10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Privately Estimating Graph Parameters in
Sublinear time

Jeremiah Blocki &
Department of Computer Science, Purdue University, USA

Elena Grigorescu =
Department of Computer Science, Purdue University, USA

Tamalika Mukherjee =
Department of Computer Science, Purdue University, USA

—— Abstract

We initiate a systematic study of algorithms that are both differentially-private and run in sublinear
time for several problems in which the goal is to estimate natural graph parameters. Our main result is a
differentially-private (1 + p)-approximation algorithm for the problem of computing the average degree
of a graph, for every p > 0. The running time of the algorithm is roughly the same (for sparse graphs) as
its non-private version proposed by Goldreich and Ron (Sublinear Algorithms, 2005). We also obtain the
first differentially-private sublinear-time approximation algorithms for the maximum matching size and the
minimum vertex cover size of a graph.

An overarching technique we employ is the notion of coupled global sensitivity of randomized algorithms.
Related variants of this notion of sensitivity have been used in the literature in ad-hoc ways. Here we
formalize the notion and develop it as a unifying framework for privacy analysis of randomized approximation
algorithms.
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1 Introduction

Graphs are frequently used to model massive data sets (e.g., social networks) where the users are
the nodes, and their relationships are the edges of the graphs. These relationships often consist
of sensitive information, which drives the need for privacy in this setting.

Differential Privacy (DP) [12] has become the gold standard in privacy-preserving data analysis
due to its compelling privacy guarantees and mathematically rigorous definition. Informally,
a randomized function computed on a graph is differentially private if the distribution of the
function’s output does not change significantly with the presence or absence of an individual
edge (or node). See [13] for a comprehensive tutorial on differential privacy.

» Definition 1 (Differential-privacy). Let %, denote the set of all n-node graphs. An algorithm .of
is (¢,8) node-DP (resp. edge-DP) if for every pair of node-neighboring (resp. edge-neighboring)*

I Graphs G; = (V, E1), Gy = (V, E3) are node-neighboring, denoted by G; ~, G, if there exists a vertex
v € V such that E; (V \ {v}) = E»(V \ {v}). Graphs G; and G are edge-neighboring i.e., G ~. Gg if
there exists an edge e such that E; \ {e} = E, \ {e}.
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Privately Estimating Graph Parameters in Sublinear time

graphs G1,G, € %,, and for all sets & of possible outputs, we have that Pr[.«/(G;) € ] <
e Prl.(Gy) € ]+ . When & = 0 we simply say that the algorithm is e-DP

Since the graphs appearing in modern applications are massive, it is also often desirable
to design sublinear-time algorithms that approximate natural combinatorial properties of the
graph, such as the average degree, the number of connected components, the cost of a minimum
spanning tree, the number of triangles, the size of a maximum matching, the size of a minimum
vertex cover, etc. For an excellent survey on sublinear-time algorithms for approximating graph
parameters, we refer the reader to [29].

There has been a lot of work in developing differentially-private algorithms for estimating
graph parameters in polynomial-time, with respect to edge differential privacy, i.e., neighboring
graphs that differ by a single edge in Definition 1. Nissim, Raskhodnikova, and Smith [25]
demonstrated the first edge-differentially private graph algorithms. They showed how to estimate
the cost of a minimum spanning tree and the number of triangles in a graph by calibrating noise
to a local variant of sensitivity called smooth sensitivity. Subsequent works in designing edge
differentially-private algorithms for computing graph statistics include [21, 19, 23, 36]. Gupta,
Ligett, McSherry, Roth and Talwar [18] gave the first edge differentially-private algorithms for
classical graph optimization problems, such as vertex cover, and minimum s-t cut, by making
clever use of the exponential mechanism in existing non-private algorithms that solve the same
problem.

An even more desirable notion of privacy in graphs is the notion of node differential privacy i.e.,
neighboring graphs that differ by a single node and edges incident to it in Definition 1. The concept
of node differentially-private algorithms for 1-dimensional functions (functions that output a
single real value) on graphs was first rigorously studied independently by Kasiviswanathan, Nissim,
Raskhodnikova and Smith [22], as well as, Blocki, Blum, Datta, and Sheffet [4], and Chen and
Zhou [9]. Their techniques were later extended to higher-dimensional functions on graphs [28, 6].
Subsequent works have focused on developing node differentially-private algorithms for a family
of network models: stochastic block models and graphons [7, 30]. A more recent line of work
has focused on the continual release of graph statistics such as degree-distributions and subgraph
counts in an online setting [33, 15]. Gehrke, Lui, and Pass [16] introduce a more robust notion of
differential privacy called Zero-Knowledge Differential Privacy (ZKDP), which tackles the problem
of auxiliary information in social networks. This work uses existing results from sublinear-time
algorithms as a building block to achieve ZKDP for several graph problems. However, it is
important to note that the final ZKDP mechanisms are not computable in sublinear-time.

The literature on designing differentially-private algorithms for estimating graph parameters
in sublinear time is far less developed. The only paper we are aware of is due to Sivasubramaniam,
Li and He [32], who give the first sublinear-time differentially-private algorithm for approximating
the average degree of a graph. Our work addresses this gap by initiating a systematic study of
differentially-private sublinear-time algorithms for the problems of estimating the following graph
parameters: (1) the average-degree of a graph, (2) the size of a maximum matching, and (3) the
size of a minimum vertex cover. As an overarching technique, we formally introduce the notion
of Coupled Global Sensitivity and use it to analyze the privacy of our randomized approximation
algorithms.

1.1 Our Results
1.1.1 Privately Approximating the Average Degree

We obtain a differentially-private sublinear-time algorithm for estimating the average degree

dg = W, of a graph G = (V, E), with respect to edge-differential privacy, which achieves
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a multiplicative approximation of (1 + p), for any constant p > 0. Specifically, our algorithm
outputs a value d such that wh.p. we have (1 — p)dg < d < (1 + p)dg, for graphs with
dg = Q(1). Throughout the paper we denote |[V| = n.

We work in the neighbor-query model, in which we are given oracle access to a simple graph
G = (V, E), where the algorithm can obtain the identity of the i-th neighbor of a vertex v € V in
constant time. If i > deg(v) for a particular vertex v, then | is returned. The algorithm may also
perform degree queries, namely for any v € V it can obtain deg(v) in constant time.

