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Abstract—Activity Recognition (AR) in older adults living with
Neurocognitive disorders caused by diseases such as Alzheimer’s
is still a challenging research problem. The inherent natural
variation in performing an activity increases while repeating
the same activity for an older adult, let alone the variation
introduced when another older adult performs the same activity.
Moreover, the challenges in acquiring the labeled data while
preserving the privacy, availability of annotators with domain
knowledge, aversion towards cameras even for a minimal amount
of time for ground truth data collection, and psychological and
mental health status make AR for older adults challenging. In
this paper, we postulate a self-taught learning-based approach
that helps recognize activities with variations that are not being
directly seen during the training phase. We hypothesize that
the features extracted using deep architectures from unlabeled
data instances can learn general underlying representations of
activities efficiently and help improve activity classification in a
supervised setting, although the data instances in labeled data
do not follow the generative distribution of that of unlabeled
data. We posit real data from a retirement community center
using our in-house SenseBox infrastructure and survey-based
assessments concurrently done by a clinical evaluator to study the
relationship between activities and functional/behavioral health
of older adults. We evaluate our proposed self-taught learning-
based approach, STAR, using the presented in-house Alzheimer’s
Activity Recognition (AAR) dataset acquired in a real-world
deployment in 25 homes which outperforms the state-of-the-art
algorithm by about 20%.

Index Terms—Unsupervised Learning, Self-taught Learning,
Pre-training, Human Activity Recognition

I. INTRODUCTION

Recent innovative designs and developments of Internet of
Things (IoT) devices have caused an increase in the research
and commercialization of technologies that use wearable and
ambient sensor modalities. Such consumer-grade IoT devices
have helped develop various state-of-the-art methods and
frameworks in the domain of human health monitoring relying
on activities of daily living (ADLs) and instrumental activi-
ties of daily living (IADLs) for early detection of physical
mobility and cognitive health impairments. Monitoring health
conditions and diagnosing the precursor to a specific functional
and/or behavioral health symptom are usually performed by
conducting various clinical and survey-based assessments,
which involve multiple trips to the hospital and always turn out
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to be a hassle, especially for older adults. On the other hand,
an automated system that can help with the early detection of
anomalies or abnormalities in an older adult’s habitual activi-
ties or behavior could alert the caregiver to take an appropriate
action just in time. Such automated systems could potentially
improve the quality of life for older adults while they live
independently in their preferred living environment. A variety
of commercial wearable devices!'? recently has flooded the
market for healthcare applications. Ambient sensors such as
passive infrared sensors [1]-[3], magnetic sensors, radars [4],
acoustic sensors [5], [6], everyday smart objects, and device-
free sensing (WiFi [7]) have helped researchers to build novel
human activity recognition models.

Although existing smart-home sensor systems [8], [9] for
activity recognition can help detect early symptoms of dis-
eases, they are often compromised by significant practical
challenges. Our overarching objective in this work is to
identify such challenges through our real-world deployment in
25 community-dwelling apartments in a retirement community
center and postulate appropriate solutions to mitigate underly-
ing system and data-related problems. Below, we articulate
the practical challenges that exist with smart home sensor
systems to scale and adapt the older adults’ activity recognition
(AR) models. (i) The reliability of AR models depends on the
availability of large-scale annotated ground truth or labeled
data. In this work where the older adults living with neurode-
generative disorders, it is challenging to monitor and recruit a
vast number of human subjects to collect labeled data and train
our proposed STAR model, (ii) Obtaining labels for the data
is a humungous task where the dependence on the caretakers
to provide the labels becomes a necessity. However, the labels
provided by the caretaker can be irrelevant because of the lack
of domain knowledge which eventually reduces the robustness
of the machine learning algorithm. (iii) Camera systems could
be leveraged to obtain the ground truths. However, cameras
pose privacy concerns, especially when individuals live with
neurodegenerative disorders. On the other hand, older adults
generally have an aversion towards having a camera around
them for a prolonged period and feel that as an invasion of
their privacy, which makes acquiring ground truth a herculean
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task. Motivated by this, we propose STAR, an unsupervised
self-taught activity recognition model that could leverage the
benefits of both minimal labeled data and abundant unlabeled
data and learn the generic feature representations from limited
labeled data to work effectively in the presence of unlabeled
older adults’ data.

