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Abstract. In this paper we address the question of determining optimal chemotherapy strate-
gies to prevent the growth of brain tumor population. To do so, we consider a reaction-diffusion
model which describes the diffusion and proliferation of tumor cells and a minimization problem
corresponding to it. We shall establish that the optimization problem admits a solution and obtain
a necessary condition for the minimizer. In a specific case, the optimizer is calculated explicitly,
and we prove that it is unique. Then, a gradient-based efficient numerical algorithm is developed in
order to determine the optimizer. Our results suggest a bang-bang chemotherapy strategy in a cycle
which starts at the maximum dose and terminates with a rest period. Numerical simulations based
upon our algorithm on a real brain image show that this is in line with the maximum tolerated dose
(MTD), a standard chemotherapy protocol.
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1. Introduction. Brain tumor remains one of the most lethal diseases, causing
many deaths worldwide every year. Glioblastoma multiforme (GBM) is a highly
invasive brain tumor, producing life expectancies from 6 to 12 months [2, 7, 12, 25].
An essential component of the postoperative treatments administered to patients is
chemotherapy [1]. Indeed, most patients will first undergo a surgical procedure for
diagnostic and treatment purposes. Then, the recurrence of the tumor, even after
radical excision, makes postoperative therapeutic strategies such as radiotherapy and
chemotherapy a necessity to reduce tumor progression [23]. To increase the survival
rate of patients, it is necessary to develop novel therapies to improve conventional
treatments.

Mathematical modeling is a viable tool which can be used to develop a better
understanding of how different parameters contribute to GBM growth [13, 23, 25, 30,
31, 32]. In addition to predicting disease progression, simulation can be extremely
helpful in analyzing factors that may contribute to the disease growth and control of
postoperative treatment [15, 23, 25]. Spatial macroscopic models that rely on partial
differential equations (PDEs) have been used vastly to describe the proliferation and
invasion of the tumor cells’ density in the brain tissue; see [26, 28, 30, 32] and the
references therein.

In this paper, we consider a reaction-diffusion model proposed in [26] which de-
scribes the diffusion and proliferation of tumor cells in addition to the effects of
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precisely delivered chemotherapy. To do so, let @(x,t) be the tumor cell density
(cell . mm*3) in the whole brain domain, €2; then the rate of change of the tumor cell
density with chemotherapy can be considered in the following way:

u; = diffusion + net increase due to proliferation — death due to chemotherapy,

which is a conservation equation for the population [21, 22]. We consider the following
equation with a logistic growth term and a net proliferation rate p > 0 (day_l) in
the brain domain 2:

i
(1.1) s — V- (D(x)Va) = p (1 — K> U in Q,

where K (cell . mm*3) represents the carry capacity of the tissue, which provides an
upper limit on the number of tumor cells capable of occupying any cubic millimeter
of brain. The function D(x) (mm? - day_l) is the diffusion coefficient at the position
x, and there is a constant 6 such that

(1.2) D(x) € L™ (Q), D(x) > 6> 0.

We assume that  can be partitioned into two subregions corresponding to tumor
tissue and healthy tissue. According to [29], in order to consider the effect of the
chemotherapy, we add a loss term corresponding to it on the right-hand side of (1.1),
and we arrive at the following equation:

iy — V- (D(x)Va) = p <1 - ”) i—Ct)a, (x,t)eQx(0,T),

K
L3 Qo
I 0, (x,t) € 00 x (0,T),
a(x,0) = to(x), x € ,

where C(t) (day_l) denotes the distribution of the chemotherapy on the tissue during
the time interval [0,7], 0 < T < oo, and @p(x) is the tumor cell density at the
beginning. Indeed, C(t) defines the temporal profile of the chemotherapy in the single
cycle [0,T]. The zero flux boundary condition prevents cells from leaving the brain
domain at its boundary. For the sake of simplicity in our notation, we set u = %,
and so (1.3) transforms into the following equation:

u— V- (Dx)Vu) =p(l—u)u—C(t)u, (x,t)eQx(0,T),

(1.4) g% —0, (x,1) € 92 x (0,T),
u(x,0) = ug(x), x € .

In order to avoid unacceptable toxicity, assume that the maximum of chemother-
apy allowable at time ¢ is A > 0, and the total amount of chemotherapy effort on
[0,T7] is considered to be B > 0. Therefore, we should consider the chemotherapy
function in the following admissible set:

(1.5) M = {C(t)eL"o(O,T) 10< Ot < 4, /TC(t) dt:B}.
0

Actually, B is the mean value of the chemotherapy over a cycle, and A is the highest
applicable chemotherapy. It is well known that M is convex and weakly compact
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in L2(Q2) [6]. As the solution u of (1.4) depends on C, we use the notation uc to
emphasize this dependence.

From a biological point of view, it is interesting to know how the chemotherapy
affects the population size of tumor cells. More precisely, our goal is to determine
optimal chemotherapy strategies to prevent the growth of tumor population. Indeed,
we want to find an optimal strategy which minimizes the population size of tumor
cells. Consider

7(C) = /0 ' /Q wo(x, t)dxdt,

the total population of tumor cells in the time interval [0, 7], as our objective func-
tional; we should find a solution for the following minimization problem:
(1.6) Jain, J(C).

