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A REARRANGEMENT MINIMIZATION PROBLEM

CORRESPONDING TO p-LAPLACIAN EQUATION

Chiu-Yen Kao1,∗ and Seyyed Abbas Mohammadi2,**

Abstract. In this paper a rearrangement minimization problem corresponding to solutions of the p-
Laplacian equation is considered. The solution of the minimization problem determines the optimal way
of exerting external forces on a membrane in order to have a minimum displacement. Geometrical and
topological properties of the optimizer is derived and the analytical solution of the problem is obtained
for circular and annular membranes. Then, we find nearly optimal solutions which are shown to be
good approximations to the minimizer for specific ranges of the parameter values in the optimization
problem. A robust and efficient numerical algorithm is developed based upon rearrangement techniques
to derive the solution of the minimization problem for domains with different geometries in R2 and R3.
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1. Introduction

Rearrangement (shape) optimization problems arise in many different fields of applications such as fluid
and structural mechanics, population biology, photonic crystals and nano structures, see [1, 4, 5, 9–12, 14, 24–
26, 30, 31, 36, 40, 42–44], to name just a few. In such problems, a functional corresponding to solutions of a
given differential equation should be optimized over a rearrangement class of functions. In most applications,
the rearrangement class is in one to one correspondence of a set of domains with different shapes and so one
can recast the optimization problem as an optimal shape design problem.

In this paper, we consider a rearrangement minimization problem corresponding to solutions of the Poisson
equation of p-Laplacian. Let Ω be a bounded domain in RN with smooth boundary and f (x) ∈ L∞(Ω) be a
non-negative function. We consider the following boundary value problem

−∆pu = f(x) in Ω, u(x) = 0 on ∂Ω, (1.1)

where ∆p := div(|∇u|p−2∇u) is the p−Laplacian operator with p ∈ (1,+∞).
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We say a function u ∈W 1,p
0 (Ω) is a solution of (1.1) if it satisfies

∫
Ω

|∇u|p−2∇u · ∇φdx =

∫
Ω

fφdx, for all φ ∈W 1,p
0 (Ω). (1.2)

In order to emphasize the dependence of the solution on f , we denote the solution by uf . It is well-known that
(1.1) has a unique solution and uf > 0 in Ω due to the strong maximum principle when f 6≡ 0 [7, 21, 51].

Defining the functional F(f) =
∫

Ω
fufdx we will study the minimization problem

min
f∈M
F(f), (1.3)

where M =
{
f ∈ L∞(Ω) : α ≤ f(x) ≤ β,

∫
Ω
f(x)dx = γ

}
such that β > α ≥ 0 and γ > 0.

It is established that problem (1.3) has a bang-bang optimizer i.e., there is a solution of the form f̂(x) =

α+ (β−α)χD̂(x) such that |D̂| = A where A = γ−α|Ω|
(β−α) . This reveals that we can recast (1.3) as an optimization

problem over the set N = {f : f = α+ (β − α)χD, |D| = A} which is a rearrangement class of functions, see
Section 2 for the definition and a summary of properties concerning rearrangements. Indeed (1.3) is a shape
optimization problem where we are searching for an optimal set or optimal shape design D̂ ⊂ Ω with |D̂| = A
which minimizes the functional F = F(D).

Let us describe the physical importance of (1.3) which is most realistic when p = 2. In mechanical vibration,
(1.1) models the steady state of a vibrating membrane of a prescribed shape Ω ⊂ R2 with a vertical force f(x),
e.g. gravity and external loads, applied to it. Furthermore, let the membrane be perfectly flexible and elastic
which means that the magnitude of the tension is constant. Then, uf (x) is the deformation of the membrane
from the rest position and F(f) is the total displacement of it which in a way measures the robustness for the
membrane [36, 47]. Given a total amount of energy

∫
Ω
f(x)dx = γ, we want to minimize F(f) by exerting a force

f(x) where m ≤ f(x) ≤M . Indeed, here we are tuning the force in a way that leads to a smaller displacement.
For non ideal materials, e.g. power-low solids, it is often appropriate to involve a power of the gradient |∇u| to
describe the law governing the model. The solution of equation (1.1) for p 6= 2, can be considered as a model
for membranes made out of such non ideal materials [2, 16]. As another application, equation (1.1) can be
considered as a stationary heat transfer equation for a body Ω ⊂ R3 where u(x) is the temperature of the
body at point x. Actually in (1.1) the heat flux is a nonlinear function of the temperature gradient [49]. The
body is surrounded by a region e.g., air, with zero temperature. The external source f(x) supplies heat and∫

Ω
f(x)dx = γ is the total amount of heat energy which is available by the source. Let α = 0, the optimal set

D̂ is a region in the body that should be heated to minimize F(D) which in this case, up to a normalization
constant, the amount of heat presented in the region occupied by D [17, 47]. It is noteworthy that equation
(1.1) and the corresponding optimization problem (1.3) can be interpreted differently, for instance see [27, 41].

Optimization problem (1.3) corresponding to nonlinear differential equation (1.1) has been studied by several
authors, see [18, 19, 38]. They have addressed existence and uniqueness of solutions of (1.3) using continuity,
differentiability and convexity of the functional F . Moreover, the analytical solution has been obtained for
the specific case that Ω is a ball invoking symmetrization techniques. However, it is necessary from both
mathematical and physical points of view to find solutions of minimization problem (1.3) in general. The
problem of obtaining an analytical solution for rearrangement (shape) optimization problems are quite hard
since we do not know the topology or geometry of the optimal domain a priori.

