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Hand pose estimation is a challenging task due to the large number of degrees of freedom and the
frequent occlusions of joints. To address these challenges, we propose HandyPose, a single-pass, end-
to-end trainable architecture for 2D hand pose estimation using a single RGB image as input. Adopt-
ing an encoder-decoder framework with multi-level features, along with a novel multi-level waterfall
atrous spatial pooling module for multi-scale representations, our method achieves high accuracy in hand
pose while maintaining manageable size complexity and modularity of the network. HandyPose takes a
multi-scale approach to representing context by incorporating spatial information at various levels of the
network to mitigate the loss of resolution due to pooling. Our advanced multi-level waterfall module
leverages the efficiency of progressive cascade filtering while maintaining larger fields-of-view through
the concatenation of multi-level features from different levels of the network in the waterfall module.
The decoder incorporates both the waterfall and multi-scale features for the generation of accurate joint
heatmaps in a single stage. Our results demonstrate state-of-the-art performance on popular datasets and
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show that HandyPose is a robust and efficient architecture for 2D hand pose estimation.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Hand pose estimation is an important computer vision task that
includes methods for 2D hand pose [1-3] and 3D hand pose esti-
mation [4]. Hand pose is related to human body pose estimation
[5-8], but it is more challenging due to the large number of de-
grees of freedom in the human hand and the high degree of occlu-
sion of joints in a monocular view of the hand. To overcome the
issue of localizing joints that are occluded, methods may employ
probabilistic and graphical models [9] or use anchor poses to esti-
mate the occluded joints [10]. Methods for 2D hand pose include
the Spatial Information Aware Graph Neural Network [11] which
uses a pool of graphical models and belief propagation to bet-
ter extract relations between each joint and its neighbors. Various
standard backbones are considered, but they don’t capture multi-
scale information.

Leveraging on recent advances of multi-scale feature represen-
tations with application to human pose estimation in [7] and [12],
we propose HandyPose, a single-stage network for hand pose es-
timation that is end to end trainable and produces state-of-the-
art results on the CMU Panoptic [13] and MPII+NZSL [14] datasets.
To deal with the challenges of hand pose context and resolu-
tion, our architecture generates improved Waterfall Atrous Spa-
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tial Pooling (WASP) [15] representations by combining features
from multiple levels of the backbone network via our Multi-Level
WASP (MLW) module. Examples of hand pose estimation obtained
with HandyPose are shown in Fig. 1. A main component of our
HandyPose architecture is the integration of Multi-Level Features
(MLF) along with the extended Field-of-View (FOV) extracted by
the advanced Waterfall Atrous Spatial Pooling (WASPv2) module
[12]. The HandyPose encoder-decoder architecture with our MLW
module combines the cascaded approach for atrous convolutions
with larger FOV with feature extraction from multiple levels of
the backbone and has the potential for wider range of appli-
cations to other tasks such as object pose estimation [16] and
segmentation.

HandyPose predicts the location of hand joints by utilizing con-
textual representations obtained with the multi-scale and multi-
level scheme taken in our network. Our contextual representation
approach allows better detection of shapes, resulting in a more
accurate estimation of occluded joints, without requiring postpro-
cessing relying on statistical or geometric methods. The main con-
tributions of this paper are the following.

o We propose HandyPose, a multi-level and multi-scale, end-to-
end trainable, single-stage framework for 2D hand pose estima-
tion.

o We introduce the Multi-level Waterfall Atrous Spatial Pooling
module that effectively encodes feature maps with large FOV
and contextual information.
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Fig. 1. Pose estimation examples with our HandyPose method.

o HandyPose is a modular encoder-decoder architecture that in-
corporates multi-level features in both the encoder and the de-
coder modules, making it easy to modify and expand.

« HandyPose achieves state-of-the-art result for 2D hand pose on
two popular benchmarks.

