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We have performed combined elastic neutron diffuse, electrical transport, specific heat,
and thermal conductivity measurements on the quasi–one-dimensional Ba3Co2O6(CO3)0.7
single crystal to characterize its transport properties. A modulated superstructure of
polyatomic CO3

2− is formed, which not only interferes the electronic properties of this
compound, but also reduces the thermal conductivity along the c-axis. Furthermore, a
large magnetic entropy is observed to be contributed to the heat conduction. Our
investigations reveal the influence of both structural and magnetic effects on its
transport properties and suggest a theoretical improvement on the thermoelectric
materials by building up superlattice with conducting ionic group.
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INTRODUCTION

Thermoelectric (TE) materials can recycle waste heat into usable electricity based on the Seebeck
effect and are believed to play a significant role in efficient use of energy [1]. As the energy
conversion performance of TE materials is evaluated by the dimensionless figure of merit zT,
zT � S2σT/(κele + κlatt), where T is operating temperature, σ is electrical conductivity, S is Seebeck
coefficient, κele is electronic thermal conductivity, and κlatt is lattice thermal conductivity, the
research on the TE material is usually focused on two main approaches: (1) increasing the power
factor S2σ through electronic structure or energy band engineering [2–4] and (2) reducing the
lattice thermal conductivity κlatt by introducing additional phonon scattering and manipulating
phonon structure [5–9]. Actually, those approaches are very complex. For example, the electrical
transport (σ � nμe) could be regulated by the carrier concentration n, the carrier mobility μ, and
the electron charge e, whereas the acoustic phonon scattering introduces a μ ∝ T −1.5

dependence, and the ionized impurity scattering gives a μ ∝ T1.5 relationship [10].
Furthermore, the lattice thermal conductivity, κlatt, could be decreased by the grain
boundary scattering, point defect scattering, disorder scattering, and Umklapp scattering
[11, 12]. Therefore, if the scattering mechanisms of both the electrical and thermal transport
could be well understood, the energy conversion performance of TE materials can be better
optimized.
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At present, alloy TEmaterials have been widely applied as a TE
compound. Although the performance has been continuously
improved, there are some unavoidable limitations on the
environment, expenses, oxidization stability, and so on
[13–15]. Therefore, the investigation of oxide TE materials has
been proposed. Because of its special crystal structure and
magnetic effect, the cobalt oxide has good electronic properties
and low lattice thermal conductivity [16–21]. For example, the
power factor (S2σ) of NaCo2O4 is 5 × 10–3 W ·m−1 · K−2, even
higher than that of Bi2Te3 [22]. Among them, NaCo2O4,
Ca3Co4O9, and Bi2Sr2Co2Ox have received much attention,
and their TE performance is also continuously improved and
even higher than some alloys [17, 23–26].

Recently, a quasi–one-dimensional cobaltate
Ba3Co2O6(CO3)0.7 has been reported as a new excellent
potential TE material [27]. This compound comprised face-
sharing CoO6 octahedra and carbonate CO3

2− molecular
chains along its c-axis with the space group of P-6,
a � 9.683 Å and c � 9.518 Å [28], Figures 1A, B. The average
occupancy of the polyatomic CO3

2−molecule is 0.7. Although z of

Ba3Co2O6(CO3)0.7 was reported as 5.1 × 10−5 K−1, which is
comparable to NaxCoO2-y at 300 K, and it was considered as
a promising cobalt oxide TE material [24], the thermal
conductivity, transport properties, and the physics remain
unknown.

In this article, we report neutron diffuse scattering, electrical
conductivity, Hall effect, specific heat, and thermal conductivity
of Ba3Co2O6(CO3)0.7 single crystal. Moreover, the magnetic effect
of the Co ions is discussed.

EXPERIMENTAL DETAILS

Single crystal of Ba3Co2O6(CO3)0.7 was grown by a flux method
using a mixture of Co3O4, BaCO3, K2CO3, and BaCl2 [27]. These
single crystals have the shape of short hexagonal rods. The c-axis
was determined using the X-ray Laue method to be along the rod
direction.