Several machine learning techniques have been leveraged
in order to overcome the problem of limited labeled data
instances. Most algorithms fall into the broad classification
of Active Learning, Transfer Learning, Semi-Supervised tech-
niques. Active learning helps acquire the labels from an oracle
by sampling the most informative data instances [10]. The
major challenge associated with active learning techniques
is high computation time, as the algorithms require online
training. Another challenge with active learning involves the
quality of the annotation acquired through crowd-sourcing
platforms. The second category of algorithms is transfer learn-
ing, which involves transferring meaningful information from
a source domain to a target domain. Due to the difficulty of
acquiring data with older adults, transfer learning is one of the
most appropriate techniques. Finally, some Semi-Supervised
techniques have been found useful where partial label in-
formation from the ground truth is leveraged in fine-tuning
the algorithm’s parameters. Most studies involving transfer
learning and semi-supervised techniques have been tested on
a smaller set of activities, usually confining to ADLs.

Another major challenge in the field of activity recognition
for older adults has been scaling AR that can help adapt
a developed sensing system and developed model to a new
scenario. Unfortunately, AR data is generally susceptible to
high inter-class and intra-class variability [10]. Older adults,
in particular, exhibit such variations more frequently when
compared to young adults. Such increased variations nega-
tively impact the performance of AR models for older adults.
Therefore, designing an AR model for a general population,
and adapting it for older adults may cause the AR model to
fail. Due to the additional variations introduced by older adults
due to the evolving physical and cognitive health changes due
to ageing, developing a generalized and scalable AR model
for older adults is non-trivial. The major contributions of the
paper are enumerated below.

o Self-Taught Learning Framework: We identified the
most challenging problem of the availability of abun-
dant unlabeled data and minimal labeled data. To tackle
this problem, we propose a self-taught learning-based
methodology to address the inherent activity varia-
tions across the same and different older adults with
Alzheimer’s. This methodology leverages a pre-training
phase to learn the representations from unlabeled data and
represent the labeled data in the new representation space
to utilize the information from the activities not listed in
the labeled space.

« Data Collection from Multiple Smart Homes: We pre-
sented a data collection system for activity recognition in
a smart home setting deployed and used in this study. We
described the data collection procedure and the dataset

122

(namely Alzheimer’s Activity Recognition (AAR) dataset,
which comprises sensor data and survey-based data that
can help assess an older adult’s functional and behavioral
health.

« Evaluation in practical setting: We demonstrated that
the proposed framework, STAR helps reduce the mis-
classifications related to the system-level faults and data
collection errors. Besides, we showcased that a simpler
CNN network is sufficient to boost the performance of
the downstream task using STAR. Finally, we evaluated
STAR using the in-house Alzheimer’s Activity Recog-
nition (AAR) dataset collected from 25 apartments in
a retirement community center with IRB approval and
contrasted the performance to a publicly available dataset
that comprises a different age-group population.

II. RELATED WORK

This section will discuss the related work regarding tech-
niques that improves classification performance with a min-
imal amount labeled dataset and unlabeled dataset. Active
learning, a popular method that falls under the former category,
determines the most uncertain data instances and queries the
label from an annotator. Such methods drastically reduce
the labeling efforts, time and help improve the classification
performance in a supervised setting. Another popular method,
Transfer learning, lets us transfer knowledge from a source
domain to a target domain and thus minimize the training
effort. The target domain could be a different person, scenario,
surroundings, and so on. Transfer learning can be broadly
classified as Inductive, unsupervised, and transductive based
on the similarity between the source and target domains.
STAR falls under the category of the inductive transfer. Several
algorithms have been proposed for activity recognition using
transfer learning to boost the classification performance in the
target domain [1], [11], [12]. In a study, the authors have
proposed a framework that leverages autoencoder features
from unlabeled data and transfer the first two layers to the
target domain to recognize unseen activities in the target
domain [13]. In such works, the assumption remains that
the source and target domain label space follows the same
distribution in contrast to our approach, STAR, which assumes
otherwise.

