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Abstract9

We initiate a systematic study of algorithms that are both differentially-private and run in sublinear10

time for several problems in which the goal is to estimate natural graph parameters. Our main result is a11

differentially-private (1 + ρ)-approximation algorithm for the problem of computing the average degree12

of a graph, for every ρ > 0. The running time of the algorithm is roughly the same (for sparse graphs) as13

its non-private version proposed by Goldreich and Ron (Sublinear Algorithms, 2005). We also obtain the14

first differentially-private sublinear-time approximation algorithms for the maximum matching size and the15

minimum vertex cover size of a graph.16

An overarching technique we employ is the notion of coupled global sensitivity of randomized algorithms.17

Related variants of this notion of sensitivity have been used in the literature in ad-hoc ways. Here we18

formalize the notion and develop it as a unifying framework for privacy analysis of randomized approximation19

algorithms.20
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1 Introduction28

Graphs are frequently used to model massive data sets (e.g., social networks) where the users are29

the nodes, and their relationships are the edges of the graphs. These relationships often consist30

of sensitive information, which drives the need for privacy in this setting.31

Differential Privacy (DP) [12] has become the gold standard in privacy-preserving data analysis32

due to its compelling privacy guarantees and mathematically rigorous definition. Informally,33

a randomized function computed on a graph is differentially private if the distribution of the34

function’s output does not change significantly with the presence or absence of an individual35

edge (or node). See [13] for a comprehensive tutorial on differential privacy.36

▶ Definition 1 (Differential-privacy). Let Gn denote the set of all n-node graphs. An algorithmA37

is (ε, δ) node-DP (resp. edge-DP) if for every pair of node-neighboring (resp. edge-neighboring)1
38

1 Graphs G1 = (V ,E1), G2 = (V ,E2) are node-neighboring, denoted by G1 ∼v G2, if there exists a vertex
v ∈ V such that E1(V \ {v}) = E2(V \ {v}). Graphs G1 and G2 are edge-neighboring i.e., G1 ∼e G2 if
there exists an edge e such that E1 \ {e} = E2 \ {e}.
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82:2 Privately Estimating Graph Parameters in Sublinear time

graphs G1,G2 ∈ Gn, and for all sets S of possible outputs, we have that Pr[A (G1) ∈ S ] ⩽39

eε Pr[A (G2) ∈ S ] + δ. When δ = 0 we simply say that the algorithm is ε-DP.40

Since the graphs appearing in modern applications are massive, it is also often desirable41

to design sublinear-time algorithms that approximate natural combinatorial properties of the42

graph, such as the average degree, the number of connected components, the cost of a minimum43

spanning tree, the number of triangles, the size of a maximum matching, the size of a minimum44

vertex cover, etc. For an excellent survey on sublinear-time algorithms for approximating graph45

parameters, we refer the reader to [29].46

There has been a lot of work in developing differentially-private algorithms for estimating47

graph parameters in polynomial-time, with respect to edge differential privacy, i.e., neighboring48

graphs that differ by a single edge in Definition 1. Nissim, Raskhodnikova, and Smith [25]49

demonstrated the first edge-differentially private graph algorithms. They showed how to estimate50

the cost of a minimum spanning tree and the number of triangles in a graph by calibrating noise51

to a local variant of sensitivity called smooth sensitivity. Subsequent works in designing edge52

differentially-private algorithms for computing graph statistics include [21, 19, 23, 36]. Gupta,53

Ligett, McSherry, Roth and Talwar [18] gave the first edge differentially-private algorithms for54

classical graph optimization problems, such as vertex cover, and minimum s-t cut, by making55

clever use of the exponential mechanism in existing non-private algorithms that solve the same56

problem.57

An even more desirable notion of privacy in graphs is the notion of node differential privacy i.e.,58

neighboring graphs that differ by a single node and edges incident to it in Definition 1. The concept59

of node differentially-private algorithms for 1-dimensional functions (functions that output a60

single real value) on graphs was first rigorously studied independently by Kasiviswanathan, Nissim,61

Raskhodnikova and Smith [22], as well as, Blocki, Blum, Datta, and Sheffet [4], and Chen and62

Zhou [9]. Their techniques were later extended to higher-dimensional functions on graphs [28, 6].63

Subsequent works have focused on developing node differentially-private algorithms for a family64

of network models: stochastic block models and graphons [7, 30]. A more recent line of work65

has focused on the continual release of graph statistics such as degree-distributions and subgraph66

counts in an online setting [33, 15]. Gehrke, Lui, and Pass [16] introduce a more robust notion of67

differential privacy called Zero-Knowledge Differential Privacy (ZKDP), which tackles the problem68

of auxiliary information in social networks. This work uses existing results from sublinear-time69

algorithms as a building block to achieve ZKDP for several graph problems. However, it is70

important to note that the final ZKDP mechanisms are not computable in sublinear-time.71

The literature on designing differentially-private algorithms for estimating graph parameters72

in sublinear time is far less developed. The only paper we are aware of is due to Sivasubramaniam,73

Li and He [32], who give the first sublinear-time differentially-private algorithm for approximating74

the average degree of a graph. Our work addresses this gap by initiating a systematic study of75

differentially-private sublinear-time algorithms for the problems of estimating the following graph76

parameters: (1) the average-degree of a graph, (2) the size of a maximum matching, and (3) the77

size of a minimum vertex cover. As an overarching technique, we formally introduce the notion78

of Coupled Global Sensitivity and use it to analyze the privacy of our randomized approximation79

algorithms.80

1.1 Our Results81

1.1.1 Privately Approximating the Average Degree82

We obtain a differentially-private sublinear-time algorithm for estimating the average degree83

d̄G =
∑

v∈V deg(v)
|V |

, of a graph G = (V ,E), with respect to edge-differential privacy, which achieves84
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a multiplicative approximation of (1 + ρ), for any constant ρ > 0. Specifically, our algorithm85

outputs a value d̃ such that w.h.p. we have (1 − ρ)d̄G ⩽ d̃ ⩽ (1 + ρ)d̄G, for graphs with86

d̄G = Ω(1). Throughout the paper we denote |V | = n.87

We work in the neighbor-query model, in which we are given oracle access to a simple graph88

G = (V ,E), where the algorithm can obtain the identity of the i-th neighbor of a vertex v ∈ V in89

constant time. If i > deg(v) for a particular vertex v, then ⊥ is returned. The algorithm may also90

perform degree queries, namely for any v ∈ V it can obtain deg(v) in constant time.91

▶ Theorem 2. There is an ε-edge differentially-private (1 + ρ)-approximation algorithm for92

estimating the average degree d̄G ⩾ 1 of a graph G on n vertices that runs in time2 O(
√
n ·93

poly(log(n)/ρ) · poly(1/ε)) where ε−1 = o(log1/4(n)).94

The problem of estimating the average degree of a graph was first studied by Feige [14], who95

gave a sublinear time (2 + ρ)-approximation (multiplicative) for any constant ρ > 0, making96