» Theorem 2. There is an ¢-edge differentially-private (1 + p)-approximation algorithm for
estimating the average degree dg > 1 of a graph G on m vertices that runs in time? O(y/n -

poly(log(n)/p) - poly(1/¢)) where e ! = o(log"/*(n)).

The problem of estimating the average degree of a graph was first studied by Feige [14], who
gave a sublinear time (2 + p)-approximation (multiplicative) for any constant p > 0, making
0O(4/m/dp) many degree queries, where dg is a lower bound on the number of queries. He also
notes that Q(1/n/dg) queries are necessary for a 2 — o(1)-approximation, and hence, for the
interesting cases when we may assume dy > 1, Q(n) degree queries are necessary®. Goldreich
and Ron [17] subsequently gave a (1 + p)-approximation using both degree and neighbor queries,
running in time O((n/y/m) - poly(1/p)). This bound is also tight, since every constant-factor
approximation algorithm must make Q(n/,/pm) degree and neighbor queries [17]. A simpler
analysis achieving the same bounds was given by Seshadri [31]. Further, Dasgupta, Kumar
and Sarlés [11] studied this problem in the model where access to the graph is via samples, in
the context of massive networks where the number of nodes may not be known. They obtain a
(1 + p)-approximation that uses roughly O(log dy, - loglog dy;) samples where dy; is an upper
bound on the maximum degree of the graph.

In recent work, Sivasubramaniam, Li and He [32] gave a sublinear-time differentially-private
algorithm for approximating the average degree of a graph using Feige’s [14] algorithm. Their
algorithm achieves a (2 4+ p + o(1))-approximation for every constant p > 0. They achieve this
by calculating a tight bound for the global sensitivity of the final estimate of Feige’s algorithm
and adding Laplace noise with respect to this quantity appropriately. By contrast, we achieve
a (1 + p)-approximation for any constant p > 0 — assuming that the privacy parameter is
e =o(log"*n).

1.1.2 Privately Approximating the Size of a Maximum Matching and
Minimum Vertex Cover

Given an undirected graph, a set of vertex-disjoint edges is called a matching. A matching M
is maximal if M is not properly contained in another matching. A matching M is maximum
if for any other matching M’, [M| > |[M’|. A vertex cover of a graph is a set of vertices that
includes at least one endpoint of every edge of the graph. A minimum vertex cover is a vertex
cover of the smallest possible size. For a minimization problem, we say that a value {j is an
(e, B)-approximation to y if y < § < ay + 3. For a maximization problem, we say that a value
J is an («, B)-approximation to y if 2 — < <y. An algorithm .¢/ is an («, 3)-approximation
for a value V(x) if it computes an («, 3)-approximation to V/(x) with probability at least 2/3 for
any proper input x.

2 from here on, we use running time and number of queries interchangeably.

3 Observe that for d g = o(1) a multiplicative approximation algorithm that can distinguish between two graphs
on n vertices, one with 0 edges, and another with, say 1 edge, must sample Q) (1) vertices, and hence cannot
be running in sublinear time.
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Privately Estimating Graph Parameters in Sublinear time

For a graph G = (V, E), we work in the bounded degree model, where one can query an i-th
neighbor (1 € [d]) of a vertex in constant time; denote this query as Nbr(v,i). Here d is the
maximum degree of the graph. If i > deg(v) for a particular vertex v, then Nbr(v,i) =L. We
also assume query access to the degree of a vertex, i.e., one can query deg(v) for any v € V in
constant time.

» Theorem 3. There is an ¢-(node and edge) differentially-private algorithm for the maximum
matching problem that reports a (2, pn)-approximation with probability 1 — (2/n* + 1/n192¢/e),
and runs in expected time O (((_1 +1)/ pz), where d is the average degree of the input graph.

» Theorem 4. There is an ¢-(node and edge) differentially-private algorithm for the minimum
vertex cover problem that reports a (2, pn)-approximation with probability 1 — (2/n* + 1/n%¢/¢),
and runs in expected time O (((_1 +1)/ pz), where d is the average degree of the input graph.

Typically, the privacy parameter ¢ is a constant, and so is the approximation parameter p, in
which case the success probability in the theorems above is 1 — 1/(poly(n)).

The question of approximating the size of a vertex cover in sublinear-time was first posed
by Parnas and Ron [27], who obtained a (2, pn)-approximation in time d©(1°84/0%) where d
is the maximum degree of the graph. Nguyen and Onak [24] improved upon this result by
giving a (2, pn)-approximation for the maximum matching problem, and consequently a (2, pn)-
approximation for the vertex cover problem, in time O(2°(4)/ °*). The result of [24] was later
improved by Yoshida, Yamamoto and Ito [35], who gave an ingenious analysis of the original
algorithm to achieve a running time of O(d*/p?). Onak, Ron, Rosen and Rubinfeld [26] proposed
a near-optimal time complexity of O(d - poly(1/p)), where d is the average degree of a graph,
but Chen, Kannan, and Khanna [10] identified a subtlety in their analysis, which proved to be
crucial to their improved time complexity claim. Very recently, building on ideas from the analysis
of [35], Behnezhad [3] gave a new analysis for achieving a (2, pn)-approximation to the size of
maximum matching and minimum vertex cover in time O((d+1)/p?). Behnezhad’s result nearly
matches the lower bound given by Parnas and Ron [27], who showed that Q(d + 1) queries are
necessary for obtaining a (O(1), pn)-estimate in the case of the maximum matching or minimum
vertex cover problem.

Our final DP algorithm simply runs the non-private approximation algorithm [3] and then
adds Laplace noise proportional to the Coupled Global Sensitivity (of the non-private algorithm).
Thus, our time complexity is identical to the non-private approximation algorithm. We show that
the added Laplace noise is small enough that it preserves the approximation guarantees of the
non-private approximation algorithm.

1.2 Organization

We define and motivate the notion of Coupled Global Sensitivity as a privacy tool in Section 1.3.
Then we give a high-level overview of the techniques used for our results in Section 1.4. The
formal privacy and accuracy analysis of Theorem 2 are in Sections 2 and 4. The formal analysis
for Theorems 3 and 4 are in the full version [5]. We conclude with some open problems in
Section 5.

