C\ast )u\ast \phi d\bfx dt\rightarrow 0,(3.12)

invoking (3.5) and (3.6).
Now, (3.11) and (3.12) lead us to

(3.13)

\int T

0

\int 
\Omega 

(Ciui  - C\ast u\ast )\phi dxdt\rightarrow 0

when i \rightarrow \infty . Equations (3.8), (3.9), and (3.13) yield that u\ast is a weak solution of
(1.4) corresponding to C\ast \in \scrM . Therefore, we conclude that J(C\ast ) = infC\in \scrM \scrJ (C).

4. Necessary conditions. In this section, we characterize some properties of
the optimal solution and a necessary condition for a minimizer. In the first step, we
need to differentiate the map C \in \scrM \rightarrow uC(x, t) with respect to C.

Theorem 4.1. Let C \in \scrM , and u = uC is the corresponding solution of (1.4).
Let C\epsilon = C + \epsilon \eta , where \epsilon > 0 and \eta \in L\infty [0, T ]. The mapping C \in \scrM \rightarrow uC is
differentiable in the following sense: there exists \psi = \psi C,\eta \in L2

\bigl( 
0, T ;H1(\Omega )

\bigr) 
, such

that

\psi \epsilon \rightharpoonup \psi weakly in L2
\bigl( 
0, T ;H1(\Omega )

\bigr) 
as \epsilon \rightarrow 0,

where \psi \epsilon =
uC+\epsilon \eta  - uC

\epsilon and the sensitivity \psi satisfies\left\{       
\psi t  - \nabla \cdot (D(x)\nabla \psi ) - (\rho  - 2\rho u - C)\psi =  - \eta u in \Omega \times (0, T ),
\partial \psi 

\partial n
= 0 on \partial \Omega \times (0, T ),

\psi (x, 0) = 0 in \Omega .

(4.1)D
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1084 M. YOUSEFNEZHAD, C.-Y. KAO, AND S. A. MOHAMMADI

Moreover, we have

(4.2) \scrJ (C + \epsilon \eta ) = \scrJ (C) + \epsilon 

\int T

0

\int 
\Omega 

\psi C,\eta dxdt+ o(\epsilon ).

Proof. Consider u\epsilon = uC\epsilon 
where C\epsilon = C + \epsilon \eta , which satisfies the following equa-

tion in the weak sense:\left\{       
\partial tu\epsilon  - \nabla \cdot (D(x)\nabla u\epsilon ) = \rho (1 - u\epsilon )u\epsilon  - (C + \epsilon \eta )u\epsilon in \Omega \times (0, T ),
\partial u\epsilon 
\partial n

= 0 on \partial \Omega \times (0, T ),

u\epsilon (x, 0) = u0(x) in \Omega ,

(4.3)

and also u = uC , where\left\{       
\partial tu - \nabla \cdot (D(x)\nabla u) = \rho (1 - u)u - Cu in \Omega \times (0, T ),
\partial u

\partial n
= 0 on \partial \Omega \times (0, T ),

u(x, 0) = u0(x) in \Omega .

(4.4)

Note that it follows from Theorem 2.2 and Lemma 2.3 that there is a constant M > 0
independent of \epsilon such that

\| u\| L\infty (QT ) + \| \partial tu\| L2(0,T ;H1(\Omega )\ast ) + \| u\| L2(0,T ;H1(\Omega )) \leq M,

\| u\epsilon \| L\infty (QT ) + \| \partial tu\epsilon \| L2(0,T ;H1(\Omega )\ast ) + \| u\epsilon \| L2(0,T ;H1(\Omega )) \leq M.

Reasoning as in the proof of Theorem 3.1 and by the uniqueness of the solution
u = uC , we have

u\epsilon \rightharpoonup u weakly in L2
\bigl( 
0, T ;H1(\Omega )

\bigr) 
,

\partial tu\epsilon \rightharpoonup \partial tu weakly in L2
\bigl( 
0, T ;H1(\Omega )\ast 

\bigr) 
,

u\epsilon \rightarrow u strongly in L2(QT ),

while \epsilon \rightarrow 0. It is noteworthy that

u2\epsilon  - u2

\epsilon 
= (u\epsilon + u)

u\epsilon  - u

\epsilon 
.(4.5)

Using (4.5), subtracting (4.4) from (4.3), and dividing by \epsilon , we get the linear parabolic
problem\left\{       

\partial t\psi \epsilon  - \nabla (D(x)\nabla \psi \epsilon ) - (\rho  - \rho u\epsilon  - \rho u - C)\psi \epsilon =  - \eta u\epsilon in \Omega \times (0, T ),
\partial \psi \epsilon 

\partial n
= 0 on \partial \Omega \times (0, T ),

\psi \epsilon (x, 0) = 0 in \Omega .