To do so, at first in this paper we investigate geometrical and topological properties of the optimal set D̂
such as connectivity and symmetry. Employing these properties we derive the analytical solution for the case
that Ω is an annulus. Then, we will find nearly optimal solutions which will be established that are in good
agreement with the solution of (1.3) for specific ranges of the parameter values in the minimization problem.
These nearly optimal solutions can be derived explicitly for several domains. At last, we will develop a robust
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and efficient numerical algorithm which is capable to determine the solution of (1.3) for different domains in
R2 and R3.

2. Preliminaries

In this section we will provide results that are needed for our analysis.
As a consequence of the strong maximum principle and Sobolev embedding theorems, we have

0 < uf (x) ≤ C‖f‖
1
p−1

L∞(Ω), (2.1)

where C depends on p, N and Ω, [7, 21, 51]. Then, from the standard regularity theory, we infer uf ∈ C1,r(Ω̄)
for some r ∈ (0, 1), [35, 50]. It is noteworthy that uf is the unique minimizer of the following minimization
problem

min
u∈W 1,p

0 (Ω)
G(u), (2.2)

where G(u) =
∫

Ω
|∇u|pdx−p

∫
Ω
fudx and the minimum value is (1−p)F(f) = (1−p)

∫
Ω
fufdx. Setting q = p

p−1
the conjugate exponent of p, the following lemma indicates weak continuity, continuously differentiability and
convexity of the functional F [19, 38].

Lemma 2.1. a) Consider functions {fn}∞1 such that fn ⇀ f in Lq(Ω). Then, we have F(fn)→ F(f).
b) The functional F is continuously Gateaux differentiable such that

(F ′(f), g) = q

∫
Ω

gufdx, and F ′(f) = quf .

c) F is strictly convex.

Using properties of the functional F(f) in Lemma 2.1 and Theorem 5.3.9 in [3], we obtain the following
optimality condition.

Lemma 2.2. The function f̂ is the minimizer of (1.3) if and only if∫
Ω

f̂uf̂dx ≤
∫

Ω

fuf̂dx, for all f ∈M.

2.1. Rearrangements

In this subsection we provide some basic and well-known results about rearrangement theory [9, 10].
Two Lebesgue measurable functions f : Ω′ ⊂ RN → R, f0 : Ω ⊂ RN → R, are said to be rearrangements of

each other if

|{x ∈ Ω′ : f(x) ≥ c}| = |{x ∈ Ω : f0(x) ≥ c}| ∀c ∈ R. (2.3)

The set of functions which are rearrangement of f0 : Ω ⊂ RN → R is called the rearrangement class generated by
f0. Considering f0 = α+(β−α)χD0

with |D0| = A, it is easy to check that all functions inN are rearrangements
of f0 and indeed this set is the rearrangement class generated by f0. It is well-known that the weak closure of
the rearrangement set N in L2(Ω) is the set M where is convex and weakly sequentially compact. Moreover,
for all functions f ∈ N we have ‖f‖L2(Ω) = ‖f0‖L2(Ω), [9, 10]. The following Lemma is vital in our analysis.

Lemma 2.3. Let g ∈ L2(Ω). If there is a non-increasing function ζ such that ζ(g) ∈ N , then ζ(g) is the unique
minimizer of the linear functional L(h) =

∫
Ω
hgdx relative to h ∈M.
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Proof. The proof is an easy consequence of Lemma 2.4 in [10].

The Steiner symmetrization of a given function u is vital in our analysis when we study symmetric domains.
In order to introduce these rearrangements, we recall the notion of Steiner symmetrization of sets. Let Hk be the
Hausdorff k-dimensional outer measure on RN . Let T be a k-dimensional affine subspace of RN , 0 ≤ k ≤ N − 1.
The Steiner symmetrization of a set E ⊂ RN with respect to T is the unique set E∗ such that for any x ∈ T , if
L is the (N − k)-dimensional hyperplane orthogonal to T that contains x, then

E∗ ∩ L = B(x, r) ∩ L,

where B(x, r) is a ball centered at x with radius 0 ≤ r ≤ ∞ such that HN−k(B(x, r) ∩ L) = HN−k(E ∩ L).
Assume Ω is Steiner symmetric, i.e., Ω = Ω∗. The Steiner symmetrization of nonnegative function u : Ω→ R

with respect to T is the unique function u∗ : Ω→ R such that for each c ∈ R, we have

{x ∈ Ω : u∗(x) > c} = {x ∈ Ω : u(x) > c}∗.

Indeed, we have

u∗(x) = sup {c ∈ R : x ∈ {y ∈ Ω : u(y) > c}∗} ,

and u∗ is a rearrangement of u [8].
We will need the following well-known results on Steiner symmetrization.

Lemma 2.4. Let T be a (N − 1)-dimensional hyperplane in RN and Ω be Steiner symmetric with respect to it,
i.e., Ω=Ω∗. Consider non-negative function u : Ω→ R in L2(Ω) and u∗ its Steiner symmetrization with respect
to T .If ξ : R→ R is Borel measurable then

∫
Ω
ξ(u)dx =

∫
Ω
ξ(u∗)dx.

We close this section defining a radial function. Consider f : Ω ⊂ RN → R. Setting r = ‖x‖, we say that this
is a radial function if f(x) = f(r) for all x ∈ Ω̄.

3. Analytical results

This section is devoted to our analytical findings about the minimizer of (1.3) and its corresponding solution
of (1.1).

3.1. Existence, uniqueness and geometrical properties

Mimicking the proof of Theorem 2.4 in [19], we obtain the following result.

Theorem 3.1. The minimization problem (1.3) has a unique solution f̂ = α+ (β − α)χD̂ such that

D̂ = {x ∈ Ω : uf̂ (x) < t̂}, |D̂| = A. (3.1)

Then, we can obtain the following monotonicity theorem for the functional F .

