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Abstract—Activity Recognition (AR) in older adults living with
Neurocognitive disorders caused by diseases such as Alzheimer’s
is still a challenging research problem. The inherent natural
variation in performing an activity increases while repeating
the same activity for an older adult, let alone the variation
introduced when another older adult performs the same activity.
Moreover, the challenges in acquiring the labeled data while
preserving the privacy, availability of annotators with domain
knowledge, aversion towards cameras even for a minimal amount
of time for ground truth data collection, and psychological and
mental health status make AR for older adults challenging. In
this paper, we postulate a self-taught learning-based approach
that helps recognize activities with variations that are not being
directly seen during the training phase. We hypothesize that
the features extracted using deep architectures from unlabeled
data instances can learn general underlying representations of
activities efficiently and help improve activity classification in a
supervised setting, although the data instances in labeled data
do not follow the generative distribution of that of unlabeled
data. We posit real data from a retirement community center
using our in-house SenseBox infrastructure and survey-based
assessments concurrently done by a clinical evaluator to study the
relationship between activities and functional/behavioral health
of older adults. We evaluate our proposed self-taught learning-
based approach, STAR, using the presented in-house Alzheimer’s
Activity Recognition (AAR) dataset acquired in a real-world
deployment in 25 homes which outperforms the state-of-the-art
algorithm by about 20%.

Index Terms—Unsupervised Learning, Self-taught Learning,
Pre-training, Human Activity Recognition

I. INTRODUCTION

Recent innovative designs and developments of Internet of

Things (IoT) devices have caused an increase in the research

and commercialization of technologies that use wearable and

ambient sensor modalities. Such consumer-grade IoT devices

have helped develop various state-of-the-art methods and

frameworks in the domain of human health monitoring relying

on activities of daily living (ADLs) and instrumental activi-

ties of daily living (IADLs) for early detection of physical

mobility and cognitive health impairments. Monitoring health

conditions and diagnosing the precursor to a specific functional

and/or behavioral health symptom are usually performed by

conducting various clinical and survey-based assessments,

which involve multiple trips to the hospital and always turn out

We acknowledge NSF CAREER Award #1750936 and Alzheimer’s Asso-
ciation, Grant/Award #AARG-17-533039.

to be a hassle, especially for older adults. On the other hand,

an automated system that can help with the early detection of

anomalies or abnormalities in an older adult’s habitual activi-

ties or behavior could alert the caregiver to take an appropriate

action just in time. Such automated systems could potentially

improve the quality of life for older adults while they live

independently in their preferred living environment. A variety

of commercial wearable devices1,2 recently has flooded the

market for healthcare applications. Ambient sensors such as

passive infrared sensors [1]–[3], magnetic sensors, radars [4],

acoustic sensors [5], [6], everyday smart objects, and device-

free sensing (WiFi [7]) have helped researchers to build novel

human activity recognition models.

Although existing smart-home sensor systems [8], [9] for

activity recognition can help detect early symptoms of dis-

eases, they are often compromised by significant practical

challenges. Our overarching objective in this work is to

identify such challenges through our real-world deployment in

25 community-dwelling apartments in a retirement community

center and postulate appropriate solutions to mitigate underly-

ing system and data-related problems. Below, we articulate

the practical challenges that exist with smart home sensor

systems to scale and adapt the older adults’ activity recognition

(AR) models. (i) The reliability of AR models depends on the

availability of large-scale annotated ground truth or labeled

data. In this work where the older adults living with neurode-

generative disorders, it is challenging to monitor and recruit a

vast number of human subjects to collect labeled data and train

our proposed STAR model, (ii) Obtaining labels for the data

is a humungous task where the dependence on the caretakers

to provide the labels becomes a necessity. However, the labels

provided by the caretaker can be irrelevant because of the lack

of domain knowledge which eventually reduces the robustness

of the machine learning algorithm. (iii) Camera systems could

be leveraged to obtain the ground truths. However, cameras

pose privacy concerns, especially when individuals live with

neurodegenerative disorders. On the other hand, older adults

generally have an aversion towards having a camera around

them for a prolonged period and feel that as an invasion of

their privacy, which makes acquiring ground truth a herculean

1https://www.fitbit.com/home
2https://www.empatica.com/en-eu/research/e4/
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task. Motivated by this, we propose STAR, an unsupervised

