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a b s t r a c t 

Hand pose estimation is a challenging task due to the large number of degrees of freedom and the 

frequent occlusions of joints. To address these challenges, we propose HandyPose, a single-pass, end- 

to-end trainable architecture for 2D hand pose estimation using a single RGB image as input. Adopt- 

ing an encoder-decoder framework with multi-level features, along with a novel multi-level waterfall 

atrous spatial pooling module for multi-scale representations, our method achieves high accuracy in hand 

pose while maintaining manageable size complexity and modularity of the network. HandyPose takes a 

multi-scale approach to representing context by incorporating spatial information at various levels of the 

network to mitigate the loss of resolution due to pooling. Our advanced multi-level waterfall module 

leverages the efficiency of progressive cascade filtering while maintaining larger fields-of-view through 

the concatenation of multi-level features from different levels of the network in the waterfall module. 

The decoder incorporates both the waterfall and multi-scale features for the generation of accurate joint 

heatmaps in a single stage. Our results demonstrate state-of-the-art performance on popular datasets and 

show that HandyPose is a robust and efficient architecture for 2D hand pose estimation. 

© 2022 Elsevier Ltd. All rights reserved. 

1

i

m

[

g

s

i

p

m

t

u

t

s

s

t

w

t

a

T

t

t

f

W

w

H

(

t

[

m

w

t

c

s

t

l

a

a

c

t

h

0

. Introduction 

Hand pose estimation is an important computer vision task that 

ncludes methods for 2D hand pose [1–3] and 3D hand pose esti- 

ation [4] . Hand pose is related to human body pose estimation 

5–8] , but it is more challenging due to the large number of de- 

rees of freedom in the human hand and the high degree of occlu- 

ion of joints in a monocular view of the hand. To overcome the 

ssue of localizing joints that are occluded, methods may employ 

robabilistic and graphical models [9] or use anchor poses to esti- 

ate the occluded joints [10] . Methods for 2D hand pose include 

he Spatial Information Aware Graph Neural Network [11] which 

ses a pool of graphical models and belief propagation to bet- 

er extract relations between each joint and its neighbors. Various 

tandard backbones are considered, but they don’t capture multi- 

cale information. 

Leveraging on recent advances of multi-scale feature represen- 

ations with application to human pose estimation in [7] and [12] , 

e propose HandyPose, a single-stage network for hand pose es- 

imation that is end to end trainable and produces state-of-the- 

rt results on the CMU Panoptic [13] and MPII+NZSL [14] datasets. 

o deal with the challenges of hand pose context and resolu- 

ion, our architecture generates improved Waterfall Atrous Spa- 
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ial Pooling (WASP) [15] representations by combining features 

rom multiple levels of the backbone network via our Multi-Level 

ASP (MLW) module. Examples of hand pose estimation obtained 

ith HandyPose are shown in Fig. 1 . A main component of our 

andyPose architecture is the integration of Multi-Level Features 

MLF) along with the extended Field-of-View (FOV) extracted by 

he advanced Waterfall Atrous Spatial Pooling (WASPv2) module 

12] . The HandyPose encoder-decoder architecture with our MLW 

odule combines the cascaded approach for atrous convolutions 

ith larger FOV with feature extraction from multiple levels of 

he backbone and has the potential for wider range of appli- 

ations to other tasks such as object pose estimation [16] and 

egmentation. 

HandyPose predicts the location of hand joints by utilizing con- 

extual representations obtained with the multi-scale and multi- 

evel scheme taken in our network. Our contextual representation 

pproach allows better detection of shapes, resulting in a more 

ccurate estimation of occluded joints, without requiring postpro- 

essing relying on statistical or geometric methods. The main con- 

ributions of this paper are the following. 

• We propose HandyPose, a multi-level and multi-scale, end-to- 

end trainable, single-stage framework for 2D hand pose estima- 

tion. 
• We introduce the Multi-level Waterfall Atrous Spatial Pooling 

module that effectively encodes feature maps with large FOV 

and contextual information. 

https://doi.org/10.1016/j.patcog.2022.108674
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108674&domain=pdf
mailto:Andreas.Savakis@rit.edu
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Fig. 1. Pose estimation examples with our HandyPose method. 
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• HandyPose is a modular encoder-decoder architecture that in- 

corporates multi-level features in both the encoder and the de- 

coder modules, making it easy to modify and expand. 
• HandyPose achieves state-of-the-art result for 2D hand pose on 

two popular benchmarks. 