Theorem 3.2. Let f̂1(x) = α + (β − α)χD̂1
(x) be a solution of (1.3) with |D1| = A1 and f̂2(x) = α + (β −

α)χD̂2
(x) be a solution with |D2| = A2. Assume A1 < A2, then we have F(f̂1) < F(f̂2).

Proof. Consider D1, D2 ⊂ Ω such that D1 ⊂ D2 and |D1| = A1, |D2| = A2. Setting f1(x) = α+ (β − α)χD1
(x)

and f2(x) = α+ (β − α)χD2(x), we have

(1− p)F(f1) = min
u∈W 1,p

0 (Ω)

∫
Ω

|∇u|pdx− p
∫

Ω

f1udx =

∫
Ω

|∇uf1 |pdx− p
∫

Ω

f1uf1dx
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>

∫
Ω

|∇uf1 |pdx− p
∫

Ω

f2uf1dx ≥ (1− p)F(f2), (3.2)

since f1(x) ≤ f2(x) almost everywhere in Ω.

Now, suppose D1 is an arbitrary subset of D̂2 such that |D1| = A1. In view of (3.2), we have F(f1) < F(f̂2)

and so we obtain F(f̂1) < F(f̂2).

In the following theorem, some topological and geometrical properties of the set D̂ are investigated.

Theorem 3.3. Let f̂ = α+ (β − α)χD̂ be the unique minimizer of (1.3). Then,

a) D̂ contains a tubular neighborhood of the boundary ∂Ω.
b) Every connected component D of the interior of D̂ touches the boundary, i.e. D̄ ∩ ∂Ω 6= ∅.
c) In particular, if Ω ⊂ R2 is simply connected then D̂ is connected.

Proof. a) It is clear in view of (3.1) and the Dirichlet boundary conditions.
b) In order to establish this part we argue by contradiction. Assume there is an open subset D ⊂ {x ∈ Ω :
uf̂ (x) < t̂} such that ∂D is a subset of the closure of D̂c. This means that ∂D ⊂ {x ∈ Ω : uf̂ (x) ≥ t̂}. Therefore,

uf̂ (x) = t̂ on ∂D. In view of (3.1), uf̂ (x) assumes a minimum at some x0 ∈ D. Invoking the strong maximum

principle, uf̂ (x) is constant within D and so we should have ∆puf̂ (x) ≡ 0 in D due to Lemma 7.7 in [20] which
is a contradiction.
c) This is a straightforward consequence of part (b).

In the next theorem, we investigate the symmetry properties of the unique optimizer f̂ .

Theorem 3.4. Assume Ω is Steiner symmetric with respect to a hyperplane T and f̂ = α+ (β − α)χD̂ is the

minimizer of (1.3). Then, the set D̂c is Steiner symmetric with respect to the hyperplane T .

Proof. Consider non-increasing function η(s) where η(s) = β for s < t̂ and η(s) = α for s ≥ t̂. In view of

Theorem 3.1, f̂ = η(uf̂ ) is the unique minimizer of (1.3) and then uf̂ is a solution of the following boundary
value problem

−∆pu = η(u) in Ω, u(x) = 0 on ∂Ω. (3.3)

Set ζ(s) = −
∫ s

0
η(τ)dτ . Now employing the method in the proof of Theorem 5.3 in [37], one can infer that uf̂

is the unique solution of (3.3) and also is the unique minimizer of the following functional

L(u) =

∫
Ω

|∇u|pdx + p

∫
Ω

ζ(u)dx, for u ∈W 1,p
0 (Ω).

Employing Lemma 2.4 and Pólya’s inequlity, see [46], it is inferred that

L(uf̂ ) =

∫
Ω

|∇uf̂ |
pdx + p

∫
Ω

ζ(uf̂ )dx ≥
∫

Ω

|∇u∗
f̂
|pdx + p

∫
Ω

ζ(u∗
f̂
)dx = L(u∗

f̂
),

which yields uf̂ = u∗
f̂

due to the minimality of uf̂ . This means that uf̂ is Steiner symmetric with respect to T

and so D̂c is symmetric in view of formula (3.1).

3.2. Analytical solution

The main challenging aspect of rearrangement (shape) optimization problems is that finding an analytical
solution for such problems are quite hard. Usually an explicit formula of the optimizer is available just in case
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that Ω is a ball and the solution is derived using symmetrization techniques, see for instance [23]. In addition
to a ball, we derive the analytical solution of (1.3) when Ω is an annulus.

Theorem 3.5. Let Ω = B(0, r̄) with r̄ > 0. Then, f̂ is a radial function and we have

f̂(r) = α+ (β − α)χ(r̂,r̄)(r), r ∈ [0, r̄], where r̂ =

(
r̄N − A

ωN

) 1
N

,

and ωN indicates the volume of the unit ball in RN .

Proof. Since Ω is Steiner symmetric with respect to all hyperplane T , the result is obtained in view of
Theorem 3.4.

In the next theorem we will determine the optimizer when Ω is an annulus. It reveals that D̂c is an annulus
in Ω.

Theorem 3.6. Let Ω = B(0, r2) \ B(0, r1) with r2 > r1 > 0 and assume α > 0. Then, f̂ is a radial function
and there is δ > 0 and a ∈ (r1 + δ, r2 − δ) such that

f̂(r) = α+ (β − α)χ(r1,a−δ)∪(a+δ,r2)(r), r ∈ [r1, r2],

where |(B(0, a− δ) \ B(0, r1)) ∪ (B(0, r2) \ B(0, a+ δ))| = A.