1.3 Coupled Global Sensitivity as a Tool in Privacy analysis

Background and Motivation. Given a query f : 2 — R¢ a general mechanism to answer the
query privately is to compute f(D) and then add noise. The global sensitivity of a function was
introduced in the celebrated paper by Dwork, McSherry, Nissim and Smith [12], who showed that
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it suffices to perturb the output of the function with noise proportional to the global sensitivity of
the function in order to preserve differential privacy.

» Definition 5 (Global sensitivity). For a query f: 2 — R9, the global sensitivity of f (wrt the
{1-metric) is given by
GS;= max |[f(A)—f(B)| -
A,BED:A~B

One can preserve differential privacy by computing f(D) and adding Laplacian noise* scaled
to the global sensitivity of f, where D is a database. However, in many contexts we may not
be able to compute the function f exactly. For example, if the dataset D is very large and our
algorithm needs to run in sublinear-time or if the function f is intractable e.g., f(G) is the
size of the minimum vertex cover. In cases where we cannot compute f exactly, an attractive
alternative is to use a randomized algorithm, say .</;, to approximate the value of f. Given an
approximation algorithm .¢f; it is natural to ask whether or not we can add noise to .</;(D) to
obtain a differentially private approximation of f(D) and (if possible) how to scale the noise. We
first observe that computing .ef¢ (D) and adding noise scaled to the global sensitivity of f does not
necessarily work. Intuitively, this is because the sensitivity of .«/; can be vastly different from that
of f. For example, suppose that GS; = 1, f(D) = n = f(D’) + 1 for neighboring datasets D ~ D’
and that our approximation algorithm guarantees that 0.999-f(D) < . (D) < 1.001-f(D). Itis
possible that A¢(D) = 1.001n and A¢(D’) = 0.999(n — 1) so that |A¢(D) — A¢(D’)| > 0.002n
which can be arbitrarily larger than GS¢ as n increases.

Coupled Global Sensitivity. We propose the notion of coupled global sensitivity of randomized
algorithms as a framework for providing general-purpose privacy mechanisms for approximation
algorithms running on a database D. In this framework, our differentially-private algorithms can
follow a unified strategy, in which in the first step a non-private randomized approximation algo-
rithm .«/¢(D) is run on the dataset, and privacy is obtained by adding Laplace noise proportional
with the coupled global sensitivity of .¢/¢>. The concept of coupled global sensitivity has been used
implicitly in prior work on differential privacy e.g., see [1, 8]. Our work formalizes this notion
as a general tool that can be used to design and analyze differentially private approximation
algorithms.

Notation: When .« is a randomized algorithm we use the notation x := .&/(D; 1) to denote
the output when running ./ on input D with fixed random coins r. Similarly, ./(D) can be
viewed as a random variable taken over the selection of the random coins .

» Definition 6 (Coupling). Let Z and Z' be two random variables defined over the probability
spaces Z and %', respectively. A coupling of Z and Z’, is a joint variable (Z.,Z!) taking values in
the product space (% x %') such that Z. has the same marginal distribution as Z and Z, has the
same marginal distribution as Z'. The set of all couplings is denoted by Couple(Z,Z").

» Definition 7 (Coupled global sensitivity of a randomized algorithm). Let .o/ : 9 x & — R* be
a randomized algorithm that outputs a real-valued vector. Then the coupled global sensitivity of .</
is defined as

CGS,, := max min max ||z—z'|;
D;~D; Ce&Couple(.(D1),4(D3)) (z,z')eC

4 Here, the probability density function of the Laplace distribution Lap(A) is h(z) = ﬁ exp (— %)

5 We note that this is the simplest application of CGS, and as we will see in the analysis of estimating the average
degree, we can use CGS to add noise to intermediate quantities used by the randomized algorithm as well.
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» Remark 8. We can try to relax the definition of Coupled Global Sensitivity as follows: CGS 4 5
is the minimum value, say x such that for all neighboring inputs D; ~ D, there exists a coupling
C such that Pr(, ,/.c[lz —z/| > x] < . We need to be careful here as we need to ensure that
the minimum value x is always well-defined. If we can ensure this, then we can also show that
adding noise proportional to CGS 5 preserves (¢, 6)-differential privacy.

» Fact 1. Let ./ : 9 x # — R¥ be a randomized algorithm viewed as a function that takes as
input a dataset 9 and a random string in the finite set %, and outputs a real-valued vector. For
a finite set &, denote by Sym(2) the symmetric group of all permutations on the elements in % .
Then,
CGSy < max min max|.«/(D1;R) — .« (D2; 0(R))]1
D1~D; ceSym(2) ReZ

The following theorem formalizes the fact that adding noise proportional to the coupled global
sensitivity of a randomized algorithm preserves differential privacy (see full version [5] for a
formal proof).

» Theorem 9. Let .o/ : 9 — R* be a randomized algorithm and define the Laplace mechanism
M (D) = .o (D)+ (Y1,..., Yx), where Y; are i.i.d. random variables drawn from Lap(CGS . /¢).
The mechanism A\ preserves e-differential privacy.

How we use Coupled Global Sensitivity. In our algorithm for estimating the average degree
we divide the algorithm into randomized sub-routines and show that the CGS of these sub-
routines is small, therefore enabling us to add Laplacian noise proportional to the CGS and ensure
the privacy of each sub-routine, and by composition, the privacy of the entire algorithm (See
Theorem 12). Similarly, we show that the existing non-private sublinear-time algorithms for
maximum matching and minimum vertex cover have small CGS, therefore enabling us to add
Laplace noise proportional to the CGS to their outputs thus making them differentially-private
(See full version [5]).

1.4 Technical Overview
1.4.1 Privately Estimating the Average Degree.

At a high-level, our private algorithm for estimating the average degree follows the non-private
variant of Goldreich and Ron [17]. However, there are several challenges that prevent us from
simply being able to add Laplacian noise to the output. We overcome these challenges by first
obtaining a new non-private algorithm with the same approximation ratio as that of [17], and
then further add appropriate amounts of noise in several steps of the algorithm to obtain both
privacy and accuracy guarantees. We begin by describing the algorithm of [17].