Our proposed framework, STAR, falls under the category
of Self-taught learning, which is a special case of inductive
transfer learning, where the model learns from the unlabeled
data. Besides, the primary assumption is that the labeled data
and the unlabeled data follow different generative conditional
distributions (a different subset of activities are present in
both labeled and unlabeled data domains). Such an assumption
has proven to learn good representations of the input data
from the unlabeled data and help aid the classification task
in a supervised setting [14]. Self taught learning has shown
to be effective in various fields such as audio classification
[15], [16], E-Nose in Wound Infection Detection [17], facial
beauty prediction [18], image classification [14]. In a study,
the authors created codebooks of features called basis vectors
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Fig. 1. Overall Architecture to illustrate the pre-training phase, the weight
transfer and how it aids the classification in supervised setting

corresponding to each activity using sparse encoding [19]
from the unlabeled data. A distance-based methodology was
employed to determine the most appropriate basis vector, and
the basis vector-label pair were classified in a supervised
setting. The computational complexity involved in determining
the activity-specific basis vectors and removing redundant
basis vectors were the limitations of this methodology.

Another paradigm of machine learning that leverages un-
labeled data to aid supervised classification is self-supervised
learning. Self-supervised learning uses representations learned
from unlabeled data through unsupervised transformations and
further uses transfer learning to assist the downstream task
in a supervised setting similar to our approach. However,
STAR does not leverage any label information during the
representation learning phase. Additionally, we believe that
the augmentations such as jittering, cropping, rotation [20]
of the data do not represent the true variation in the activity
recognition dataset. We believe that the feature engineering
step of using wavelet coefficients would expose the variations
in the time-frequency domain to the pre-training and classifi-
cation phases. In AR, authors of [20] proposed a multi-task
learning framework to learn auxiliary tasks (augmentation of
the unlabeled data) during the pre-training phase and used the
primary task to perform classification, which makes it a semi-
supervised approach.

III. SELF TAUGHT LEARNING

This section describes the proposed methodology that com-
prises an unsupervised feature learning phase, a feature fusion
component, and the supervised classification phase. A detailed
pictorial representation of the pipeline is described in Figure 1.
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A. Unsupervised Pre-training

We propose to leverage the unlabeled data to learn the
parameters using generative stochastic neural networks in the
pre-training phase. The notion for using the unlabeled data
is because the unlabeled data comprises activities outside of
the labels included in the labeled dataset. In this study, we
propose to use Deep Belief Networks (DBN) to learn high-
level representations (from unlabeled data) and further use the
learned parameters (from unlabeled data) to generate high-
level representations for labeled data for the classification task.
Let us now describe the mathematical formulation of the pre-
training phase using DBN. A DBN is a probabilistic generative
network that is formed by stacking Restricted Boltzmann
Machines (RBM). RBMs are probabilistic neural networks that
comprise of neurons in two groups (visible and hidden) and
form a bipartite graph between them, with a restriction that the
neurons are not connected to each other in the same group.
Let us denote the visible layers as v; and hidden layers as h;,
where ¢ and j represent the neurons in the visible and hidden
layers, respectively. The weight update required during the
training phase of the RBM is performed using gradient descent
and is given by equation 1.

OP(v)
Gwij

In eq 1, 7 represents the learning rate, w;; is the weight
vector connecting the visible layer and the hidden layer, and
P(v) is the probability distribution over the visible vectors
defined using an energy function is shown in equation 2:

1
Pv) = 7 ; exp(—E(v,h)) 2)
Here, E(v,h) is the energy function. A lower value of energy
function is desirable and is thus minimized during training
by adjusting the weights and biases. The derivative of the

log probability in equation 1 with respect to the weights are
defined as

0P (v)

Bwij

=< Ulh_] >data — < Ulh’_] >model (3)

where <> denotes the expectations under the distribution by
the subscript. Since there is no connection among the hidden
layers and among visible layers, it is possible to obtain <
vihj >datq for the visible layer given the hidden layer (using
eq. 5) and hidden layer given visible layer (using eq. 4).