Proof. Assume that f̂ = α + (β − α)χD̂ is not a radial function. Rotating D̂, one can find infinitely many

minimizers which contradicts the uniqueness of the minimizer. Hence f̂ is a radial function and D̂ is radially
symmetric. In view of the radial structure of f̂ , one can rewrite (1.1) as{ (

rN−1|û′|p−2û′
)′

= −rN−1f̂(r) r1 < r < r2,
u(r1) = u(r2) = 0.

(3.4)

An integration of (3.4) yields

rN−1|û′|p−2û′(r) = rN−1
1 (û′(r1))

p−2
û′(r1)−

∫ r

r1

sN−1f̂(s)ds, (3.5)

in view of non-negativity of û′(r1). Let r̄ ∈ (r1, r2) be a maximizer of û(r). Then, û′(r̄) = 0 and so r̄ is a solution
of the following equation

g(r) :=

∫ r

r1

sN−1f̂(s)ds = rN−1
1 (û′(r1))

p−2
û′(r1). (3.6)

Indeed every r ∈ (r1, r2) with û′(r) = 0 is a solution of (3.6). But, the function g : [r1, r2]→ R is an increasing
continuous function and hence r̄ is the unique solution of (3.6). This reveals that the maximizer point of û(r)
is unique. Now, (3.1) yields the assertion of the theorem.

We close this section with deriving the explicit formula of F(f̂) in case N = 1. Considering Ω = (−r, r) with

r > 0, it is observed that f̂(x) = α + (β − α)χ(−r,−x̂)∪(x̂,r)(x) with x̂ = r − (A/2) according to Theorem 3.5.
Then it is easy to check that

uf̂ (x) =
p− 1

βp
(3.7)
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×

{
((r − x̂)β + αx̂)

p
p−1 − (αx̂)

p
p−1 + βα

1
p−1

(
x̂

p
p−1 − x

p
p−1

)
0 < x < x̂,

− (xβ + x̂(α− β))
p
p−1 + (rβ + x̂(α− β))

p
p−1 x̂ < x < r,

and uf̂ (−x) = uf̂ (x). Therefore, one can calculate

F(f̂) =
2(p− 1)

β (2 p− 1)p

(
(1− p) (β r + (α− β) x̂ )

2 p−1
p−1

+ 2 (β r + (α− β) x̂ ) (2 p− 1) (β r + (α− β) x̂ )
p
p−1

+ x̂
2 p−1
p−1

(
(p− 1)α

2 p−1
p−1 + α

(
(−2 p+ 1)α

p
p−1 + α(p−1)−1

β p
)))

. (3.8)

3.3. Nearly optimal solutions

As we mentioned earlier, deriving an analytical solution for (1.3) is hard. So, we turn our attention to deter-
mine nearly optimal solutions which are approximations to the minimizer for specific ranges of the parameter
values in the optimization problem. It is established that the corresponding nearly optimal sets are in good
agreement with the set D̂.

First, we turn to the case that ε = β − α is small and α > 0, the low contrast regime. Let us assume that
ψ is the solution of (1.1) with the right-hand side f(x) ≡ α > 0. For s > 0, we denote by Es the sub-level set
Es = {x ∈ Ω : ψ(x) < s} of ψ. The following theorem says that when ε is small enough, the optimal domain
is squeezed between two sub-level sets of ψ. Indeed, these sub-level sets are nearly optimal domains when the
problem is in low contrast regime.

Theorem 3.7. Let τ be chosen such |Eτ | = A. For every δ > 0 there is ε0 such that whenever ε < ε0 and

f̂ε = α+ εχD̂ε , with D̂ε = {x ∈ Ω : ûε(x) < t̂ε},

is an optimal solution, then |t̂ε − τ | < δ and

Eτ−δ ⊂ D̂ε ⊂ Eτ+δ.

Proof. While ε→ 0, it is easy to check that ‖ûε‖W 1,p
0 (Ω) is bounded in view of (2.1). The compact embedding

of W 1,p
0 (Ω) into Lp(Ω) (see [20]) yields that there is û in W 1,p

0 (Ω) such that

ûε ⇀ û, in W 1,p
0 (Ω), ûε → û in Lp(Ω), (3.9)

whenever ε→ 0. Moreover, recall that f̂ε → α in Lp(Ω). Note that∫
Ω

|∇ûε|p−2∇ûε · ∇φdx =

∫
Ω

f̂εφdx, (3.10)

for φ ∈ C∞0 (Ω). Obviously, the right-hand side of (3.10) converges to α
∫

Ω
φdx when ε→ 0. Next we show that

the left-hand side of (3.10) converges to
∫

Ω
|∇û|p−2∇û · ∇φdx. Setting φ = ûε − û in (3.10) and subtracting∫

Ω
|∇û|p−2∇û · ∇(ûε − û) from both sides, we have∫

Ω

(
|∇ûε|p−2∇ûε − |∇û|p−2∇û

)
· ∇(ûε − û)dx
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=

∫
Ω

f̂εû
p−1
ε (ûε − û)dx−

∫
Ω

|∇û|p−2∇û · ∇(ûε − û)dx. (3.11)

We show that both integrals on the right-hand side converge to zero as ε → 0. For the first one by Hölder’s

inequality it is inferred that
∣∣∣∫Ω f̂εûp−1

ε (ûε − û)dx
∣∣∣ ≤ C(α+ ε)2‖ûε − û‖L1(Ω), and so the integral converges to

zero invoking (3.9). Furthermore, the second integral converges to zero because of the weak convergence in (3.9).
Then, we infer that

lim
ε→0

∫
Ω

(
|∇ûε|p−2∇ûε − |∇û|p−2∇û

)
· ∇(ûε − û)dx = 0. (3.12)

Recall the following well-known inequalities

(‖A‖p−2A− ‖B‖p−2B,A−B) ≥

{
C1‖A−B‖p p ≥ 2,

C2
‖A−B‖2

(‖A‖+‖B‖)2−p 1 < p ≤ 2,

where (., .) denotes the usual inner product in RN , and A,B ∈ RN . Consequently from (3.12), it is deduced by
these inequalities that

lim
ε→0

∫
Ω

|∇ûε −∇û|pdx = 0. (3.13)

Therefore, we can pass to the limit under the integral sign in (3.10) and then we have

−∆pû = α, in Ω, û = 0 on ∂Ω.