self-taught activity recognition model that could leverage the

benefits of both minimal labeled data and abundant unlabeled

data and learn the generic feature representations from limited

labeled data to work effectively in the presence of unlabeled

older adults’ data.
Several machine learning techniques have been leveraged

in order to overcome the problem of limited labeled data

instances. Most algorithms fall into the broad classification

of Active Learning, Transfer Learning, Semi-Supervised tech-

niques. Active learning helps acquire the labels from an oracle

by sampling the most informative data instances [10]. The

major challenge associated with active learning techniques

is high computation time, as the algorithms require online

training. Another challenge with active learning involves the

quality of the annotation acquired through crowd-sourcing

platforms. The second category of algorithms is transfer learn-

ing, which involves transferring meaningful information from

a source domain to a target domain. Due to the difficulty of

acquiring data with older adults, transfer learning is one of the

most appropriate techniques. Finally, some Semi-Supervised

techniques have been found useful where partial label in-

formation from the ground truth is leveraged in fine-tuning

the algorithm’s parameters. Most studies involving transfer

learning and semi-supervised techniques have been tested on

a smaller set of activities, usually confining to ADLs.
Another major challenge in the field of activity recognition

for older adults has been scaling AR that can help adapt

a developed sensing system and developed model to a new

scenario. Unfortunately, AR data is generally susceptible to

high inter-class and intra-class variability [10]. Older adults,

in particular, exhibit such variations more frequently when

compared to young adults. Such increased variations nega-

tively impact the performance of AR models for older adults.

Therefore, designing an AR model for a general population,

and adapting it for older adults may cause the AR model to

fail. Due to the additional variations introduced by older adults

due to the evolving physical and cognitive health changes due

to ageing, developing a generalized and scalable AR model

for older adults is non-trivial. The major contributions of the

paper are enumerated below.

• Self-Taught Learning Framework: We identified the

most challenging problem of the availability of abun-

dant unlabeled data and minimal labeled data. To tackle

this problem, we propose a self-taught learning-based

methodology to address the inherent activity varia-

tions across the same and different older adults with

Alzheimer’s. This methodology leverages a pre-training

phase to learn the representations from unlabeled data and

represent the labeled data in the new representation space

to utilize the information from the activities not listed in

the labeled space.

• Data Collection from Multiple Smart Homes: We pre-

sented a data collection system for activity recognition in

a smart home setting deployed and used in this study. We

described the data collection procedure and the dataset

(namely Alzheimer’s Activity Recognition (AAR) dataset,
which comprises sensor data and survey-based data that

can help assess an older adult’s functional and behavioral

health.

• Evaluation in practical setting: We demonstrated that

the proposed framework, STAR helps reduce the mis-

classifications related to the system-level faults and data

collection errors. Besides, we showcased that a simpler

CNN network is sufficient to boost the performance of

the downstream task using STAR. Finally, we evaluated

STAR using the in-house Alzheimer’s Activity Recog-

nition (AAR) dataset collected from 25 apartments in

a retirement community center with IRB approval and

contrasted the performance to a publicly available dataset

that comprises a different age-group population.

II. RELATED WORK

This section will discuss the related work regarding tech-

niques that improves classification performance with a min-

imal amount labeled dataset and unlabeled dataset. Active

learning, a popular method that falls under the former category,

determines the most uncertain data instances and queries the

label from an annotator. Such methods drastically reduce

the labeling efforts, time and help improve the classification

performance in a supervised setting. Another popular method,

Transfer learning, lets us transfer knowledge from a source

domain to a target domain and thus minimize the training

effort. The target domain could be a different person, scenario,

surroundings, and so on. Transfer learning can be broadly

classified as Inductive, unsupervised, and transductive based

on the similarity between the source and target domains.

STAR falls under the category of the inductive transfer. Several

algorithms have been proposed for activity recognition using

transfer learning to boost the classification performance in the

target domain [1], [11], [12]. In a study, the authors have

proposed a framework that leverages autoencoder features

from unlabeled data and transfer the first two layers to the

target domain to recognize unseen activities in the target

domain [13]. In such works, the assumption remains that

the source and target domain label space follows the same

distribution in contrast to our approach, STAR, which assumes

otherwise.