We shall prove that (1.6) admits a solution invoking a direct approach of calculus
of variation. By obtaining the derivative of the functional 7 (C') with respect to C' and
defining an adjoint problem, a necessary condition for the minimizer is determined.
In the diffusion-free case that (1.4) is reduced to an ODE form, the optimizer is
calculated explicitly, and it is proved that the solution is unique. Then, a gradient-
based numerical algorithm is developed in order to compute the optimizer. Numerical
illustrations reveal the efficiency and applicability of the method.

The question of how chemotherapy protocols should be scheduled to optimize
their effect has been investigated in many studies; see [3, 4, 5, 14, 15, 19, 20, 10],
to name just a few. They yield the concept of the maximum tolerated dose (MTD),
a commonly used chemotherapy protocol in medical practice [29]. In line with the
previous studies and clinical experiments, the results of this paper confirm the MTD
strategy, which typically includes repeated cycles of chemotherapy at the MTD with-
out causing unacceptable toxicity. The optimal solution of (1.6) suggests a bang-bang
chemotherapy strategy in a cycle which starts at the maximum dose and terminates
with a rest period. Employing this strategy, we observe that during the time that
chemotherapy is being administered, the population size of tumor cells is decreas-
ing, while the tumor continues to grow with no chemotherapy. We illustrate this
phenomenon with a numerical simulation based upon our algorithm on a real brain
image.

2. Preliminaries. In what follows, €2 is a bounded smooth domain in the real
d-space R?. For a given fixed time 0 < T < oo, let us denote Q7 = Q x (0,7).
We denote by H*(Q), where k is a positive integer, the set of all functions u defined
in © such that all of its distributional derivatives of order s < k belong to L?(f2).
Furthermore, H*(Q) is a Hilbert space with the following norm:

1/2

0%v
ooy = | X [ | G

The space LP(0,T; H*(2)), p > 1, consists of all functions v such that for almost every
t € (0,T), the element v(t) = v(x,t) belongs to H*(Q). Furthermore, L?(0,T; H*(2))
is a normed space with the norm

T 1/p
||“||LP(0,T;H'C<Q>>=</O U(t)HZ]){k(Q)dt> :
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Let H'(Q)* be the dual space of H!(Q). A solution of (1.4) is defined in the weak
sense as follows.

DEFINITION 2.1. We say a functionu € L? (0,T; H*(2)) withu, € L*(0,T; H*(2)*)
and u(x,0) = ug(x) is a weak solution of (1.4) if

(2.1) /Qutqb dx—&-/QD(X)Vu-V¢ dX:/Q(p(l—u)u—C(t)u)¢ dx

for all ¢ € HY(Q) and almost every 0 <t < T.

The following theorem addresses the existence and uniqueness of solutions to
(1.4). For a proof, the reader is referred to [9)].

THEOREM 2.2. Let 0 < T < oo, ug € L=(Q) N HY (), and ug(x) > 0. Then, for
each C € M there is a unique nonnegative weak solution uw = uc(X,t) of the problem
(1.4). Moreover, there exists a constant M > 0 which depends only on 0, A, |Q|, T,
d, and |Juol| L (q) such that ||ul| g,y < M.

Hereafter in this paper, M is a generic positive constant independent of v and C.
The following lemma is needed for our later investigation.

LEMMA 2.3. Let C € M and u = uc be the unique nonnegative solution of (1.4)
corresponding to C'. Then there exists a positive constant M independent of u and C

such that [[ul Lo (0,7:2()) + ullz20.1:m1 (@) + lwellz2 0,111 (Q)) < M.

Proof. Multiplying (1.4) by u and integrating over Q, for all ¢t € (0,7T'), we obtain

1
(2.2) fi/qux+/D(x)|Vu|2 dx+/pu3 dx+/C’(t)u2 dx:p/u2 dx.
2dt Jq Q Q Q )

From the above equality and the fact that v > 0, we obtain the following inequality:

(2.3) %/ u?dx < Qp/ u? dx.
Q Q

Using (2.3) and Gronwall’s inequality, we deduce that for all 0 <t < T

()] 720y < € [luollZ2(0y,
and so we infer that
(2.4)
lull 2 0,7;22(0)) < €T lluollzz()s  Iulliziomizzi) < ~ (€T = 1) [uolZ2(q)-

2p

Returning again to (2.2), we integrate from 0 to T and employ (1.2) to find

T T
1
o [ [ 1vul axae< [ [ Deoval® dxdt < Gl + el s
0 0

and so in view of (2.4) we obtain

20T
(2.5) IVul2 < uol?
: L2(0.1:22() S 5 1U0llZ2 ()
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Then, from (2.4) and (2.5) we deduce |ullz20,1;m1(0)) < M. Multiplying (1.4) by
¢ € L* (0,T; H'(2)) and integrating over Q x (0,T) give

T T T
/ / urd dxdt = —/ D(x)Vu - V¢ dxdt + p/ / up dxdt
0o Ja 0o Jo 0o Jo

T T
—p / / u?¢ dxdt — / / Cu¢ dxdt.
0 Q 0 Q

Now, using inequalities (2.4) and (2.5), we obtain

T
/ / upp dxdt
o Ja

Therefore, it is deduced that

< M@l 20,7501 ()