2. Related work
2.1. Early works

Before the meteoric growth of deep learning methods, hand
pose estimation was a laborious task that was rarely deployed in
applications due to the setup expense and algorithm complexity.
Most traditional computer vision algorithms were applied for es-
timating the hand pose. Early methods include k-nearest neigh-
bors and decision trees [17]. For instance, [18] applied a multi-
colored glove for reconstructing the pose of a hand from a single
image, and relied on the nearest neighbors technique to map the
hand detection using the multiple colors of the glove. A downside
of these techniques is the high cost of implementation, complex
setup, and requirement of multiple cameras. Aiming to reduce the
setup complexity, [19] combines the use of a single camera setup
with Bayesian technique to better connect and predict the hand
pose estimation. Despite the reduced complexity, this method still
relies on the color pattern of gloves to infer the pose of the hand.
The Microsoft Kinect sensor [20] introduced a less complex setup
with the use of a single camera and the addition of a depth sensor
to extract the 3D hand pose estimation.

2.2. Deep learning methods

More recently, deep learning methods gained in popularity,
as they achieved more accurate hand pose estimation [1,3,21,22].
Methods such as [23] combine depth estimation to extract the full
3D coordinates in addition to the 2D detections. Recurrent Neural
Networks (RNNs) were also used to extract the spatial information
of the joints and palm [24].

The similarity of the hand pose estimation task to human pose
estimation, allows the adoption of methods developed for the over-
all human body. The Convolutional Pose Machine (CPM) approach
|6] is popular for human pose estimation due to its easy imple-
mentation and the modularity of joint detections via the refine-
ment of feature maps through multiple stages of the network. CPM
was later expanded to integrate the concept of Part Affinity Fields
(PAF) resulting in the widely used OpenPose method [25]. Lever-
aging on the innovations of CPM, the approach in [26] developed
a multi-view bootstrapping method that implements a CPM-based
architecture for 2D hand pose estimation, relying on a detector for
generating a large dataset of hand keypoints. Similarly, the Hour-
glass (HG) network [5] stacks up to 8 iterations of its network to
refine feature maps.

Pose estimation methods may be categorized as top-down
[12,27] or bottom-up [25,28]. Top-down approaches rely on an ob-
ject detection stage to locate instances of the person or pose by
using detectors such as YOLO [29] or Faster R-CNN [30]. The de-
tection stage is followed by the detection of keypoints to estimate
pose for every instance. The High-Resolution Network (HRNet)
[31] combines multi resolutions throughout the network, while
also maintaining high-resolution feature maps through all layers of
the network. Despite achieving high accuracy for individual poses,
top-down methods are dependent on the performance of object
detectors.

Bottom-up approaches initially detect all keypoints in the im-
age, followed by keypoint clustering for pose estimation of sepa-
rate instances. Top-Down methods can be expanded to Bottom-Up
approaches by incorporating offset regression into their decoder,
for instance the HigherHRNet [28] leverages the promising results
of the HRNet method to achieve high accuracy bottom-up pose es-
timation. Both top-down [26] and bottom-up [2], approaches can
be utilized for hand pose estimation.

Santavas et al. [2] proposed the AttentionNet for hand pose by
combining a self-attention module [32] with a feed-forward CNN
for directly estimating the hand keypoints without intermediate
supervision. AttentionNet adopts a regression based approach in-
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Fig. 2. The proposed HandyPose architecture for 2D hand pose estimation. The input RGB image is fed into the ResNet-101 backbone, obtaining 400 feature maps after the
concatenation of Multi-Level WASP outputs and MLF feature channnel. The Multi-Level Decoder module generates heatmaps (one per joint) and location of keypoints are

extracted from the heatmaps by applying a local maxima function.

stead of pixel-wise classification, which results in high process-
ing speed but is limited in generalization performance. Aiming
to achieve a better structural learning, a non-parametric structure
regularization approach [33] utilizes the synthetic hand mask for
learning the structure of keypoints. Mask-Pose [1] uses the silhou-
ette information and builds a two-stage cascade network that in-
cludes a mask prediction stage and a pose prediction stage. The
SRHandNet [3] approach regresses hand regions of interest (ROI)
simultaneously with hand keypoints to improve the performance
of hand pose estimation.