Our proposed framework, STAR, falls under the category

of Self-taught learning, which is a special case of inductive

transfer learning, where the model learns from the unlabeled

data. Besides, the primary assumption is that the labeled data

and the unlabeled data follow different generative conditional

distributions (a different subset of activities are present in

both labeled and unlabeled data domains). Such an assumption

has proven to learn good representations of the input data

from the unlabeled data and help aid the classification task

in a supervised setting [14]. Self taught learning has shown

to be effective in various fields such as audio classification

[15], [16], E-Nose in Wound Infection Detection [17], facial

beauty prediction [18], image classification [14]. In a study,

the authors created codebooks of features called basis vectors
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Fig. 1. Overall Architecture to illustrate the pre-training phase, the weight
transfer and how it aids the classification in supervised setting

corresponding to each activity using sparse encoding [19]

from the unlabeled data. A distance-based methodology was

employed to determine the most appropriate basis vector, and

the basis vector-label pair were classified in a supervised

setting. The computational complexity involved in determining

the activity-specific basis vectors and removing redundant

basis vectors were the limitations of this methodology.

Another paradigm of machine learning that leverages un-

labeled data to aid supervised classification is self-supervised

learning. Self-supervised learning uses representations learned

from unlabeled data through unsupervised transformations and

further uses transfer learning to assist the downstream task

in a supervised setting similar to our approach. However,

STAR does not leverage any label information during the

representation learning phase. Additionally, we believe that

the augmentations such as jittering, cropping, rotation [20]

of the data do not represent the true variation in the activity

recognition dataset. We believe that the feature engineering

step of using wavelet coefficients would expose the variations

in the time-frequency domain to the pre-training and classifi-

cation phases. In AR, authors of [20] proposed a multi-task

learning framework to learn auxiliary tasks (augmentation of

the unlabeled data) during the pre-training phase and used the

primary task to perform classification, which makes it a semi-

supervised approach.

III. SELF TAUGHT LEARNING

This section describes the proposed methodology that com-

prises an unsupervised feature learning phase, a feature fusion

component, and the supervised classification phase. A detailed

pictorial representation of the pipeline is described in Figure 1.

A. Unsupervised Pre-training

We propose to leverage the unlabeled data to learn the

parameters using generative stochastic neural networks in the

pre-training phase. The notion for using the unlabeled data

is because the unlabeled data comprises activities outside of

the labels included in the labeled dataset. In this study, we

propose to use Deep Belief Networks (DBN) to learn high-

level representations (from unlabeled data) and further use the

learned parameters (from unlabeled data) to generate high-

level representations for labeled data for the classification task.

Let us now describe the mathematical formulation of the pre-

training phase using DBN. A DBN is a probabilistic generative

network that is formed by stacking Restricted Boltzmann

Machines (RBM). RBMs are probabilistic neural networks that

comprise of neurons in two groups (visible and hidden) and

form a bipartite graph between them, with a restriction that the

neurons are not connected to each other in the same group.

Let us denote the visible layers as vi and hidden layers as hj ,

where i and j represent the neurons in the visible and hidden

layers, respectively. The weight update required during the

training phase of the RBM is performed using gradient descent

and is given by equation 1.

wij(t+ 1) = wij(t) + η
∂P (v)

∂wij
(1)

In eq 1, η represents the learning rate, wij is the weight

vector connecting the visible layer and the hidden layer, and

P (v) is the probability distribution over the visible vectors

defined using an energy function is shown in equation 2:

P (v) =
1

Z

∑

h

exp(−E(v,h)) (2)

Here, E(v,h) is the energy function. A lower value of energy

function is desirable and is thus minimized during training

by adjusting the weights and biases. The derivative of the

log probability in equation 1 with respect to the weights are

defined as

∂P (v)

∂wij
=< vihj >data − < vihj >model (3)

where <> denotes the expectations under the distribution by

the subscript. Since there is no connection among the hidden

layers and among visible layers, it is possible to obtain <
vihj >data for the visible layer given the hidden layer (using

eq. 5) and hidden layer given visible layer (using eq. 4).