plhy = 1lv) = o(b; + ) viwy;) Q)

p(vi = 1|h) = o(a; + Y _ hjwi;) )

J

However, obtaining < v;h; >pmode; 1S cumbersome as it
requires alternating Gibbs Sampling. Hence, we use [21] to
train RBM using Contrastive Divergence (as explained in
algorithm 1). Besides, training DBNSs is a greedy process; each



Algorithm 1 : Pseudocode of Contrastive Divergence, C'D()

Input: unlabeled data (X5,)
Output: RBM trained weights (WrB)
Initialization : visible units, v < X,

1: for epoch = 1 to F, total epochs do
2 for k = 1 to N, total number of instances in X,, do
3 update hidden units, p(h; = 1|v)
4: reconstruction step: p(v; = 1|h)
5: update hidden units, p(h; = 1|v)
6 update weight, wq; (£ + 1) = w;; (t) + n 2L
p ght, wi; ij 5w,
7 end for
8: end for
9:

return Wgrpy

RBMs are individually trained before moving on to the next
RBM. The activations of the first RBM (after training) are fed
as an input to the second RBM, and so on (as explained in
algorithm 2).

B. Supervised Classification

Before performing the classification task, it is essential to
obtain the representations of labeled data through the unla-
beled data. We use the same feature extraction methodology
(using DBN) proposed in the unsupervised pre-training step
initialized with the parameters learned using the unlabeled data
to achieve these representations. This step allows us to repre-
sent the labeled data in the new representation feature space
(from unlabeled data). Let us assume to have m training data
instances denoted by X; with class labels y;. The unlabeled
data be denoted as X,,. Besides, let us denote the DBN feature
extraction function as fppn(.), so, the representation of the
labeled data in the new representation space, R; is defined
as Iy fpoen(X;). Now, the new data instance for the
supervised classification task becomes ([X;, Ry}, yi)-

IV. ALZHEIMER’S ACTIVITY RECOGNITION (AAR)
DATASET

This section presents the Alzheimer’s Activity Recognition
(AAR) dataset created to study the relationship between
activities and behavioral health, especially Dementia. AAR
dataset was acquired from a population of 25 older adults
living in a retirement living facility and possessing symptoms
consistent with Dementia from a mix of individuals who are
healthy, mild cognitive impairment, and cognitive impairment.
The dataset has two components, sensor-based and survey-
based data. The aim of capturing the sensor-based dataset
was to record the movement patterns (activities performed
on a daily basis: ADLs and [ADLs; Table I). In contrast,
the survey-based questionnaire aimed to acquire the current
state (clinical evaluation) of the individual’s functional and
behavioral health. Below, we describe the data collection
procedure, system architecture, and details of both the sensor
and survey-based datasets.

A. Sensor System Architecture

To collect the AAR dataset (especially the sensor-based
data), we developed a raspberry-pi based system to integrate
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Algorithm 2 : Pseudocode of extracting self-taught features

Input: unlabeled data (X,), labeled data (X;), CD(Xy)
Output: self-taught data, Xge;r

1: for each RBM in DBN do

2 WrBM < training_cd(X,)

3 WpBnN < stack (WRBM)

4: end for

5: for m = 1 to M, total number of instances in X; do
6: Ry < Compute forward pass, fpsn(X[")
7
8
9
10

temp <+ append(X;", R(t))
: end for

¢ Xself < temp

s return X o5

various sensors (extended from SenseBox [8]). Raspberry-
pi is a Linux-based miniaturized computer that consists of
Broadcom BCM2837B0, Cortex-A53 (ARMvVS) 64-bit proces-
sor, which clocks at 1.4GHz with 1GB LPDDR2 SDRAM
onboard. The role of the raspberry-pi in a smart-home is to
act as a hub, connect to an existing network, provide internet
connectivity to various sensors in the smart-home, and finally
log the data. The notion of such a system was to develop a
system that can be readily deployable in a new home. Further,
the system is comprised of two categories of sensors: wearable
and ambient. Empatica-E4 was used as the wearable sensor to
record the movement (through accelerometry; 32HZ sampling
frequency), Electro-Dermal Activity (EDA), skin temperature,
and heart-rate variability. Besides, ambient sensors such as
passive infrared sensors (PIR; in each room), reed switches
(on each door), and object tags (on objects used on a daily
basis) were connected to the hub. The hub was in continuous
connection with a server (present in the author’s laboratory)
via a reverse-ssh tunnel for constant monitoring of the state
of the hub and the connected sensors. Finally, we integrated
cameras with the hub (for limited time usage) to acquire
the ground truth and the cameras were place in each room.
We further elaborate the dataset collection in the following
sections.