2.3. Graphical methods

Many methods apply techniques to assess the geometric con-
straints of hand joints [34]. The Adaptive Graphical Model Network
(AGMN) [21] aims to learn adaptive parameters for the graphical
model for each input image and refine its pose estimation. In an-
other approach, SIA-GCN [11] uses a modified graph neural net-
work for hand pose estimation, representing features at each node
by a 2D spatial confidence map instead of 1D vectors, with the
goal of preserving the spatial information provided in the 2D fea-
ture maps.

Using graphical models along with a CNN, R-MGMN [22] as-
sociated the spatial relationships with input hand shape in order
to reduce the spatial irregularity of hand keypoints. More recently,
the Hand-Object Pose Estimation Network (HOPE-Net) [9] applies
graph convolutions in a modified U-Net configuration [35] to im-
prove the hand pose estimation in conjunction with an object that
is picked by the hand.

2.4. Multi-Scale feature representations

A challenge faced by networks using CNNs for pose estima-
tion is the significant reduction of the resolution caused by the
repeated use of pooling layers. For semantic segmentation, Decon-
volution Networks [36] employed deconvolution layers to address
the problem, by upsampling the resolution of each layer in the de-
coder stage of the network.

Other methods rely on the use of atrous convolutions to avoid
downsampling and increase the size of the receptive fields in the
network. Atrous convolutions are applied systematically by using
a multi-scale context aggregation module [37] in order to better
preserve the contextual information of the input image.

Deeplab [38] further explored the advantages of atrous con-
volution by proposing the Atrous Spatial Pyramid Pooling (ASPP)
module for semantic segmentation. The ASPP approach increases
the FOV at larger dilation rates in parallel branches without down-
sampling. The main challenge this network faces is the increased

computational cost and memory requirements due to its increased
resolution. DeepLabv3 [39] addressed this issue by applying a cas-
cade of atrous convolutions in a sequential order with the help of
progressive filtering to maintain the FOV at different layers of the
network.

The WASP module [15] was initially proposed for semantic seg-
mentation and was used in UniPose [7] for human pose estimation.
The WASP module operates in a waterfall-like flow, progressively
extracting the larger FOV from a series of atrous convolutions at
different dilation rates. The waterfall architecture effectively gener-
ates multi-scale features from the backbone without immediately
parallelizing the input stream, as it maintains the advantages of
the ASPP module with lower computational and memory require-
ments.

The waterfall approach was recently enhanced by the introduc-
tion of the WASPv2 module for multi-person pose estimation in
OmniPose [12]. The WASPv2 architecture extracts feature maps at
multiple scales, while preserving the original resolution by avoid-
ing downsampling. The cascade approach used in WASPv2 main-
tains the high resolution of the feature maps by arranging atrous
convolutions in a cascaded structure with increasing dilation rates
of (1,6,12,18). This arrangement increases the FOV in the fea-
ture representations without affecting the input resolution. Fur-
thermore, WASPv2 integrates the decoder with the feature extrac-
tion process, effectively reducing the overall computational cost.
This effective multi-scale architecture of WASPv2 achieves high ac-
curacy for human pose estimation. In this paper, we adopt the wa-
terfall architecture for hand pose estimation and extend it with
multi-level features.

3. HandyPose architecture

We propose HandyPose, a multi-level framework for hand pose
estimation, that achieves high performance by the use of a novel
multi-level WASP module. Taking into consideration the issue of
frequent occlusion in the joints of the hand, we designed Handy-
Pose to combine feature maps from different levels of the back-
bone with the multi-scale approach of the WASPv2 module to ob-
tain a more powerful representation.

The HandyPose architecture is shown in Fig. 2. Our feature
representation framework uses features from all successive blocks
(levels) of the ResNet-101 backbone and incorporates them at var-
ious places in the network. Our enhanced MLW module increases
the number of feature maps, forming a more robust representation,
and maintains the high resolution of the maps. These represen-
tations, along with a multi-level decoder, generate more accurate
predictions for both occluded and visible joints.
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Fig. 3. The WASPv2 waterfall module with integrated decoder. The inputs are 2048 channels of backbone features and 256 channels from the lowest and highest level of

the backbone. The number of output channels is equal to the number of joints.