p(hj = 1|v) = σ(bj +
∑

i

viwij) (4)

p(vi = 1|h) = σ(ai +
∑

j

hjwij) (5)

However, obtaining < vihj >model is cumbersome as it

requires alternating Gibbs Sampling. Hence, we use [21] to

train RBM using Contrastive Divergence (as explained in

algorithm 1). Besides, training DBNs is a greedy process; each
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Algorithm 1 : Pseudocode of Contrastive Divergence, CD()

Input: unlabeled data (Xu)
Output: RBM trained weights (WRBM )

Initialization : visible units, v ← Xu

1: for epoch = 1 to E, total epochs do
2: for k = 1 to N , total number of instances in Xu do
3: update hidden units, p(hj = 1|v)
4: reconstruction step: p(vi = 1|h)
5: update hidden units, p(hj = 1|v)
6: update weight, wij(t+ 1) = wij(t) + η ∂P (v)

∂wij

7: end for
8: end for
9: return WRBM

RBMs are individually trained before moving on to the next

RBM. The activations of the first RBM (after training) are fed

as an input to the second RBM, and so on (as explained in

algorithm 2).

B. Supervised Classification

Before performing the classification task, it is essential to

obtain the representations of labeled data through the unla-

beled data. We use the same feature extraction methodology

(using DBN) proposed in the unsupervised pre-training step

initialized with the parameters learned using the unlabeled data

to achieve these representations. This step allows us to repre-

sent the labeled data in the new representation feature space

(from unlabeled data). Let us assume to have m training data

instances denoted by Xl with class labels yl. The unlabeled

data be denoted as Xu. Besides, let us denote the DBN feature

extraction function as fDBN (.), so, the representation of the

labeled data in the new representation space, Rl is defined

as Rl = fDBN (Xl). Now, the new data instance for the

supervised classification task becomes ([Xl, Rl], yl).

IV. ALZHEIMER’S ACTIVITY RECOGNITION (AAR)

DATASET

This section presents the Alzheimer’s Activity Recognition

(AAR) dataset created to study the relationship between

activities and behavioral health, especially Dementia. AAR

dataset was acquired from a population of 25 older adults

living in a retirement living facility and possessing symptoms

consistent with Dementia from a mix of individuals who are

healthy, mild cognitive impairment, and cognitive impairment.

The dataset has two components, sensor-based and survey-

based data. The aim of capturing the sensor-based dataset

was to record the movement patterns (activities performed

on a daily basis: ADLs and IADLs; Table I). In contrast,

the survey-based questionnaire aimed to acquire the current

state (clinical evaluation) of the individual’s functional and

behavioral health. Below, we describe the data collection

procedure, system architecture, and details of both the sensor

and survey-based datasets.

A. Sensor System Architecture

To collect the AAR dataset (especially the sensor-based

data), we developed a raspberry-pi based system to integrate

Algorithm 2 : Pseudocode of extracting self-taught features

Input: unlabeled data (Xu), labeled data (Xl), CD(Xu)
Output: self-taught data, Xself

1: for each RBM in DBN do
2: WRBM ← training cd(Xu)
3: WDBN ← stack (WRBM )
4: end for
5: for m = 1 to M , total number of instances in Xl do
6: Rt ← Compute forward pass, fDBN (Xm

l )
7: temp ← append(Xm

l , R(t))
8: end for
9: Xself ← temp

10: return Xself

various sensors (extended from SenseBox [8]). Raspberry-

pi is a Linux-based miniaturized computer that consists of

Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit proces-

sor, which clocks at 1.4GHz with 1GB LPDDR2 SDRAM

onboard. The role of the raspberry-pi in a smart-home is to

act as a hub, connect to an existing network, provide internet

connectivity to various sensors in the smart-home, and finally

log the data. The notion of such a system was to develop a

system that can be readily deployable in a new home. Further,

the system is comprised of two categories of sensors: wearable

and ambient. Empatica-E4 was used as the wearable sensor to

record the movement (through accelerometry; 32HZ sampling

frequency), Electro-Dermal Activity (EDA), skin temperature,

and heart-rate variability. Besides, ambient sensors such as

passive infrared sensors (PIR; in each room), reed switches

(on each door), and object tags (on objects used on a daily

basis) were connected to the hub. The hub was in continuous

connection with a server (present in the author’s laboratory)

via a reverse-ssh tunnel for constant monitoring of the state

of the hub and the connected sensors. Finally, we integrated

cameras with the hub (for limited time usage) to acquire

the ground truth and the cameras were place in each room.