. Related work 

.1. Early works 

Before the meteoric growth of deep learning methods, hand 

ose estimation was a laborious task that was rarely deployed in 

pplications due to the setup expense and algorithm complexity. 

ost traditional computer vision algorithms were applied for es- 

imating the hand pose. Early methods include k-nearest neigh- 

ors and decision trees [17] . For instance, [18] applied a multi- 

olored glove for reconstructing the pose of a hand from a single 

mage, and relied on the nearest neighbors technique to map the 

and detection using the multiple colors of the glove. A downside 

f these techniques is the high cost of implementation, complex 

etup, and requirement of multiple cameras. Aiming to reduce the 

etup complexity, [19] combines the use of a single camera setup 

ith Bayesian technique to better connect and predict the hand 

ose estimation. Despite the reduced complexity, this method still 

elies on the color pattern of gloves to infer the pose of the hand.

he Microsoft Kinect sensor [20] introduced a less complex setup 

ith the use of a single camera and the addition of a depth sensor 

o extract the 3D hand pose estimation. 

.2. Deep learning methods 

More recently, deep learning methods gained in popularity, 

s they achieved more accurate hand pose estimation [1,3,21,22] . 

ethods such as [23] combine depth estimation to extract the full 

D coordinates in addition to the 2D detections. Recurrent Neural 

etworks (RNNs) were also used to extract the spatial information 

f the joints and palm [24] . 
2 
The similarity of the hand pose estimation task to human pose 

stimation, allows the adoption of methods developed for the over- 

ll human body. The Convolutional Pose Machine (CPM) approach 

6] is popular for human pose estimation due to its easy imple- 

entation and the modularity of joint detections via the refine- 

ent of feature maps through multiple stages of the network. CPM 

as later expanded to integrate the concept of Part Affinity Fields 

PAF) resulting in the widely used OpenPose method [25] . Lever- 

ging on the innovations of CPM, the approach in [26] developed 

 multi-view bootstrapping method that implements a CPM-based 

rchitecture for 2D hand pose estimation, relying on a detector for 

enerating a large dataset of hand keypoints. Similarly, the Hour- 

lass (HG) network [5] stacks up to 8 iterations of its network to 

efine feature maps. 

Pose estimation methods may be categorized as top-down 

12,27] or bottom-up [25,28] . Top-down approaches rely on an ob- 

ect detection stage to locate instances of the person or pose by 

sing detectors such as YOLO [29] or Faster R-CNN [30] . The de- 

ection stage is followed by the detection of keypoints to estimate 

ose for every instance. The High-Resolution Network (HRNet) 

31] combines multi resolutions throughout the network, while 

lso maintaining high-resolution feature maps through all layers of 

he network. Despite achieving high accuracy for individual poses, 

op-down methods are dependent on the performance of object 

etectors. 

Bottom-up approaches initially detect all keypoints in the im- 

ge, followed by keypoint clustering for pose estimation of sepa- 

ate instances. Top-Down methods can be expanded to Bottom-Up 

pproaches by incorporating offset regression into their decoder, 

or instance the HigherHRNet [28] leverages the promising results 

f the HRNet method to achieve high accuracy bottom-up pose es- 

imation. Both top-down [26] and bottom-up [2] , approaches can 

e utilized for hand pose estimation. 

Santavas et al. [2] proposed the AttentionNet for hand pose by 

ombining a self-attention module [32] with a feed-forward CNN 

or directly estimating the hand keypoints without intermediate 

upervision. AttentionNet adopts a regression based approach in- 
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Fig. 2. The proposed HandyPose architecture for 2D hand pose estimation. The input RGB image is fed into the ResNet-101 backbone, obtaining 400 feature maps after the 

concatenation of Multi-Level WASP outputs and MLF feature channnel. The Multi-Level Decoder module generates heatmaps (one per joint) and location of keypoints are 

extracted from the heatmaps by applying a local maxima function. 
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tead of pixel-wise classification, which results in high process- 

ng speed but is limited in generalization performance. Aiming 

o achieve a better structural learning, a non-parametric structure 

egularization approach [33] utilizes the synthetic hand mask for 

earning the structure of keypoints. Mask-Pose [1] uses the silhou- 

tte information and builds a two-stage cascade network that in- 

ludes a mask prediction stage and a pose prediction stage. The 

RHandNet [3] approach regresses hand regions of interest (ROI) 

imultaneously with hand keypoints to improve the performance 

f hand pose estimation. 