(4.6)

From the classical theory of linear parabolic problems, (4.6) has a unique weak so-
lution (e.g., see Theorem 1.1.2 in [24]) such that \psi \epsilon \in L2

\bigl( 
0, T ;H1(\Omega )

\bigr) 
with \partial t\psi \epsilon \in 

L2
\bigl( 
0, T ;H1(\Omega )\ast 

\bigr) 
. Also, we have

1

2
\| \psi \epsilon \| 2L2(\Omega ) +

\int t

0

\int 
\Omega 

D(\bfx )| \nabla \psi \epsilon | 2 d\bfx dt \leq \rho 

\int t

0

\| \psi \epsilon \| 2L2(\Omega ) dt+ \| u\epsilon \| L\infty (QT )

\int t

0

\int 
\Omega 

| \eta \psi \epsilon | d\bfx dt.

(4.7)D
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Now, Cauchy's inequality yields that\int t

0

\int 
\Omega 

| \eta \psi \epsilon | dxdt \leq 
1

2
| \Omega | 
\int t

0

\eta 2dt+
1

2

\int t

0

\| \psi \epsilon \| 2L2(\Omega ) dt.(4.8)

From (4.7) and (4.8), we can get

1

2
\| \psi \epsilon \| 2L2(\Omega ) +

\int t

0

\int 
\Omega 

D(x)| \nabla \psi \epsilon | 2 dxdt

\leq \rho 

\int t

0

\| \psi \epsilon \| 2L2(\Omega ) dt+
| \Omega | 
2

\| \eta \| L2(0,T )\| u\epsilon \| L\infty (QT ) +
1

2
\| u\epsilon \| L\infty (QT )

\int t

0

\| \psi \epsilon \| 2L2(\Omega ) dt.

(4.9)

In view of (4.9), we obtain

\| \psi \epsilon \| 2L2(\Omega ) \leq B1

\int t

0

\| \psi \epsilon \| 2L2(\Omega ) +B2,(4.10)

where

B1 = 2\rho + \| u\epsilon \| L\infty (QT ),

B2 = | \Omega | \| \eta \| L2(0,T )\| u\epsilon \| L\infty (QT ).

Using (4.10) and Gr\"onwall's inequality, we infer that

\| \psi \epsilon \| 2L2(\Omega ) \leq B2

\bigl( 
1 +B1Te

B1T
\bigr) 
.(4.11)

Thus, we conclude from (4.7) and (4.11) that

\| \psi \epsilon \| L2(0,T ;H1(\Omega )) \leq M,(4.12)

where M is a positive constant independent of \epsilon . By reasoning similar to that in the
proof of inequality (2.5), there exists a positive constant M independent of \epsilon such
that

\| \partial t\psi \epsilon \| L2(0,T ;H1(\Omega )\ast ) \leq M.(4.13)

Therefore, by passing to a subsequence, we can assume that there exists a function \psi 
such that

\psi \epsilon \rightharpoonup \psi weakly in L2
\bigl( 
0, T ;H1(\Omega )

\bigr) 
,

\partial t\psi \epsilon \rightharpoonup \partial t\psi weakly in L2
\bigl( 
0, T ;H1(\Omega )\ast 

\bigr) 
,

while \epsilon \rightarrow 0. Using arguments similar to that in the proof of Theorem 3.1, we can
prove that \psi satisfies problem (4.1). This completes the proof of the lemma.

For our next analysis, we need an adjoint equation which is introduced in the
following theorem.

Theorem 4.2. Let C \in \scrM , and consider u = uC . There exists a nonpositive
function w = wC \in L2

\bigl( 
0, T ;H1(\Omega )

\bigr) 
with wt \in L2

\bigl( 
0, T ;H1(\Omega )\ast 

\bigr) 
such that\left\{       

wt +\nabla \cdot (D(x)\nabla w) + (\rho  - 2\rho u - C)w = 1 in \Omega \times (0, T ),
\partial w

\partial n
= 0 on \partial \Omega \times (0, T ),

w(x, T ) = 0 in \Omega .

(4.14)D
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Furthermore,

\| w\| L\infty (0,T :L2(\Omega )) + \| \partial tw\| L2(0,T ;H1(\Omega )\ast ) + \| w\| L2(0,T ;H1(\Omega )) \leq M,

where the positive constant M depends on \rho , | \Omega | , and T .
Proof. Let us denote v(x, t) =  - w(x, T  - t); then it follows that v solves the

problem

\left\{       
vt  - \nabla \cdot (D(x)\nabla v) - (\rho  - 2\rho u(x, T  - t) - C(T  - t)) v = 1 in \Omega \times (0, T ),
\partial v

\partial n
= 0 on \partial \Omega \times (0, T ),

v(x, 0) = 0 in \Omega .

(4.15)

The existence and uniqueness for the weak solution of (4.15) follow by the classical
theory of linear parabolic problems (e.g., see Theorem 1.1.2 in [24]). Then we can
obtain the existence of a unique weak solution to the problem (4.14).

Multiplying the first equation in (4.15) by  - v - = v - | v| 
2 and integrating over \Omega ,

we get

1

2

d

dt

\int 
\Omega 

| v - | 2 dx+

\int 
\Omega 

D(x)| \nabla v - | 2 dx+

\int 
\Omega 

(2\rho u(x, T  - t) + C(x, T  - t)) | v - | 2 dx

=

\int 
\Omega 

\rho | v - | 2 dx - 
\int 
\Omega 

v - dx.