O(
√
n/d0) many degree queries, where d0 is a lower bound on the number of queries. He also97

notes that Ω(
√
n/d0) queries are necessary for a 2 − o(1)-approximation, and hence, for the98

interesting cases when we may assume d0 ⩾ 1, Ω(n) degree queries are necessary3. Goldreich99

and Ron [17] subsequently gave a (1+ρ)-approximation using both degree and neighbor queries,100

running in time Õ((n/
√
m) · poly(1/ρ)). This bound is also tight, since every constant-factor101

approximation algorithm must make Ω(n/
√
ρm) degree and neighbor queries [17]. A simpler102

analysis achieving the same bounds was given by Seshadri [31]. Further, Dasgupta, Kumar103

and Sarlós [11] studied this problem in the model where access to the graph is via samples, in104

the context of massive networks where the number of nodes may not be known. They obtain a105

(1 + ρ)-approximation that uses roughly O(logdU · log logdU) samples where dU is an upper106

bound on the maximum degree of the graph.107

In recent work, Sivasubramaniam, Li and He [32] gave a sublinear-time differentially-private108

algorithm for approximating the average degree of a graph using Feige’s [14] algorithm. Their109

algorithm achieves a (2 + ρ+ o(1))-approximation for every constant ρ > 0. They achieve this110

by calculating a tight bound for the global sensitivity of the final estimate of Feige’s algorithm111

and adding Laplace noise with respect to this quantity appropriately. By contrast, we achieve112

a (1 + ρ)-approximation for any constant ρ > 0 — assuming that the privacy parameter is113

ε−1 = o(log1/4 n).114

1.1.2 Privately Approximating the Size of a Maximum Matching and115

Minimum Vertex Cover116

Given an undirected graph, a set of vertex-disjoint edges is called a matching. A matching M117

is maximal if M is not properly contained in another matching. A matching M is maximum118

if for any other matching M ′, |M| ⩾ |M ′|. A vertex cover of a graph is a set of vertices that119

includes at least one endpoint of every edge of the graph. A minimum vertex cover is a vertex120

cover of the smallest possible size. For a minimization problem, we say that a value ŷ is an121

(α,β)-approximation to y if y ⩽ ŷ ⩽ αy+ β. For a maximization problem, we say that a value122

ŷ is an (α,β)-approximation to y if y
α
−β ⩽ ŷ ⩽ y. An algorithmA is an (α,β)-approximation123

for a value V(x) if it computes an (α,β)-approximation to V(x) with probability at least 2/3 for124

any proper input x.125

2 from here on, we use running time and number of queries interchangeably.
3 Observe that for d̄G = o(1) a multiplicative approximation algorithm that can distinguish between two graphs

on n vertices, one with 0 edges, and another with, say 1 edge, must sample Ω(n) vertices, and hence cannot
be running in sublinear time.
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For a graph G = (V ,E), we work in the bounded degree model, where one can query an i-th126

neighbor (i ∈ [d]) of a vertex in constant time; denote this query as Nbr(v, i). Here d is the127

maximum degree of the graph. If i > deg(v) for a particular vertex v, then Nbr(v, i) =⊥. We128

also assume query access to the degree of a vertex, i.e., one can query deg(v) for any v ∈ V in129

constant time.130

▶ Theorem 3. There is an ε-(node and edge) differentially-private algorithm for the maximum131

matching problem that reports a (2, ρn)-approximation with probability 1 − (2/n4 + 1/n192ε/ρ),132

and runs in expected time Õ
(
(d̄+ 1)/ρ2

)
, where d̄ is the average degree of the input graph.133

▶ Theorem 4. There is an ε-(node and edge) differentially-private algorithm for the minimum134

vertex cover problem that reports a (2, ρn)-approximation with probability 1 − (2/n4 + 1/n96ε/ρ),135

and runs in expected time Õ
(
(d̄+ 1)/ρ2

)
, where d̄ is the average degree of the input graph.136

Typically, the privacy parameter ε is a constant, and so is the approximation parameter ρ, in137

which case the success probability in the theorems above is 1 − 1/(poly(n)).138

The question of approximating the size of a vertex cover in sublinear-time was first posed139

by Parnas and Ron [27], who obtained a (2, ρn)-approximation in time dO(logd/ρ3), where d140

is the maximum degree of the graph. Nguyen and Onak [24] improved upon this result by141

giving a (2, ρn)-approximation for the maximum matching problem, and consequently a (2, ρn)-142

approximation for the vertex cover problem, in time O(2O(d)/ρ2
). The result of [24] was later143

improved by Yoshida, Yamamoto and Ito [35], who gave an ingenious analysis of the original144

algorithm to achieve a running time of O(d4/ρ2). Onak, Ron, Rosen and Rubinfeld [26] proposed145

a near-optimal time complexity of Õ(d̄ · poly(1/ρ)), where d̄ is the average degree of a graph,146

but Chen, Kannan, and Khanna [10] identified a subtlety in their analysis, which proved to be147

crucial to their improved time complexity claim. Very recently, building on ideas from the analysis148

of [35], Behnezhad [3] gave a new analysis for achieving a (2, ρn)-approximation to the size of149

maximum matching and minimum vertex cover in time Õ((d̄+1)/ρ2). Behnezhad’s result nearly150

matches the lower bound given by Parnas and Ron [27], who showed that Ω(d̄+ 1) queries are151

necessary for obtaining a (O(1), ρn)-estimate in the case of the maximum matching or minimum152

vertex cover problem.153

Our final DP algorithm simply runs the non-private approximation algorithm [3] and then154

adds Laplace noise proportional to the Coupled Global Sensitivity (of the non-private algorithm).155

Thus, our time complexity is identical to the non-private approximation algorithm. We show that156

the added Laplace noise is small enough that it preserves the approximation guarantees of the157

non-private approximation algorithm.158

1.2 Organization159

We define and motivate the notion of Coupled Global Sensitivity as a privacy tool in Section 1.3.160

Then we give a high-level overview of the techniques used for our results in Section 1.4. The161

formal privacy and accuracy analysis of Theorem 2 are in Sections 2 and 4. The formal analysis162

for Theorems 3 and 4 are in the full version [5]. We conclude with some open problems in163

Section 5.164

1.3 Coupled Global Sensitivity as a Tool in Privacy analysis165

Background and Motivation. Given a query f : D → Rd a general mechanism to answer the166

query privately is to compute f(D) and then add noise. The global sensitivity of a function was167

introduced in the celebrated paper by Dwork, McSherry, Nissim and Smith [12], who showed that168
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it suffices to perturb the output of the function with noise proportional to the global sensitivity of169

the function in order to preserve differential privacy.170

▶ Definition 5 (Global sensitivity). For a query f : D → Rd, the global sensitivity of f (wrt the
ℓ1-metric) is given by

GSf = max
A,B∈D:A∼B

∥f(A) − f(B)∥1 .