B. Sensor-based Data Collection

As soon as the hub and the ambient sensors are placed in
strategic positions, we request the participating individuals to
wear the wearable device on their dominant hand (preferably,
although not compulsory). Now, we divide our data collection
duration into two phases: scripted activities and unscripted
activities. For the first two hours, the participants are requested
to perform scripted activities that involve both ADLs and
IADLs with a camera online for ground truth collection. For
the following 2 hours, the participants are monitored with a
camera for any activity (unscripted); however, none of the
team members of data collection will be present in the house.
Further, we leave the ambient sensors and the wearable device
to operate in the house (no cameras) to collect unlabeled data
for the next 20 hours. This procedure was repeated for 25
different participants in their own homes, where the home’s
layout was different from each other.



TABLE I
LIST OF ACTIVITIES IN AAR DATASET

Categories Activities

Activities of Daily Living(ADLs)

Sitting (Sit), Standing (St), Walking (Wa)

Instrumental Activities of Daily Living (IADLs)

Brushing Hair (BH), Folding Laundry (FL), Phone (Ph), Preparing Sandwich (PS), Sweeping (Sw),
Taking Trash Out (TT), Using Toothbrush (UT), Wash Hands (WH), Wear Jacket (W]),
Wear Shoes (WS), Writing (Wr)

C. Survey-based Data Collection

During the scripted activities collection (described in the
previous section), we requested the participants to perform cer-
tain activities based on the scales used for clinical evaluation
of functional and behavioral health assessment (described in
this section). First, the survey-based questionnaire collects the
basic demographics of the participants. The inclusion criteria
to participate in the study includes i) must be above 65
years of age, ii) must be a candidate for the symptoms of
dementia due to old age or any underlying neurodegenerative
disorders. Hence, the first survey we conducted uses the Saint
Louis University Mental Status (SLUMS) Examination to help
screen for Alzheimer’s or any other type of dementia. The
advantage of SLUMS is that it can identify people with milder
cognitive problems even if it has not risen to the level of
dementia. The second survey we collected was related to
mental health. We used the Geriatric Depression Rating Scale
to measure the participant’s mental depression state. Besides,
we used the Geriatric Anxiety Scale to measure older adults’
anxiety levels. Next, we used the Barthel Scale and the Lawton
Instrumental Activities of Daily Living Scale to measure
the performance of ADLs and IADLs, respectively. These
measures were ideal for this study as they were performance-
based and would provide us with the current state of functional
health (can be compared to sensor-based data). We would ask
the participants to perform the scripted activities, and based on
their performance, we would score them, which we believe can
help us measure their ability to carry out everyday activities
required for independent living.

V. EXPERIMENTATION PIPELINE

The experiments were conducted on a Linux server con-
sisting of 17-6850K with 4x NVIDIA GeForce GTX 1080Ti
GPUs and 64GB RAM. Data preprocessing, feature extraction,
classification, deep learning techniques were implemented
and visualized using python. The deep learning tasks were
implemented using PyTorch libraries.

A. Preprocessing

This study only considers the body-worn sensor data for
analysis (only accelerometer for AAR dataset). Body-worn
sensors are affected by motion artifacts. For instance, if the
Empatica E4 is not tight enough, then the devices’ slight move-
ments on the wrist can cause motion artifacts. Motion artifacts
are nothing but high-frequency noise. Hence, we employ a
median filter of window size four, which acts as a low pass
filter. We compared the effect of 27¢ order Butterworth filter
and Kalman filter and found the results comparable. Hence,
we chose the median filter as it was computationally faster.