This means that indeed û = ψ. Now, (3.13) and well known Sobolev inequalities, Theorem 7.10 in [20], implies
that lim

ε→0
‖ûε − ψ‖L∞(Ω) = 0.

Let us choose ε0 such that ‖ûε−ψ‖L∞(Ω) < δ/2 for all ε ≤ ε0. Assume x belongs to D̂ε then we have ûε(x) < t̂ε

and then ψ(x) < t̂ε + δ/2, and hence D̂ε ⊂ Et̂ε+δ/2. Similarly, it is established that Et̂ε−δ/2 ⊂ D̂ε. Consequently,
we observe that

Et̂ε−δ/2 ⊂ D̂ε ⊂ Et̂ε+δ/2,

which yields |Et̂ε−δ/2| ≤ A ≤ |Et̂ε+δ/2|.
We know that the level sets of ψ are of zero measure. Then, it is easy to check that |Es| is continuous with

respect to s. By the continuity, there exists τ such that |Eτ | = A and |τ − t̂ε| < δ/2. Collecting all of above
results, we obtain the assertions of the theorem.

The other interesting case is to consider p→∞. For every x ∈ Ω̄, the distance function is defined dist(x) =
inf

y∈∂Ω
‖x−y‖2. For s > 0, we denote by Fs the sub-level set Fs = {x ∈ Ω : dist(x) < s}. Then, the next theorem

asserts that sub-level sets of the distance function are nearly optimal domain when p is large enough.

Theorem 3.8. Let τ be chosen such |Fτ | = A and α > 0.
a) For every δ > 0 there is p0 such that whenever p > p0 and

f̂p = α+ (β − α)χD̂p , with D̂p = {x ∈ Ω : ûp(x) < t̂p},
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is an optimal solution corresponding to p, then |t̂p − τ | < δ and

Fτ−δ ⊂ D̂p ⊂ Fτ+δ.

b) We have

lim
p→+∞

F(f̂p) =

∫
Ω

(α+ (β − α)χFτ ) dist(x)dx. (3.14)

Proof. (a) Recall that ûp is the unique solution of

−∆pu = f̂p in Ω, u = 0 on ∂Ω.

Then, we have

lim
p→∞

ûp(x) = dist(x), in Cr(Ω̄) for all r ∈ (0, 1), (3.15)

see Proposition 2.1 and Remark 2.1 in [6]. Moreover, it is well-known that dist(x) ∈W 1,p
0 (Ω) for p > N and it

is the unique viscosity solution of |∇v| = 1 in Ω, see [15]. Hence, the level sets of dist(x) are of zero measure
in view of Lemma 7.7 in [20]. Now, employing the uniform convergence in (3.15), the reminder of the proof is
similar to that of Theorem 3.7 and is omitted.
(b) Let {pn} be a sequence of positive numbers such that pn → +∞. Set fn = f̂pn and un = ûpn . Remember
that since fn belongs to N , then we have ‖fn‖L2(Ω) = ‖f0‖L2(Ω) for all n→∞. Thus, we infer that there is a
subsequence, still denoted by {fn}, and f∞ ∈M such that

fn ⇀ f∞ in L2(Ω). (3.16)

One can obtain ∫
Ω

fnun − f∞dist dx =

∫
Ω

fn(un − dist)dx +

∫
Ω

(fn − f∞)dist dx. (3.17)

While, n → ∞, the first integral on the right-hand side of (3.17) converges to zero in view of (3.15) and the
fact that ‖fn‖L2(Ω) = ‖f0‖L2(Ω). The second one converges to zero due to (3.16). Hence, we find that

lim
n→+∞

F(fn) =

∫
Ω

f∞dist(x)dx.

Recall that fn is the unique minimizer of F relative to N for p = pn. Indeed it is a minimizer relative to M
due to the weak continuity of the functional F , see Lemma 2.1. Now in view of Lemma 2.2, it is inferred that∫

Ω

fnundx ≤
∫

Ω

fundx, for every f ∈M.

Passing to limit in the above inequality yields∫
Ω

f∞dist dx ≤
∫

Ω

fdist dx, for all f ∈M,
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Table 1. Explicit formula of the torsion function.

Ω {x
2

a2 + y2

b2 < 1} {y + 2a√
3
> 0,

√
3|x| < y − a√

3
}

ψ(x, y)

(
1− x2

a2
− y

2

b2

)
2( 1
a2

+ 1
b2

)
1

4
√

3a

(
y + a√

3

)((
y − 2a√

3

)2

− 3x2

)

Figure 1. Nearly optimal solutions in the low contrast regime with p = 2. The set Eτ with
|Eτ | = |Ω|/2 is shown in gray.

and so f∞ is the unique minimizer of the functional L(f) =
∫

Ω
fdist dx relative to f ∈M. On the other-hand,

since the level sets of dist(x) are of zero measure one can define non-increasing function ζ(s) where ζ(s) = β
for s < τ and ζ(s) = α when s ≥ τ such that ζ(dist(x)) = α + (β − α)χFτ belongs to N . Lemma 2.3 reveals
that ζ(dist(x)) is the unique minimizer of L(f) and so we should have f∞ = α + (β − α)χFτ . This completes
the proof.