One can preserve differential privacy by computing f(D) and adding Laplacian noise4 scaled171

to the global sensitivity of f, where D is a database. However, in many contexts we may not172

be able to compute the function f exactly. For example, if the dataset D is very large and our173

algorithm needs to run in sublinear-time or if the function f is intractable e.g., f(G) is the174

size of the minimum vertex cover. In cases where we cannot compute f exactly, an attractive175

alternative is to use a randomized algorithm, sayAf, to approximate the value of f. Given an176

approximation algorithmAf it is natural to ask whether or not we can add noise toAf(D) to177

obtain a differentially private approximation of f(D) and (if possible) how to scale the noise. We178

first observe that computingAf(D) and adding noise scaled to the global sensitivity of f does not179

necessarily work. Intuitively, this is because the sensitivity ofAf can be vastly different from that180

of f. For example, suppose that GSf = 1, f(D) = n = f(D ′)+1 for neighboring datasets D ∼ D ′
181

and that our approximation algorithm guarantees that 0.999 ·f(D) ⩽ Af(D) ⩽ 1.001 ·f(D). It is182

possible that Af(D) = 1.001n and Af(D
′) = 0.999(n− 1) so that |Af(D) −Af(D

′)| ⩾ 0.002n183

which can be arbitrarily larger than GSf as n increases.184

Coupled Global Sensitivity. We propose the notion of coupled global sensitivity of randomized185

algorithms as a framework for providing general-purpose privacy mechanisms for approximation186

algorithms running on a database D. In this framework, our differentially-private algorithms can187

follow a unified strategy, in which in the first step a non-private randomized approximation algo-188

rithmAf(D) is run on the dataset, and privacy is obtained by adding Laplace noise proportional189

with the coupled global sensitivity ofAf
5. The concept of coupled global sensitivity has been used190

implicitly in prior work on differential privacy e.g., see [1, 8]. Our work formalizes this notion191

as a general tool that can be used to design and analyze differentially private approximation192

algorithms.193

Notation: WhenA is a randomized algorithm we use the notation x := A (D; r) to denote194

the output when running A on input D with fixed random coins r. Similarly, A (D) can be195

viewed as a random variable taken over the selection of the random coins r.196

▶ Definition 6 (Coupling). Let Z and Z ′ be two random variables defined over the probability197

spaces Z and Z ′, respectively. A coupling of Z and Z ′, is a joint variable (Zc,Z ′
c) taking values in198

the product space (Z ×Z ′) such that Zc has the same marginal distribution as Z and Z ′
c has the199

same marginal distribution as Z ′. The set of all couplings is denoted by Couple(Z,Z ′).200

▶ Definition 7 (Coupled global sensitivity of a randomized algorithm). LetA : D ×R → Rk be201

a randomized algorithm that outputs a real-valued vector. Then the coupled global sensitivity ofA202

is defined as203

CGSA := max
D1∼D2

min
C∈Couple(A (D1),A (D2))

max
(z,z′)∈C

∥z− z ′∥1204

4 Here, the probability density function of the Laplace distribution Lap(λ) is h(z) = 1
2λ exp

(
− |z|

λ

)
.

5 We note that this is the simplest application of CGS, and as we will see in the analysis of estimating the average
degree, we can use CGS to add noise to intermediate quantities used by the randomized algorithm as well.
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82:6 Privately Estimating Graph Parameters in Sublinear time

▶ Remark 8. We can try to relax the definition of Coupled Global Sensitivity as follows: CGSA ,δ205

is the minimum value, say x such that for all neighboring inputs D1 ∼ D2, there exists a coupling206

C such that Pr(z,z′)∼C[|z − z ′| > x] ⩽ δ. We need to be careful here as we need to ensure that207

the minimum value x is always well-defined. If we can ensure this, then we can also show that208

adding noise proportional to CGSA ,δ preserves (ε, δ)-differential privacy.209

▶ Fact 1. Let A : D ×R → Rk be a randomized algorithm viewed as a function that takes as
input a dataset D and a random string in the finite set R , and outputs a real-valued vector. For
a finite set R , denote by Sym(R) the symmetric group of all permutations on the elements in R .
Then,

CGSA ⩽ max
D1∼D2

min
σ∈Sym(R)

max
R∈R

∥A (D1;R) −A (D2;σ(R))∥1

The following theorem formalizes the fact that adding noise proportional to the coupled global210

sensitivity of a randomized algorithm preserves differential privacy (see full version [5] for a211

formal proof).212

▶ Theorem 9. LetA : D → Rk be a randomized algorithm and define the Laplace mechanism213

ML(D) = A (D) + (Y1, . . . , Yk), where Yi are i.i.d. random variables drawn from Lap(CGSA /ε).214

The mechanismML preserves ε-differential privacy.215

How we use Coupled Global Sensitivity. In our algorithm for estimating the average degree216

we divide the algorithm into randomized sub-routines and show that the CGS of these sub-217

routines is small, therefore enabling us to add Laplacian noise proportional to the CGS and ensure218

the privacy of each sub-routine, and by composition, the privacy of the entire algorithm (See219

Theorem 12). Similarly, we show that the existing non-private sublinear-time algorithms for220

maximum matching and minimum vertex cover have small CGS, therefore enabling us to add221

Laplace noise proportional to the CGS to their outputs thus making them differentially-private222

(See full version [5]).223

1.4 Technical Overview224

1.4.1 Privately Estimating the Average Degree.225

At a high-level, our private algorithm for estimating the average degree follows the non-private226

variant of Goldreich and Ron [17]. However, there are several challenges that prevent us from227

simply being able to add Laplacian noise to the output. We overcome these challenges by first228

obtaining a new non-private algorithm with the same approximation ratio as that of [17], and229

then further add appropriate amounts of noise in several steps of the algorithm to obtain both230

privacy and accuracy guarantees. We begin by describing the algorithm of [17].231

The Goldreich-Ron algorithm [17]. The strategy of the original non-private algorithm232

in [17] is to sample a set S of vertices and partition them into buckets Si based on their degrees.233

In particular, for each i we set Si = Bi ∩ S where the set Bi contains all vertices of degrees234

ranging between ((1 + β)i−1, (1 + β)i], where β = ρ/c for some constant c > 1. Intuitively, as235

long as |Si| is sufficiently large the quantity |Si|/|S| is a good approximation for |Bi|/n with high236

probability. Let I denote the indices i for which |Si| is sufficiently large. We can partition edges237

from the graph into three sets (1) edges with both endpoints in
⋃

i∈I Bi, (2) edges with exactly238

one endpoint in
⋃

i∈I Bi, and (3) edges with no endpoints in
⋃

i∈I Bi. When the threshold for239

"large buckets" is tuned appropriately one can show that (whp) type 3 edges can be ignored as240

there are at most o(n) such edges.241

We could use (1/|S|)
∑

i∈I |Si|(1 + β)i−1 as an approximation for 1
n

∑
i∈I

∑
v∈Bi

deg(v).242

The previous sum counts type (1) edges twice, type (2) edges once and type (3) edges zero243
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times. While it is okay to ignore type (3) edges there could be a lot of type (2) edges which are244

under-counted. To correct for type (2) edges we can instead try to produce an approximation245

for the sum 1
n

∑
i∈I

∑
v∈Bi

(1 + αv)deg(v) where αv denotes the fraction of type (2) edges246

incident to v. Intuitively, αv is included to ensure that type (2) edges are also counted twice.247