In order to deal with the loss of contextual and spatial informa-
tion by successive pooling, our feature utilization approach fuses
multi-level features extracted from all blocks of the ResNet back-
bone. The feature maps from Layers 1, 2, and 3 of the ResNet back-
bone are fed-forward in the network with the use of a 1 x 1 con-
volution and bilinear interpolation on multi-level features to gen-
erate feature maps of matching dimensions. This helps reduce the
size of the network but preserves the image information.

The MLF component of HandyPose extracts the residual fea-
ture maps at different resolutions from the first three blocks of
the ResNet backbone and combines them with the high-level fea-
tures of the backbone after passing through a waterfall of atrous
convolutions to fuse the spatial information at different scales. We
experimented with different fusing combinations and the best re-
sults were obtained by combining the multi-level feature maps in
increasing order of Layer 1, 2 and 3 and concatenating them at
different levels of the MLW module containing the high-level fea-
tures.

Before concatenation, we perform a 1 x 1 convolution preced-
ing the bilinear interpolation on the multi-level feature maps to
match the resolution and shape. The unit convolutions reduce the
depth channels to the desired amount of feature channels of 48
at each level. Experiments with different numbers of high and low
level features of the network were performed, resulting in higher
performance when using 48 channels of feature maps from each
of the first three blocks of the ResNet backbone and 256 feature
maps from the last block output of the ResNet backbone.

3.1. Multi-level WASP module
We present the advanced MLW module in Fig. 4, incorporating

the multi-scale extraction of the WASPv2 module shown in Fig. 3
with the multi-level backbone features.

HandyPose extracts four residual blocks in the ResNet backbone
generating feature maps with 256, 512, 1024, and 2048 channels
at all levels of the ResNet. We organized atrous convolutions in a
waterfall like architecture receiving inputs from different levels of
the ResNet backbone and concatenating them with the output of
progressive filtering of the successive layer of atrous convolutions
in a waterfall fashion, as shown in Fig. 4.

The operations in the MLW module can be described by the
following equations:

£ [Ka e fa if i=1 1)
T Ky @ (fii ® K+ F_y)  otherwise
4
Fvatersat = K1 (Z(E-) +AP(f4)> (2)
i=1

where @ represents convolution, K; and K;, represent convolutions
of kernel size 1 x 1 and 3 x 3 with dilations of d; = (1, 6, 12, 18),
fi represents the output of block i from the ResNet backbone, the
symbols + and )" denote the concatenation operation, and AP de-
notes the Average Pool operation, as shown in Fig. 4.

Our module achieves a multi-level and multi-scale representa-
tion by fusing the cascade of atrous convolutions and MLF fea-
tures and concatenating the outputs with the average pooling of
the high level features from the last block of ResNet-101. The re-
sulting feature maps are reduced in channel depth by applying a 1
x 1 convolution on them. These feature maps along with the MLF
are used as inputs for further processing and generating the final
heatmaps in the decoder, which receives features from all levels of
the backbone.

The WASPv2 and MLW modules are illustrated in Figs. 3 and
4 respectively. The WASPv2 module uses only the highest and low-
est level features as input followed by a cascade of atrous convolu-
tions. In contrast, The proposed MLW module adopts a multi-level
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and the output generates 256 feature channels that are fed into the decoder.
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Fig. 5. The proposed Multi-Level Decoder (MLD) module receives (256,512, 1024) feature maps as input from the ResNet backbone along with the output of the MLW
module. Further processing generates K output heatmaps corresponding to the hand joints. The output image illustrates a single joint output produced by HandyPose.

approach extracting feature maps from different levels of the net-
work and concatenating them at different stages of the cascade
of atrous convolutions. Furthermore, the WASPv2 module contains
an inbuild decoder to output the final feature maps, whereas the
MLW module feature maps are fed in a separate multi-level de-
coder module to further improve the performance.