We further elaborate the dataset collection in the following

sections.

B. Sensor-based Data Collection

As soon as the hub and the ambient sensors are placed in

strategic positions, we request the participating individuals to

wear the wearable device on their dominant hand (preferably,

although not compulsory). Now, we divide our data collection

duration into two phases: scripted activities and unscripted

activities. For the first two hours, the participants are requested

to perform scripted activities that involve both ADLs and

IADLs with a camera online for ground truth collection. For

the following 2 hours, the participants are monitored with a

camera for any activity (unscripted); however, none of the

team members of data collection will be present in the house.

Further, we leave the ambient sensors and the wearable device

to operate in the house (no cameras) to collect unlabeled data

for the next 20 hours. This procedure was repeated for 25

different participants in their own homes, where the home’s

layout was different from each other.
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TABLE I
LIST OF ACTIVITIES IN AAR DATASET

Categories Activities
Activities of Daily Living(ADLs) Sitting (Sit), Standing (St), Walking (Wa)

Instrumental Activities of Daily Living (IADLs)
Brushing Hair (BH), Folding Laundry (FL), Phone (Ph), Preparing Sandwich (PS), Sweeping (Sw),
Taking Trash Out (TT), Using Toothbrush (UT), Wash Hands (WH), Wear Jacket (WJ),
Wear Shoes (WS), Writing (Wr)

C. Survey-based Data Collection

During the scripted activities collection (described in the

previous section), we requested the participants to perform cer-

tain activities based on the scales used for clinical evaluation

of functional and behavioral health assessment (described in

this section). First, the survey-based questionnaire collects the

basic demographics of the participants. The inclusion criteria

to participate in the study includes i) must be above 65

years of age, ii) must be a candidate for the symptoms of

dementia due to old age or any underlying neurodegenerative

disorders. Hence, the first survey we conducted uses the Saint

Louis University Mental Status (SLUMS) Examination to help

screen for Alzheimer’s or any other type of dementia. The

advantage of SLUMS is that it can identify people with milder

cognitive problems even if it has not risen to the level of

dementia. The second survey we collected was related to

mental health. We used the Geriatric Depression Rating Scale

to measure the participant’s mental depression state. Besides,

we used the Geriatric Anxiety Scale to measure older adults’

anxiety levels. Next, we used the Barthel Scale and the Lawton

Instrumental Activities of Daily Living Scale to measure

the performance of ADLs and IADLs, respectively. These

measures were ideal for this study as they were performance-

based and would provide us with the current state of functional

health (can be compared to sensor-based data). We would ask

the participants to perform the scripted activities, and based on

their performance, we would score them, which we believe can

help us measure their ability to carry out everyday activities

required for independent living.

V. EXPERIMENTATION PIPELINE

The experiments were conducted on a Linux server con-

sisting of i7-6850K with 4x NVIDIA GeForce GTX 1080Ti

GPUs and 64GB RAM. Data preprocessing, feature extraction,

classification, deep learning techniques were implemented

and visualized using python. The deep learning tasks were

implemented using PyTorch libraries.

A. Preprocessing

This study only considers the body-worn sensor data for

analysis (only accelerometer for AAR dataset). Body-worn

sensors are affected by motion artifacts. For instance, if the

Empatica E4 is not tight enough, then the devices’ slight move-

ments on the wrist can cause motion artifacts. Motion artifacts

are nothing but high-frequency noise. Hence, we employ a

median filter of window size four, which acts as a low pass

filter. We compared the effect of 2nd order Butterworth filter

and Kalman filter and found the results comparable. Hence,

we chose the median filter as it was computationally faster.