For each sampled node v ∈ Si we can pick a random neighbor r(v) of v and define X(v) = 1 if248

r(v) ̸∈
⋃

i∈I Bi; otherwise X(v) = 0. Observe that in the expected value of the random variable249

is E[X(v)] = αv. Since |Si| is reasonably large for each i ∈ I and deg(u) ≈ deg(v) for each pair250

u, v ∈ Si we can approximate the fraction of type (2) edges incident to Bi as Wi/|Si| where251

Wi =
∑

v∈Si
X(v). Finally, we can use (1/|S|)

∑
i∈I |Si|(1 + Wi/|Si|)(1 + β)i−1 as our final252

approximation for the average degree.253

Challenges to making the original algorithm private by adding noise naively. The first254

naive attempt to transform the algorithm of [17] into a differentially private approximation would255

be to add noise to the final output. However, the coupled global sensitivity of this algorithm is256

large enough that the resulting algorithm is no longer a (1 + ρ)-approximation.257

A second natural strategy to make the above algorithm differentially private is to add Laplace258

noise to the degree of each vertex and partition vertices in S based on their noisy degrees259

d̃(v) = deg(v) + Yv where Yv ∼ Lap(6/ε). (Note: To ensure that the algorithm still runs in260

sublinear time we could utilize lazy sampling and only sample Yv ∼ Lap(6/ε) when needed).261

In particular, we can let S̃i = S ∩ B̃i where B̃i denotes the set of all nodes v with noisy degree262

d̃(v) ranging between ((1 + β)i−1, (1 + β)i]. Now we can compute Wi = Zi +
∑

v∈S̃i
X(v)263

where Zi ∼ Lap(6/ε) and return (1/|S|)
∑

i∈I |S̃i|(1+
Wi

|S̃i|
)(1+β)i−1. While the above approach264

would preserve differential privacy, the final output may not be accurate. The problem is that265

the noise Yv may cause a node v to shift buckets. It is not a problem if v ∈ Bi shifts to an266

adjacent bucket i.e., v ∈ B̃i−1 or v ∈ B̃i+1 since (1 − β)i−2 and (1 − β)i+1 are still reasonable267

approximations for the original degree deg(v) ∈ ((1 + β)i−1, (1 + β)i]. Indeed, when deg(v) is268

sufficiently large we can argue that (1−β) deg(v) < d̃(v) < (1+β) deg(v) with high probability.269

However, this guarantee does not apply when deg(v) is small. In this case the Laplace noise270

Yv might dominate deg(v) yielding an inaccurate approximation. Sivasubramaniam et al. [32],271

made similar observations, and because of these technical barriers, their paper analyzes the272

simpler strategy for estimating the average degree, which yields a less accurate result. The crucial273

observation here is that we need to deal with vertices having small degrees in our accuracy274

analysis separately.275

Modified non-DP algorithm achieving the same approximation ratio. To address the276

challenges discussed above we first propose a modification to the strategy given by [17]. While277

the modified algorithm is still non-private it still achieves a (1 + ρ)-approximation for any ρ > 0278

and is amenable to differentially private adaptations. Our algorithm now samples vertices S279

without replacement and puts them into buckets Si = Bi ∩ S according to their degrees. The key280

modification is that we merge all of the buckets with smaller degrees i.e., i ⩽ K6 into one. We281

redefine B1 to denote this merged bucket and S1 = S ∩ B1 and we redefine I to be the set of282

all indices i > K such that |Si| is sufficiently large. If B1 is not too large then all of the edges283

incident to B1 can simply be ignored as the total number of these edges will be small. Otherwise,284

we can account for edges that are incident to B1 by adding 1
|S|

∑
v∈S1

(1 + X(v)) deg(v) to our285

final output. Since we merged all of the buckets with smaller degrees we no longer have the286

guarantee that deg(u) ≈ deg(v) for all u, v ∈ S1. However, since deg(v) is reasonably small for287

6 where we fix K :=

(
2 + log1+β

(
2|S|

√
ρ

β log1+β(n)
√

n
√

logn

))
in the sequel
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each v ∈ S1 the variance is still manageable. Intuitively, the sum 1
|S|

∑
v∈S1

(1 + X(v)) deg(v)288

approximates 1
n

∑
v∈B1

(1 + αv) deg(v) where αv now denotes the fraction of edges incident to289

v whose second endpoint lies outside the set B1 ∪
⋃

i∈I Bi.290

The differentially-private modified algorithm. We now introduce our sublinear-time291

differentially-private algorithm to approximate the average degree in Algorithm 4. Algorithm 4292

relies on three subroutines given by Algorithms 1, 2, and 3. Splitting the algorithm into separate293

modules simplifies the privacy analysis as we can show that each subroutine is ε/3-differentially294

private — it follows that the entire algorithm is ε-differentially private. In Algorithm 1 we add295

Laplace noise to the degrees of all vertices in the graph and then return a sample of vertices,296

say S (sampled uniformly without replacement) along with their noisy degrees. For simplicity297

we describe Algorithm 1 in a way that the running time is linear in the size of the input. We do298

this to make our privacy analysis simpler. However, we can implement Algorithm 1 with lazy299

sampling of Laplace noise Yu when required i.e., if node u is in our sample S or if u = r(v) was300

the randomly selected neighbor of some node v ∈ S.301

302

NoisyDegree takes G as input and returns a set of sampled vertices along with the noisy degrees
of every vertex in G.
1. Uniformly and independently select Θ(

√
n · poly(log(n)/ρ) · poly(1/ε)) vertices (without

replacement) from V and let S denote the set of selected vertices.
2. For every v ∈ V(G),

d̃(v) = deg(v) + Yv ,

where Yv ∼ Lap(6/ε).
3. Return {d̃(v)}v∈V(G),S

303

Algorithm 1 NoisyDegree.

Given the output of Algorithm 1 we can partition the sample S into buckets S̃i = S∩ B̃i using304

their noisy degree. Here, we define B̃i =
{
v : d̃(v) ∈

(
(1 + β)i−1, (1 + β)i

)}
and we also define305

a merged bucket S1 = S ∩
{
v : d̃(v) ⩽ (1 + β)K−1

}
containing all sampled nodes with noisy306

degree at most (1+β)K−1. Here, K is a degree threshold parameter that we can tune. Now given307

a size threshold parameter T we can define I =
{
i ⩾ K :

∣∣S̃i∣∣ ⩾ 1.2T · |S|
}

to be the set of big308

buckets. We remark that as a special case we define |S1| to be “small" if |S1| < 1.2T ·
√
|S|·|S| instead309

of |S1| < 1.2T · |S|. As an intuitive justification we note that (whp) for each node v with noisy310

degree d̃(v) ⩽ (1+β)K−1 the actual degree deg(v) will not be too much larger than (1+β)K−1.311