Using the fact that (2\rho u(x, T  - t) + C(x, T  - t)) \geq 0 a.e. in QT , the above equality
gives

d

dt

\int 
\Omega 

| v - | 2 dx \leq 2\rho 

\int 
\Omega 

| v - | 2 dx.

Hence, Gr\"onwall's inequality implies that\int 
\Omega 

| v - | 2 dx = 0

for almost every t \in [0, T ]. We deduce that v - = 0, and then v is nonnegative. Now,
from the definition of v, we conclude that w \leq 0 for almost every (x, t) \in QT .

Multiplying the first equation in (4.15) by v, we get

1

2

d

dt

\int 
\Omega 

v2 dx+

\int 
\Omega 

D(x)| \nabla v| 2 dx+

\int 
\Omega 

(2\rho u(x, T  - t) + C(x, T  - t)) v2 dx(4.16)

=

\int 
\Omega 

\rho v2 dx+

\int 
\Omega 

v dx.

From Cauchy's inequality, \int 
\Omega 

v dx \leq | \Omega | 
2

+
1

2

\int 
\Omega 

v2 dx.(4.17)

From (4.16) and (4.17), we obtain

d

dt

\int 
\Omega 

v2 dx \leq (2\rho + 1)

\int 
\Omega 

v2 dx+ | \Omega | .
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Using Gr\"onwall's inequality, we have\int 
\Omega 

v2(x, t)dx \leq e(2\rho +1)TT | \Omega | (4.18)

for every t \in [0, T ]. Using (4.18), we obtain that

\| v\| L\infty (0,T :L2(\Omega )) \leq M.(4.19)

Moreover, integrating (4.16) over (0, T ) and employing (4.19), we deduce that

\| v\| L2(0,T ;H1(\Omega )) \leq M.(4.20)

Invoking reasoning similar to that for proving (2.5), we infer that

\| \partial tv\| L2(0,T ;H1(\Omega )\ast ) \leq M.

The generic positive constant M in the above inequalities depends on \rho , | \Omega | , and T .
This completes the proof.

Multiply both sides of (4.1) by w and integrate. Now, multiply both sides of
(4.14) by \psi and integrate. Adding the resulting equations, it is easily verified that

(4.21)

\int T

0

\int 
\Omega 

\psi dxdt =

\int T

0

\int 
\Omega 

\eta uwdxdt,

which will be needed for our study.
Next, we provide an optimality condition for a minimizer. In what follows, \scrB (C, \epsilon )

is a ball in L2(0, T ) centered at C with radius \epsilon > 0. Also, a level set of a function
f(t) is the set \{ t : f(t) = \alpha \} , where \alpha is a constant.

Theorem 4.3. Let C\ast be a local minimizer of \scrJ such that

\scrJ (C\ast ) \leq \scrJ (C) for all C \in \scrB (C\ast , \epsilon ) \cap \scrM .

Let f\ast (t) =
\int 
\Omega 
uC\ast (x, t)wC\ast (x, t)dx. Then, we have

(i) \int T

0

C\ast (t)f\ast (t)dt \leq 
\int T

0

C(t)f\ast (t)dt for all C \in \scrM .

(ii) If every level set of f\ast (t) has zero measure, then we have C\ast (t) = A\chi I\ast (t) such
that

I\ast = \{ t \in [0, T ] : f\ast (t) \leq \tau \} and | I\ast | = B/A.

Proof. (i) Consider an arbitrary function C \in \scrM . Setting \eta = C - C\ast , we obtain

(4.22) \scrJ (C\ast + \epsilon \eta ) = \scrJ (C\ast ) + \epsilon 

\int T

0

\int 
\Omega 

\psi C\ast ,\eta dxdt+ o(\epsilon ),

employing (4.2). Since \scrJ (C\ast ) is a minimum value, there exists a small enough positive

\epsilon such that
\int T

0

\int 
\Omega 
\psi C\ast ,\eta dxdt \geq 0 for every C \in \scrM . Now applying (4.21), we arrive at

(4.23)

\int T

0

\int 
\Omega 

\psi C\ast ,\eta dxdt =

\int T

0

C(t)f\ast (t)dt - 
\int T

0

C\ast (t)f\ast (t)dt,

D
ow

nl
oa

de
d 

04
/2

6/
22

 to
 1

34
.1

73
.1

79
.1

06
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1088 M. YOUSEFNEZHAD, C.-Y. KAO, AND S. A. MOHAMMADI

which completes the proof of part (i).