The Goldreich-Ron algorithm [17]. The strategy of the original non-private algorithm
in [17] is to sample a set S of vertices and partition them into buckets S; based on their degrees.
In particular, for each i we set S; = B; N S where the set B; contains all vertices of degrees
ranging between ((1 + )11, (1 + B)!], where B = p/c for some constant ¢ > 1. Intuitively, as
long as |S;] is sufficiently large the quantity |S;|/|S| is a good approximation for |B;|/n with high
probability. Let I denote the indices i for which |S;| is sufficiently large. We can partition edges
from the graph into three sets (1) edges with both endpoints in ( J;.; Bi, (2) edges with exactly
one endpoint in | J;; Bi, and (3) edges with no endpoints in ( J;; Bi. When the threshold for
"large buckets" is tuned appropriately one can show that (whp) type 3 edges can be ignored as
there are at most o(n) such edges.

We could use (1/IS) 3¢ ISil(1 + B)** as an approximation for + 3, ;> 5 deg(v).
The previous sum counts type (1) edges twice, type (2) edges once and type (3) edges zero
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times. While it is okay to ignore type (3) edges there could be a lot of type (2) edges which are
under-counted. To correct for type (2) edges we can instead try to produce an approximation
for the sum + > ;.\ > g (1 + o )deg(v) where , denotes the fraction of type (2) edges
incident to v. Intuitively, «,, is included to ensure that type (2) edges are also counted twice.
For each sampled node v € S; we can pick a random neighbor r(v) of v and define X(v) = 1 if
T(v) € Uicq Bi; otherwise X(v) = 0. Observe that in the expected value of the random variable
is E[X(v)] = «,,. Since |S;| is reasonably large for each i € I and deg(u) =~ deg(v) for each pair
u,v € S; we can approximate the fraction of type (2) edges incident to B; as W;/|S;| where
Wi =} ,cs, X(v). Finally, we can use (1/S]) 3_;c;I1Sil(1 + Wi/ISi[)(1 + B)*~! as our final
approximation for the average degree.

Challenges to making the original algorithm private by adding noise naively. The first
naive attempt to transform the algorithm of [17] into a differentially private approximation would
be to add noise to the final output. However, the coupled global sensitivity of this algorithm is
large enough that the resulting algorithm is no longer a (1 + p)-approximation.

A second natural strategy to make the above algorithm differentially private is to add Laplace
noise to the degree of each vertex and partition vertices in S based on their noisy degrees
d(v) = deg(v) 4+ Y, where Y, ~ Lap(6/¢). (Note: To ensure that the algorithm still runs in
sublinear time we could utilize lazy sampling and only sample Y,, ~ Lap(6/¢) when needed).
In particular, we can let S: = SN B; where B; denotes the set of all nodes v with noisy degree
d(v) ranging between ((1 4+ 3)'"1, (1 + B)!]. Now we can compute W; = Z; + > ves, X(v)
where Z; ~ Lap(6/¢) and return (1/[S[) 3_;; 1S:1(1+ I\;'Liil)(l + ). While the above approach
would preserve differential privacy, the final output may not be accurate. The problem is that
the noise Y, may cause a node v to shift buckets. It is not a problem if v € B; shifts to an
adjacent bucket i.e., v € Bi_; orv € Bi,; since (1 —p)'"2 and (1 — B)*! are still reasonable
approximations for the original degree deg(v) € ((1+ B)'"1, (1 + B)']. Indeed, when deg(v) is
sufficiently large we can argue that (1 — ) deg(v) < d(v) < (1+ ) deg(v) with high probability.
However, this guarantee does not apply when deg(v) is small. In this case the Laplace noise
Y, might dominate deg(v) yielding an inaccurate approximation. Sivasubramaniam et al. [32],
made similar observations, and because of these technical barriers, their paper analyzes the
simpler strategy for estimating the average degree, which yields a less accurate result. The crucial
observation here is that we need to deal with vertices having small degrees in our accuracy
analysis separately.

Modified non-DP algorithm achieving the same approximation ratio. To address the
challenges discussed above we first propose a modification to the strategy given by [17]. While
the modified algorithm is still non-private it still achieves a (1 + p)-approximation for any p > 0
and is amenable to differentially private adaptations. Our algorithm now samples vertices S
without replacement and puts them into buckets S; = B; N S according to their degrees. The key
modification is that we merge all of the buckets with smaller degrees i.e., i < K° into one. We
redefine B; to denote this merged bucket and S; = S N B; and we redefine I to be the set of
all indices i > K such that |S;| is sufficiently large. If B; is not too large then all of the edges
incident to By can simply be ignored as the total number of these edges will be small. Otherwise,
we can account for edges that are incident to B; by adding |Si| 2 ves, (1+X(v)) deg(v) to our
final output. Since we merged all of the buckets with smaller degrees we no longer have the
guarantee that deg(u) ~ deg(v) for all u,v € S;. However, since deg(v) is reasonably small for

6 where we fix K := [ 2 + log 21S1ve in the sequel
PP Blogy g (n)y/ny/logn
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each v € §; the variance is still manageable. Intuitively, the sum é 2 ves, (1+X(v)) deg(v)

approximates % Zve& (1+ o) deg(v) where o, now denotes the fraction of edges incident to
v whose second endpoint lies outside the set By U [J;{ Bi.

The differentially-private modified algorithm. We now introduce our sublinear-time
differentially-private algorithm to approximate the average degree in Algorithm 4. Algorithm 4
relies on three subroutines given by Algorithms 1, 2, and 3. Splitting the algorithm into separate
modules simplifies the privacy analysis as we can show that each subroutine is ¢/3-differentially
private — it follows that the entire algorithm is e-differentially private. In Algorithm 1 we add
Laplace noise to the degrees of all vertices in the graph and then return a sample of vertices,
say S (sampled uniformly without replacement) along with their noisy degrees. For simplicity
we describe Algorithm 1 in a way that the running time is linear in the size of the input. We do
this to make our privacy analysis simpler. However, we can implement Algorithm 1 with lazy
sampling of Laplace noise Y;, when required i.e., if node u is in our sample S or if u = r(v) was
the randomly selected neighbor of some node v € S.

NoisyDegree takes G as input and returns a set of sampled vertices along with the noisy degrees
of every vertex in G.
1. Uniformly and independently select ®(y/n - poly(log(n)/p) - poly(1/¢)) vertices (without
replacement) from V and let S denote the set of selected vertices.
2. Foreveryv € V(G),
d(v) = deg(v) + Yy,

where Y,, ~ Lap(6/¢).
3. Return {a(v)}vev(g), S

Algorithm 1 NoisyDegree.