Remark 3.9. Investigating the asymptotic case p→ 1 is tricky. Fix the right-hand side f(x) in (1.1). Depending
on the size and shape of Ω and the norm of f(x), it has been proved that solutions up of the equation could
converge to zero, to a characteristic function of Ω or diverge to +∞ when p → 1 [13, 32, 33, 39]. For one-

dimensional domain Ω = (−r, r), formula (3.7)–(3.8) indicate the behavior of uf̂ and F(f̂) when p→ 1. Setting

α = 1, β = 2, x̂ = 1
2 and r = 3

4 in (3.7)–(3.8), we observe that uf̂ → 0 uniformly and F(f̂)→ 0 while p→ 1. If

we replace the value of r with 2, we observe that uf̂ → +∞ and so F(f̂)→ +∞ whenever p→ 1. It reveals the

effect of size of the domain on the asymptotic behaviors. Setting α = 1
3 , β = 2

3 , x̂ = 1
2 and r = 1 in (3.7)–(3.8),

we find that uf̂ → 0 uniformly and F(f̂) → 0 while p → 1. If we replace the value of β with 2, we observe

that uf̂ → +∞ and so F(f̂)→ +∞ whenever p→ 1. One can infer that the asymptotic behaviors depends on

‖f̂‖L∞(Ω).

Although the analytical formula for optimal domains is quite rare, we can find such formula for nearly optimal
domains when Ω is easy to describe. Consider problem (1.1) in the low contrast regime and set p = 2, then
indeed ψ is the solution of the (St Venant) elastic torsion problem and is called the torsion function. Explicit
formula of the torsion functions of several curvilinear polygon are available [34]. Hence, the nearly optimal
solutions can be derived analytically for such domains. For instance, we can find the explicit formula of the
torsion function when α = 1 for an ellipse and an equilateral triangle in Table 1. Using function ψ(x, y) in
Table 1, one can easily find nearly optimal solution analytically for an ellipse and an equilateral triangle. For
these domains a typical nearly optimal solution Eτ with |Eτ | = |Ω|/2 is depicted in Figure 1.

Nearly optimal solutions can be obtained analytically when p→∞ for domains that dist(x) can be calculated
explicitly. For example, this function has an explicit formula when Ω ⊂ R2 is a circle, rectangle, square, annulus,
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Table 2. Explicit formula of dist(x, y).

Ω {−a < x < a, −a < y < a} {R1 < x2 + y2 < R2}

dist(x, y) a− 1
2 (|x|+ |y|+ ||x| − |y||) 1

2 (R2 −R1)
−1
2

∣∣∣R2 +R1 − 2
√
x2 + y2

∣∣∣
lim

p→+∞
F(f̂p) (4/3)αa3 + 4τ2(β − α)(a− (2τ/3)) (απ/4)(R1 −R2)2(R1 +R2)

+2π(β − α)τ2(R1 + (2τ/3))

Figure 2. Nearly optimal solutions when p→∞. The set Fτ with |Fτ | = |Ω|/2 is shown in
gray.

ellipse, etc. In Table 2, one can find the explicit formula of dist(x) for a square and annulus. Moreover, one can

find the value of F(f̂p) while p→∞ in the table. For these domains a typical nearly optimal domain Fτ with
|Fτ | = |Ω|/2 is depicted in Figure 2.

4. Numerical algorithm

As explained earlier, analytical solutions for optimization problems of type (1.3) are quite rare. Therefore, it
is necessary from physical point of view to develop a numerical algorithm to determine solutions of (1.3). Based
upon rearrangement techniques, we will find sequence of functions {fi}∞0 ∈ N where the corresponding energies
{F(fi)}∞0 is decreasing. The numerical algorithm is a modification of the methods developed in [27, 28, 41].
The following theorem provides the main tool for generating the minimizing sequence.

Theorem 4.1. Let fi = α+ (β−α)χDi and fi+1 = α+ (β−α)χDi+1 with |Di| = |Di+1| = A where ui and ui+1

are the corresponding solutions of (1.1) respectively. If |Di+1∆Di| is small enough and
∫
Di+1

uidx <
∫
Di
uidx,

then we have F(fi+1) < F(fi).

Proof. Recall that functional F is continuously differentiable in view of Lemma 2.1. Indeed, the functional is
Fréchet differentiable at f since the Gâteaux derivative is continuous at f , see Proposition 5.3.4 of [22]. Then,
we see that

F(fi+1)−F(fi) = F (fi + (fi+1 − fi))−F(fi)

= q

∫
Ω

(fi+1 − fi)uidx + o
(
‖fi+1 − fi‖Lq(Ω)

)
. (4.1)
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It is observed that

‖fi+1 − fi‖qLq(Ω) = (β − α)q
∫

Ω

|χDi+1
− χDi |qdx = (β − α)q

∫
Ω

χDi+1∆Didx

= (β − α)q|Di+1∆Di|. (4.2)

Therefore, when |Di+1∆Di| is small enough (4.1) yields the assertion of the theorem in view of fact that

∫
Ω

(fi+1 − fi)uidx = (β − α)

(∫
Di+1

uidx−
∫
Di

uidx

)
< 0.

Based upon Theorem 3.2, we develop Algorithm 1. By employing Algorithm 1, one can obtain the sequence
of functions {fi}∞1 ⊂ N which converges to the solution of (1.3).