(2.6) [well 20,157 (0)+) < M.
In view of (2.4) and (2.6),

[ull Lo 0,1 02(0)) + Iull 20,7500 (2)) + 1wl 20,7311 (0)) < M
is obtained. O

We close this section by considering (1.4), the diffusion-free case that its solution
does not depend on spatial variables. Indeed, it is recast into the ODE

(2.7) u' = pu— pu® — C(t)u, u(0) = uo.
It is easy to check that
uo efotpfc(s) ds

2.8 u(t) = .
(28) ) 1+ pug fotefd p—c(s)ds (4

is an absolute continuous function which satisfies (2.7) almost everywhere. Moreover,
one can verify that

uoefB

(2.9) < u(t) < upeT.

1+ ugerT —
Using standard methods of theory of ODEs (see [8]), we can prove that (2.7) has a
unique solution. However, it is noteworthy that the uniqueness of a solution for (2.7)
can be obtained in view of the fact that a solution of (1.4) is unique; see Theorem 2.2.
Let u = u(t) be a solution of (2.7), and consider the function v(x,t) over Qr such
that v(.,t) = u(t) with v(x,0) = ug. The function v(x,t) is a constant function in its
spatial variables over Q2. Now, we observe that v(x,t) satisfies (1.4) with the initial
condition u(x,0) = ug due to the fact that Vu(.,t) = 0 and w(t) is the solution of
(2.7). This reveals that u(t) is the unique solution of (2.7) since v(x,t) is the unique
solution of (1.4) with the initial condition u(x,0) = ug.

3. Existence of an optimal solution. This section is devoted to the existence
of a solution for the minimization problem (1.6).

THEOREM 3.1. Assume that 0 < T < oo, ug € L>®(Q) N HY(Q), and ug is non-
negative. There exists an optimal solution C* € M for the problem (1.6).
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Proof. Due to the nonnegativity of uc, we have J(C) > 0. Therefore, we observe
that

<~ = inf .
0<~ CIQMJ(C)<°°

Suppose {C;}]° C M is a minimizing sequence, i.e.,

A TG) = Jh IO
and u; = ug,(%,t) is the unique solution of (1.4) corresponding to C;. Employing
Lemma 2.3, we have

(3.1)
il oo (0,7:02(0)) + [will L2 0,731 (@) + 108t || L2 0,711 (2)) < M, i=1,2,3,....

Also, we see that
(3.2) |Cillpeory <A for i=1,2,3,...,

due to (1.5). Invoking (3.1) and (3.2) and by passing to a subsequence, one infers
that there are u* € L2(0,T; H'(Q)) and C* € M such that

(3.3) u; —u*  weakly in L?(0,T; H'(Q)),
(3.4) Opu; — Oyu*  weakly in - L2(0,T; H' ()%,
(3.5) u; — u*  strongly in  L*(Qr).

Furthermore, we have

(3.6) C; — C* with respect to the weak star topology on L°°(0,T).

We show that indeed C* € M. In view of (3.6), it is inferred that fOT C*(t)dt = B.
Let E={t€0,T]: C*(t) < 0}, and assume that |E| > 0. We observe that

T T
0< tim [ Ctys(t)dt = / C* (t)x(t)dt <0,
11— 00 O 0

which is a contradiction. Hence, we have C*(t) > 0 for ¢ € [0,T]. A similar argument
establishes that C*(t) < A for t € [0,T]. Therefore, we have C* € M.
For each ¢ € L? (0,T; H'(2)) the solution u; satisfies

T
(3.7) / Oyu;p dxdt —|—/ x)Vu; - Vo dxdt

/ /pul 1 —w) qbdxdt—/ /C (t)u; ¢ dxdt.

Applying (3.3)—(3.5), it is deduced that

T T
/ / Oyu; ¢ dxdt — / / Opu* ¢ dxdt,
0o Ja 0o Ja
T T
(3.8) / / D(x)Vu; - V¢ dxdt — / / D(x)Vu* - V¢ dxdt,
0 Ja 0o Ja
T T
/ / pu;p dxdt — / / pu* P dxdt,
0o Ja 0o Ja
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while ¢ — oco.

Recall that w;(x,t) — u*(x,t) almost everywhere on Qr using (3.5), and we
know that [|u;l|z~(@;) < M employing Theorem 2.2. Then one can conclude that
HU*HLOO(QT) < M. In view of Theorem 2.2, (3.3), and (3.5) as i — oo, we obtain

u —u*2 ¢dxdt'

uZ wu; —u” qﬁdxdt’

u; —u')u d)dxdt‘

< Mui - u\|Lz<QT>|\¢||L2(QT>+‘// o dedt] 0.
Also, we have

(3.10)
/ (Ciu; — C*u*) ¢ dxdt = / (Ci — C*) uip dxdt +/ / —u*) C*¢ dxdt.
Q Q Q

Equation (3.3) yields

(3.11) /OT/Q (u; —u) C*¢ dxdt — 0

when ¢ — co. Moreover, we observe that

T T
/ / (C; — C*) u;pdxdt = / / (Ci — C*) (u; — u™)pdxdt + / / (C; — C*)u” pdxdt
3 12 < MH'LLZ UHL2(QT)H¢HL2(QT) +/ / >k) u*qﬁdxdt — 07

invoking (3.5) and (3.6).
Now, (3.11) and (3.12) lead us to

T
(3.13) /0 /Q (Ciu; — C*u*) ¢ dxdt — 0

when i — co. Equations (3.8), (3.9), and (3.13) yield that u* is a weak solution of
(1.4) corresponding to C* € M. Therefore, we conclude that J(C*) = infee g J(C).0