Given the output of Algorithm 1 we can partition the sample S into buckets S; = S N B; using
their noisy degree. Here, we define By = {v: d(v) € ((1+ p)'"% (1 + B)') } and we also define
a merged bucket S; = SN {v cd(v) < (1+ B)Kil} containing all sampled nodes with noisy
degree at most (1+ )1, Here, K is a degree threshold parameter that we can tune. Now given
a size threshold parameter T we can define [ = {i >K : f§1| >1.2T - |S|} to be the set of big
buckets. We remark that as a special case we define |S;| to be “small"if |S| < 1.2T- m -|S| instead
of |S;] < 1.2T - |S|. As an intuitive justification we note that (whp) for each node v with noisy
degree d(v) < (1+ )X ! the actual degree deg(v) will not be too much larger than (1 + )<
In this case we have } | 4.,)<(14p)<—1 deg(v) < [S1lmax,.;(,)< (14 p)x—1 deg(v) = o(n) so that
we can safely ignore the edges incident to S;.

Intuitively, for each large bucket i € I, Algorithm 2 computes &; = W;/ S| our approximation
of the fraction of type (2) edges incident to Bi. If S; is large then type (2) edges are (re)defined
to be the edges with exactly one endpoint in {v: d(v) < (1 + B)*"'} UU;; Bi. To preserve
differential privacy we add laplace noise to W i.e., Wy = Z; +3 . s, X(v) where Z; ~ Lap(6/¢).
We remark that (whp) we will have Z; = o(|S;|) for each large bucket i € I. Thus, the addition
of laplace noise will have a minimal impact on the accuracy of the final result.
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NoisyBigSmallEdgeCount takes as input G, I, {51}7{:1, S, {a(v)}vev(g )> Mo n, T and returns an

approximation of the fraction of edges that are between big buckets and small buckets.
1. Foreveryie€ I, > count the edges between buckets in I and small buckets

a. Forallv € gi,
i. Pick a random neighbor of v, say r(v).
ii. If|S1| < 1.2T-\/IS[:IS|, i.e., if S is a small bucket. Thenif d(r(v)) € ((1+B)*, (1+B)Y]
for some i ¢ I, then X(v) = 1, otherwise X(v) = 0.
iii. Otherwise, S; is not small. Therefore, if d(r(v)) € ((14p)'1, (14 B)Y for some i ¢ I

and i > log;, g [(6’\/;5"'“ )1 + 2, then X(v) = 1, otherwise X(v) = 0.

b. Define W; :=>_

X(v) + Z; where Z; ~ Lap(6/¢) and &; := ‘VSV‘ .

VESi

2. return {Wilier, {&ilier

Algorithm 2 NoisyBigSmallEdgeCount. Here M, ,, is a degree threshold parameter and T is a size
threshold parameter. Note that the relationship between the parameters K (used informally as a degree
threshold parameter in the overview) and M, , is K = 2 +1log(;, ) [6M;n/B].

If the merged bucket S, is small then we can ignore edges incident to S; and Algorithm 3 will
simply output \?ll 2 icl Si|- (14 &) - (14 ). In this case the output can be computed entirely
from the differentially private outputs that have already been computed by Algorithms 1 and 2
without even looking at the graph G. Intuitively, for any large bucket i € I and v € S; we expect
that (whp) |Y,| = |d(v)—deg(v)| is small enough to ensure that (1+3)12 < deg(v) < (1+p)1F.
Thus, (1 + B)! is still a reasonable approximation for deg(v).

If the merged bucket S; is sufficiently large, then we need to account for the edges within S;
itself as well as the fraction of edges between S; and small buckets. We introduce a new estimator
to approximate the fraction of edges between S; and small buckets givenby Z+3 | s (1+X(v))-

deg’(v) where Z ~ Lap (36Mp,n (3 +p+ %)) and deg’(v) = min{deg(v), 6M, n (3 +B+ %)}

(See Algorithm 3) — the relationship between the parameters K and M,  is K = 2+log 1, 51 [6Mp n /B .

The Laplace Noise term is added to preserve differential privacy. We define the clamped
degrees deg’(v) to ensure that the coupled global sensitivity of the randomized subroutine
computing } s (1 + X(v)) - deg’(v) is upper bounded by 12M,, ,, (3 +B+ %) This way
we can control the laplace noise parameters to ensure that Z = o(|S;]) with high probabil-
ity so that the noise term Z does not adversely impact accuracy. Intuitively, we expect that
Y, < Mg for all nodes v with high probability. In this case for any node v € S; we will have

deg’(v) = deg(v) < 6M, (3 + B+ %)

ICALP 2022
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NoisyAvgDegree takes {gi}{:p {a(v)}vev(g), {&i}ie1, I, My n, T as input and returns the noisy
estimator for average degree of the graph.
1. If S| < 1.2T - 1/IS[ - IS| then output é S lSil- (1 +&) - (1+p)E
2. Else, for every v € Sy,
a. Pick a random neighbor of v, say r(v).
b. If d(r(v)) € (1 +B)",(1+ p)!] for somei ¢ I and i > log [(6}\/;5"’“>1 + 2, then
X(v) = 1, otherwise X(v) = 0.

c. Output
% <Z Sil- (14 6)- (1+B)}+Z+ D (1+X(v) -deg’(v)> :
iel VES:
where
Z ~ Lap (361\/10,n (3 + B+ é))
and

deg’(v) = min {deg(v), 6M;n (3 +B+ é) }

Algorithm 3 NoisyAvgDegree

Main DP Algorithm that takes graph G as input and outputs an approximation of its average
degree.

1. {a(v)}vev(G), S := NoisyDegree(G) > see Algorithm 1
2. Fori=1,2...,t,letS; ={veS: dv) e ((1+p)", (14 B)Y} where t := [log(14p)(M)]-
: — 1, e .18l — g, N
3. Define My = 3 o] U S1 Ui<10g1+ﬁ(6mﬁp,n)+251, and, I {i >
log, . g (6M"’“> +2 18] > 1.2T - |S|} where T := %\/g ek 1.
4. {Witier, {&i}ie1 := NoisyBigSmallEdgeCount(G, I, {gi}{zl). > see Algorithm 2
5. NoisyAvgDegree(G, S, {§i}f{:1, {&itier, LMpn, T). > see Algorithm 3

Algorithm 4 Main DP Algorithm

The full analysis of Theorem 2 can be found in Sections 2 and 4.