In this case we have
∑

v:d̃(v)⩽(1+β)K−1 deg(v) ⩽ |S1|maxv:d̃(v)⩽(1+β)K−1 deg(v) = o(n) so that312

we can safely ignore the edges incident to S1.313

Intuitively, for each large bucket i ∈ I, Algorithm 2 computes α̃i = Wi/|S̃i| our approximation314

of the fraction of type (2) edges incident to B̃i. If S1 is large then type (2) edges are (re)defined315

to be the edges with exactly one endpoint in
{
v : d̃(v) ⩽ (1 + β)K−1

}
∪
⋃

i∈I B̃i. To preserve316

differential privacy we add laplace noise to Wi i.e., Wi = Zi+
∑

v∈S̃i
X(v) where Zi ∼ Lap(6/ε).317

We remark that (whp) we will have Zi = o(|S̃i|) for each large bucket i ∈ I. Thus, the addition318

of laplace noise will have a minimal impact on the accuracy of the final result.319

320
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NoisyBigSmallEdgeCount takes as input G, I, {S̃i}ti=1,S1, {d̃(v)}v∈V(G),Mρ,n, T and returns an
approximation of the fraction of edges that are between big buckets and small buckets.
1. For every i ∈ I, ▷ count the edges between buckets in I and small buckets

a. For all v ∈ S̃i,

i. Pick a random neighbor of v, say r(v).
ii. If |S1| < 1.2T ·

√
|S|·|S|, i.e., if S1 is a small bucket. Then if d̃(r(v)) ∈ ((1+β)i−1, (1+β)i]

for some i ̸∈ I, then X(v) = 1, otherwise X(v) = 0.
iii. Otherwise, S1 is not small. Therefore, if d̃(r(v)) ∈ ((1+β)i−1, (1+β)i] for some i ̸∈ I

and i > log1+β⌈
(

6Mρ,n

β

)
⌉+ 2, then X(v) = 1, otherwise X(v) = 0.

b. Define Wi :=
∑

v∈S̃i
X(v) + Zi where Zi ∼ Lap(6/ε) and α̃i :=

Wi

|S̃i|
.

2. return {Wi}i∈I, {α̃i}i∈I

321

Algorithm 2 NoisyBigSmallEdgeCount. Here Mρ,n is a degree threshold parameter and T is a size
threshold parameter. Note that the relationship between the parameters K (used informally as a degree
threshold parameter in the overview) and Mρ,n is K = 2 + log(1+β)⌈6Mρ,n/β⌉.

If the merged bucket S1 is small then we can ignore edges incident to S1 and Algorithm 3 will322

simply output 1
|S|

∑
i∈I |S̃i| · (1 + α̃i) · (1 + β)i. In this case the output can be computed entirely323

from the differentially private outputs that have already been computed by Algorithms 1 and 2324

without even looking at the graph G. Intuitively, for any large bucket i ∈ I and v ∈ S̃i we expect325

that (whp) |Yv| = |d̃(v)−deg(v)| is small enough to ensure that (1+β)i−2 ⩽ deg(v) ⩽ (1+β)i+1.326

Thus, (1 + β)i is still a reasonable approximation for deg(v).327

If the merged bucket S1 is sufficiently large, then we need to account for the edges within S1328

itself as well as the fraction of edges between S1 and small buckets. We introduce a new estimator329

to approximate the fraction of edges between S1 and small buckets given by Z+
∑

v∈S1
(1+X(v)) ·330

deg ′(v)whereZ ∼ Lap
(

36Mρ,n

(
3 + β+ 1

β

))
and deg ′(v) = min{deg(v), 6Mρ,n

(
3 + β+ 1

β

)
}331

(See Algorithm 3) — the relationship between the parametersK andMρ,n isK = 2+log(1+β)⌈6Mρ,n/β⌉.332

The Laplace Noise term is added to preserve differential privacy. We define the clamped333

degrees deg ′(v) to ensure that the coupled global sensitivity of the randomized subroutine334

computing
∑

v∈S1
(1 + X(v)) · deg ′(v) is upper bounded by 12Mρ,n

(
3 + β+ 1

β

)
. This way335

we can control the laplace noise parameters to ensure that Z = o(|S1|) with high probabil-336

ity so that the noise term Z does not adversely impact accuracy. Intuitively, we expect that337

Yv ⩽ Mρ,n for all nodes v with high probability. In this case for any node v ∈ S1 we will have338

deg ′(v) = deg(v) ⩽ 6Mρ,n

(
3 + β+ 1

β

)
.339

340
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NoisyAvgDegree takes {S̃i}ti=1, {d̃(v)}v∈V(G), {α̃i}i∈I, I,Mρ,n, T as input and returns the noisy
estimator for average degree of the graph.
1. If |S1| < 1.2T ·

√
|S| · |S| then output 1

|S|

∑
i∈I |S̃i| · (1 + α̃i) · (1 + β)i.

2. Else, for every v ∈ S1,

a. Pick a random neighbor of v, say r(v).

b. If d̃(r(v)) ∈ ((1 + β)i−1, (1 + β)i] for some i ̸∈ I and i > log1+β⌈
(

6Mρ,n

β

)
⌉ + 2, then

X(v) = 1, otherwise X(v) = 0.
c. Output

1
|S|

(∑
i∈I

|S̃i| · (1 + α̃i) · (1 + β)i + Z+
∑
v∈S1

(1 + X(v)) · deg ′(v)

)
,

where

Z ∼ Lap
(

36Mρ,n

(
3 + β+

1
β

))
and

deg ′(v) = min
{

deg(v), 6Mρ,n

(
3 + β+

1
β

)}

341

Algorithm 3 NoisyAvgDegree
342

Main DP Algorithm that takes graph G as input and outputs an approximation of its average
degree.
1. {d̃(v)}v∈V(G),S := NoisyDegree(G) ▷ see Algorithm 1
2. For i = 1, 2 . . . , t, let S̃i = {v ∈ S : d̃(v) ∈ ((1 + β)i−1, (1 + β)i]} where t := ⌈log(1+β)(n)⌉.
3. Define Mρ,n := 1

3 ·
√

ρ

n
√

log(n)
· |S|

t
, S1 := ∪

i⩽log1+β

(
6Mρ,n

β

)
+2

S̃i, and, I = {i >

log1+β

(
6Mρ,n

β

)
+ 2 : |S̃i| ⩾ 1.2T · |S|} where T := 1

2

√
ρ
n
· ε
(1+ε) ·

1
t
.