4. Necessary conditions. In this section, we characterize some properties of
the optimal solution and a necessary condition for a minimizer. In the first step, we
need to differentiate the map C € M — uc(x,t) with respect to C.

THEOREM 4.1. Let C € M, and u = uc is the corresponding solution of (1.4).
Let C. = C + en, where € > 0 and n € L*[0,T]. The mapping C € M — uc is
differentiable in the following sense: there exists 1 = V¢, € L* (O,T;Hl(Q)), such
that

e = weakly in L2 (O,T; Hl(Q)) as € — 0,
where 1. = “L—=C and the sensitivity 1 satisfies

U= V- (DX)VY) = (p=2pu—C)p = —nu in Qx(0,T),

0
(4.1) a—ﬁ =0 on 90 x(0,T),
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Moreover, we have

T
(4.2) J(C+en)=TJ(C)+ 6/0 /chyndxdt + o(e).

Proof. Consider u, = uc, where C. = C + en, which satisfies the following equa-
tion in the weak sense:

Oue — V- (D(x)Vue) =p (1 —u)ue — (C+en)ue in Qx(0,7),

ou

4.3 € =

(4.3) an =0 on 09 x (0,T),
’U,E(X,O)ZUO(X) in Qa

and also u = u¢, where

Ou—V - (D(x)Vu) =p(l—u)u—Cu in Qx(0,7),
(4.4) —— =0 on 90 x (0,7),
u(x,0) = up(x) in .
Note that it follows from Theorem 2.2 and Lemma 2.3 that there is a constant M > 0
independent of € such that
lull oo (@) + 100l L2 0,71 )y + 1wl L2 (0,711 (0)) < M,
ltell oo @y + N0ctiell 20,7511 (@)+) + [tell L2 (0,111 (2)) < M.

Reasoning as in the proof of Theorem 3.1 and by the uniqueness of the solution
u = uc, we have

ue = u weakly in L2 (0, T; Hl(Q)) ,
Opue — Opu weakly in  L? (0,75 H'(Q)),
ue — u strongly in  L*(Qr),

while € — 0. It is noteworthy that

2 2
—u Ue — U

€ — (ue + u) €

€ €

u

(4.5)

Using (4.5), subtracting (4.4) from (4.3), and dividing by €, we get the linear parabolic
problem

Opthpe =V (D(X)Vwe) - (p — PUe — PU — C) e = —nue in Q% (0; T),

(4.6) %f: = on 09 x (0,7T),
we(x7 0) = n Q

From the classical theory of linear parabolic problems, (4.6) has a unique weak so-
lution (e.g., see Theorem 1.1.2 in [24]) such that 1. € L* (0,T; H*(2)) with 9,1, €
L? (O,T; H! (Q)*) Also, we have

(4.7)
1 2 ¢ 2 ¢ 2 ¢
gl + [ [ DOOIVG dxde <p [ ooy e+ lucliman [ [ o] dxat
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Now, Cauchy’s inequality yields that

t 1 t 1 t
(48) | [ axie < g0 [ apae 5 [ e,
0 Q 0 0

From (4.7) and (4.8), we can get

1 t
gl + [ [ DeoIVe? axi
0 JQ

(4.9)

t t
12| 1
< P/O [ell72 () dt + 7||77||L2(0,T)||UeHLoo(QT) + §||ue||L°°(QT) ; el Z 20 dt.

In view of (4.9), we obtain

t
(410) el < Br [ lace) + Ba
where

B =2p+ |[uell L= (@r)

By = |Q|||77||L2(0,T)Hue||L°°(QT)-
Using (4.10) and Gronwall’s inequality, we infer that
(411) ||w€‘|%2(ﬂ) S BQ (1 + BlTeBlT) .
Thus, we conclude from (4.7) and (4.11) that

(4.12) [Pell L2010 () < M,

where M is a positive constant independent of €. By reasoning similar to that in the
proof of inequality (2.5), there exists a positive constant M independent of e such
that

(4.13) 10¢ell L2 0,111 (0)+) < M-

Therefore, by passing to a subsequence, we can assume that there exists a function
such that

Ye =1 weakly in L*(0,T; H'(Q)),

Ophe — Opp weakly in  L* (0,75 H' (Q)*),
while ¢ — 0. Using arguments similar to that in the proof of Theorem 3.1, we can
prove that ¢ satisfies problem (4.1). This completes the proof of the lemma. ]

For our next analysis, we need an adjoint equation which is introduced in the
following theorem.