3.2. Multi-level decoder

The feature maps generated by different stages of our Handy-
Pose architecture are fused in the Multi-Level Decoder (MLD), gen-
erating the final K heatmaps corresponding to each hand point
joint from the dataset. Fig. 5 shows the MLD module where multi-
level features are processed to generate 48 feature maps each for
the first three layers of the ResNet backbone and combined with
256 score maps generated by the MLW module to form a total of
400 feature maps. The resultant feature maps are then processed

through convolutional layers and finally interpolated to generate
the output heatmaps of the same size as the input images. The
concatenation of multi-level features followed by the convolution
and dropout layers in our MLD improves the prediction accuracy
of the network by 0.8%. The multi-level features output, after con-
catenation with the MLW module, is described as follows:

3

FConcat = MP(fl ® Kl) + Z(fz ® Kl) + E/Vaterfall (3)
i=2

Fout = ((Feoncar ® K3) ® K3) @ K (4)

where ® represents convolution, K; and K3 represent convolutions
of kernel size 1 x 1 and 3 x 3, f; represents the output of block
i from the ResNet backbone, + and }_ denotes the concatenation
operation, MP denotes the Max Pool operation, Fygrerfq is the out-
put from the MLW module, and Fy is the output of HandyPose, as
shown in Fig. 5.
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Our decoder process the output to generate heatmaps corre-
sponding to the keypoints, extracting the joint locations through
local maximum operation on each heatmap, that is, the location
in which there is the highest confidence that a joint is located.
HandyPose does not require any post-processing operations as
Non-Maximum Suppression (NMS) for joint localization purposes.
We performed experiments with different depth channels for our
multi-level feature maps and their effects on the performance.

4. Experiments

HandyPose experiments were based on metrics set by each
dataset and processed at the same resolution to the dataset and
other networks to allow comparison of performance.

4.1. Datasets

We perform 2D hand pose experiments on two hand pose
datasets, the CMU Panoptic Hand Dataset [13] and the MPII + NZSL
Dataset [14]. Following procedures adopted by [11,21], and [22],
initial cropping of a square image patch for the annotated hands
was performed in the original images, resulting in a square bound-
ing box with dimensions 2.2x the size of the hand.

The CMU Panoptic Hand Dataset consists of 14,817 images taken
in a panoptic studio. Each image has 21 joint annotations of a sin-
gle hand and is one of the benchmark datasets for 2D hand pose
estimation. Following procedures of other methods in the compar-
ison section, we divided the dataset by splitting the samples into
training, validation, and testing sets containing 70%, 15%, and 15%
of the images, respectively. The main challenge of the dataset is
the high occurrence of self-occlusion for hand keypoints.

The MPII + NZSL dataset contains images from the MPII hu-
man pose dataset combined with the New Zealand Sign Language
dataset. It consists of 2758 images of people in everyday activities,
and contains 21 labeled joint keypoints for the hand. Following the
same procedure as the previous dataset, we crop the region with
the target hand.

4.2. Evaluation metric

For the evaluation of HandyPose, we apply the metric of Prob-
ability of Correct Keypoint (PCK). This metric measures a correct
prediction when the joint detection is within a certain distance
threshold o in relation to the hand bounding box, compared to
the groundtruth label. The main threshold adopted for the dataset
evaluations is o = 0.02. Therefore, the PCK metric is defined as:

PCK(@.02) = P(0')/K (5)
1/ o
mPCK = (; Peke( -2 ]) (6)

For a threshold o of 0.02 and input image of size w x w, PCK is
defined as the number of predicted keypoints (P) that are within
the threshold range o x 0.02 of the ground truth keypoints loca-
tion divided by the total number of keypoints (k). The normalized
threshold o used is with respect to the size of the hand bounding
box. We evaluated our model for different threshold values rang-
ing from {0.01 - 0.06} with a constant increment of 0.01. We also
reported the mean PCK (mPCK) showing the average performance
of our network compared to current state-of-the-art methods by
substituting the value of N = 6.