Theorem 4.2. For the sequence {fi}∞1 derived by Algorithm 1, we have fi → f̂ in L2(Ω).

Proof. Since {fi}∞1 ⊂ N , we know that ‖fi‖L2(Ω) = ‖f1‖L2(Ω) for all i ∈ N. Then, there is a subsequence (still

denoted by {fi}∞1 ) and f̌ ∈M such that fi ⇀ f̌ in L2(Ω). Indeed, we have

F(f̌) = inf
i∈N
F(fi). (4.3)

The function f̌ is a minimum of functional L(f) =
∫

Ω
fuf̌dx over M since if there is g ∈ M such that L(g) <

L(f̌), then in view of Theorem 4.1 we can find f ∈ N such that F(f) < F(f̌) which contradicts (4.3). Therefore,

we conclude that f̌ is a minimizer of (1.3) because of the optimality condition in Lemma 2.2. Furthermore, f̌ = f̂

due to the uniqueness in Theorem 3.1. Now, the Radón-Riesz Theorem reveals that fi → f̂ in L2(Ω).

4.1. Numerical results

To solve (1.3) numerically using Algorithm 1, we start with an initial choice of f and modify f at each
iteration to decrease the objective functional F until it reaches the minimum. The algorithm consists of two
essential calculations. One is to find the solution u of equation (1.1) for any given f via a standard finite element

Algorithm 1 Minimization algorithm

Given α, β, p, A and TOL, choose an initial f (0) ∈ Nα,β,A.
1. Set i = 0.
2. Compute ui the solution of (1.1) and F(fi) by using a finite element method.
3. Compute Di+1 = {x ∈ Ω : ui(x) < ť} where ť = inf{s : |{x ∈ Ω : ui(x) < s}| ≥ A}, and fi+1.
4. Set A′ = |Di\Di+1|.
5. While F(fi+1) > F(fi) do
Set D1 = Di\Di+1, D2 = Di+1\Di. Compute
t1 = sup{s : |{x ∈ D1 : ui(x) ≥ s}| ≥ A′}, t2 = inf{s : |{x ∈ D2 : ui(x) ≤ s}| ≥ A′}.
Set D̃1 = {x ∈ D1 : ui(x) ≥ t1}, and D̃2 ⊂ {x ∈ D2 : ui(x) ≤ t2} with |D2| = A′.
Set Di+1 = (Di\D̃1) ∪ D̃2 and fi+1 = βχDi+1

+ αχDci+1
.

Compute ui+1 and F(fi+1) by using a finite element method. Set A′ = A′/2;
6. If ‖fi+1 − fi‖L2(Ω) < TOL, stop the algorithm. Otherwise set i = i+ 1, go to step 2.
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Figure 3. The minimizer f̂ and its corresponding û on a disk for p = 1.5, 2, 3, 10.

Figure 4. The minimizer f̂ and its corresponding û on a square for p = 1.5, 2, 3, 10.

method while the other one is to determine a new f for any given u by a rearrangement algorithm so that the
objective functional decreases.

In numerical implementations for two-phase problems, we choose α = 1 and β = 2 unless otherwise specified.
We first compute the distance function dist(x) which is the solution of Equation (1.3) when p→∞. This can be
estimated by taking the minimum among distance to all points sampled on the boundary ∂Ω. Alternatively, one
can also use fast marching [48] or fast sweeping methods [29, 52] to compute the solution of eikonal equation.
When p = 2, equation (1.3) is linear and can be solved easily. Denote this solution by û2. When p 6= 2, the
resulting nonlinear discretization of FEM method requires a good initial guess of the solution of (1.1) to ensure

the convergence. We choose u
(0)
p = 1

p−1 û2 + p−2
p−1dist(x) which is a convex combination of û2 and dist(x) when

p ≥ 2 and u
(0)
p = û2 when p < 2. We then choose the initial f as f = α+ (β − α)χD such that

D = {x ∈ Ω : u(0)
p (x) < t̂}, |D| = A.

In Figures 3–7, we show the numerical results for p = 1.5, 2, 3, 10 and A = 0.5|Ω| on a circle, a square, an
L-shaped domain, a dumbbell, and an annulus. The triangular meshes used have 190, 220, 141, 090, 106, 846,
155, 086, and 268, 314 elements, respectively. The optimal set D̂ corresponding to the optimizer f̂ contains a
tubular neighborhood of the boundary ∂Ω as discussed in Theorem 3.3. In particular, if Ω ⊂ R2 is simply
connected, we have D̂ is connected as shown in Figures 3–6. However, D̂ has two connected components on
an annulus in Figure 7 as an annulus is not simply-connected. The solution uf̂ is approaching to the distance
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Figure 5. The minimizer f̂ and its corresponding û on a L-shaped domain for p = 1.5, 2, 3, 10.

Figure 6. The minimizer f̂ and its corresponding û on an annulus for p = 1.5, 2, 3, 10.

Figure 7. The minimizer f̂ and its corresponding û on an annulus for p = 1.5, 2, 3, 10.

function when p→∞. On a circle in Figure 3, the optimal solution is f̂(r) = 1 +χ( 1√
2
,1)(r), r ∈ [0, 1] regardless

of the value of p. This demonstrates a consistency with Theorem 3.5. In Figure 4, the optimizer on a square
has D̂c approaching to a square with a width 1√

2
when p → ∞. In Figure 5, the optimizer on the L-shaped

domain has D̂c which is a resulting shape of a morphological erosion by a disk for large p. On an annulus with
the inner radius 0.1 and the outer radius 1, the optimizer f̂ in Figure 7 is a radial function and D̂c is an annulus
as discussed in Theorem 3.6. Note that the optimizer f̂ varies with respect to p. The D̂ consists of two rings
attached to the inner and outer boundaries. The inner ring is thinner than the outer ring when p is finite. When
p→∞, the solution û becomes a distance function and the thicknesses of two rings are the same.
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Figure 8. The minimizer f̂ and its corresponding û on a disk for p = 1.5, 2, 3, 10.