A single crystal with dimension of 2 × 2 × 6 mm3 was aligned
in the (H, K, 0) horizontal scattering plane for the diffuse

FIGURE 1 | (A) Crystal structure of Ba3Co2O6(CO3)0.7 consisting of chains of CoO6 and carbonate CO3 along the c-axis in the standard orientation [space group:
P-6]. (B) The c-axis projected crystal structure. 2D slice of diffuse neutron scattering patterns of Ba3Co2O6(CO3)0.7 single crystal at 50 K. (C) L � 0, (D) L � −2.85, and
(E) enlarged view of a section of (D) obtained on CORELLI. (F) Cuts along the [H, H, 0] direction of the Bragg peak marked by red solid line in panel (E). (G) Temperature
dependence of the peak intensity of the (1/3 1/3 2.85).
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scattering studies using the elastic single crystal diffuse scattering
spectrometer CORELLI at the Spallation Neutron Source (SNS),
Oak Ridge Nation Laboratory [29]. Based on the Hall effect, the
carrier concentration of Ba3Co2O6(CO3)0.7 in the temperature
range of 80 to 300 K was measured by the van der Pauw technique
at a reversible magnetic field of 2 T. And the conductivity along
the c-direction was obtained by Physical Property Measurement
System (PPMS, Quantum Design) with resistivity option, using
the four-probe method. The specific heat measurement was
applied on PPMS’s heat capacity option in two steps. First, the
background specific heat was measured by an empty puck with a
small amount of N-grease in the temperature range from 2 to
250 K at zero field. Then, a Ba3Co2O6 (CO3)0.7 sample
(approximately 4.71 mg) was placed in the measured N-grease,
and the total specific heat was measured at same conditions.
Finally, we gained the specific heat of the sample by subtracting
the background specific heat from the total specific heat. The
thermal conductivity along the c-axis was characterized using
PPMS with thermal transport options, and the four-probe lead
configuration method was used. During the measurement, the
matching gold-plated copper bar in PPMS was used as leads.
More detail for the measurement of carrier concentration, specific
heat and thermal conductivity can be find in Supplementary
Material. The diffuse scattering studies, carrier concentration,
electrical conductivity, and thermal conductivity, were carried out
on the same crystal, and the sample for the measurement of the
specific heat was cut from this crystal too.

RESULTS AND DISCUSSION

Elastic Diffuse Scattering
To further understand the structural details of Ba3Co2O6(CO3)0.7,
we study the elastic diffuse scattering behavior of it. Figures 1C,
D show the contour plot of neutron intensity at 50 K in the (H, K,
0) plane of Ba3Co2O6(CO3)0.7 with L � 0 and L � −2.85. The
sharp spots in Figure 1C demonstrate the good crystallinity of the
single crystal. The signals of strong diffuse scattering are clearly
observed at L � −2.85. Figure 1F, corresponding to the red solid
line in Figure 1E, shows the elastic intensity along the [H, H, 0]

direction and the relative diffuse intensity of each diffuse spot.
Morgan et al. [30] have analyzed the short-range diffuse
scattering using reverse Monte Carlo method and concluded
that the diffuse scattering has short-range correlation between
the disorder vibrations of polyatomic CO3

2−.
Figure 1G shows the temperature dependence of the

superlattice (1/3, 1/3, 2.85) reflection. Upon warming, the
intensity starts to decrease at 150 K and approaches a
T-independent constant greater than 250 K. Thus, the
vibrations of polyatomic CO3

2− should be affected by the
thermal effect, and the localization of the CO3

2− cluster should
be relaxed.

Electrical Transport Properties
To obtain the electrical transport properties of Ba3Co2O6(CO3)0.7
single crystal, Hall carrier concentration nH was collected at a
reversible magnetic field of 2 T, and Hall mobility μH was
determined with zero-field resistivity, as shown in Figure 2.
The exponential increase of carrier concentration with rising
temperature indicates the thermal excitation of carriers. The
charge polarity is dominated by holes in the measured
temperature range, which is consistent with the positive
Seebeck coefficients reported by Igarashi et al. [31]. The low
carrier concentrations suggest that the further acceptor doping is
required for TE applications. As marked in Figure 2A, there are
two anomalies at 150 and 250 K, which agrees very well with the
diffuse data and confirmed that CO3

2− ion is a conductor in the
system.

The temperature versus μH of Ba3Co2O6(CO3)0.7 single crystal
is nonmonotonic, as shown in Figure 2B. The calculated mobility
involving both the ionized impurity scattering and acoustic
phonon scattering can well match the experimental values
over a wide temperature range. μH follows a temperature
dependence closing to T1.5 at low temperature range, implying
that ionized impurity scattering dominates at low temperature in
Ba3Co2O6(CO3)0.7 single crystal. We believe that the ionized
impurity scattering relates to polyatomic CO3

2−. As the
temperature increases, the localized ordering of CO3

2−

weakens, and the scattering of ionized impurity also
diminishes. On the other hand, the lattice vibrations become

FIGURE 2 | Temperature dependence of (A) carrier concentration nH and (B) Hall mobility μH along the c-axis for Ba3Co2O6(CO3)0.7. (B)Calculated carrier mobility
(magenta solid line) took into account the ionized impurity scattering (gray dashed line) and acoustic phonon scattering (red dashed line) contributions.
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stronger with increasing temperature. These two factors together
lead to the acoustic phonon scattering, gradually overshadowing
the ionized impurity scattering and becoming the dominant
scattering mechanism in the material, which causes a negative
temperature-dependence slope of μH greater than 250 K. The
CO3

2− is delocalized when T > 250 K, which might introduce
other scattering mechanisms affecting the carriers transports and
make the carrier mobility lower than the theoretical value.