Further, a windowing approach was employed to prepare the

data of the AAR dataset. The body-worn sensors provide

continuous time-series, and a patch of the series represents

an activity takes, thus requiring a windowing approach. A

window size of 1 second with an overlap of 0.5 seconds

was used for each axis and then concatenated. Additionally,

we performed a feature extraction step after the windowing

phase. We extracted discrete wavelet transform coefficients

(using Daubechies 5(db5) scaling function) for each window

and used that as the input data for the unsupervised feature

learning phase.

B. Pipeline and Model Parameters

In the pre-training phase, we feed the unlabeled data (wid-

owed (1sec) with overlap (0.5sec)) after wavelet transform to

the feature extraction function that uses DBN to learn the

representations. The raw input data instance vector’s size was

(3 ∗ 32), where 3 is the number of accelerometer channels

and 32 is the window size. Besides, the wavelet coefficients

remains with the same dimension. We stacked three RBMs

with 90, 80, 70 neurons in each RBM to form DBN. We

opted to use a decreasing number of neurons so that the

representations are both sparse and with a reduced dimension.

Following the pre-training phase using the unlabeled dataset,

we preserved the network structure and froze the weights.

The labeled dataset was then passed into the preserved pre-

trained network to acquire the representations, making the

data instance to a size of (3 ∗ 32 + 70) for the supervised

classification task.

C. Evaluation Strategy

To evaluate the effectiveness of the proposed methodology,

we first visualize the representations learned from the DBNs

for the labeled data. Further, we evaluate the performance of

the classifiers using classification accuracy, precision, recall,

f1-score, markedness and Informedness [22]. We noticed that

the AAR dataset was imbalanced which suggests that accuracy

is not the best choice of metric for model comparison. Instead,

we use Informedness, and markedness for comparison because

Informedness tells us about how well the model has learned

the positives and negatives of classification while markedness

tells us the trustworthiness of those positive and negative

predictions [22], [23]. We also employ a 70-20-10 split for

training, testing, and validation for shallow learning and deep

learning approaches. The validation set for deep learning

algorithms was used to tune the hyper-parameters and select

the best model. The validation set and test set were truly held

out data and were neither a part of the training phase nor the

feature extraction phase. We have a massive set of unlabeled
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Visualization of representations of labeled data in the new representa-
tion space learned using self-taught-learning for a) 2 activities , c) 4 activities
and e) 14 activities without pre-training; b) 2 activities , d) 4 activities and f)
14 activities after pre-training.

instances (50936470 instances) compared to 651844 labeled

instances for the AAR dataset before windowing.

VI. RESULTS

This section discusses the various analysis performed using

the AAR dataset. Before analyzing the classification task, it

is imperative to assess the quality of the representation of

the labeled data in the new self-taught space (obtained due

to pre-training). Thus, we leverage visualization techniques

to assess the quality of the representations. We perform

principal component analysis (PCA) of the multi-dimensional

representations to reduce the dimension to [1*20] for each in-

stance, and further perform t-SNE and use the first two t-SNE

components for visualization in 2D. Besides, the visualizations

are color-coded with respect to the class labels. Figure 2

shows such a visualization for the AAR dataset comparing the

representations of the raw data with the self-taught features.

Figure 2 a, c, e corresponds to the visualization of the data

after passing through the wavelet transform stage and Figure 2

b, d, f corresponds to that of the self-taught features of the

labeled data in the new representation space. In Figures 2

a, c and e, we infer that the data belonging to different

classes overlap with each other, which makes classifying such

data a challenging problem. On the contrary, Figure 2 b, d,

and f, shows clustering behavior in the new representation

phase. Such a visualization asserts our assumption that the pre-

training phase is able to learn representations corresponding

to different classes (underlying conditional probability distri-

bution of the data) in a way that similar classes are grouped

together. On the other hand, there is also an overlap of data

instances for some classes such as Wear Shoe and Writing.

We believe there are two explanations for such findings. First,

the visualization of the t-SNE is performed in 2-D; however,

the underlying data is multi-dimensional, which may cause

information loss. Secondly, the visualization is performed

at the feature level, that is, before the classification. The

deep learning algorithm especially contains a feature learning

phase that hierarchically learns higher-level representations

from input data and uses it for classification. Most learning

algorithm performance declines as the number of classes; in

our case, the number of activities decreases. To demonstrate

the scalability of STAR, we show the separability of clusters

of data instances belonging to the same class in the context

of the increasing number of classes in Figure 2.