.3. Graphical methods 

Many methods apply techniques to assess the geometric con- 

traints of hand joints [34] . The Adaptive Graphical Model Network 

AGMN) [21] aims to learn adaptive parameters for the graphical 

odel for each input image and refine its pose estimation. In an- 

ther approach, SIA-GCN [11] uses a modified graph neural net- 

ork for hand pose estimation, representing features at each node 

y a 2D spatial confidence map instead of 1D vectors, with the 

oal of preserving the spatial information provided in the 2D fea- 

ure maps. 

Using graphical models along with a CNN, R-MGMN [22] as- 

ociated the spatial relationships with input hand shape in order 

o reduce the spatial irregularity of hand keypoints. More recently, 

he Hand-Object Pose Estimation Network (HOPE-Net) [9] applies 

raph convolutions in a modified U-Net configuration [35] to im- 

rove the hand pose estimation in conjunction with an object that 

s picked by the hand. 

.4. Multi-Scale feature representations 

A challenge faced by networks using CNNs for pose estima- 

ion is the significant reduction of the resolution caused by the 

epeated use of pooling layers. For semantic segmentation, Decon- 

olution Networks [36] employed deconvolution layers to address 

he problem, by upsampling the resolution of each layer in the de- 

oder stage of the network. 

Other methods rely on the use of atrous convolutions to avoid 

ownsampling and increase the size of the receptive fields in the 

etwork. Atrous convolutions are applied systematically by using 

 multi-scale context aggregation module [37] in order to better 

reserve the contextual information of the input image. 

Deeplab [38] further explored the advantages of atrous con- 

olution by proposing the Atrous Spatial Pyramid Pooling (ASPP) 

odule for semantic segmentation. The ASPP approach increases 

he FOV at larger dilation rates in parallel branches without down- 

ampling. The main challenge this network faces is the increased 
3 
omputational cost and memory requirements due to its increased 

esolution. DeepLabv3 [39] addressed this issue by applying a cas- 

ade of atrous convolutions in a sequential order with the help of 

rogressive filtering to maintain the FOV at different layers of the 

etwork. 

The WASP module [15] was initially proposed for semantic seg- 

entation and was used in UniPose [7] for human pose estimation. 

he WASP module operates in a waterfall-like flow, progressively 

xtracting the larger FOV from a series of atrous convolutions at 

ifferent dilation rates. The waterfall architecture effectively gener- 

tes multi-scale features from the backbone without immediately 

arallelizing the input stream, as it maintains the advantages of 

he ASPP module with lower computational and memory require- 

ents. 

The waterfall approach was recently enhanced by the introduc- 

ion of the WASPv2 module for multi-person pose estimation in 

mniPose [12] . The WASPv2 architecture extracts feature maps at 

ultiple scales, while preserving the original resolution by avoid- 

ng downsampling. The cascade approach used in WASPv2 main- 

ains the high resolution of the feature maps by arranging atrous 

onvolutions in a cascaded structure with increasing dilation rates 

f ( 1 , 6 , 12 , 18 ) . This arrangement increases the FOV in the fea- 

ure representations without affecting the input resolution. Fur- 

hermore, WASPv2 integrates the decoder with the feature extrac- 

ion process, effectively reducing the overall computational cost. 

his effective multi-scale architecture of WASPv2 achieves high ac- 

uracy for human pose estimation. In this paper, we adopt the wa- 

erfall architecture for hand pose estimation and extend it with 

ulti-level features. 

. HandyPose architecture 

We propose HandyPose , a multi-level framework for hand pose 

stimation, that achieves high performance by the use of a novel 

ulti-level WASP module. Taking into consideration the issue of 

requent occlusion in the joints of the hand, we designed Handy- 

ose to combine feature maps from different levels of the back- 

one with the multi-scale approach of the WASPv2 module to ob- 

ain a more powerful representation. 