Results of CP(T)
To investigate the thermal effect in Ba3Co2O6(CO3)0.7, the
specific heat CP was measured in the temperature range from
2 to 250 K at zero field. As shown in Figure 3A, the profile of data
is very smooth, and no obvious peak is detected, indicating the
absence of structure and magnetic transitions. The inset of
Figure 3A displays the data as a CP/T versus T2. According to
the Debye model, the lattice term of the total specific heat CP/T is
linear with T2 at low T, but the data demonstrate a deviation from
the linear relationship at low temperature and a nonzero intercept
(approximately 0.29 J ·mol−1 · K−2) at 0 K. The nonzero intercept
is an order of magnitude larger than that for NaCo2O4, which is a
strongly correlated electronic cobalt system [32], and suggests
Ba3Co2O6(CO3)0.7 as also a strongly correlated electronic system.

In order to further study the specific heat of
Ba3Co2O6(CO3)0.7, a fitting was gained by using the
Debye–Einstein model, which can fit the lattice specific heat
data well at both low and high temperature. The model is
written as follows [33]:

Cp(T) � CD[9R( T

θD
)3 ∫xD

0

x4ex

(ex − 1)2dx]
+∑

i

CEi
⎡⎢⎢⎢⎣3R(θEi

T
)2 exp(θEiT )

[exp(θEiT ) − 1]2
⎤⎥⎥⎥⎦ , (1)

where the first term is the contribution from the acoustic branch
(Debye term), and the remaining terms are related to the
contribution of the optical branch (Einstein terms). CD and
CEi are the relative weights of the Debye and Einstein terms,

respectively. R is the universal gas constant. θD and θEi represent
Debye and Einstein temperatures. There are 13.8 atoms per
formula in our system. The best fitting for our data results is
one Debye term and three E terms with a ratio 1:6:2.8:4 for CD:
CE1:CE2:CE3 and θD � 163 K, θE1 � 816 K, θE2 � 179 K, and
θE3 � 290 K, respectively.

As there is no distinct phase transition in the specific heat data, and
the magnetic long-range order was not observed down to 2 K [34], the
deviation of the experimental data from the fitted values indicates the
presence of short-range magnetic fluctuations. Figures 3B, C display
the magnetic specific heat, CM, by subtracting the fitted lattice
contribution from raw data, and the related magnetic entropy SM,
respectively. The SM enhances with increasing temperature, and almost
100% recovered the theoretical value 17.6 J ·mol−1 · K−1 at

FIGURE 3 | (A) The total specific heat CP of Ba3Co2O6(CO3)0.7 measured at zero field. The red line represents the lattice contribution by Eq. 1. The inset shows the
CP/T vs T

2 (B) Themagnetic specific heat is obtained by subtracting the lattice contributionCp from the raw data. (C)Magnetic entropy obtained by integratingCM/T over
the entire measured temperature range.

FIGURE 4 | The temperature dependence of the thermal conductivity κc
and the lattice thermal conductivity (κc_L) along the c-axis of Ba3Co2O6(CO3)0.7
at zero field. The black line is experimental data of the thermal conductivity; the
red line is κc_L, and the green one represents the result of fitting by Eq. 2.
The magenta dashed line is the contribution of the grain boundary and the
point defect scattering, and the blue one is Umklapp process scattering.
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approximately 100 K. Both contributions of spin and orbital degrees of
freedom are suggested to be considered [35]: Co4+ has high-spin state
with S � 1/2 (3d5), and Co3+ has intermediate-spin state with S � 1
(3d6), leading to SM� R(0.7 ln 6 + 0.3 ln 18) � 17.6 J ·mol−1 · K−1, as
shownby the blue dotted line inFigure 3C. Theremaybe spin-phonon
scattering in the huge magnetic entropy regimen that interferes with
the thermal conductivity.