(ii) Part (i) reveals that C\ast is a minimizer of the functional L(C) =
\int T

0
C(t)f\ast (t)dt

over \scrM . Due to the fact that every level set of f\ast (t) has zero measure, one can
conclude that there is a decreasing function \xi : \BbbR \rightarrow \BbbR such that \xi (f\ast ) is the unique
minimizer of L(C) over the set \scrN = \{ A\chi I : I \subset [0, t], | I| = B/A\} ; see [6, Lemma
2.4 and 2.9]. It is well known that \scrM is the weak closure of \scrN in L2[0, T ]. Since L is
weakly continuous in L2[0, T ], it is inferred that indeed \xi (f\ast ) is the unique minimizer
of L over \scrM . This yields that C\ast = \xi (f\ast ), and then C\ast = A\chi I\ast is the unique
minimizer of L(h). Since C\ast = A\chi I\ast = \xi (f\ast ), it is easy to check that

\xi (s) =

\biggl\{ 
1, s \leq \tau ,
0, s > \tau ,

and I\ast = \{ t \in [0, T ] : f\ast (t) \leq \tau \} and | I\ast | = B/A.

Let us investigate this issue for the case that u = u(t) and w = w(t) are solutions
of (1.4) and (4.14) in their ODE form, and then f\ast (t) = uC\ast (t)wC\ast (t). The following
theorem ensures that level sets of f\ast (t) are of zero measure.

Theorem 4.4. Consider (1.4) and (4.14) in their ODE form. Let f0 = u0w(0).
Then, level sets of f(t) = u(t)w(t) are of zero measure, and the minimization problem
(1.6) has a unique solution

C\ast (t) = A\chi [0,BA ](t).

Proof. Recall that u and w satisfy the following differential equations in the weak
sense:

u\prime = \rho (1 - u)u - C(t)u, u(0) = u0,

w\prime + (\rho  - 2\rho u - C)w = 1, w(T ) = 0.

Now, using these equations, it can be easily verified that f \prime = u\prime w+uw\prime = \rho (uw)u+u
or

(4.24) f \prime (t) - \rho u(t)f(t) = u(t) for every t \in [0, T ].

Define v(t) =
\int 
u(t)dt, the antiderivative of u, and set v0 = v(0). By straightforward

calculations, one can find that

f(t) =

\biggl( 
f0 +

1

\rho 

\biggr) 
e\rho (v(t) - v0)  - 1

\rho 
,

and then we conclude that

(4.25) f \prime (t) =

\biggl( 
f0 +

1

\rho 

\biggr) 
\rho u(t)e\rho (v(t) - v0).

We consider three different cases. At first assume that (f0 + 1
\rho ) = 0. Then

(4.25) yields that f is constant, and indeed f \equiv 0 in view of f(T ) = 0. This is
a contradiction. Now let (f0 + 1

\rho ) < 0. Then (4.25) says that f(t) is a decreasing

function. Since f(T ) = 0, then f(t) should be a positive function over [0, T ], which is a
contradiction due to Theorems 2.2--4.2. Therefore, we can conclude that (f0+

1
\rho ) > 0,

and so f is an increasing function because of (4.25). Since f \prime (t) > 0, it is inferred
that a level set of f(t) cannot be of positive measure due to Lemma 7.7 in [11]. Recall
that f(t) is continuous since u(t) and w(t) are continuous. Continuity, monotonicity
of f(t), and Theorem 4.3(ii) yield the assertion of the theorem.
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5. Numerical algorithm. This section is devoted to our numerical algorithm.
The algorithm is a gradient-type one in which a descent direction is followed in each
iteration.

Given C \in \scrM and \epsilon > 0, (4.2) provides a descent direction while the quantity\int T

0

\int 
\Omega 
\psi C,\eta dxdt is negative and \epsilon is small enough. Assume C is not a local minimizer

of \scrJ (C), and consider \~C \in \scrM . Then C + \epsilon ( \~C  - C) belongs to \scrM since it is a convex
set. Setting \eta = \~C  - C and invoking (4.21), we arrive at

(5.1)

\int T

0

\int 
\Omega 

\psi C,\eta dxdt =

\int T

0

\int 
\Omega 

\~CuCwCdxdt - 
\int T

0

\int 
\Omega 

CuCwCdxdt.

This reveals that \eta = \~C  - C is a descent direction if \~C is a solution of the following
optimization problem:

(5.2) inf
C\in \scrM 

\int T

0

C(t)f(t)dt,

where f(t) =
\int 
\Omega 
uC(x, t)wC(x, t)dx. In view of the bathtub principle [17], minimiza-

tion problem (5.2) has a solution of the form A\chi I , where A| I| = B and

(5.3) \{ t \in [0, T ] : f(t) < \tau \} \subset I \subset \{ t \in [0, T ] : f(t) \leq \tau \} ,

such that

(5.4) \tau = inf\{ s \in \BbbR : | \{ t : f(t) \leq s\} | \geq B/A\} .

Hence, starting from C, \eta = \~C  - C is a direction for functional \scrJ (C) with steepest
descent. One can use a line search algorithm to determine the maximum amount to
move along the given descent direction such that the condition \scrJ (C + \epsilon \eta ) < \scrJ (C) is
fulfilled. The resulting algorithm is presented in Algorithm 5.1.

Algorithm 5.1 Minimization algorithm

Given A,B, \rho , D(x), and TOL > 0, choose an initial C0 \in \scrM .
1. Set i = 0.
2. Compute ui = uCi and \scrJ (Ci) using a finite element method.
3. Set \rho  - 2\rho ui  - Ci as the coefficient in (4.14) and compute wi = wCi using a finite
element method.
4. Set f(t) =

\int 
\Omega 
ui(x, t)wi(x, t)dx and derive Ii employing formulas (5.3) and (5.4).