Now that we have obtained a good representation of the

labeled data in a new representation space, we now aim to

perform the classification task. First, we used some popular

shallow learning algorithms such as k-NN, SVM, Random

forest, and Multi-layer perceptron to perform the classification

task. The notion behind this step was to check the efficacy of

our pre-training and self-taught learning step for algorithms

that highly depend on feature engineering. In contrast, we also

investigated if we could extract more meaningful features from

the self-taught features using deep learning approaches such as

Convolutional Neural Networks (CNN). We chose CNNs for

the deep learning approach because the convolution operation

makes the algorithm shift-invariant. In the AAR dataset, some

activities may have been performed in 3 seconds, and other

instances of the same activity may have been performed in 2

seconds. The shift-invariant property of convolution operation

in CNN ensures (at various depths of convolutional layers)

to gather this information and represent them as a higher-

level representation for the classification task. Table II shows

the hyper-parameters used to train the convolutional neural

network. Besides, the classification metrics have been listed

in Table III. Comparing the shallow learning algorithms for

the AAR dataset with/without self-taught features, we see

an increase of 2% in both informedness and markedness

metrics with a maximum of 44.56% for k-NN using the

proposed pre-training methodology. Such a result ascertains

the need to improve the feature representation of labeled

data and supports our decision for a deep learning-based

approach. Performing the same comparison with CNN-based

classification, we noticed a 36% improvement in informedness

and markedness metrics. Figure 3 shows the learning curves

of the CNN model comparing both with/without self-taught

learning. For AAR dataset, the model converges relatively

quickly at 10 epochs with a higher accuracy when compared

to the baseline CNN. Besides, Figure 4 shows the confusion

matrix for STAR. Interestingly, we notice that some of the

misclassifications are related to Standing activity. Activities

such as Wash Hands, Walking, Using Tooth Brush, Sweeping,
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(a) (b)
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Fig. 3. AAR Dataset: a) loss vs epoch, b) accuracy vs epoch; OPPORTUNITY
Dataset: c) loss vs epoch, d) accuracy vs epoch

Preparing Sandwich have been misclassified as Standing (2
- 15 %). We believe the reason for this is because each

of these activities was performed while standing. A part of

these activities constitutes standing, which makes it plausible

for some windows labeled as Wash Hands, Walking, Using
Tooth Brush, Sweeping, Preparing Sandwich activities could

contain the pattern of Standing. In addition, STAR can suc-

cessfully mitigate the practical challenges that arise during

our data collection drive. For instance, let us consider some

activities/sub-activities such as brushing hair, picking up phone
call, writing, wearing shoes. Most of the time, these activities

may not be detected by the wearable device based on its

dominant/non-dominant hand position. Alternatively, some of

these activities may be performed while sitting, as previously

discussed. However, based on the confusion matrix (Figure 4),

we notice a tremendous improvement in the detection of such

activities using the proposed methodology. We believe our

approach can also help mitigate the shortcomings of such

system-related and practical challenges as well.

Fig. 4. AAR Dataset: Confusion matrix generated for STAR

TABLE II
HYPER-PARAMETERS OF CNN MODEL

Hyper-parameters Values
No. of convolution layers 3
No. of filters in convolution layers 256, 256, 512
Convolution filter dimensions 5, 5, 5
No. of maximum fully connected layers 6
No. of neurons in fully connected layers 512, 256, 256, 128, 64, 14
Batch size 32

A. Comparison with Baseline

To better highlight the efficacy of our approach, we perform

two types of comparisons. First, we compare how the state-of-

the-art algorithm performs on the AAR dataset. Secondly, we

use a publicly available dataset to show how well the algorithm

scales to different scenarios.