4.3. Implementation details

Since the hand occupies a small area of the images in the
dataset, and following procedures adopted by [11,21], and [22], we
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pre-process the images, cropping it to a square with 2.2x the hand
size. The cropped images are then resized to a constant resolution
of 368 x 368, scaled between [0,1], and and normalized follow-
ing procedures comparable to other methods. Resized images re-
duce the computational footprint of the network, and decreased
the training time of the network. We used a batch size of 32 im-
ages during training, and performed training for 80 epochs, apply-
ing an initial learning rate of Ir = 10~4, being reduced by a factor
of 0.1 after 60 epochs.

5. Results and analysis

We present HandyPose results on two prominent datasets and
provide comparisons with current state-of-the-art methods. We
also performed experiments by changing our MLW module with
ASPP, WASP, and WASPv2 modules, the results obtained are dis-
cussed in the Ablations section.

5.1. Ablations studies

We initially performed a series of experiments to analyse the
accuracy, as well as computational cost and number of parameters,
for each component added to our HandyPose framework. We per-
formed a series of ablation studies to investigate the performance
of atrous convolutions before developing our MLW module. Per-
forming experiments with the ASPP, WASP and WASPv2 module on
the HandyPose architecture, we observe the improvement in per-
formance by using a cascade of atrous convolutions. WASPv2 with
multi-level features is performing the best, compared to the other
configurations, as show in Table 1.

We also compared the use of different feature extractors and
decoders for our HandyPose framework. Table 1 demonstrates the
results for the inclusion of the ASPP module [38], WASP mod-
ule [7], and WASPv2 module [12] in combination with the im-
proved feature extractor in our architecture. The combination of
the modified WASPv2 module with our implementation of MLF
and our MLD demonstrated to be the more efficient architecture,
gaining 3.46% in accuracy (from 71.15% to 74.61%) when compared
to DeepLab.

Table 2 demonstrates the performance comparison of three
different backbones, ResNet-50, ResNet-101 and HRNet-W48 [31],
combined with different components of HandyPose on the CMU
Panoptic Hand dataset [13]. This dataset consists of images of hu-
man of resolution 1920 x 1080, but hands are cropped from a
small part of the image due to their smaller size. The average size
of hand crops in the dataset is 44 x 48. From ablations performed
in Table 2 we can infer that the multi-level feature resolutions of
the ResNet backbone help to further extract important informa-
tion from different scales. In comparison, the high-resolution HR-
Net backbone is not as effective for processing smaller portions of

Table 1

Ablation studies for different configurations of HandyPose with ResNet-101 back-
bone for the CMU Panoptic Hand dataset [13]. MLW and MLD represents the Multi-
Level WASP and Multi-Level Decoder modules using Multi-Level Features (MLF).
ASPP, WASP, and WASPv2 indicates the use of various atrous modules in the net-
work.

Params PCK
Method (M) GFLOPs ASPP WASP WASPv2 MLW MLD @0.2
ResNet [40] 44.6 283 69.20%
Deeplab 59.3 349 v 71.15%
[38]
Unipose [7] 475 29.2 v 70.32%
WASPv2 47.0 28.8 v 73.58%
WASPV2 + 47.2 293 v 73.97%
MLF
HandyPose 475 295 v v 74.61%
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Fig. 6. Examples of fail cases for images in the datasets: (a) High occlusion by grass and bat causes the joint positions to be misplaced; and (b) Self occlusion of joints are

a common issue in hand pose estimation.

the image containing the hand. The ResNet-101 model improves
the accuracy by 5.41% (from 69.20% to 74.61%), while the HRNet
configuration improves by only 1.72% (from 69.55% to 71.27%).

Table 3 presents a comparison for the implementation of our
multi-level feature maps by applying different numbers of feature
maps from all blocks of the ResNet backbone into the modified
MLW module and the MLD of HandyPose. We tested our network
with different numbers of feature maps for the first three blocks of
ResNet {24, 48, 96, 128}, generating the multi-level approach. Sim-
ilar to results previously observed by architectures applying low-
level features to the decoder stage [7,12,38], the use of 48 feature
maps for lower level features and 256 maps for high level features
was found to be the more efficient combination.