The HandyPose architecture is shown in Fig. 2 . Our feature 

epresentation framework uses features from all successive blocks 

levels) of the ResNet-101 backbone and incorporates them at var- 

ous places in the network. Our enhanced MLW module increases 

he number of feature maps, forming a more robust representation, 

nd maintains the high resolution of the maps. These represen- 

ations, along with a multi-level decoder, generate more accurate 

redictions for both occluded and visible joints. 
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Fig. 3. The WASPv2 waterfall module with integrated decoder. The inputs are 2048 channels of backbone features and 256 channels from the lowest and highest level of 

the backbone. The number of output channels is equal to the number of joints. 
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In order to deal with the loss of contextual and spatial informa- 

ion by successive pooling, our feature utilization approach fuses 

ulti-level features extracted from all blocks of the ResNet back- 

one. The feature maps from Layers 1, 2, and 3 of the ResNet back- 

one are fed-forward in the network with the use of a 1 × 1 con- 

olution and bilinear interpolation on multi-level features to gen- 

rate feature maps of matching dimensions. This helps reduce the 

ize of the network but preserves the image information. 

The MLF component of HandyPose extracts the residual fea- 

ure maps at different resolutions from the first three blocks of 

he ResNet backbone and combines them with the high-level fea- 

ures of the backbone after passing through a waterfall of atrous 

onvolutions to fuse the spatial information at different scales. We 

xperimented with different fusing combinations and the best re- 

ults were obtained by combining the multi-level feature maps in 

ncreasing order of Layer 1, 2 and 3 and concatenating them at 

ifferent levels of the MLW module containing the high-level fea- 

ures. 

Before concatenation, we perform a 1 × 1 convolution preced- 

ng the bilinear interpolation on the multi-level feature maps to 

atch the resolution and shape. The unit convolutions reduce the 

epth channels to the desired amount of feature channels of 48 

t each level. Experiments with different numbers of high and low 

evel features of the network were performed, resulting in higher 

erformance when using 48 channels of feature maps from each 

f the first three blocks of the ResNet backbone and 256 feature 

aps from the last block output of the ResNet backbone. 

.1. Multi-level WASP module 

We present the advanced MLW module in Fig. 4 , incorporating 

he multi-scale extraction of the WASPv2 module shown in Fig. 3 

ith the multi-level backbone features. 
4 
HandyPose extracts four residual blocks in the ResNet backbone 

enerating feature maps with 256, 512, 1024, and 2048 channels 

t all levels of the ResNet. We organized atrous convolutions in a 

aterfall like architecture receiving inputs from different levels of 

he ResNet backbone and concatenating them with the output of 

rogressive filtering of the successive layer of atrous convolutions 

n a waterfall fashion, as shown in Fig. 4 . 

The operations in the MLW module can be described by the 

ollowing equations: 

 i = 

{
K d 1 � f 4 if i =1 
K d i � ( f i −1 � K 1 + F i −1 ) otherwise 

(1) 

 Water fall = K 1 � 

( 4 ∑ 

i =1 

(F i ) + AP ( f 4 ) 
)

(2) 

here � represents convolution, K 1 and K d i represent convolutions 

f kernel size 1 × 1 and 3 × 3 with dilations of d i = ( 1 , 6 , 12 , 18 ) , 

f i represents the output of block i from the ResNet backbone, the 

ymbols + and 
∑ 

denote the concatenation operation, and AP de- 

otes the Average Pool operation, as shown in Fig. 4 . 

Our module achieves a multi-level and multi-scale representa- 

ion by fusing the cascade of atrous convolutions and MLF fea- 

ures and concatenating the outputs with the average pooling of 

he high level features from the last block of ResNet-101. The re- 

ulting feature maps are reduced in channel depth by applying a 1 

1 convolution on them. These feature maps along with the MLF 

re used as inputs for further processing and generating the final 

eatmaps in the decoder, which receives features from all levels of 

he backbone. 

The WASPv2 and MLW modules are illustrated in Figs. 3 and 

 respectively. The WASPv2 module uses only the highest and low- 

st level features as input followed by a cascade of atrous convolu- 

ions. In contrast, The proposed MLW module adopts a multi-level 
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Fig. 4. The proposed Multi-Level WASP module, a multi-level and multi-scale architecture with larger FOV for preserving the contextual information with the introduction 

of multi-level features along the cascade of atrous convolutions. The � refers to concatenation. The input is 2048 feature channels from the lowest level of the backbone 

and the output generates 256 feature channels that are fed into the decoder. 

Fig. 5. The proposed Multi-Level Decoder (MLD) module receives ( 256 , 512 , 1024 ) feature maps as input from the ResNet backbone along with the output of the MLW 

module. Further processing generates K output heatmaps corresponding to the hand joints. The output image illustrates a single joint output produced by HandyPose. 
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pproach extracting feature maps from different levels of the net- 

ork and concatenating them at different stages of the cascade 

f atrous convolutions. Furthermore, the WASPv2 module contains 

n inbuild decoder to output the final feature maps, whereas the 

LW module feature maps are fed in a separate multi-level de- 

oder module to further improve the performance. 