» Remark 10. A simpler algorithm for estimating the average degree was given by Seshadri [31].
The main intuition behind this algorithm is that out of m edges of a graph, there are not “too
many” edges that contribute a high degree. Thus the algorithm samples vertices and a random
neighbor of each sampled vertex, but it only counts edges (scaled by a factor of 2 times the degree
of the sampled vertex) for which the degree of the random neighbor is higher than that of the
degree of the sampled vertex.

The Coupled Global Sensitivity of the final estimate returned by this algorithm is high (propor-
tional to the degree of the sampled vertex and its random neighbor); thus adding Laplace noise
directly to the estimate would result in a very inaccurate algorithm. It is unclear how to mitigate
this issue and make this algorithm differentially-private with a reasonable accuracy guarantee.

1.4.2 Privately Estimating Maximum Matching and Vertex Cover Size

At a high-level our private algorithms for estimating the maximum matching and vertex cover add
laplace noise (to the outputs) proportional to the coupled global sensitivity of the randomized
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non-private algorithms for the corresponding problems. The challenge lies in proving the coupled
global sensitivity of these non-private algorithms is small.

We first describe and analyze the coupled global sensitivity of the classical polynomial-time
greedy matching algorithm. This is helpful in our analysis of the non-private sublinear-time
algorithm for maximum matching in the sequel.

We then describe and give a proof sketch of the coupled global sensitivity of the non-private
sublinear-time matching algorithm [3]. The formal proofs for privately estimating the maximum
matching and minimum vertex cover size are in the full version [5]. Recall that d is the maximum
degree and d is the average degree of the graph .

The Polynomial-time Greedy Matching Algorithm .e/p iz . This algorithm takes as input a
graph G = (V, E) and a random permutation 7t on the set of pairs (x,y) € V x V, with x # y,
and processes each pair of vertices (x, y) in the increasing order of ranks given by 7, and greedily
adds edges to a maximal matching whose size is finally output’. Since the size of the maximal
matching produced is known to be at least % of the size of a maximum matching, this gives a
non-private 2-approximation of the size of a maximum matching in G.

CGS of the Greedy Algorithm .o’y 1. We show that the CGS of the greedy algorithm (with
respect to node-neighboring graphs) is at most 1. Note that once the ranking on the edges is
fixed the maximal matching obtained by .&/nim is also fixed. Let oy be the identity permutation
over the ranking of edges, i.e., we have o(7t) = 7t. We use Fact 1 to observe that,

CGSpm < Max min max |./pmm (G1;70) — @mm(Ge; o(7) )|

< max [em(Gi;m) — m (G o1(m))]

1~G2
g

= max [e/nmm (Gr; ) — mm (Ga; ).

Therefore it is sufficient to analyze the relative size of the matching obtained on node-neighboring
graphs Gi, G, that are processed by the greedy algorithm in the order given by the same 7.

Let G; ~ G, where v* is such that E(V; \ {v*}) = E(V, \ {v*}). Denote the greedy matchings
obtained from ./ (G, 71) as M and from .oy (Ge, 7T) as M,. Suppose edge e* is incident
to v* such that e* € E,, and e* ¢ E;. We will show that |[M;| — [Ms|| < 1, which implies that
mMaxg,~G, -<¥mm(G1; ) — @mm (Gz; )| < 1, thus proving that CGS 4,,,, < 1.

Weﬂﬁrst claim that if e* ¢ M; U M, then |M;| = [M,|. Since the greedy algorithm considers
edges in the same order, the exact same edges must have been placed in M; as in M, before ex
is processed. Since e* = (v*,u) is not chosen in M, it must have been the case that by this time
u was matched in M,, and thus the same matched edge must occur in M. From here on the
algorithm again must make the same choices for the edges to be placed in M; and M.

Next, we claim that if e* € M; U M, then M := M; @& M8 is one connected component
containing e*. Consequently, ||[M1|—|M,|| < 1. Since e* € M, and e* cannot be in My, it is clear
that e* € M. Suppose for the sake of contradiction, M consists of two connected components
C1,Cy and WLOG e* € C;. Consider edges in C,. By Berge’s Lemma [34], C, is either an
alternating path or an alternating even cycle, with alternating edges from M; and M,. Also, the

~

We note that the non-private algorithms [24, 35, 26] only consider the ranking 7t over m edges of the graph,
whereas we consider the ranking over all (TZ‘) pairs of vertices. This is because we want to define a “global”
ranking so that we can define the same ranking consistently over neighboring graphs that may have different
edges.

M, @ M,;, is the symmetric difference of sets and this is defined as the set of edges in either M or M, but not
in their intersection.

82:11
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Privately Estimating Graph Parameters in Sublinear time

edges in C, exist in both G; and G, with the same ranking. Observe that since C, is separate
from C; containing e*, if we replace edges in C, belonging to M, in the original graph G, by
edges in C, belonging to M;, this is still a valid maximal matching for the graph G,. In fact, the
greedy algorithm considers edges in C, in the same order for both graphs G;, G3, so the edges
in M; and M, should be the same, in other words, C, cannot be a part of M = M; & M,, and
hence M must have only one connected component, which contains e*. Now, since M is either
an alternating path or even cycle, [[M;| — [Ma|| < 1.

The Local Maximum Matching Algorithm .&/;,,p_pmMm-

We describe the local algorithm implemented by [3] in Algorithm 5. We modify the original
algorithm to sample vertices without replacement. The algorithm then calls the vertex cover
oracle (denoted as 6y}-) on each sampled vertex which subsequently calls the maximal matching
oracle (denoted as 0 ;) on the incident edges to determine whether the sampled vertex is in
the matching fixed by the ranking of edges 7. Finally, the algorithm returns an estimate of the
maximum matching size based on the number of sampled vertices in the matching. We note
that in [3] the same sampling algorithm simultaneously outputs an approximation to maximum
matching size and minimum vertex cover size. We choose to write the sampling procedure for
estimating the maximum matching size and minimum vertex cover size separately so that it is
easier to understand the Coupled Global Sensitivity for outputting the two different estimators.

Input. Input Graph G = (V, E).