THEOREM 4.2. Let C € M, and consider u = uc. There exists a nonpositive
function w = we € L? (0,T; HY(Q)) with w, € L? (0,T; H'(Q)*) such that

we+ V- (Dx)Vw)+(p—20u—C)w=1 in Qx(0,T),

ow

4.14 - =

( ) o on 0 x(0,T),
w(x,T)=0 in Q.
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Furthermore,

lwl| Loe (0,7:2(02)) + |0cw| 20,7511 (2)+) + |wll 220,751 (0)) < M,

where the positive constant M depends on p, ||, and T.

Proof. Let us denote v(x,t) = —w(x,T — t); then it follows that v solves the
problem
(4.15)
vy = V- (D(x)Vv) — (p—2pu(x,T—t) —C(T—t))v=1 in Qx(0,7),
0
8—;}1:0 on 00 x (0,7),
v(x,0) =0 in .

The existence and uniqueness for the weak solution of (4.15) follow by the classical
theory of linear parabolic problems (e.g., see Theorem 1.1.2 in [24]). Then we can

obtain the existence of a unique weak solution to the problem (4.14).

v=]v]

Multiplying the first equation in (4.15) by —v~ = and integrating over €2,

we get
1d

f—/ v~ |2 dx+/ D(x)|Vv~|? dx+/ (2pu(x, T —t) + C(x,T —t)) [v™|* dx

:/p|v*|2 dxf/’u* dx.
Q Q

Using the fact that (2pu(x,T —t) + C(x,T —t)) > 0 a.e. in Qr, the above equality

gives
d -2 -2
— [ TP dx<2p [ |vT|" dx.

Hence, Gronwall’s inequality implies that

/ o™ dx =0
Q

for almost every ¢ € [0, 7]. We deduce that v~ = 0, and then v is nonnegative. Now,
from the definition of v, we conclude that w < 0 for almost every (x,t) € Qr.
Multiplying the first equation in (4.15) by v, we get

(4.16) 1E/UZ dX—|—/ D(x)|Vvl|? dx—|—/ (2pu(x, T —t) + C(x,T —t)) v* dx

:/pv2 dx+/vdx.
Q Q

From Cauchy’s inequality,

Q 1
(4.17) /vdxgu—i-f/vz dx.
0 2 2Jg

From (4.16) and (4.17), we obtain

d
— [ 2? dx§(2p—|—1)/v2 dx + 9]
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Using Gronwall’s inequality, we have
(4.18) / v (x,t)dx < e(2p+1)TT|Q|
Q

for every ¢ € [0,T]. Using (4.18), we obtain that

(4.19) [vllzo<0,7:22(02)) < M.

Moreover, integrating (4.16) over (0,7") and employing (4.19), we deduce that

(4.20) [vllz20,7;m1 () < M.

Invoking reasoning similar to that for proving (2.5), we infer that
[0¢v]| L2 (0,751 (0)) < M.

The generic positive constant M in the above inequalities depends on p, ||, and T.
This completes the proof. 0

Multiply both sides of (4.1) by w and integrate. Now, multiply both sides of
(4.14) by ¢ and integrate. Adding the resulting equations, it is easily verified that

T T
(4.21) / /z/dedt:/ /nuwdxdt,
0o Ja 0o Ja

which will be needed for our study.

Next, we provide an optimality condition for a minimizer. In what follows, B(C, ¢)
is a ball in L?(0,T) centered at C' with radius e> 0. Also, a level set of a function
f(¢) is the set {t: f(t) = a}, where « is a constant.

THEOREM 4.3. Let C* be a local minimizer of J such that
J(C*) < J(C) forall CeB(C* e)n M.

Let f*(t) = [ uc~(x,t)we- (x,t)dx. Then, we have
(i)
T T
/ C*(t) f*(t)dt < / C@) f*t)dt forall C e M.
0 0
(i) If every level set of f*(t) has zero measure, then we have C*(t) = Axy~(t) such

that
I"={tel0,T]: f*(t) <7} and |I'| = B/A.

Proof. (i) Consider an arbitrary function C' € M. Setting n = C' — C*, we obtain

T
(4.22) T(C* +en) = T(C) +¢ /0 /Q Yo pdxdt + oe),

employing (4.2). Since J(C*) is a minimum value, there exists a small enough positive
€ such that fOT Jo Yo+ ydxdt > 0 for every C' € M. Now applying (4.21), we arrive at

T T T
(4.23) /0 /Q Vo dxdt = /0 C()f*(t)dt — /0 O (0)f* (),
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which completes the proof of part (i).

(ii) Part (i) reveals that C* is a minimizer of the functional L(C) = fOT Ct)f*(t)dt
over M. Due to the fact that every level set of f*(t) has zero measure, one can
conclude that there is a decreasing function £ : R — R such that £(f*) is the unique
minimizer of L(C) over the set N' = {Ax; : I C [0,¢t], |I| = B/A}; see [6, Lemma
2.4 and 2.9]. It is well known that M is the weak closure of N in L?[0, T]. Since L is
weakly continuous in L2[0, T, it is inferred that indeed &(f*) is the unique minimizer
of L over M. This yields that C* = &(f*), and then C* = Ay;- is the unique
minimizer of L(h). Since C* = Ay~ = £(f*), it is easy to check that

=0 257
and I*={t € [0,7]: f*(t) <7} and |I*| = B/A. O

Let us investigate this issue for the case that u = u(t) and w = w(t) are solutions
of (1.4) and (4.14) in their ODE form, and then f*(¢) = uc(t)we=(t). The following
theorem ensures that level sets of f*(¢) are of zero measure.