.2. Multi-level decoder 

The feature maps generated by different stages of our Handy- 

ose architecture are fused in the Multi-Level Decoder (MLD), gen- 

rating the final K heatmaps corresponding to each hand point 

oint from the dataset. Fig. 5 shows the MLD module where multi- 

evel features are processed to generate 48 feature maps each for 

he first three layers of the ResNet backbone and combined with 

56 score maps generated by the MLW module to form a total of 

00 feature maps. The resultant feature maps are then processed 
5 
hrough convolutional layers and finally interpolated to generate 

he output heatmaps of the same size as the input images. The 

oncatenation of multi-level features followed by the convolution 

nd dropout layers in our MLD improves the prediction accuracy 

f the network by 0.8%. The multi-level features output, after con- 

atenation with the MLW module, is described as follows: 

 Concat = MP ( f 1 � K 1 ) + 

3 ∑ 

i =2 

( f i � K 1 ) + F Water fall (3)

 out = ((F Concat � K 3 ) � K 3 ) � K 1 (4) 

here � represents convolution, K 1 and K 3 represent convolutions 

f kernel size 1 × 1 and 3 × 3 , f i represents the output of block

 from the ResNet backbone, + and 
∑ 

denotes the concatenation 

peration, MP denotes the Max Pool operation, F Water fall is the out- 

ut from the MLW module, and F out is the output of HandyPose, as 

hown in Fig. 5 . 
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Table 1 

Ablation studies for different configurations of HandyPose with ResNet-101 back- 

bone for the CMU Panoptic Hand dataset [13] . MLW and MLD represents the Multi- 

Level WASP and Multi-Level Decoder modules using Multi-Level Features (MLF). 

ASPP, WASP, and WASPv2 indicates the use of various atrous modules in the net- 

work. 

Method 

Params 

GFLOPs ASPP WASP WASPv2 MLW MLD 

PCK 

(M) @0.2 

ResNet [40] 44.6 28.3 69.20% 

Deeplab 

[38] 

59.3 34.9 � 71.15% 

Unipose [7] 47.5 29.2 � 70.32% 

WASPv2 47.0 28.8 � 73.58% 

WASPv2 + 
MLF 

47.2 29.3 � 73.97% 

HandyPose 47.5 29.5 � � 74.61% 
Our decoder process the output to generate heatmaps corre- 

ponding to the keypoints, extracting the joint locations through 

ocal maximum operation on each heatmap, that is, the location 

n which there is the highest confidence that a joint is located. 

andyPose does not require any post-processing operations as 

on-Maximum Suppression (NMS) for joint localization purposes. 

e performed experiments with different depth channels for our 

ulti-level feature maps and their effects on the performance. 

. Experiments 

HandyPose experiments were based on metrics set by each 

ataset and processed at the same resolution to the dataset and 

ther networks to allow comparison of performance. 

.1. Datasets 

We perform 2D hand pose experiments on two hand pose 

atasets, the CMU Panoptic Hand Dataset [13] and the MPII + NZSL 

ataset [14] . Following procedures adopted by [11 , 21 ], and [22] ,

nitial cropping of a square image patch for the annotated hands 

as performed in the original images, resulting in a square bound- 

ng box with dimensions 2.2 × the size of the hand. 

The CMU Panoptic Hand Dataset consists of 14,817 images taken 

n a panoptic studio. Each image has 21 joint annotations of a sin- 

le hand and is one of the benchmark datasets for 2D hand pose 

stimation. Following procedures of other methods in the compar- 

son section, we divided the dataset by splitting the samples into 

raining, validation, and testing sets containing 70%, 15%, and 15% 

f the images, respectively. The main challenge of the dataset is 

he high occurrence of self-occlusion for hand keypoints. 

The MPII + NZSL dataset contains images from the MPII hu- 

an pose dataset combined with the New Zealand Sign Language 

ataset. It consists of 2758 images of people in everyday activities, 

nd contains 21 labeled joint keypoints for the hand. Following the 

ame procedure as the previous dataset, we crop the region with 

he target hand. 