125

Further, a windowing approach was employed to prepare the
data of the AAR dataset. The body-worn sensors provide
continuous time-series, and a patch of the series represents
an activity takes, thus requiring a windowing approach. A
window size of 1 second with an overlap of 0.5 seconds
was used for each axis and then concatenated. Additionally,
we performed a feature extraction step after the windowing
phase. We extracted discrete wavelet transform coefficients
(using Daubechies 5(db5) scaling function) for each window
and used that as the input data for the unsupervised feature
learning phase.

B. Pipeline and Model Parameters

In the pre-training phase, we feed the unlabeled data (wid-
owed (1sec) with overlap (0.5sec)) after wavelet transform to
the feature extraction function that uses DBN to learn the
representations. The raw input data instance vector’s size was
(3 % 32), where 3 is the number of accelerometer channels
and 32 is the window size. Besides, the wavelet coefficients
remains with the same dimension. We stacked three RBMs
with 90, 80,70 neurons in each RBM to form DBN. We
opted to use a decreasing number of neurons so that the
representations are both sparse and with a reduced dimension.
Following the pre-training phase using the unlabeled dataset,
we preserved the network structure and froze the weights.
The labeled dataset was then passed into the preserved pre-
trained network to acquire the representations, making the
data instance to a size of (3 x 32 + 70) for the supervised
classification task.

C. Evaluation Strategy

To evaluate the effectiveness of the proposed methodology,
we first visualize the representations learned from the DBNs
for the labeled data. Further, we evaluate the performance of
the classifiers using classification accuracy, precision, recall,
f1-score, markedness and Informedness [22]. We noticed that
the AAR dataset was imbalanced which suggests that accuracy
is not the best choice of metric for model comparison. Instead,
we use Informedness, and markedness for comparison because
Informedness tells us about how well the model has learned
the positives and negatives of classification while markedness
tells us the trustworthiness of those positive and negative
predictions [22], [23]. We also employ a 70-20-10 split for
training, testing, and validation for shallow learning and deep
learning approaches. The validation set for deep learning
algorithms was used to tune the hyper-parameters and select
the best model. The validation set and test set were truly held
out data and were neither a part of the training phase nor the
feature extraction phase. We have a massive set of unlabeled
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instances (50936470 instances) compared to 651844 labeled
instances for the AAR dataset before windowing.

VI. RESULTS

This section discusses the various analysis performed using
the AAR dataset. Before analyzing the classification task, it
is imperative to assess the quality of the representation of
the labeled data in the new self-taught space (obtained due
to pre-training). Thus, we leverage visualization techniques
to assess the quality of the representations. We perform
principal component analysis (PCA) of the multi-dimensional
representations to reduce the dimension to [1¥20] for each in-
stance, and further perform t-SNE and use the first two t-SNE
components for visualization in 2D. Besides, the visualizations
are color-coded with respect to the class labels. Figure 2
shows such a visualization for the AAR dataset comparing the
representations of the raw data with the self-taught features.
Figure 2 a, c, e corresponds to the visualization of the data
after passing through the wavelet transform stage and Figure 2
b, d, f corresponds to that of the self-taught features of the
labeled data in the new representation space. In Figures 2
a, ¢ and e, we infer that the data belonging to different
classes overlap with each other, which makes classifying such
data a challenging problem. On the contrary, Figure 2 b, d,
and f, shows clustering behavior in the new representation
phase. Such a visualization asserts our assumption that the pre-
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training phase is able to learn representations corresponding
to different classes (underlying conditional probability distri-
bution of the data) in a way that similar classes are grouped
together. On the other hand, there is also an overlap of data
instances for some classes such as Wear Shoe and Writing.
We believe there are two explanations for such findings. First,
the visualization of the t-SNE is performed in 2-D; however,
the underlying data is multi-dimensional, which may cause
information loss. Secondly, the visualization is performed
at the feature level, that is, before the classification. The
deep learning algorithm especially contains a feature learning
phase that hierarchically learns higher-level representations
from input data and uses it for classification. Most learning
algorithm performance declines as the number of classes; in
our case, the number of activities decreases. To demonstrate
the scalability of STAR, we show the separability of clusters
of data instances belonging to the same class in the context
of the increasing number of classes in Figure 2.