1) State-of-the-art algorithms: The state-of-the-art algo-

rithm for a similar category of data includes pre-training

phase combined with a multi-task learning framework falling

under the category of self-supervised learning [20](discussed

in related work section). We evaluated the AAR dataset on

this algorithm and found the informedness and markedness

to be 68.09% and 68.11%. Comparing [20] with STAR, we

see that STAR outperforms the state-of-the-art algorithm. The

key difference between [20] and STAR lies in the pre-training

phase where we use a generative energy based model while

compared to a learning a focused variation or augmentation

version of the data. Additionally, we also compare our work

with other deep architectures known to perform well on

activity recognition datasets such as LSTM [24]. With LSTM,

we found the informedness and markedness to be 49.02% each

with the AAR dataset, which suggests that our framework

outperforms LSTM based networks.

2) Publicly available dataset: We chose OPPORTUNITY

dataset [25], [26] as the publicly available dataset for the

analysis. The OPPORTUNITY dataset comprises of both

wearable sensors and ambient sensor data totaling to a sum

of 145 attributes. In this study, we limit the usage of 77

attributes corresponding to the worn body sensors placed at

different locations on the body. The 77 attributes correspond

to the 3D accelerometer and 3D inertial measurement data

(3D acceleration, 3D rate of turn, 3D magnetic field, and

orientation of the sensor), and the sensors were placed at

various positions on the body for 4 participants. In this dataset,

some high level and low-level activities such as Relaxing,

coffee time, early morning, cleanup, sandwich time, unlock

the door, stir, lock the door, close door, reach the door, open

door, sip, clean, bite, cut, spread, release the door and move are

considered. Data corresponding to 2 participants constituted

the labeled data, and the remaining unlabeled data of the

same participants and all the data of another 2 participants

were considered unlabeled data. We also considered the null

class data to be a part of the unlabeled data pool from which

the features were derived during the pre-training phase. We

performed the same experiments as that of the AAR dataset

and report the analysis below. For shallow learning algorithms,

we found a substantial increase in the accuracies, approx. 8%
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TABLE III
EVALUATION METRICS: COMPARISON OF SHALLOW LEARNING AND DEEP LEARNING FOR DOWNSTREAM CLASSIFICATION TASK

Classifiers
Without Self-taught learning Using Self-taught learning

Precision Recall F1-score Informedness Markedness Precision Recall F1-score Informedness Markedness
k-NN 46.38 % 46.38 % 46.38 % 44.56 % 44.56 % 48.30 % 48.30 % 48.30 % 44.32 % 44.32 %
SVM 21.56 % 21.56 % 21.56 % 15.53 % 15.53 % 40.16 % 40.16 % 40.16 % 35.55 % 35.55 %

Random Forest 21.91 % 21.91 % 21.91 % 15.91 % 15.91 % 23.82 % 23.82 % 23.82 % 17.96 % 17.96 %
MLP 20.62 % 20.62 % 20.62 % 14.51 % 14.51 % 36.66 % 36.66 % 36.66 % 31.78 % 31.78 %
CNN 53.23 % 53.23 % 53.23 % 49.63 % 49.63 %
STAR 86.18 % 86.18 % 86.18 % 85.12 % 85.12 %

for SVM and approx. 7% using random forest. Besides, STAR
shows a 6% boost in accuracy for deep learning. We believe

that the both shallow and deep learning algorithms showed

improvement because of the following reasons: 1) the dataset

was captured from 4 users only, 2) the dataset comprises of

numerous features (77 attributes as discussed earlier) 3) the

dataset was captured in a lab environment due to which there

is less intra-class variability.

VII. CONCLUSION

In this paper, we have demonstrated that the challeng-

ing problem of AR for older adults can be boosted us-

ing self-taught learning, especially leveraging abundant un-

labeled data to aid the downstream classification task. We

have presented self-taught learning-based activity recognition

that has achieved approx. 36% increase in informedness and

markedness; and outperforms the state-of-the-art research. We

have also demonstrated that the proposed method, STAR is

scalable to other population as well by evaluating on a publicly

available dataset obtained for a different population. Besides,

we have deployed our data collection system, SenseBox, in

the real-world (in a retirement community) and collected 25

participants’ data envisioned to study the relationship between

activities and underlying functional and behavioral health. We

believe STAR could be scaled to other data sources, such as

sports analytics, fitness applications where capturing labeled

sensory data is challenging and acquiring abundant unlabeled

data is plausible.
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