1. Uniformly sample s = 16 - 24(Inn)/p? vertices from V without replacement.
2. Fori=1...s,if Oy (vi) = True then let X; = 1, otherwise let X; = 0.

3. return M = (Y oo Xi) — 5

Algorithm 5 Local Maximum Matching algorithm ./, nmm using Oracle access.

» Remark 11. [3] gives an efficient simulation of the matching and vertex cover oracles which
exposes edges incident to a vertex in batches only when they are needed. We assume the efficient
simulation of these oracles in our algorithms.

CGS of the Local Matching Algorithm .</;,,,_—mm. Our main techniques involve identifying
the sources of randomness in the local algorithm itself and then coupling the random coins of the
runs of the algorithm on neighboring graphs. We follow the local algorithm given by [3] which
samples vertices for both matching and vertex cover size estimation. We show that the identity
coupling is sufficient in this case.

In a previous version of our paper (before we were aware of the results of [3]), we analyzed
the Coupled Global Sensitivity of the local matching algorithm given by [24, 35] which samples
a set of edges uniformly at random, and calls a matching oracle on each sampled edge. The
matching oracle indicates whether the edge is in the greedy matching fixed by the ranking 7t
or not. Analyzing the Coupled Global Sensitivity of this algorithm is more challenging, i.e.,
considering the identity permutation oy over the ranking of edges 7t and sampled edges does not
work. This is because for node-neighboring graphs Gi, G, it could be the case that all the edges
sampled from G; belong to the matching M, fixed by the ranking 7, but the same edges sampled
from G, may not be in the matching M, fixed by the ranking 7. Thus, we need to carefully define
a bijection that maps edges in the matching M; to edges in the matching M,.

2  Privacy Analysis of Theorem 2

» Theorem 12. The Algorithm 4 is e-DP
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Proof. We will approach the privacy analysis in a modular fashion, i.e., we will analyze each
sub-routine separately and show that by composition, the entire algorithm is e-differentially
private.

In the sequel, when analyzing the coupled global sensitivity of intermediate randomized
quantities, we use Fact 1.

> Claim 13. Algorithm NoisyDegree (see Algorithm 1) is ¢/3-DP

Proof. First, fix any sample S. Define the function froisy—deg = {a(v)}vev(g). Observe
that the degree of a node can change by at most 1 from adding or deleting an edge, and
therefore f,,4isy—deg changes by at most 2 by adding or deleting an edge, in other words, the
GSf,4icy_acq = 2 and we can add noise proportional to 2/e. <

> Claim 14. Algorithm NoisyBigSmallEdgeCount (Algorithm 2) is ¢/3-DP

Proof. We fix noisy degrees {a(v)}vev(g), consequently fixing the buckets S1,...,S; and set
[. Define the function f, 5 := {f5  5(G;7)}ier, and the function f5 5(G;7) = Zveﬁi H(r(v))
where H(w) = 1 if and only if we have d(w) € ((1+ B)'", (1 + B)!] for some i ¢ I and |S;| <
1.2T- \/@ ISlorif d(w) € (1+B) 1, (14 B)Y forsomei ¢ Iandi > log; g [(GM" ")1 +2;
here r(-) defines the random coins used to sample a neighbor of v. We analyze CG Sféi,&’
argue that CGSfLa < CGngi,a'

First, we show that for all fixed S, {d(v)}yes and i € I, the CG St , is at most 2. Consider
G and G’ such that edge (u*,v*) € G, but does not exist in G’. le any coupling such that
r(w) = r/(w) for all w £ u*,v*, where 1,1’ defines the random coins for sampling neighbors of
w in G and G’ respectively. Now we have X(w) = H(r(w)) = H(r/(w)) = X’(w) for all w #
u*,v*. Thus, CGngi,a = |f§i,a(G;f) —fgi,a(G’;T/N = ‘Zveéi H(r(v)) — Zveéi H(r'(v))] =
[H(r(v*)) + H(r(u*)) — H(r'(v*)) — H(r'(u*))| < 2. Now, since the differing endpoints u*, v*
can only appear in at most one of the i-th iterations simultaneously, it is clear to see that CGS¢
is also at most 2. <

and

> Claim 15. Algorithm NoisyAvgDegree (Algorithm 3) is ¢/3-DP

Proof. We fix noisy degrees {a(v)}vev(g ), and sample S consequently fixing the buckets Si,...,5¢
and set I, and we fix {&;}{_,. Note that the first output in Line 1 given by é—‘ D icl IS -
(14 &) - (14 B)!is already private since the terms in the summation consist of parameters
that are either noisy or public or both. We need to show that the second output in Line 2c
is private. In particular, define the function fg 3(G;7) = } s (1 + Hi(r(v))) - deg’(v)

where deg’(v) = min{deg(v),6M, (3 + B+ %)} and H;(w) = 1 if and only if d(w) €

(1+pB)1 (14 B)] forsome i ¢ Iand i > log,, ((67\/;5"’“)] + 2. We claim that for all

fixed S and {d(v)}ycs, the CGSfSLal is at most 12M, , (3 + B+ %) Consider G and G’ such
that edge (u*,v*) € G, but does not exist in G’. Fix any coupling such that r(w) = r’(w) for
all w # u*,v*, where v, v’ defines the random coins for sampling neighbors of w in G and G’
respectively. Now we have X(w) = H;(r(w)) = H;(r'(w)) = X’(w) for all w # u*,v*. Thus,
Ifs, d(G'T) fs, a(G ) =12 cs5, (1+Hi(r(v)))-deg’(v) =3 c5, (1+Hi(1'(v)))-deg’ (V)| =
(1 (v*))) - deg’(v*) + (1 + H(r(u"))) - deg'(u*) — (1 4+ H(r'(v*))) - deg’(v*) — (1 +
)deg’(u*)] < 2-6Mpn (3 +B+ %) = 12Myn (3 + B+ %) . Note that we intro-

H(r
H(r ( "))
duce deg’ (v), to ensure that the sensitivity of f, g remains small. <

By composition, we have that the main algorithm is ¢-DP <

82:13
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3 Preliminaries

We state the following tail bound for a random variable drawn from the Laplace Distribution.

» Fact 2. IfY ~ Lap(b), then
Pr([Y| > £ - b] = exp(—{) .