Now that we have obtained a good representation of the
labeled data in a new representation space, we now aim to
perform the classification task. First, we used some popular
shallow learning algorithms such as k-NN, SVM, Random
forest, and Multi-layer perceptron to perform the classification
task. The notion behind this step was to check the efficacy of
our pre-training and self-taught learning step for algorithms
that highly depend on feature engineering. In contrast, we also
investigated if we could extract more meaningful features from
the self-taught features using deep learning approaches such as
Convolutional Neural Networks (CNN). We chose CNNs for
the deep learning approach because the convolution operation
makes the algorithm shift-invariant. In the AAR dataset, some
activities may have been performed in 3 seconds, and other
instances of the same activity may have been performed in 2
seconds. The shift-invariant property of convolution operation
in CNN ensures (at various depths of convolutional layers)
to gather this information and represent them as a higher-
level representation for the classification task. Table II shows
the hyper-parameters used to train the convolutional neural
network. Besides, the classification metrics have been listed
in Table III. Comparing the shallow learning algorithms for
the AAR dataset with/without self-taught features, we see
an increase of 2% in both informedness and markedness
metrics with a maximum of 44.56% for k-NN using the
proposed pre-training methodology. Such a result ascertains
the need to improve the feature representation of labeled
data and supports our decision for a deep learning-based
approach. Performing the same comparison with CNN-based
classification, we noticed a 36% improvement in informedness
and markedness metrics. Figure 3 shows the learning curves
of the CNN model comparing both with/without self-taught
learning. For AAR dataset, the model converges relatively
quickly at 10 epochs with a higher accuracy when compared
to the baseline CNN. Besides, Figure 4 shows the confusion
matrix for STAR. Interestingly, we notice that some of the
misclassifications are related to Standing activity. Activities
such as Wash Hands, Walking, Using Tooth Brush, Sweeping,
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Fig. 3. AAR Dataset: a) loss vs epoch, b) accuracy vs epoch; OPPORTUNITY
Dataset: c¢) loss vs epoch, d) accuracy vs epoch

Preparing Sandwich have been misclassified as Standing (2
- 15 %). We believe the reason for this is because each
of these activities was performed while standing. A part of
these activities constitutes standing, which makes it plausible
for some windows labeled as Wash Hands, Walking, Using
Tooth Brush, Sweeping, Preparing Sandwich activities could
contain the pattern of Standing. In addition, STAR can suc-
cessfully mitigate the practical challenges that arise during
our data collection drive. For instance, let us consider some
activities/sub-activities such as brushing hair, picking up phone
call, writing, wearing shoes. Most of the time, these activities
may not be detected by the wearable device based on its
dominant/non-dominant hand position. Alternatively, some of
these activities may be performed while sitting, as previously
discussed. However, based on the confusion matrix (Figure 4),
we notice a tremendous improvement in the detection of such
activities using the proposed methodology. We believe our
approach can also help mitigate the shortcomings of such
system-related and practical challenges as well.

Confusion Matrix
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Fig. 4. AAR Dataset: Confusion matrix generated for STAR
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TABLE II
HYPER-PARAMETERS OF CNN MODEL

Hyper-parameters Values
No. of convolution layers 3
No. of filters in convolution layers 256, 256, 512
Convolution filter dimensions 555
No. of maximum fully connected layers 6
No. of neurons in fully connected layers | 512, 256, 256, 128, 64, 14
Batch size 32

A. Comparison with Baseline

To better highlight the efficacy of our approach, we perform
two types of comparisons. First, we compare how the state-of-
the-art algorithm performs on the AAR dataset. Secondly, we
use a publicly available dataset to show how well the algorithm
scales to different scenarios.