4. {Wi}i∈I, {α̃i}i∈I := NoisyBigSmallEdgeCount(G, I, {S̃i}ti=1). ▷ see Algorithm 2
5. NoisyAvgDegree(G,S, {S̃i}ti=1, {α̃i}i∈I, I,Mρ,n, T). ▷ see Algorithm 3

343

Algorithm 4 Main DP Algorithm

The full analysis of Theorem 2 can be found in Sections 2 and 4.344

▶ Remark 10. A simpler algorithm for estimating the average degree was given by Seshadri [31].345

The main intuition behind this algorithm is that out of m edges of a graph, there are not “too346

many” edges that contribute a high degree. Thus the algorithm samples vertices and a random347

neighbor of each sampled vertex, but it only counts edges (scaled by a factor of 2 times the degree348

of the sampled vertex) for which the degree of the random neighbor is higher than that of the349

degree of the sampled vertex.350

The Coupled Global Sensitivity of the final estimate returned by this algorithm is high (propor-351

tional to the degree of the sampled vertex and its random neighbor); thus adding Laplace noise352

directly to the estimate would result in a very inaccurate algorithm. It is unclear how to mitigate353

this issue and make this algorithm differentially-private with a reasonable accuracy guarantee.354

1.4.2 Privately Estimating Maximum Matching and Vertex Cover Size355

At a high-level our private algorithms for estimating the maximum matching and vertex cover add356

laplace noise (to the outputs) proportional to the coupled global sensitivity of the randomized357
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non-private algorithms for the corresponding problems. The challenge lies in proving the coupled358

global sensitivity of these non-private algorithms is small.359

We first describe and analyze the coupled global sensitivity of the classical polynomial-time360

greedy matching algorithm. This is helpful in our analysis of the non-private sublinear-time361

algorithm for maximum matching in the sequel.362

We then describe and give a proof sketch of the coupled global sensitivity of the non-private363

sublinear-time matching algorithm [3]. The formal proofs for privately estimating the maximum364

matching and minimum vertex cover size are in the full version [5]. Recall that d is the maximum365

degree and d̄ is the average degree of the graph .366

The Polynomial-time Greedy Matching Algorithm AMM. This algorithm takes as input a367

graph G = (V ,E) and a random permutation π on the set of pairs (x,y) ∈ V × V , with x ̸= y,368

and processes each pair of vertices (x,y) in the increasing order of ranks given by π, and greedily369

adds edges to a maximal matching whose size is finally output7. Since the size of the maximal370

matching produced is known to be at least 1
2 of the size of a maximum matching, this gives a371

non-private 2-approximation of the size of a maximum matching in G.372

CGS of the Greedy Algorithm AMM. We show that the CGS of the greedy algorithm (with373

respect to node-neighboring graphs) is at most 1. Note that once the ranking on the edges is374

fixed the maximal matching obtained byAMM is also fixed. Let σI be the identity permutation375

over the ranking of edges, i.e., we have σI(π) = π. We use Fact 1 to observe that,376

CGSAMM
⩽ max

G1∼G2

min
σ

max
π

|AMM(G1;π) −AMM(G2;σ(π))|377

⩽ max
G1∼G2

π

|AMM(G1;π) −AMM(G2;σI(π))|378

= max
G1∼G2

π

|AMM(G1;π) −AMM(G2;π).|379

380

Therefore it is sufficient to analyze the relative size of the matching obtained on node-neighboring381

graphs G1,G2 that are processed by the greedy algorithm in the order given by the same π.382

Let G1 ∼ G2 where v∗ is such that E(V1 \ {v
∗}) = E(V2 \ {v

∗}). Denote the greedy matchings383

obtained fromAMM(G1,π) as M1 and fromAMM(G2,π) as M2. Suppose edge e∗ is incident384

to v∗ such that e∗ ∈ E2, and e∗ ̸∈ E1. We will show that ||M1| − |M2|| ⩽ 1, which implies that385

maxG1∼G2
π

|AMM(G1;π) −AMM(G2;π)| ⩽ 1, thus proving that CGSAMM
⩽ 1.386

We first claim that if e∗ ̸∈ M1 ∪M2 then |M1| = |M2|. Since the greedy algorithm considers387

edges in the same order, the exact same edges must have been placed in M1 as in M2 before e∗388

is processed. Since e∗ = (v∗,u) is not chosen in M2 it must have been the case that by this time389

u was matched in M2, and thus the same matched edge must occur in M1. From here on the390

algorithm again must make the same choices for the edges to be placed in M1 and M2.391

Next, we claim that if e∗ ∈ M1 ∪M2 then M := M1 ⊕M2
8 is one connected component392

containing e∗. Consequently, ||M1|− |M2|| ⩽ 1. Since e∗ ∈ M2 and e∗ cannot be in M1, it is clear393

that e∗ ∈ M. Suppose for the sake of contradiction, M consists of two connected components394

C1,C2 and WLOG e∗ ∈ C1. Consider edges in C2. By Berge’s Lemma [34], C2 is either an395

alternating path or an alternating even cycle, with alternating edges from M1 and M2. Also, the396

7 We note that the non-private algorithms [24, 35, 26] only consider the ranking π over m edges of the graph,
whereas we consider the ranking over all

(
n
2

)
pairs of vertices. This is because we want to define a “global”

ranking so that we can define the same ranking consistently over neighboring graphs that may have different
edges.

8 M1 ⊕M2 is the symmetric difference of sets and this is defined as the set of edges in either M1 or M2 but not
in their intersection.
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edges in C2 exist in both G1 and G2 with the same ranking. Observe that since C2 is separate397

from C1 containing e∗, if we replace edges in C2 belonging to M2 in the original graph G2 by398

edges in C2 belonging to M1, this is still a valid maximal matching for the graph G2. In fact, the399

greedy algorithm considers edges in C2 in the same order for both graphs G1,G2, so the edges400

in M1 and M2 should be the same, in other words, C2 cannot be a part of M = M1 ⊕M2, and401

hence M must have only one connected component, which contains e∗. Now, since M is either402

an alternating path or even cycle, ||M1|− |M2|| ⩽ 1.403

The Local Maximum Matching Algorithm Asub−MM.404

We describe the local algorithm implemented by [3] in Algorithm 5. We modify the original405

algorithm to sample vertices without replacement. The algorithm then calls the vertex cover406

oracle (denoted as O π
VC) on each sampled vertex which subsequently calls the maximal matching407

oracle (denoted as O π
MO) on the incident edges to determine whether the sampled vertex is in408

the matching fixed by the ranking of edges π. Finally, the algorithm returns an estimate of the409

maximum matching size based on the number of sampled vertices in the matching. We note410

that in [3] the same sampling algorithm simultaneously outputs an approximation to maximum411

matching size and minimum vertex cover size. We choose to write the sampling procedure for412

estimating the maximum matching size and minimum vertex cover size separately so that it is413

easier to understand the Coupled Global Sensitivity for outputting the two different estimators.414

415

Input. Input Graph G = (V ,E).
1. Uniformly sample s = 16 · 24(lnn)/ρ2 vertices from V without replacement.
2. For i = 1 . . . s, if O π

VC(vi) = True then let Xi = 1, otherwise let Xi = 0.
3. return M̃ = n

2s (
∑

i∈[s] Xi) −
ρn
2 .

416

Algorithm 5 Local Maximum Matching algorithmAsub−MM using Oracle access.