Next, we state a well-known fact which implies that the concentration results for sampling
with replacement obtained using Chernoff bounds type methods (bounding moment generating
function + Markov inequality) can be transferred to the case of sampling without replacement.

» Fact 3 ([2, 20]). Let & = (x1,...,xN) be a finite population of N points and Xy, ..., Xn be a
random sample drawn without replacement from &, and Y1, ..., Yn be a random sample drawn
with replacement from &. If f : R — R is continuous and convex, then

()] = ()

4  Accuracy Analysis of Theorem 2

<E

4.1 Proof Sketch of Theorem 2

In this section, we give a sketch of the accuracy analysis. The more formal proofs can be found in
the full version [5].

» Theorem 16. Forevery p < 1/4, 3 < p/8, and e ! = o(log1/4(n)), for sufficiently large n,
the main algorithm (see Algorithm 4) outputs a value d such that with probability at least 1 — o(1),
it holds that

(1—-p)-d<d<(1+p)-d

Proof. The main proof strategy conditions on S; being sufficiently large or not. First, consider
Case 1 when |S¢] < 1.2T - \/@ - |S| where T is a size threshold parameter. We first show that for
i € I the noisy buckets |B;|/n are approximated well by |S;|/|S|. Next we show that the number
of vertices in buckets that are significantly smaller than the size threshold are of size O(y/1)

(for buckets W :={v e B : G € DA (i > log; ., s (6’\/[[3"'“) + 2)}, and of size O(n3/4) (for

bucket B; := U, 6Mon Bi. This leads to the corollary (see full version [5] for the formal
i<logy g (T)+2

statement) which bounds the number of edges between small buckets as roughly O(pn +n3/4).
One of our main contributions is showing that the actual fraction of edges between sufficiently
large buckets and small buckets, denoted by «, is approximated well by our noisy estimator «;.

» Corollary 17. Assuming that ¢! = o(log'/*(n)), for every i € 1, for sufficiently large n, we
have that with probability at least 1 — o(1),

Lo — ol < §ou if o > p/8.
2. & < p/4 if oy < p/8.

Finally, we need to show that for sufficiently large noisy buckets, the actual degrees of the
vertices (sans noise) only shifts to an adjacent noisy bucket. This helps us bound the number
of edges whose one endpoint resides in a sufficiently large noisy bucket. We have shown that
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with high probability, all approximations of edges between the different types of buckets is good,
which leads to the main Lemma for Case 1.

Now consider Case 2 when |S;| > 1.2T - \/@ -|S|. We show that the bucket |B{|/n is now
approximated well by [S;|/|S|. We introduce a different estimator for counting edges between B,

and small buckets givenby Z+3 | (14+X(v))-deg’(v), where Z ~ Lap (367\/[9,n (3 +B+ %))

and deg’(v) = min{deg(v), 6My » (3 +B+ %)} First, we show that for every v € S;, with high
probability deg’(v) = deg(v). Our main contribution in this case is showing that our estimator
(sans noise) approximates the fraction of the sum of the edges between B; and all vertices in
the graph (denoted by E;), and the edges between B; and vertices in small buckets in the graph
(denoted by E;) well (see lemma below).

» Lemma 18. Let d, be the average degree of bucket By. If |By| > 1.5T - 1/|S| -,

1. If d; > 1, then with probability at least 1 — o(1),

P [E1] + [E4] 1 P [E1l + [ES]
(1 4) S < 3 (14+XW) deg(v)<(1+4) e

vES,
2. Ifd; < 1, and d > 1, then with probability at least 1 — o(1),

[Eq1| + [E1]

E.l +|E!
JEIE
n

—p/4 < é D (1+X(v)) - deg(v)

vES,

To complete this part of the proof, we show that the noise added to the estimator (denoted by Z)
is small and therefore, the noisy estimator also approximates the quantity (|| + [E1|)/n well.
The rest of the analysis is similar to Case 1 and we invoke the same lemmas to show that with
high probability, the approximations of edges between the rest of the sufficiently large buckets,
and between the small buckets, as well as between the sufficiently large buckets and small buckets
is good, thus giving us the main Lemma for Case 2.
Combining these two main lemmas proves our main theorem statement. <

5 Conclusions and open questions

In this work we give a differentially-private sublinear-time (1 + p)-approximation algorithm
for estimating the average degree of the graph. We achieve a running time comparable to its
non-private counterpart, which is also tight in terms of its asymptotic behaviour with respect to
the number of vertices of the graph. We also give the first differentially-private approximation
algorithms for the problems of estimating maximum matching size and vertex cover size of a
graph.

To analyze the privacy of our algorithms, we proposed the notion of coupled global sensitiv-
ity, as a generalization of global sensitivity, which is applicable to randomized approximation
algorithms. We show that coupled global sensitivity implies differential privacy, and use it to
show that previous non-private algorithms from the literature, or variants, can be made private
by finely tuning the amounts of noise added in various steps of the algorithms.

We propose several directions of investigation for developing the notion of coupled global
sensivity further and open problems pertaining to differentially-private sublinear-time algorithms
for graphs.

Other applications and limitations of CGS In particular, what are the limitations of the
CGS method? Can we characterize the set of algorithms with small CGS? Are there other natural
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problems for which we already have algorithms with small CGS, and hence that are easily
amenable to privacy analogues? Are there algorithms for which we can prove large lower bounds
on the CGS and yet they provide differential privacy?

Better approximations for maximum matching problems In [24, 35], the authors also give
a (1, pn)-approximation of maximum matching size with a query complexity that is exponential
in d. Their analysis involves iterating over a sequence of oracles to augment paths of small length,
in increasing order of lengths. The matching oracle considered in this work is used only in the
first iteration. Analyzing the coupled global sensitivity of that algorithm appears to be much
more involved, and we leave it as an open problem.

Better time complexity guarantees for (2, pn)-approximation matching and vertex cover
algorithms. Note that our results in Theorems 3 and 4 achieve an expected running time. In
contrast, the results in [3] achieve a high-probability bound on the time-complexity. This can be
done by running multiple instances of the resulting approximation algorithm for enough time
and returning the output of the instance that terminates first (the analysis involves a simple
application of Markov inequality). Achieving this step in a way that preserves privacy would
result in a degradation of the privacy parameter ¢, due to composition. We leave it as an open
question to provide a tighter privacy vs time-complexity analysis.
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