5. Set \eta i = A\chi Ii  - Ci and \epsilon = 1.
6. Set Ci+1 = Ci + \epsilon \eta i and compute ui+1 = uCi+1

and \scrJ (Ci+1) using a finite
element method.
7. While J(ui+1) > J(ui) do
Set \epsilon = \epsilon /2.
Set Ci+1 = Ci + \epsilon \eta i and compute ui+1 = uCi+1

and \scrJ (Ci+1) using a finite element
method.
8. If \scrJ (Ci) - \scrJ (Ci+1) < TOL, stop the algorithm. Otherwise set i = i+ 1, and go
to step 3.

We address the convergence of Algorithm 5.1 in the following theorem.

Theorem 5.1. Consider the sequences \{ Ci(t)\} \infty 1 , \{ ui(x, t)\} \infty 1 , and \{ wi(x, t)\} \infty 1
generated by Algorithm 5.1. Then, the following hold.
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(i) There exist C\ast (t) \in \scrM , u\ast \in L2
\bigl( 
0, T ;H1(\Omega )

\bigr) 
, and w\ast \in L2

\bigl( 
0, T ;H1(\Omega )

\bigr) 
such that Ci \rightharpoonup C\ast weakly in L2(\Omega ), ui \rightarrow u\ast , wi \rightarrow w\ast strongly in L2(QT ), and
J(Ci) \rightarrow J(C\ast ).

(ii) If the level sets of f\ast (t) =
\int 
\Omega 
u\ast (x, t)w\ast (x, t)dx are of zero measure, then

Ci \rightarrow C\ast strongly in L2[0, T ].

Proof. (i) The proof is similar to that for Theorem 3.1 and so is omitted.
(ii) According to Algorithm 5.1, we have J(Ci) > J(Ci+1), and hence

(5.5) J(C\ast ) = inf \{ J(Ci) : i \in \BbbN \} .

This yields that

(5.6)

\int T

0

C\ast (t)f\ast (t)dt \leq 
\int T

0

C(t)f\ast (t)dt for every C \in \scrM ,

since otherwise, due to Algorithm 5.1, one can find \~C \in \scrM such that J( \~C) < J(C\ast ),
which is in contradiction to (5.5). Inequality (5.6) says that C\ast is a minimizer of the

functional L(C) =
\int T

0
C(t)f\ast (t)dt over \scrM . Now, similar to the proof of Theorem

4.3(ii), we can conclude that C\ast (t) = A\chi I\ast (t), and it is the unique minimizer of the
functional.

Recall that \scrM is the weak closure of \scrN = \{ A\chi I : I \subset [0, t], | I| = B/A\} . For
every C \in \scrM there is sequence \{ hi\} \infty 1 \subset \scrN such that hi \rightharpoonup C in L2(\Omega ). It is easy to
check that the L2-norm of all functions in \scrN equals to

\surd 
AB. Employing the weak

lower semicontinuity of the norm, we have

\| C\| L2(\Omega ) \leq lim inf
i\rightarrow \infty 

\| hi\| L2(\Omega ) =
\surd 
AB.

Now, it is inferred that

lim
i\rightarrow \infty 

\| Ci  - C\ast \| 2L2[0,T ] = lim
i\rightarrow \infty 

\Biggl( 
\| Ci\| 2L2[0,T ] + \| C\ast \| 2L2[0,T ]  - 2

\int T

0

CiC
\ast dt

\Biggr) 
\leq AB +AB  - 2AB = 0,

in view of the weak convergence Ci \rightharpoonup C\ast . This reveals that Ci \rightarrow C\ast in L2[0, T ].

5.1. Numerical results. This section is devoted to the implementation of Al-
gorithm 5.1. Here, we use parameters estimated in [29]. We start with solving ODE
problems on t \in [0, tmax], where tmax is chosen as a length of one chemotherapy cy-
cle: 42 days. The maximum chemotherapy is chosen as A = 0.084, which is the
strength of the effective chemotherapy in white matter. The total chemotherapy is
B = 1.26 = 0.084\times 15, which comes from applying the effective chemotherapy for 15
days. The growth rate is \rho = 0.012 day - 1. In Figures 1 and 2, the results are shown
for u(0) = 0.5 and two different choices of chemotherapy functions, C0(t) =

B
42 = 0.03

and C0(t) = 0.03 + 0.025 sin( 4\pi t
tmax

), respectively. These two choices represent a con-
stant dose and an oscillatory dose of chemotherapy, respectively. The corresponding
u(t) and w(t) are also shown. For both cases, the optimized C(t) is a step function
C(t) = 0.084\chi [0,15] and J

 \star = 9.4385. Notice that the solution u(t) \approx 0.2 at the end
of the chemotherapy cycle, t = 42, is smaller than u(0) = 0.5 in the beginning of the
chemotherapy cycle regardless of whether the chemotherapy is constant, oscillatory,
or bang-bang (the optimized one). The solution u which corresponds to the optimized
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C(t) decreases more rapidly in the beginning of the cycle, compared to the ones which
correspond to the constant and oscillatory chemotherapy, and increases gradually af-
ter the chemotherapy is off. The total population over the cycle \scrJ (C) is minimized
when C(t) = 0.084\chi [0,15] which represents applying the effective chemotherapy in
the beginning of the chemotherapy cycle for 15 consecutive days. The bang-bang
chemotherapy has the best average effectiveness in terms of tumor cell population
over the cycle and is easy to implement compared to the oscillatory chemotherapy.
For these two numerical simulations, it only takes one iteration to reach the optimal
C(t). Indeed, the numerical results coincide with our analytical findings in Theorem
4.4.