▶ Remark 11. [3] gives an efficient simulation of the matching and vertex cover oracles which417

exposes edges incident to a vertex in batches only when they are needed. We assume the efficient418

simulation of these oracles in our algorithms.419

CGS of the Local Matching AlgorithmAsub−MM. Our main techniques involve identifying420

the sources of randomness in the local algorithm itself and then coupling the random coins of the421

runs of the algorithm on neighboring graphs. We follow the local algorithm given by [3] which422

samples vertices for both matching and vertex cover size estimation. We show that the identity423

coupling is sufficient in this case.424

In a previous version of our paper (before we were aware of the results of [3]), we analyzed425

the Coupled Global Sensitivity of the local matching algorithm given by [24, 35] which samples426

a set of edges uniformly at random, and calls a matching oracle on each sampled edge. The427

matching oracle indicates whether the edge is in the greedy matching fixed by the ranking π428

or not. Analyzing the Coupled Global Sensitivity of this algorithm is more challenging, i.e.,429

considering the identity permutation σI over the ranking of edges π and sampled edges does not430

work. This is because for node-neighboring graphs G1,G2, it could be the case that all the edges431

sampled from G1 belong to the matching M1 fixed by the ranking π, but the same edges sampled432

from G2 may not be in the matching M2 fixed by the ranking π. Thus, we need to carefully define433

a bijection that maps edges in the matching M1 to edges in the matching M2.434

2 Privacy Analysis of Theorem 2435

▶ Theorem 12. The Algorithm 4 is ε-DP.436
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Proof. We will approach the privacy analysis in a modular fashion, i.e., we will analyze each437

sub-routine separately and show that by composition, the entire algorithm is ε-differentially438

private.439

In the sequel, when analyzing the coupled global sensitivity of intermediate randomized440

quantities, we use Fact 1.441

Â Claim 13. Algorithm NoisyDegree (see Algorithm 1) is ε/3-DP.442

Proof. First, fix any sample S. Define the function fnoisy−deg := {d̃(v)}v∈V(G). Observe443

that the degree of a node can change by at most 1 from adding or deleting an edge, and444

therefore fnoisy−deg changes by at most 2 by adding or deleting an edge, in other words, the445

GSfnoisy−deg
= 2 and we can add noise proportional to 2/ε. ◀446

Â Claim 14. Algorithm NoisyBigSmallEdgeCount (Algorithm 2) is ε/3-DP.447

Proof. We fix noisy degrees {d̃(v)}v∈V(G), consequently fixing the buckets S̃1, . . . , S̃t and set448

I. Define the function ft,d̃ := {fS̃i,d̃(G; r)}i∈I, and the function fS̃i,d̃(G; r) =
∑

v∈S̃i
H(r(v))449

where H(w) = 1 if and only if we have d̃(w) ∈ ((1 + β)i−1, (1 + β)i] for some i ̸∈ I and |S1| <450

1.2T ·
√
|S| · |S| or if d̃(w) ∈ ((1+β)i−1, (1+β)i] for some i ̸∈ I and i > log1+β⌈

(
6Mρ,n

β

)
⌉+ 2;451

here r(·) defines the random coins used to sample a neighbor of v. We analyze CGSfS̃i ,d̃
, and452

argue that CGSft,d̃
⩽ CGSfS̃i ,d̃

.453

First, we show that for all fixed S, {d̃(v)}v∈S and i ∈ I, the CGSfSi ,d̃
is at most 2. Consider454

G and G ′ such that edge (u∗, v∗) ∈ G, but does not exist in G ′. Fix any coupling such that455

r(w) = r ′(w) for all w ̸= u∗, v∗, where r, r ′ defines the random coins for sampling neighbors of456

w in G and G ′ respectively. Now we have X(w) = H(r(w)) = H(r ′(w)) = X ′(w) for all w ̸=457

u∗, v∗. Thus, CGSfS̃i ,d̃
= |fS̃i,d̃(G; r) − fS̃i,d̃(G

′; r ′)| = |
∑

v∈S̃i
H(r(v)) −

∑
v∈S̃i

H(r ′(v))| =458

|H(r(v∗)) +H(r(u∗)) −H(r ′(v∗)) −H(r ′(u∗))| ⩽ 2. Now, since the differing endpoints u∗, v∗459

can only appear in at most one of the i-th iterations simultaneously, it is clear to see that CGSft,d̃
460

is also at most 2. ◀461

Â Claim 15. Algorithm NoisyAvgDegree (Algorithm 3) is ε/3-DP.462

Proof. We fix noisy degrees {d̃(v)}v∈V(G), and sample S consequently fixing the buckets S̃1, . . . , S̃t463

and set I, and we fix {α̃i}
t
i=1. Note that the first output in Line 1 given by 1

|S|

∑
i∈I |S̃i| ·464

(1 + α̃i) · (1 + β)i is already private since the terms in the summation consist of parameters465

that are either noisy or public or both. We need to show that the second output in Line 2c466

is private. In particular, define the function fS1,d̃(G; r) :=
∑

v∈S1
(1 + H1(r(v))) · deg ′(v)467

where deg ′(v) = min{deg(v), 6Mρ,n

(
3 + β+ 1

β

)
} and H1(w) = 1 if and only if d̃(w) ∈468

((1 + β)i−1, (1 + β)i] for some i ̸∈ I and i > log1+β⌈
(

6Mρ,n

β

)
⌉ + 2. We claim that for all469

fixed S and {d̃(v)}v∈S, the CGSfS1,d̃
is at most 12Mρ,n

(
3 + β+ 1

β

)
. Consider G and G ′ such470

that edge (u∗, v∗) ∈ G, but does not exist in G ′. Fix any coupling such that r(w) = r ′(w) for471

all w ̸= u∗, v∗, where r, r ′ defines the random coins for sampling neighbors of w in G and G ′
472

respectively. Now we have X(w) = H1(r(w)) = H1(r
′(w)) = X ′(w) for all w ̸= u∗, v∗. Thus,473

|fS1,d̃(G; r)−fS1,d̃(G
′; r ′)| = |

∑
v∈S̃1

(1+H1(r(v)))·deg ′(v)−
∑

v∈S̃1
(1+H1(r

′(v)))·deg ′(v)| =474

|(1 + H(r(v∗))) · deg ′(v∗) + (1 + H(r(u∗))) · deg ′(u∗) − (1 + H(r ′(v∗))) · deg ′(v∗) − (1 +475

H(r ′(u∗))) deg ′(u∗)| ⩽ 2 · 6Mρ,n

(
3 + β+ 1

β

)
= 12Mρ,n

(
3 + β+ 1

β

)
. Note that we intro-476

duce deg ′(v), to ensure that the sensitivity of fS1,d̃ remains small. ◀477

By composition, we have that the main algorithm is ε-DP. ◀478
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3 Preliminaries479

We state the following tail bound for a random variable drawn from the Laplace Distribution.480

▶ Fact 2. If Y ∼ Lap(b), then481

Pr[|Y| ⩾ ℓ · b] = exp(−ℓ) .482

Next, we state a well-known fact which implies that the concentration results for sampling483

with replacement obtained using Chernoff bounds type methods (bounding moment generating484

function + Markov inequality) can be transferred to the case of sampling without replacement.485