.2. Evaluation metric 

For the evaluation of HandyPose, we apply the metric of Prob- 

bility of Correct Keypoint (PCK). This metric measures a correct 

rediction when the joint detection is within a certain distance 

hreshold σ in relation to the hand bounding box, compared to 

he groundtruth label. The main threshold adopted for the dataset 

valuations is σ = 0 . 02 . Therefore, the PCK metric is defined as: 

 CK(@ . 02) = P (σ ) /K (5) 

P CK = 

1 

N 

( 6 ∑ 

σ=1 

P CK@[ 
σ

100 
] 

)
(6) 

or a threshold σ of 0.02 and input image of size w × w, PCK is 

efined as the number of predicted keypoints (P) that are within 

he threshold range σ × 0.02 of the ground truth keypoints loca- 

ion divided by the total number of keypoints (k). The normalized 

hreshold σ used is with respect to the size of the hand bounding 

ox. We evaluated our model for different threshold values rang- 

ng from {0.01 - 0.06} with a constant increment of 0.01. We also 

eported the mean PCK (mPCK) showing the average performance 

f our network compared to current state-of-the-art methods by 

ubstituting the value of N = 6. 

.3. Implementation details 

Since the hand occupies a small area of the images in the 

ataset, and following procedures adopted by [11,21] , and [22] , we 
6 
re-process the images, cropping it to a square with 2.2 × the hand 

ize. The cropped images are then resized to a constant resolution 

f 368 × 368, scaled between [0,1], and and normalized follow- 

ng procedures comparable to other methods. Resized images re- 

uce the computational footprint of the network, and decreased 

he training time of the network. We used a batch size of 32 im- 

ges during training, and performed training for 80 epochs, apply- 

ng an initial learning rate of lr = 10 −4 , being reduced by a factor

f 0.1 after 60 epochs. 

. Results and analysis 

We present HandyPose results on two prominent datasets and 

rovide comparisons with current state-of-the-art methods. We 

lso performed experiments by changing our MLW module with 

SPP, WASP, and WASPv2 modules, the results obtained are dis- 

ussed in the Ablations section. 

.1. Ablations studies 

We initially performed a series of experiments to analyse the 

ccuracy, as well as computational cost and number of parameters, 

or each component added to our HandyPose framework. We per- 

ormed a series of ablation studies to investigate the performance 

f atrous convolutions before developing our MLW module. Per- 

orming experiments with the ASPP, WASP and WASPv2 module on 

he HandyPose architecture, we observe the improvement in per- 

ormance by using a cascade of atrous convolutions. WASPv2 with 

ulti-level features is performing the best, compared to the other 

onfigurations, as show in Table 1 . 

We also compared the use of different feature extractors and 

ecoders for our HandyPose framework. Table 1 demonstrates the 

esults for the inclusion of the ASPP module [38] , WASP mod- 

le [7] , and WASPv2 module [12] in combination with the im- 

roved feature extractor in our architecture. The combination of 

he modified WASPv2 module with our implementation of MLF 

nd our MLD demonstrated to be the more efficient architecture, 

aining 3.46% in accuracy (from 71.15% to 74.61%) when compared 

o DeepLab. 

Table 2 demonstrates the performance comparison of three 

ifferent backbones, ResNet-50, ResNet-101 and HRNet-W48 [31] , 

ombined with different components of HandyPose on the CMU 

anoptic Hand dataset [13] . This dataset consists of images of hu- 

an of resolution 1920 × 1080, but hands are cropped from a 

mall part of the image due to their smaller size. The average size 

f hand crops in the dataset is 44 × 48. From ablations performed 

n Table 2 we can infer that the multi-level feature resolutions of 

he ResNet backbone help to further extract important informa- 

ion from different scales. In comparison, the high-resolution HR- 

et backbone is not as effective for processing smaller portions of 
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Fig. 6. Examples of fail cases for images in the datasets: (a) High occlusion by grass and bat causes the joint positions to be misplaced; and (b) Self occlusion of joints are 

a common issue in hand pose estimation. 
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he image containing the hand. The ResNet-101 model improves 

he accuracy by 5.41% (from 69.20% to 74.61%), while the HRNet 

onfiguration improves by only 1.72% (from 69.55% to 71.27%). 

Table 3 presents a comparison for the implementation of our 

ulti-level feature maps by applying different numbers of feature 

aps from all blocks of the ResNet backbone into the modified 

LW module and the MLD of HandyPose. We tested our network 

ith different numbers of feature maps for the first three blocks of 

esNet { 24 , 48 , 96 , 128 } , generating the multi-level approach. Sim-

lar to results previously observed by architectures applying low- 

evel features to the decoder stage [7,12,38] , the use of 48 feature 

aps for lower level features and 256 maps for high level features 

as found to be the more efficient combination. 