THEOREM 4.4. Consider (1.4) and (4.14) in their ODE form. Let fo = uow(0).
Then, level sets of f(t) = u(t)w(t) are of zero measure, and the minimization problem
(1.6) has a unique solution

C*(t) = Axqo,)(1)-
Proof. Recall that v and w satisfy the following differential equations in the weak
sense:
W =p(l—-—u)u—C(t)u, u(0)=um,
w+(p—2pu—Clw=1, w(T)=0.
Now, using these equations, it can be easily verified that f/ = v'w+uw’ = p(uw)u+u
or

(4.24) @) — pu(t) f(t) = u(t) for every tel0,T].

Define v(t) = [u(t)dt, the antiderivative of u, and set vo = v(0). By straightforward
calculations, one can find that

1) = (fort 3 ) et -2,
p p

and then we conclude that
1

(4.25) f’(t) — (fO + ) pu(t)ep(v(t)—vo)_
p

We consider three different cases. At first assume that (fp + %) = 0. Then
(4.25) yields that f is constant, and indeed f = 0 in view of f(T) = 0. This is
a contradiction. Now let (fo + %) < 0. Then (4.25) says that f(t) is a decreasing
function. Since f(T') = 0, then f(¢) should be a positive function over [0, T, which is a
contradiction due to Theorems 2.2-4.2. Therefore, we can conclude that (fo+ %) > 0,
and so f is an increasing function because of (4.25). Since f’(t) > 0, it is inferred
that a level set of f(t) cannot be of positive measure due to Lemma 7.7 in [11]. Recall
that f(t) is continuous since u(t) and w(t) are continuous. Continuity, monotonicity
of f(t), and Theorem 4.3(ii) yield the assertion of the theorem. d
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5. Numerical algorithm. This section is devoted to our numerical algorithm.
The algorithm is a gradient-type one in which a descent direction is followed in each
iteration.

Given C € M and € > 0, (4.2) provides a descent direction while the quantity
fOT Jo Yo ndxdt is negative and e is small enough. Assume C is not a local minimizer
of J(C), and consider C' € M. Then C + ¢(C — C) belongs to M since it is a convex
set. Setting n = C' — C' and invoking (4.21), we arrive at

T T T
(5.1) / /wcyndxdt:/ /C’ucwcdxdt—/ /Cucwcdxdt.
0o Ja 0o Ja 0 Ja

This reveals that 7 = C' — C' is a descent direction if C' is a solution of the following
optimization problem:

T
(5.2) inf /O COf(t)dt,

CeM

where f(t) = [, uc(x,t)we(x,t)dx. In view of the bathtub principle [17], minimiza-
tion problem (5.2) has a solution of the form Ay, where A|I| = B and

(5.3) {tel0,T): f®) <t} cIc{tel0,T]: f(t) <7},
such that
(5.4) T=inf{s e R: [{t: f(t) < s}| > B/A}.

Hence, starting from C, n = C' — C'is a direction for functional 7 (C) with steepest
descent. One can use a line search algorithm to determine the maximum amount to
move along the given descent direction such that the condition J(C +en) < J(C) is
fulfilled. The resulting algorithm is presented in Algorithm 5.1.

Algorithm 5.1 Minimization algorithm

Given A, B, p, D(x), and TOL > 0, choose an initial Cy € M.

1. Set ¢ =0.

2. Compute u; = uc,; and J(C;) using a finite element method.

3. Set p — 2pu; — C; as the coefficient in (4.14) and compute w; = we, using a finite
element method.

4. Set f(t) = [ ui(x,t)w;(x,t)dx and derive I; employing formulas (5.3) and (5.4).
5. Set n; = Axy, — C; and e = 1.

6. Set Ciy1 = C; + en; and compute u;11 = uc,,, and J(Ci11) using a finite
element method.

7. While J(u;11) > J(u;) do

Set € = ¢/2.

Set Ci11 = C; + en; and compute u;41 = uc,,, and J(Cj;1) using a finite element
method.

8. If 7(C;) — J(Ciy1) < TOL, stop the algorithm. Otherwise set ¢ =4 + 1, and go
to step 3.

We address the convergence of Algorithm 5.1 in the following theorem.

THEOREM 5.1. Consider the sequences {C;(t)}7°, {ui(x,)}3°, and {w;(x,t)}5°
generated by Algorithm 5.1. Then, the following hold.
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(i) There exist C*(t) € M, u* € L*(0,T; H*(?)), and w* € L? (0,T; H*(Q2))
such that C; — C* weakly in L?(Q), u; — u*, w; — w* strongly in L*(Qr), and
J(C;) — J(C*).