▶ Fact 3 ([2, 20]). Let X = (x1, . . . , xN) be a finite population of N points and X1, . . . ,Xn be a486

random sample drawn without replacement from X , and Y1, . . . , Yn be a random sample drawn487

with replacement from X . If f : R→ R is continuous and convex, then488

E

[
f

(
n∑

i=1

Xi

)]
⩽ E

[
f

(
n∑

i=1

Yi

)]
.489

4 Accuracy Analysis of Theorem 2490

4.1 Proof Sketch of Theorem 2491

In this section, we give a sketch of the accuracy analysis. The more formal proofs can be found in492

the full version [5].493

▶ Theorem 16. For every ρ < 1/4, β ⩽ ρ/8, and ε−1 = o(log1/4(n)), for sufficiently large n,494

the main algorithm (see Algorithm 4) outputs a value d̃ such that with probability at least 1 − o(1),495

it holds that496

(1 − ρ) · d̄ ⩽ d̃ ⩽ (1 + ρ) · d̄497

Proof. The main proof strategy conditions on S1 being sufficiently large or not. First, consider498

Case 1 when |S1| < 1.2T ·
√
|S| · |S| where T is a size threshold parameter. We first show that for499

i ∈ I the noisy buckets |B̃i|/n are approximated well by |S̃i|/|S|. Next we show that the number500

of vertices in buckets that are significantly smaller than the size threshold are of size O(
√
n)501

(for buckets U ′ := {v ∈ B̃i : (i ̸∈ I) ∧ (i > log1+β

(
6Mρ,n

β

)
+ 2)}, and of size Õ(n3/4) (for502

bucket B1 := ∪
i<log1+β

(
6Mρ,n

β

)
+2

B̃i. This leads to the corollary (see full version [5] for the formal503

statement) which bounds the number of edges between small buckets as roughly Õ(ρn+ n3/4).504

One of our main contributions is showing that the actual fraction of edges between sufficiently505

large buckets and small buckets, denoted by αi, is approximated well by our noisy estimator α̃i.506

▶ Corollary 17. Assuming that ε−1 = o(log1/4(n)), for every i ∈ I, for sufficiently large n, we507

have that with probability at least 1 − o(1),508

1. |α̃i − αi| ⩽
ρ
4αi if αi ⩾ ρ/8.509

2. α̃i ⩽ ρ/4, if αi ⩽ ρ/8.510

Finally, we need to show that for sufficiently large noisy buckets, the actual degrees of the511

vertices (sans noise) only shifts to an adjacent noisy bucket. This helps us bound the number512

of edges whose one endpoint resides in a sufficiently large noisy bucket. We have shown that513
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with high probability, all approximations of edges between the different types of buckets is good,514

which leads to the main Lemma for Case 1.515

Now consider Case 2 when |S1| > 1.2T ·
√
|S| · |S|. We show that the bucket |B1|/n is now516

approximated well by |S1|/|S|. We introduce a different estimator for counting edges between B1517

and small buckets given byZ+
∑

v∈S1
(1+X(v))·deg ′(v), whereZ ∼ Lap

(
36Mρ,n

(
3 + β+ 1

β

))
518

and deg ′(v) = min{deg(v), 6Mρ,n

(
3 + β+ 1

β

)
}. First, we show that for every v ∈ S1, with high519

probability deg ′(v) = deg(v). Our main contribution in this case is showing that our estimator520

(sans noise) approximates the fraction of the sum of the edges between B1 and all vertices in521

the graph (denoted by E1), and the edges between B1 and vertices in small buckets in the graph522

(denoted by E ′
1) well (see lemma below).523

▶ Lemma 18. Let d̄1 be the average degree of bucket B1. If |B1| > 1.5T ·
√
|S| · n,524

1. If d̄1 ⩾ 1, then with probability at least 1 − o(1),(
1 −

ρ

4

)
· |E1|+ |E ′

1|

n
<

1
|S|

∑
v∈S1

(1 + X(v)) · deg(v) <
(

1 +
ρ

4

)
· |E1|+ |E ′

1|

n

2. If d̄1 < 1, and d̄ ⩾ 1, then with probability at least 1 − o(1),

|E1|+ |E ′
1|

n
− ρ/4 <

1
|S|

∑
v∈S1

(1 + X(v)) · deg(v) <
|E1|+ |E ′

1|

n
+ ρ/4

To complete this part of the proof, we show that the noise added to the estimator (denoted by Z)525

is small and therefore, the noisy estimator also approximates the quantity (|E1|+ |E ′
1|)/n well.526

The rest of the analysis is similar to Case 1 and we invoke the same lemmas to show that with527

high probability, the approximations of edges between the rest of the sufficiently large buckets,528

and between the small buckets, as well as between the sufficiently large buckets and small buckets529

is good, thus giving us the main Lemma for Case 2.530

Combining these two main lemmas proves our main theorem statement. ◀531

5 Conclusions and open questions532

In this work we give a differentially-private sublinear-time (1 + ρ)-approximation algorithm533

for estimating the average degree of the graph. We achieve a running time comparable to its534

non-private counterpart, which is also tight in terms of its asymptotic behaviour with respect to535

the number of vertices of the graph. We also give the first differentially-private approximation536

algorithms for the problems of estimating maximum matching size and vertex cover size of a537

graph.538

To analyze the privacy of our algorithms, we proposed the notion of coupled global sensitiv-539

ity, as a generalization of global sensitivity, which is applicable to randomized approximation540

algorithms. We show that coupled global sensitivity implies differential privacy, and use it to541

show that previous non-private algorithms from the literature, or variants, can be made private542

by finely tuning the amounts of noise added in various steps of the algorithms.543

We propose several directions of investigation for developing the notion of coupled global544

sensivity further and open problems pertaining to differentially-private sublinear-time algorithms545

for graphs.546

Other applications and limitations of CGS In particular, what are the limitations of the547

CGS method? Can we characterize the set of algorithms with small CGS? Are there other natural548

ICALP 2022
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problems for which we already have algorithms with small CGS, and hence that are easily549

amenable to privacy analogues? Are there algorithms for which we can prove large lower bounds550

on the CGS and yet they provide differential privacy?551

Better approximations for maximum matching problems In [24, 35], the authors also give552

a (1, ρn)-approximation of maximum matching size with a query complexity that is exponential553

in d. Their analysis involves iterating over a sequence of oracles to augment paths of small length,554

in increasing order of lengths. The matching oracle considered in this work is used only in the555

first iteration. Analyzing the coupled global sensitivity of that algorithm appears to be much556

more involved, and we leave it as an open problem.557

Better time complexity guarantees for (2, ρn)-approximation matching and vertex cover558

algorithms. Note that our results in Theorems 3 and 4 achieve an expected running time. In559

contrast, the results in [3] achieve a high-probability bound on the time-complexity. This can be560

done by running multiple instances of the resulting approximation algorithm for enough time561

and returning the output of the instance that terminates first (the analysis involves a simple562

application of Markov inequality). Achieving this step in a way that preserves privacy would563

result in a degradation of the privacy parameter ε, due to composition. We leave it as an open564

question to provide a tighter privacy vs time-complexity analysis.565
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