Examples of failure cases are shown in Fig. 6 . Most common 

ssues of failure can be seen due to object/self occlusion. Self oc- 

lusion results in joints to be positioned very close to each other, 

onfusing the network when detecting joints in very close prox- 

mity. Object occlusion results in obstruction of some part or most 

f the hand, as hands are readily used for holding objects. Fortu- 
able 2 

erformance comparison of three different backbones, ResNet-50, ResNet-101 and 

RNet-W48 in the presence or absence of different com ponents of the HandyPose 

rchitecture for the CMU Panoptic Hand dataset [13] . 

Backbone 

Params 

GFLOPs WASPv2 MLW MLD 

PCK 

(M) @0.2 

ResNet-50 25.6 19.0 65.44% 

ResNet-50 27.9 19.5 � 69.28% 

ResNet-50 28.2 20.1 � 70.13% 

ResNet-50 28.5 20.2 � � 70.92% 

ResNet-101 44.6 28.3 69.20% 

ResNet-101 47.0 28.8 � 73.58% 

ResNet-101 47.2 29.3 � 73.97% 

ResNet-101 47.5 29.5 � � 74.61% 

HRNet-W48 68.0 38.1 69.55% 

HRNet-W48 68.2 38.9 � 70.30% 

HRNet-W48 68.2 39.3 � 70.91% 

HRNet-W48 68.3 39.6 � � 71.27% 

Table 3 

HandyPose results for the CMU Panoptic Hand 

dataset [13] showing the effects of varying the 

number of feature maps in the multi-level-features. 

Feature Maps PCK@0.02 

24 72.8% 

48 74.61% 

96 71.5% 

128 70.3% 
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7 
ately, there are few failed cases and in most cases our model is 

ble to successfully detect occluded joints. 

.2. Experimental results on CMU Panoptic Hand dataset 

We compared our multi-level approach to current state-of-the- 

rt methods as shown in Table 4 . The SiaPose method [11] con- 

iders several backbones in its configuration, including the heavy- 

eight HG backbone. In addition, SiaPose also adds up to 40% in its 

ize by combining the backbone with the 10 heads for the refine- 

ent of predictions through graphical models. HandyPose achieved 

n overall best performance, with significant gains in comparison 

o the previous state-of-the-art while using a smaller backbone, 

esNet-101. For the overall average accuracy, HandyPose achieves 

 mPCK of 81.75%, increasing the previous state-of-the-art. Most 

f the improvement of HandyPose is due to its higher capacity 

o precisely detect keypoints at lower thresholds, increasing the 

CK@0.01 by 9.3% compared to the previous state-of-the-art (from 

9.46% to 43.13%). HandyPose is an overall more accurate frame- 

ork that achieves most of its gains in the fine refinement of joints 

etections for tight thresholds. 

In contrast to other methods relying in multi-stage frameworks 

11 , 21] , and [22] , HandyPose is able to detect with higher accuracy

and joints in a single iteration network. HandyPose improves the 

ccuracy by 6.1% to its nearest competitor for the most traditional 

CK with threshold of 0.02, and an even larger 17.8% for more pre- 

ise hand pose estimation in a less forgiving threshold of 0.01, at- 

esting to the more precise alignment of HandyPose to the exact 

oint locations. 

Examples of HandyPose detections for the CMU Panoptic Hand 

ataset [13] are shown in Fig. 7 . It is noticeable that HandyPose ad- 

resses with higher accuracy occluded joints, the most challenging 

omponent of hand pose estimation in general and for this dataset. 

.3. Experimental results on MPII+NZSL dataset 

We next performed our experiments on the MPII+NZSL [14] Our 

andyPose framework outperformed the current SOTA methods by 

 significant margin as reported in Table 5 . 

Similar to results from the previous dataset, HandyPose outper- 

orms the state-of-the-art, achieving an overall mPCK of 56.39%, in- 

reasing the accuracy from other methods by 4.8%. Significant im- 

rovements are also present for the traditional PCK with thresh- 

ld of 0.02 by a margin of 7.2%, reaching 41.66%. The MPII+NZSL 

ataset presents more challenging images in the wild, having in 

ddition to the high incidence of occlusion a great amount of vari- 
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Table 4 

Results for 2D hand pose estimation and comparison with other state-of-the-art-methods for the CMU Panoptic Hand Dataset [13] . 