The results of PDE problems show similar behaviors. In Figures 3 and 4, we
solve (1.4) on \Omega = [0, 1] mm with C0(t) = 0.03 with different initial conditions.
The diffusion constant is chosen as 0.65 mm2.day - 1 [29]. The initial conditions
are u(x, 0) = 0.5\chi [0,0.5] and u(x, 0) = 0.5 + 0.5cos2(\pi x) in Figure 3 and Figure
4, respectively. In Figure 5, the result is shown with an oscillatory chemotherapy
C0(t) = 0.03 + 0.025 sin(4\pi t42 ). Due to the diffusion effect, all solutions approach
a constant at the later time. Again, the optimal C(t) which minimizes the total
population over the cycle \scrJ (C) is a bang-bang function which prefers MTD in the
beginning.

In the last example, we show a calculation on a brain image to find the optimal
drug treatment in time. The MRI dataset that we used is included in MRIcron, a
cross-platform NIFTI format image viewer [27] developed by Professor Chris Rorden
and his group. We first use MATLAB to load the dataset and generate an axial
view of the image ``ch2bet.nii"" of size 181 \times 217 \times 181 mm3 at the slice z = 95mm
shown in the original image in Figure 6. We use the segmentation approach in [16]
to identify grey matter (GM) and white matter (WM) regions, which are shown in
the middle of the first row in Figure 6, and then prepare a triangle mesh for finite
element calculation to solve (1.4) on the brain. The problem that we study here
corresponds to the homogeneous drug delivery case that was discussed in [29], and
the parameters in [29] are used in our simulation. The diffusion coefficients are 0.13
and 0.65 mm2.day - 1 in GM and WM, respectively. The total growth rate is \rho = 0.012
day - 1, and the length of chemotherapy is 42 days for a cycle. No flux boundary is
applied on the boundary of brain. The initial tumor cell density is chosen to be

u(x, 0) = e - 
(x - x0)2+(y - y0)2

4\sigma ,

where \sigma = 100, (x0, y0) = (140, 100), A = 0.084, B = 1.26, and C0(t) = 0.03 for
0 \leq t \leq 42. With this constant drug dose, we see that the quantity

\int 
\Omega 
udx is mono-

tone decreasing in time while
\int 
\Omega 
wdx is monotone increasing in time as shown in the

second row of Figure 6. The optimal drug dose is shown in the third row, which
indicates that the bang-bang drug dose function is again preferable. The maximal
drug dose is implemented in the beginning of the chemotherapy treatment cycle. The
last two rows show the solution u(x, t) at various times for the constant drug dose
and the optimal drug dose. One can observe that the total tumor cell population over
the cycle is indeed smaller for the optimal bang-bang treatment as J = 29949.3116
for the constant chemotherapy treatment while J = 20535.5933 for the MTD chemo-
therapy treatment. At time t = 14, the function

\int 
\Omega 
u(x, t)dx has magnitude less than

400 already for the bang-bang drug dose while
\int 
\Omega 
u(x, t)dx is about 800 for the con-

stant chemotherapy. This confirms that the MTD strategy, which typically includes
repeated cycles of chemotherapy at the MTD without causing unacceptable toxicity,
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Fig. 1. The chosen parameters are u(0) = 0.5, A = 0.084, B = 1.26, \rho = 0.012. The first row
shows the initial C0(t) = 0.03 and its corresponding J = 13.568, u(t), and w(t). The second row
shows the optimized C(t) and its corresponding J = 9.4385, u(t), and w(t).

helps to reduce the total tumor cell population.

6. Conclusion. In order to find an optimal chemotherapy strategy that mini-
mizes the population size of tumor cells, an optimization problem corresponding to a
reaction-diffusion PDE has been considered. It has been proved that the minimization
problem has a solution and a necessary condition for the optimizer can be determined.
For the diffusion-free case, we have calculated the optimizer explicitly and established
the uniqueness of the solution. Then, we have developed a gradient-based numerical
algorithm in order to compute the optimizer.

Standard chemotherapy plans involve giving drug at the maximum tolerated dose
(MTD) and typically consist of repeated cycles of chemotherapy at the highest possible
dose without causing unacceptable toxicity [15]. Mathematically, these plans corre-
spond to so-called bang-bang controls that are given at the maximum dose C\ast = Cmax

with rest periods C\ast = 0. The results presented in this paper, in particular the one
involving a real brain image, are in line with the MTD treatment schedule for chemo-
therapy. More precisely, if a homogeneous tumor population is assumed and other
aspects, like tumor heterogeneity and the tumor microenvironment, are ignored, then
mathematical models confirm the MTD strategy.