(ii) If the level sets of f*(t fQ (x,t)dx are of zero measure, then
C; — C* strongly in L?[0,T].

Proof. (i) The proof is similar to that for Theorem 3.1 and so is omitted.
(ii) According to Algorithm 5.1, we have J(C;) > J(C;+1), and hence

(5.5) J(C*) = inf {J(C;) : i € N}.

This yields that
T
(5.6) / C*(t)f*(t)dt < / C@)f*(t)dt for every C e M,
0

since otherwise, due to Algorithm 5.1, one can find C' € M such that J(C) < J(C*),
which is in contradiction to (5 5) Inequality (5.6) says that C* is a minimizer of the
functional L(C fo t)dt over M. Now, similar to the proof of Theorem
4.3(ii), we can conclude that C’*( ) = Axr=(t), and it is the unique minimizer of the
functional.

Recall that M is the weak closure of N' = {Ax; : I C [0,t], |I| = B/A}. For
every C' € M there is sequence {h;}5° C N such that h; — C in L?(2). It is easy to
check that the L2-norm of all functions in A equals to vAB. Employing the weak
lower semicontinuity of the norm, we have

IC 220y < liminf [|hs =) = VAB.

Now, it is inferred that

T
. L * |12 — i . 22 * 22 _ Wak:
i (/€= €[ ) = Jim (n% o +1C" B =2 | i dt)
<AB+ AB—-2AB =0,

in view of the weak convergence C; — C*. This reveals that C; — C* in L?[0,T]. O

5.1. Numerical results. This section is devoted to the implementation of Al-
gorithm 5.1. Here, we use parameters estimated in [29]. We start with solving ODE
problems on t € [0, tmax), Where tmax is chosen as a length of one chemotherapy cy-
cle: 42 days. The maximum chemotherapy is chosen as A = 0.084, which is the
strength of the effective chemotherapy in white matter. The total chemotherapy is
B =1.26 = 0.084 x 15, which comes from applying the effective chemotherapy for 15
days. The growth rate is p = 0.012 day~'. In Figures 1 and 2, the results are shown
for u(0) = 0.5 and two different choices of chemotherapy functions, Co(t) = £ = 0.03
and Cy(t) = 0.03 + 0.025 sin (=L - ), respectively. These two choices represent a con-
stant dose and an oscillatory dose of chemotherapy, respectively. The corresponding
u(t) and w(t) are also shown. For both cases, the optimized C(¢) is a step function
C(t) = 0.084x[0,15) and J* = 9.4385. Notice that the solution u(t) ~ 0.2 at the end
of the chemotherapy cycle, t = 42, is smaller than «(0) = 0.5 in the beginning of the
chemotherapy cycle regardless of whether the chemotherapy is constant, oscillatory,
or bang-bang (the optimized one). The solution u which corresponds to the optimized
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C(t) decreases more rapidly in the beginning of the cycle, compared to the ones which
correspond to the constant and oscillatory chemotherapy, and increases gradually af-
ter the chemotherapy is off. The total population over the cycle J(C') is minimized
when C(t) = 0.084x[,15) which represents applying the effective chemotherapy in
the beginning of the chemotherapy cycle for 15 consecutive days. The bang-bang
chemotherapy has the best average effectiveness in terms of tumor cell population
over the cycle and is easy to implement compared to the oscillatory chemotherapy.
For these two numerical simulations, it only takes one iteration to reach the optimal
C(t). Indeed, the numerical results coincide with our analytical findings in Theorem
4.4.

The results of PDE problems show similar behaviors. In Figures 3 and 4, we
solve (1.4) on 2 = [0,1] mm with Cy(t) = 0.03 with different initial conditions.
The diffusion constant is chosen as 0.65 mm?.day ' [29]. The initial conditions
are u(x,0) = 0.5x[0,0.5) and u(x,0) = 0.5 + 0.5cos?(rx) in Figure 3 and Figure
4, respectively. In Figure 5, the result is shown with an oscillatory chemotherapy
Co(t) = 0.03 + 0.025 sin(%). Due to the diffusion effect, all solutions approach
a constant at the later time. Again, the optimal C(¢) which minimizes the total
population over the cycle J(C) is a bang-bang function which prefers MTD in the
beginning.

In the last example, we show a calculation on a brain image to find the optimal
drug treatment in time. The MRI dataset that we used is included in MRIcron, a
cross-platform NIFTI format image viewer [27] developed by Professor Chris Rorden
and his group. We first use MATLAB to load the dataset and generate an axial
view of the image “ch2bet.nii” of size 181 x 217 x 181 mm? at the slice z = 95mm
shown in the original image in Figure 6. We use the segmentation approach in [16]
to identify grey matter (GM) and white matter (WM) regions, which are shown in
the middle of the first row in Figure 6, and then prepare a triangle mesh for finite
element calculation to solve (1.4) on the brain. The problem that we study here
corresponds to the homogeneous drug delivery case that was discussed in [29], and
the parameters in [29] are used in our simulation. The diffusion coefficients are 0.13
and 0.65 mm?2.day ' in GM and WM, respectively. The total growth rate is p = 0.012
day™!, and the length of chemotherapy is 42 days for a cycle. No flux boundary is
applied on the boundary of brain. The initial tumor cell density is chosen to be