Examples of failure cases are shown in Fig. 6. Most common
issues of failure can be seen due to object/self occlusion. Self oc-
clusion results in joints to be positioned very close to each other,
confusing the network when detecting joints in very close prox-
imity. Object occlusion results in obstruction of some part or most
of the hand, as hands are readily used for holding objects. Fortu-

Table 2

Performance comparison of three different backbones, ResNet-50, ResNet-101 and
HRNet-W48 in the presence or absence of different components of the HandyPose
architecture for the CMU Panoptic Hand dataset [13].

Params PCK
Backbone (M) GFLOPs ~ WASPv2 MLW  MLD @0.2
ResNet-50 25.6 19.0 65.44%
ResNet-50 279 19.5 v 69.28%
ResNet-50 28.2 20.1 v 70.13%
ResNet-50 28.5 20.2 v v 70.92%
ResNet-101 44.6 28.3 69.20%
ResNet-101 47.0 28.8 v 73.58%
ResNet-101 47.2 293 v 73.97%
ResNet-101 47.5 295 v v 74.61%
HRNet-W438 68.0 38.1 69.55%
HRNet-W48 68.2 389 v 70.30%
HRNet-W48 68.2 393 v 70.91%
HRNet-W48 68.3 39.6 v v 71.27%

Table 3

HandyPose results for the CMU Panoptic Hand
dataset [13] showing the effects of varying the
number of feature maps in the multi-level-features.

Feature Maps PCK@0.02
24 72.8%

48 74.61%
96 71.5%
128 70.3%

nately, there are few failed cases and in most cases our model is
able to successfully detect occluded joints.

5.2. Experimental results on CMU Panoptic Hand dataset

We compared our multi-level approach to current state-of-the-
art methods as shown in Table 4. The SiaPose method [11] con-
siders several backbones in its configuration, including the heavy-
weight HG backbone. In addition, SiaPose also adds up to 40% in its
size by combining the backbone with the 10 heads for the refine-
ment of predictions through graphical models. HandyPose achieved
an overall best performance, with significant gains in comparison
to the previous state-of-the-art while using a smaller backbone,
ResNet-101. For the overall average accuracy, HandyPose achieves
a mPCK of 81.75%, increasing the previous state-of-the-art. Most
of the improvement of HandyPose is due to its higher capacity
to precisely detect keypoints at lower thresholds, increasing the
PCK@0.01 by 9.3% compared to the previous state-of-the-art (from
39.46% to 43.13%). HandyPose is an overall more accurate frame-
work that achieves most of its gains in the fine refinement of joints
detections for tight thresholds.

In contrast to other methods relying in multi-stage frameworks
[11,21], and [22], HandyPose is able to detect with higher accuracy
hand joints in a single iteration network. HandyPose improves the
accuracy by 6.1% to its nearest competitor for the most traditional
PCK with threshold of 0.02, and an even larger 17.8% for more pre-
cise hand pose estimation in a less forgiving threshold of 0.01, at-
testing to the more precise alignment of HandyPose to the exact
joint locations.

Examples of HandyPose detections for the CMU Panoptic Hand
dataset [13] are shown in Fig. 7. It is noticeable that HandyPose ad-
dresses with higher accuracy occluded joints, the most challenging
component of hand pose estimation in general and for this dataset.

5.3. Experimental results on MPII+NZSL dataset

We next performed our experiments on the MPII+NZSL [14] Our
HandyPose framework outperformed the current SOTA methods by
a significant margin as reported in Table 5.

Similar to results from the previous dataset, HandyPose outper-
forms the state-of-the-art, achieving an overall mPCK of 56.39%, in-
creasing the accuracy from other methods by 4.8%. Significant im-
provements are also present for the traditional PCK with thresh-
old of 0.02 by a margin of 7.2%, reaching 41.66%. The MPII+NZSL
dataset presents more challenging images in the wild, having in
addition to the high incidence of occlusion a great amount of vari-
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Results for 2D hand pose estimation and comparison with other state-of-the-art-methods for the CMU Panoptic Hand Dataset [13].