There are a variety of extensions and future directions of this work. One important
direction would be to find an optimal radiotherapy fractionation scheme [25]. A
possible criterion for the optimality is minimizing the total number of tumor cells
remaining after application of radiotherapy; another is to minimize the tumor control
probability [18]. These important optimization problems have yet to be addressed.

Acknowledgment. The authors would like to thank the reviewers for their con-
structive suggestions to improve the presentation of the paper.
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Fig. 2. The chosen parameters are u(0) = 0.5, A = 0.084, B = 1.26, \rho = 0.012. The first row
shows the initial C0(t) = 0.03 + 0.025 sin( 4\pi t

42
) and its corresponding J = 12.5821, u(t), and w(t).

The second row shows the optimized C(t) and its corresponding J = 9.4385, u(t), and w(t).

Fig. 3. The chosen parameters are u(0) = 0.5\chi [0,0.5](x), A = 0.084, B = 1.26, \rho = 0.012.
The first row shows the initial C0(t) = 0.03 and its corresponding J = 6.9051, u(t), and w(t). The
second row shows the optimized C(t) and its corresponding J = 4.7552, u(t), and w(t).
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Fig. 4. The chosen parameters are u(x, 0) = 0.5+0.5cos2(\pi x), A = 0.084, B = 1.26, \rho = 0.012.
The first row shows the initial C0(t) = 0.03 and its corresponding J = 19.54, u(t), and w(t). The
second row shows the optimized C(t) and its corresponding J = 13.7307, u(t), and w(t).

Fig. 5. The chosen parameters are u(x, 0) = 0.5+0.5cos2(\pi x), A = 0.084, B = 1.26, \rho = 0.012.
The first row shows the initial C0(t) = 0.03+0.025 sin( 4\pi t

42
) and its corresponding J = 18.1658, u(t),

and w(t). The second row shows the optimized C(t) and its corresponding J = 13.7307, u(t), and
w(t).
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Fig. 6. The first row shows a brain image in an axial view, its grey matter (GM) and white
matter (WM) segmentation result, and a triangle mesh on the brain. The second row shows the
initial C0(t) = 0.03 and its corresponding J = 29949.3116,

\int 
\Omega u(x, t)dx, and

\int 
\Omega w(x, t)dx. The third

row shows the optimized C(t) and its corresponding J = 20535.5933,
\int 
\Omega u(x, t)dx, and

\int 
\Omega w(x, t)dx.

The fourth row and the fifth row show the solution u(x, t) at various times for C(t) = 0.03 and the
optimized C(t), respectively.

D
ow

nl
oa

de
d 

04
/2

6/
22

 to
 1

34
.1

73
.1

79
.1

06
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1096 M. YOUSEFNEZHAD, C.-Y. KAO, AND S. A. MOHAMMADI

REFERENCES

[1] A. Alvarez-Arenas, K. E. Starkov, G. F. Calvo, and J. Belmonte-Beitia, Ultimate dy-
namics and optimal control of a multi-compartment model of tumor resistance to chemo-
therapy, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), pp. 2017--2038.

[2] E. Alvord, Patterns of growth of gliomas, Amer. J. Neuroradiol., 16 (1995), pp. 1013--1017.
[3] F. Billy, J. Clairambault, and O. Fercoq, Optimisation of cancer drug treatments using

cell population dynamics, in Mathematical Methods and Models in Biomedicine, Springer,
New York, 2013, pp. 265--309.

[4] A. Bratus, I. Samokhin, I. Yegorov, and D. Yurchenko, Maximization of viability time in
a mathematical model of cancer therapy, Math. Biosci., 294 (2017), pp. 110--119.

[5] A. S. Bratus, S. Y. Kovalenko, and E. Fimmel, On viable therapy strategy for a mathemat-
ical spatial cancer model describing the dynamics of malignant and healthy cells, Math.
Biosci. Engrg., 12 (2015), pp. 163--183.

[6] G. Burton, Variational problems on classes of rearrangements and multiple configurations for
steady vortices, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 6 (1989), pp. 295--319.

[7] M. E. Davis, Glioblastoma: Overview of disease and treatment, Clin. J. Oncol. Nurs., 20
(2016), pp. S2--S8.

[8] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides: Control Systems,
Math. Appl. 18, Springer, Dordrecht, The Netherlands, 1988.

[9] H. Finotti, S. Lenhart, and T. Van Phan, Optimal control of advective direction in reaction-
diffusion population models, Evol. Equ. Control Theory, 1 (2012), pp. 81--107.

[10] K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-
kill strategies, SIAM J. Appl. Math., 63 (2003), pp. 1954--1971, https://doi.org/10.1137/
S0036139902413489.

[11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer, New York, 2015.

[12] E. C. Holland, Glioblastoma multiforme: The terminator, Proc. Natl. Acad. Sci. USA, 97
(2000), pp. 6242--6244.