_(z—z0)%+(y—yg)?
40

u(z,0) =e ,

where o = 100, (zg,y0) = (140,100), A = 0.084, B = 1.26, and Cy(t) = 0.03 for
0 <t < 42. With this constant drug dose, we see that the quantity fQ udx is mono-
tone decreasing in time while fQ wdx is monotone increasing in time as shown in the
second row of Figure 6. The optimal drug dose is shown in the third row, which
indicates that the bang-bang drug dose function is again preferable. The maximal
drug dose is implemented in the beginning of the chemotherapy treatment cycle. The
last two rows show the solution w(x,t) at various times for the constant drug dose
and the optimal drug dose. One can observe that the total tumor cell population over
the cycle is indeed smaller for the optimal bang-bang treatment as J = 29949.3116
for the constant chemotherapy treatment while J = 20535.5933 for the MTD chemo-
therapy treatment. At time ¢ = 14, the function [, u(x,t)dx has magnitude less than
400 already for the bang-bang drug dose while [, u(x,t)dx is about 800 for the con-
stant chemotherapy. This confirms that the MTD strategy, which typically includes
repeated cycles of chemotherapy at the MTD without causing unacceptable toxicity,
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Fi1G. 1. The chosen parameters are u(0) = 0.5, A = 0.084, B = 1.26, p = 0.012. The first row
shows the initial Co(t) = 0.03 and its corresponding J = 13.568, u(t), and w(t). The second row
shows the optimized C(t) and its corresponding J = 9.4385, u(t), and w(t).

helps to reduce the total tumor cell population.

6. Conclusion. In order to find an optimal chemotherapy strategy that mini-
mizes the population size of tumor cells, an optimization problem corresponding to a
reaction-diffusion PDE has been considered. It has been proved that the minimization
problem has a solution and a necessary condition for the optimizer can be determined.
For the diffusion-free case, we have calculated the optimizer explicitly and established
the uniqueness of the solution. Then, we have developed a gradient-based numerical
algorithm in order to compute the optimizer.

Standard chemotherapy plans involve giving drug at the maximum tolerated dose
(MTD) and typically consist of repeated cycles of chemotherapy at the highest possible
dose without causing unacceptable toxicity [15]. Mathematically, these plans corre-
spond to so-called bang-bang controls that are given at the maximum dose C* = Cax
with rest periods C* = 0. The results presented in this paper, in particular the one
involving a real brain image, are in line with the MTD treatment schedule for chemo-
therapy. More precisely, if a homogeneous tumor population is assumed and other
aspects, like tumor heterogeneity and the tumor microenvironment, are ignored, then
mathematical models confirm the MTD strategy.

There are a variety of extensions and future directions of this work. One important
direction would be to find an optimal radiotherapy fractionation scheme [25]. A
possible criterion for the optimality is minimizing the total number of tumor cells
remaining after application of radiotherapy; another is to minimize the tumor control
probability [18]. These important optimization problems have yet to be addressed.

Acknowledgment. The authors would like to thank the reviewers for their con-
structive suggestions to improve the presentation of the paper.
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Fic. 2. The chosen parameters are u(0) = 0.5, A = 0.084, B = 1.26, p = 0.012. The first row
shows the initial Co(t) = 0.03 4 0.025 sin(%) and its corresponding J = 12.5821, u(t), and w(t).
The second row shows the optimized C(t) and its corresponding J = 9.4385, u(t), and w(t).
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FIG. 3. The chosen parameters are u(0) = 0.5x(0,0.5)(x)> A = 0.084, B = 1.26, p = 0.012.
The first row shows the initial Co(t) = 0.03 and its corresponding J = 6.9051, u(t), and w(t). The
second row shows the optimized C(t) and its corresponding J = 4.7552, u(t), and w(t).
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FIG. 4. The chosen parameters are u(x,0) = 0.540.5cos?(rx), A = 0.084, B = 1.26, p = 0.012.
The first row shows the initial Co(t) = 0.03 and its corresponding J = 19.54, u(t), and w(t). The
second row shows the optimized C(t) and its corresponding J = 13.7307, u(t), and w(t).
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FiG. 5. The chosen parameters are u(z,0) = 0.5+0.5cos?(mz), A = 0.084, B = 1.26, p = 0.012.
The first row shows the initial Co(t) = 0.03+0.025 sin(%) and its corresponding J = 18.1658, u(t),
and w(t). The second row shows the optimized C(t) and its corresponding J = 13.7307, u(t), and

w(t).
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Fi1Gc. 6. The first row shows a brain image in an axial view, its grey matter (GM) and white
matter (WM) segmentation result, and a triangle mesh on the brain. The second row shows the
initial Co(t) = 0.03 and its corresponding J = 29949.3116, [, u(x,t)dx, and [, w(x,t)dx. The third
row shows the optimized C(t) and its corresponding J = 20535.5933, fQ u(x,t)dx, and fQ w(x,t)dx.
The fourth row and the fifth row show the solution u(x,t) at various times for C(t) = 0.03 and the
optimized C(t), respectively.
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