CMU Panoptic Hand Dataset

Method Params GFLOPs PCK PCK PCK PCK PCK PCK mPCK
(M) @0.01 @0.02 @0.03 @0.04 @0.05 @0.06
HandyPose (ours) 47.5 29.5 43.13% 74.61% 87.85% 92.81% 95.28% 96.84% 81.75%
10-head R-SiaPose-HG [11] - - 39.46% 77.22% 88.45% 92.97% 94.85% 96.09% 81.48%
UniPose [7] 47.5 29.2 36.60% 70.32% 84.81% 90.60% 93.72% 95.64% 78.61%
10-head R-SiaPose-CPM [11] - - 26.62% 65.80% 81.60% 88.02% 91.39% 93.36% 74.47%
R-SiaPose-CMU [11] - - 24.94% 62.08% 77.83% 84.91% 88.78% 91.34% 71.64%
AGMN [21] - - 23.90% 60.26% 76.21% 83.70% 87.72% 90.27% 70.34%
R-MGMN [22] - - 23.67% 60.12% 76.28% 83.14% 86.91% 89.47% 69.93%
AGMN Sep. Trained [21] - - 21.52% 56.73% 73.75% 82.06% 86.39% 89.10% 68.25%
CPM [6] 314 163.7 22.88% 58.10% 73.48% 80.45% 84.27% 86.88% 67.67%
i
Fig. 7. Pose estimation examples from the CMU Panoptic Hand Dataset [13].
Table 5
Results for 2D hand pose estimation and comparison with other state-of-the-art-methods for the MPII + NZSL Dataset [14].
MPII + NZSL Dataset
Method Params GFLOPs PCK PCK PCK PCK PCK PCK mPCK
(M) @0.01 @0.02 @0.03 @0.04 @0.05 @0.06
HandyPose (ours) 47.5 29.5 16.02% 41.66% 58.15% 68.12% 74.53% 79.90% 56.39%
UniPose [7] 47.5 29.2 14.29% 38.85% 55.28% 65.14% 71.75% 77.52% 53.80%
10-head R-SiaPose-HG [11] - - 12.19% 33.34% 49.13% 59.86% 67.83% 73.69% 49.33%
10-head R-SiaPose-CPM [11] - - 8.40% 24.71% 39.33% 50.31% 59.04% 66.01% 41.30%
CPM [6] 314 163.7 8.05% 23.78% 37.74% 48.00% 55.65% 61.68% 39.15%

ability of images, resulting in a more difficult dataset for architec-
tures to predict hand pose estimation.

Examples for hand pose estimation for images from the MPII
part of the dataset and the New Zealand Sign Language part of the
dataset are shown in Fig. 8 and Fig. 9, respectively. Images from the
MPII part of the dataset present a higher challenge due to greater
variation of the background in the wild, adding to the challenge of
occlusion present in both parts of the dataset.

6. Conclusion

Hand pose estimation has drawn increasing attention during
the past decade due to its similarity to full body pose estima-

tion and usefulness in a wide range of applications including aug-
mented reality, virtual reality, human-computer interaction, and
action recognition. The high degrees of freedom in the human
hand movements and frequent self-occlusion of hand joints make
the task more challenging. In addition, the low resolution of the
hand crops make multi-scale feature representations more chal-
lenging.

We presented the HandyPose framework for 2D hand pose esti-
mation, consisting of a modular, end-to-end trainable network. We
proposed a multi-level waterfall module and multi-level decoder to
better leverage multi-level and multi-scale features and more accu-
rately predict pose estimation without losing spatial and contex-
tual information in the presence of occlusions of hand keypoints.
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Fig. 8. Pose estimation examples from the MPIl+ NSZL dataset [14].

Fig. 9. Pose estimation examples from the New Zealand Sign Language (NZSL) dataset.

Our multi-level feature extraction approach deals more effec-
tively with the spatial loss of resolution due to the small size of
the input image and successive pooling, while achieving high ac-
curacy and maintaining the size complexity and modularity of the
network. HandyPose achieves state-of-the-art results on two hand
pose datasets and set the foundation for future work on 3D pose
estimation.
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