CMU Panoptic Hand Dataset 

Method Params GFLOPs PCK PCK PCK PCK PCK PCK mPCK 

(M) @0.01 @0.02 @0.03 @0.04 @0.05 @0.06 

HandyPose (ours) 47.5 29.5 43.13% 74.61% 87.85% 92.81% 95.28% 96.84% 81.75% 

10-head R-SiaPose-HG [11] - - 39.46% 77.22% 88.45% 92.97% 94.85% 96.09% 81.48% 

UniPose [7] 47.5 29.2 36.60% 70.32% 84.81% 90.60% 93.72% 95.64% 78.61% 

10-head R-SiaPose-CPM [11] - - 26.62% 65.80% 81.60% 88.02% 91.39% 93.36% 74.47% 

R-SiaPose-CMU [11] - - 24.94% 62.08% 77.83% 84.91% 88.78% 91.34% 71.64% 

AGMN [21] - - 23.90% 60.26% 76.21% 83.70% 87.72% 90.27% 70.34% 

R-MGMN [22] - - 23.67% 60.12% 76.28% 83.14% 86.91% 89.47% 69.93% 

AGMN Sep. Trained [21] - - 21.52% 56.73% 73.75% 82.06% 86.39% 89.10% 68.25% 

CPM [6] 31.4 163.7 22.88% 58.10% 73.48% 80.45% 84.27% 86.88% 67.67% 

Fig. 7. Pose estimation examples from the CMU Panoptic Hand Dataset [13] . 

Table 5 

Results for 2D hand pose estimation and comparison with other state-of-the-art-methods for the MPII + NZSL Dataset [14] . 

MPII + NZSL Dataset 

Method Params GFLOPs PCK PCK PCK PCK PCK PCK mPCK 

(M) @0.01 @0.02 @0.03 @0.04 @0.05 @0.06 

HandyPose (ours) 47.5 29.5 16.02% 41.66% 58.15% 68.12% 74.53% 79.90% 56.39% 

UniPose [7] 47.5 29.2 14.29% 38.85% 55.28% 65.14% 71.75% 77.52% 53.80% 

10-head R-SiaPose-HG [11] - - 12.19% 33.34% 49.13% 59.86% 67.83% 73.69% 49.33% 

10-head R-SiaPose-CPM [11] - - 8.40% 24.71% 39.33% 50.31% 59.04% 66.01% 41.30% 

CPM [6] 31.4 163.7 8.05% 23.78% 37.74% 48.00% 55.65% 61.68% 39.15% 
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bility of images, resulting in a more difficult dataset for architec- 

ures to predict hand pose estimation. 

Examples for hand pose estimation for images from the MPII 

art of the dataset and the New Zealand Sign Language part of the 

ataset are shown in Fig. 8 and Fig. 9 , respectively. Images from the

PII part of the dataset present a higher challenge due to greater 

ariation of the background in the wild, adding to the challenge of 

cclusion present in both parts of the dataset. 

. Conclusion 

Hand pose estimation has drawn increasing attention during 

he past decade due to its similarity to full body pose estima- 
8 
ion and usefulness in a wide range of applications including aug- 

ented reality, virtual reality, human-computer interaction, and 

ction recognition. The high degrees of freedom in the human 

and movements and frequent self-occlusion of hand joints make 

he task more challenging. In addition, the low resolution of the 

and crops make multi-scale feature representations more chal- 

enging. 

We presented the HandyPose framework for 2D hand pose esti- 

ation, consisting of a modular, end-to-end trainable network. We 

roposed a multi-level waterfall module and multi-level decoder to 

etter leverage multi-level and multi-scale features and more accu- 

ately predict pose estimation without losing spatial and contex- 

ual information in the presence of occlusions of hand keypoints. 
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Fig. 8. Pose estimation examples from the MPII+ NSZL dataset [14] . 

Fig. 9. Pose estimation examples from the New Zealand Sign Language (NZSL) dataset. 
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Our multi-level feature extraction approach deals more effec- 

ively with the spatial loss of resolution due to the small size of 

he input image and successive pooling, while achieving high ac- 

uracy and maintaining the size complexity and modularity of the 

etwork. HandyPose achieves state-of-the-art results on two hand 

ose datasets and set the foundation for future work on 3D pose 

stimation. 
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