1) State-of-the-art algorithms: The state-of-the-art algo-
rithm for a similar category of data includes pre-training
phase combined with a multi-task learning framework falling
under the category of self-supervised learning [20](discussed
in related work section). We evaluated the AAR dataset on
this algorithm and found the informedness and markedness
to be 68.09% and 68.11%. Comparing [20] with STAR, we
see that STAR outperforms the state-of-the-art algorithm. The
key difference between [20] and STAR lies in the pre-training
phase where we use a generative energy based model while
compared to a learning a focused variation or augmentation
version of the data. Additionally, we also compare our work
with other deep architectures known to perform well on
activity recognition datasets such as LSTM [24]. With LSTM,
we found the informedness and markedness to be 49.02% each
with the AAR dataset, which suggests that our framework
outperforms LSTM based networks.

2) Publicly available dataset: We chose OPPORTUNITY
dataset [25], [26] as the publicly available dataset for the
analysis. The OPPORTUNITY dataset comprises of both
wearable sensors and ambient sensor data totaling to a sum
of 145 attributes. In this study, we limit the usage of 77
attributes corresponding to the worn body sensors placed at
different locations on the body. The 77 attributes correspond
to the 3D accelerometer and 3D inertial measurement data
(3D acceleration, 3D rate of turn, 3D magnetic field, and
orientation of the sensor), and the sensors were placed at
various positions on the body for 4 participants. In this dataset,
some high level and low-level activities such as Relaxing,
coffee time, early morning, cleanup, sandwich time, unlock
the door, stir, lock the door, close door, reach the door, open
door, sip, clean, bite, cut, spread, release the door and move are
considered. Data corresponding to 2 participants constituted
the labeled data, and the remaining unlabeled data of the
same participants and all the data of another 2 participants
were considered unlabeled data. We also considered the null
class data to be a part of the unlabeled data pool from which
the features were derived during the pre-training phase. We
performed the same experiments as that of the AAR dataset
and report the analysis below. For shallow learning algorithms,
we found a substantial increase in the accuracies, approx. 8%



TABLE III
EVALUATION METRICS: COMPARISON OF SHALLOW LEARNING AND DEEP LEARNING FOR DOWNSTREAM CLASSIFICATION TASK

Classifiers Without Self-taught learning Using Self-taught learning
Precision Recall Fl-score | Informedness | Markedness | Precision Recall Fl-score | Informedness | Markedness

k-NN 46.38 % | 4638 % | 46.38 % 44.56 % 44.56 % 4830 % | 48.30 % | 48.30 % 44.32 % 44.32 %

SVM 21.56 % | 21.56 % | 21.56 % 15.53 % 15.53 % 40.16 % | 40.16 % | 40.16 % 35.55 % 35.55 %
Random Forest | 2191 % | 2191 % | 2191 % 1591 % 1591 % 23.82 % 23.82 % | 23.82 % 17.96 % 17.96 %

MLP 20.62 % | 20.62 % | 20.62 % 14.51 % 14.51 % 36.66 % 36.66 % | 36.66 % 31.78 % 31.78 %

CNN 5323 % | 5323 % | 5323 % 49.63 % 49.63 %

STAR 86.18 % \ 86.18 % \ 86.18 % \ 85.12 % \ 85.12 %

for SVM and approx. 7% using random forest. Besides, STAR
shows a 6% boost in accuracy for deep learning. We believe
that the both shallow and deep learning algorithms showed
improvement because of the following reasons: 1) the dataset
was captured from 4 users only, 2) the dataset comprises of
numerous features (77 attributes as discussed earlier) 3) the
dataset was captured in a lab environment due to which there
is less intra-class variability.

VII. CONCLUSION

In this paper, we have demonstrated that the challeng-
ing problem of AR for older adults can be boosted us-
ing self-taught learning, especially leveraging abundant un-
labeled data to aid the downstream classification task. We
have presented self-taught learning-based activity recognition
that has achieved approx. 36% increase in informedness and
markedness; and outperforms the state-of-the-art research. We
have also demonstrated that the proposed method, STAR is
scalable to other population as well by evaluating on a publicly
available dataset obtained for a different population. Besides,
we have deployed our data collection system, SenseBox, in
the real-world (in a retirement community) and collected 25
participants’ data envisioned to study the relationship between
activities and underlying functional and behavioral health. We
believe STAR could be scaled to other data sources, such as
sports analytics, fitness applications where capturing labeled
sensory data is challenging and acquiring abundant unlabeled
data is plausible.
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