Thermal Transport Properties
Figure 4 shows the temperature dependence of the total thermal
conductivity κc and the lattice thermal conductivity κc_L of
Ba3Co2O6(CO3)0.7 parallel to the c-axis from 3 to 250 K κc consists
of κc_L and the electronic thermal conductivity κc_e, where the
electronic thermal conductivity can be determined by the
Wiedemann–Franz law (κe � σLnT, where the Lorenz number
Ln � 2.45 × 10–8W ·Ω · K−2) and subtracted. At low temperatures,
κc and κc_L almost completely overlap due to the very small electronic
thermal conductivity. As the temperature increases, κc and κc_L begin
to separate because of the exponential increase in conductivity.
Although κc_e is maximum at 250 K, it is only a few percent of
κc_L. The contribution of phonon to κc is domain. κc_L increases
rapidly at low temperature with the dominant boundary scattering,
which displays a κc_L∝ T3 dependence. A maximum with a value of
13.5W ·m−1 · K−1 appears at approximately 12 K, where the
Umklapp processes with exp (θD/bT) dependence become frequent
and enough to compare with boundary scattering. One notes that the
peak of κc_L is an order of magnitude smaller than that of other cobalt
oxides, such as Ca3Co2O6 [36]. This difference may be caused by the
superlattice in Ba3Co2O6(CO3)0.7, which can enhance the scatting of
κc_L. As temperature increases further, κc_L drops very quickly and
reflects that the Umklapp process scattering gradually becomes the
main scattering mechanism. When the temperature is higher than
60 K, the trend of the curve gets flat. At approximately 250 K, the
lattice thermal conductivity of Ba3Co2O6(CO3)0.7 along the c-axis is
5.02W ·m−1 · K−1.

The data of κc_L were fitted to the formula given by the Debye
model of phonon thermal conductivity[37].

κc_L � kB
2π2]p

(kB
Z
)3

T3 ∫θD/T

0

x4ex

(ex − 1)2τ(ω, T)dx, (2)

where kB is the Boltzmann’s constant, ]p is the average sound
velocity, ħ is the Planck constant, x � ħω/kBT, ω is frequency, and
τ is the mean lifetime of phonon. The phonon relaxation is
usually defined as follows:

τ−1 � ]p/L + Aω4 + BTω3 exp( − θD/bT). (3)

These three items correspond with phonon boundary scattering,
phonon point defect scattering, and the phonon–phonon
Umklapp processes, respectively. L, A, B, and b are the fitting
parameters. ]p can be calculated by the Debye temperature
θD � 163 K obtained by the fitting above and Eq. 4:

θD � Z]p
kB

(6π2N

V
)

1 /

3

(4)

where N is the number of atoms in crystal, and V is the volume of
crystal, and then we obtain the average sound velocity of the
sample ]p ≈ 1,343 m · s−1.

The best fitting is shown in Figure 4 as green solid line with
L � 1.6 × 10–5 m, A � 1.7 × 10–41 s3, B � 7.4 × 10–29 K−1 s2, and
b � 2.7. The lattice thermal conductivity is mainly the
contribution of phonons below approximately 18 K. As the
temperature increases, the fitted values gradually deviate from
the raw data. An extra contribution of the thermal conductivity
has also been observed in Ca3Co2O6 [38]. In combination with
the heat capacity, the deviation of thermal conductivity might be
due to the overestimation of the lattice thermal conductivity,
because of the magnetic contribution to the total thermal
conductivity: (1) The magnetic entropy increases rapidly after
18 K; in the meantime, κc_L starts to be higher than the theoretical
value. (2) After the magnetic entropy reaches saturation at
approximately 100 K, the κc_L also decreases slowly with
growing temperature at the same rate as the theoretical one.
As the electron concentration is very low, the electron–phonon
scattering is not dominant in the system, and the CO3

2− affects
grain boundary and defect.

CONCLUSION

In summary, we have studied the structural, electrical, and
thermal transport properties of quasi–one-dimensional
Ba3Co2O6(CO3)0.7 single crystal and the connection between
the lattice structure, magnetism, and its transport properties.
Neutron diffuse reveals that a modulated superstructure of CO3

2−

is formed in Ba3Co2O6(CO3)0.7. The main hole carriers in the
systems are continuously excited with increasing temperature
and scattered not only by short-range ordered polyatomic CO3

2−

at low temperature, but also by acoustic phonon and nonlocalized
CO3

2− at high temperature. No lattice and magnetic phase
transition are observed by the specific heat measurement, and
the magnetic entropy is consistent with mixed Co3+ and Co4+

valence. The thermal conductivity of Ba3Co2O6(CO3)0.7 shows an
enhancement at higher temperatures over classic phonon heat
transfer due to the contribution of the itinerant magnetism. The
unique lattice and transport properties in Ba3Co2O6(CO3)0.7
suggest a potential superlattice designs for regulating the TE
properties.
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