Figure 9. The minimizer f̂ and its corresponding û on an annulus for p = 1.5, 2, 3, 10.

Figure 10. The minimizer f̂ and its corresponding û on a L-shaped domain for p = 1.5, 2, 3, 10.

Figures 8 and 9 show the numerical results for p = 1.5, 2, 3, 10 and A = 0.5|Ω| on a circle and a dumbbell for

α = 0 and β = 1. The solutions û and f̂ are both radial symmetric on the circular domain as shown in Figure 8.
Also, we observed that, u is constant in the region where f̂ = 0 for p ≤ 2. For p = 2, u is a quadratic function in
r in the region where f̂ = 1. In Figure 9, we observed that f̂ may have different topology and û is not constant
in the region where f̂ = 0 for p ≤ 2 anymore. When p = 1.5, the function û has one global maximum. However,
û approaches to a distance function which has two maximums on a dumbbell as p→∞.

In Figure 10 and 11, the numerical results for p = 1.5, 2, 3, 10 on the L-shaped domain are shown for A =
0.25|Ω| and A = 0.75|Ω|, respectively. We observe that F is increasing in |A| which is what we expect from
Theorem 3.2. Again, the solution û is approaching to the distance function when p→∞.
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Figure 11. The minimizer f̂ and its corresponding û on a L-shaped domain for p = 1.5, 2, 3, 10.

Figure 12. The minimizer f̂ and its corresponding û on a disk for p = 1.5, 2, 3, 10.

Figure 13. The minimizer f̂ and its corresponding û on a square for p = 1.5, 2, 3, 10.
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Figure 14. The minimizer f̂ and its corresponding û on an annulus for p = 1.5, 2, 3, 10.

Figure 15. The minimizer f̂ and its corresponding û on the unit sphere for p = 1.5, 2, 3, 10.

The aforementioned algorithm for the two-phase problem can be easily extended to the n-phase problem.
Assume that f can take n different values: αi, 1 ≤ i ≤ n and

Di = {x|fi(x) = αi},

satisfies |Di| = Ai with
∑i=n
i=1 Ai = |Ω|. When a solution u of (1.1) is obtained, the rearrangement is chosen as

fnew =
∑n
i=1 αiχDi where Di is determined by

∪ji=1Di = {x ∈ Ω : uf (x) ≤ tj},
∣∣∣∪ji=1Di

∣∣∣ =

j∑
i=1

Ai, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

In Figures 12–14, we show the results for a four-phase problem, i.e., n = 4 with Ai = |Ω|
4 , on different domains.

We observe that Di, 1 ≤ i ≤ n, are nested for every optimizer. When p→∞, the solution û is approaching to a
distance function to ∂Ω. The interface between different Di approaches to level contours of the corresponding
distance function.
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Figure 16. The minimizer f̂ and its corresponding û on a cylinder with a hole for p =
1.5, 2, 3, 10.

In Figure 15–16, the computation on tetrahedron meshes of an unit sphere and a cylinder with a hole are
shown. The tetrahedron meshes are generated by using the DistMesh package [45]. The unit sphere has 158, 277
of tetrahedrons while the cylinder with a hole has 225, 028 ones. We show the numerical results for p = 1.5, 2, 3, 10

for a four-phase problem with Ai = |Ω|
4 . In order to visualize the solutions, we show the domain for z < 0 for the

unit sphere and x < 0 for the cylinder with a hole. The nesting behaviors of different phases in f are interesting.
Sets D1 and D2 change their topologies from p = 2 to p = 3 in Figure 16. When p→∞, the solution û is again
approaching to a distance function to ∂Ω.

5. Conclusion

In this paper, we have studied the minimization problem corresponding to the p-Laplacian equation. We first
have obtained the existence and uniqueness of a solution for the optimization problem. Second, we have shown
monotonicity of the objective functional and found geometrical properties of the minimizer on a bounded domain
in RN . In particular, we derived the analytic radial solution when the domain is a ball or an annulus. However,
finding an analytical solution for even geometrically simple domains such as rectangles and ellipses remains
as an open problem. This is the reason that we turned our attention to determine nearly optimal solutions
which are approximations to the minimizer for specific ranges of the parameter values in the optimization
problem. It established that the corresponding nearly optimal sets are in good agreement with the set D̂. We
studied the nearly optimal solution in the low contrast regime by using rearrangement techniques. The nearly
optimal solution is determined in view of the fact that u approaches to the solution of the torsion problem when
p = 2, (β − α)→ 0 and the explicit formula for the nearly optimal solution can be derived on domains such as
an ellipse and an equilateral triangle. When p → ∞, the solution u approaches to a distance function and so
analytical formulas of the nearly optimal solution can be obtained on domains such as a square or an annulus.

At last, for general domains, we developed an efficient and robust rearrangement algorithm which converges
to the corresponding optimizers in just a few iterations. Not only two-phase problems are studied but also
numerical results on n-phase problems with n = 4 are shown. We invoked the algorithm to find the optimizer
even for three-dimensional problems.

Physically, the optimizers that we have found in this paper for two-dimensional problems determine a pattern
for exerting a force with a given amount of total energy in a way that the total displacement is minimal. Our
results in this paper provide realistic insights on performance of membranes which are a building block in
structural mechanics.
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