[13] J. Jacobs, R. C. Rockne, A. J. Hawkins-Daarud, P. R. Jackson, S. K. Johnston, P. Ki-
nahan, and K. R. Swanson, Improved model prediction of glioma growth utilizing tissue-
specific boundary effects, Math. Biosci., 312 (2019), pp. 59--66.

[14] U. Ledzewicz and H. Sch\"attler, A review of optimal chemotherapy protocols: From MTD
towards metronomic therapy, Math. Model. Nat. Phenom., 9 (2014), pp. 131--152.

[15] U. Ledzewicz, H. Sch\"attler, M. R. Gahrooi, and S. M. Dehkordi, On the MTD paradigm
and optimal control for multi-drug cancer chemotherapy, Math. Biosci. Engrg., 10 (2013),
pp. 803--819.

[16] C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, Minimization of region-scalable fitting energy
for image segmentation, IEEE Trans. Image Process., 17 (2008), pp. 1940--1949.

[17] E. H. Lieb and M. Loss, Analysis, Grad. Stud. Math. 14, AMS, Providence, RI, 1997.
[18] C. Meaney, M. Stastna, M. Kardar, and M. Kohandel, Spatial optimization for radiation

therapy of brain tumours, PloS ONE, 14 (2019), e0217354.
[19] H. Moradi, M. Sharifi, and G. Vossoughi, Adaptive robust control of cancer chemotherapy in

the presence of parametric uncertainties: A comparison between three hypotheses, Comput.
Biol. Med., 56 (2015), pp. 145--157.

[20] H. Moradi, G. Vossoughi, and H. Salarieh, Optimal robust control of drug delivery in
cancer chemotherapy: A comparison between three control approaches, Comput. Methods
Programs Biomed., 112 (2013), pp. 69--83.

[21] J. D. Murray, Mathematical Biology I: An Introduction, 3rd ed., Interdiscip. Appl. Math. 17,
Springer, New York, 2002.

[22] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd ed.,
Interdiscip. Appl. Math. 18, Springer, New York, 2003.

[23] G. Powathil, M. Kohandel, S. Sivaloganathan, A. Oza, and M. Milosevic, Mathematical
modeling of brain tumors: Effects of radiotherapy and chemotherapy, Phys. Med. Biol., 52
(2007), pp. 3291--3306.

[24] S. Reichelt, Two-Scale Homogenization of Systems of Nonlinear Parabolic Equations, Ph. D.
thesis, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany, 2015.

[25] R. Rockne, E. Alvord, J. Rockhill, and K. Swanson, A mathematical model for brain
tumor response to radiation therapy, J. Math. Biol., 58 (2009), pp. 561--578.

[26] R. Rockne, J. Rockhill, M. Mrugala, A. Spence, I. Kalet, K. Hendrickson, A. Lai,
T. Cloughesy, E. Alvord, Jr., and K. Swanson, Predicting the efficacy of radiotherapy
in individual glioblastoma patients in vivo: A mathematical modeling approach, Phys. Med.

D
ow

nl
oa

de
d 

04
/2

6/
22

 to
 1

34
.1

73
.1

79
.1

06
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/S0036139902413489
https://doi.org/10.1137/S0036139902413489


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CHEMOTHERAPY FOR BRAIN TUMOR 1097

Biol., 55 (2010), pp. 3271--3285.
[27] C. Rorden, MRIcron, date added 2014-09-05, date modified 2020-07-29, https://www.nitrc.

org/projects/mricron, 2020.
[28] K. Swanson, R. Rostomily, and E. Alvord, Jr., A mathematical modelling tool for predicting

survival of individual patients following resection of glioblastoma: A proof of principle,
British J. Cancer, 98 (2008), pp. 113--119.

[29] K. R. Swanson, E. C. Alvord, Jr., and J. Murray, Quantifying efficacy of chemotherapy
of brain tumors with homogeneous and heterogeneous drug delivery, Acta Biotheoret., 50
(2002), pp. 223--237.

[30] K. R. Swanson, E. C. Alvord, Jr., and J. Murray, A quantitative model for differential
motility of gliomas in grey and white matter, Cell Proliferation, 33 (2000), pp. 317--329.

[31] K. R. Swanson, C. Bridge, J. Murray, and E. C. Alvord, Jr., Virtual and real brain
tumors: Using mathematical modeling to quantify glioma growth and invasion, J. Neuro-
logical Sci., 216 (2003), pp. 1--10.

[32] P. Tracqui, G. Cruywagen, D. Woodward, G. Bartoo, J. Murray, and E. Alvord, Jr.,
A mathematical model of glioma growth: The effect of chemotherapy on spatio-temporal
growth, Cell Proliferation, 28 (1995), pp. 17--31.

D
ow

nl
oa

de
d 

04
/2

6/
22

 to
 1

34
.1

73
.1

79
.1

06
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://www.nitrc.org/projects/mricron
https://www.nitrc.org/projects/mricron

	Introduction
	Preliminaries
	Existence of an optimal solution
	Necessary conditions
	Numerical algorithm
	Numerical results

	Conclusion
	References

