2019 International Conference on Computational Science and Computational Intelligence (CSCI)

A Computer Scientist Teaches Gen Ed Math

Victor Winter
Department of Computer Science
University of Nebraska-Omaha
vwinter @unomaha.edu

Michael Matthews
Department of Mathematics
University of Nebraska-Omaha
michaelmatthews @unomaha.edu

Abstract—A nationwide effort is underway to provide stu-
dents pursuing higher education with options for satisfying gen-
eral education (gen ed) math requirements. Within the context
of this effort, computer science has an opportunity to introduce
students to programming fundamentals and computer science
principles while also satisfying gen ed math requirements. This
paper is an experience report that describes initial efforts at the
University of Nebraska-Omaha in piloting a course, satisfying
the gen ed math requirements for non-STEM majors, whose
content spans computer science, mathematics as well as the
visual arts.

Keywords-mathematical thinking; computational thinking;
spatial reasoning; computer programming; visual arts

I. INTRODUCTION

Historically speaking, college algebra has been used
across the United States at institutions of higher learning
to fulfill the general education (gen ed) requirements related
to mathematics and quantitative reasoning. The genesis of
the exclusionary idea that college algebra be the only option
to satisfy gen ed math requirements solidified in response
to the utility of calculus-based mathematics for war-related
efforts during WWII and the Cold War that followed [1].

Providing college algebra as the only option for satisfying
gen ed math requirements, however, is not particularly well-
suited for students pursuing studies in non-STEM disci-
plines. For these disciplines, the mathematical formulas and
procedures studied in college algebra are oftentimes seen
as abstract and arcane and of little practical use [7]. In
many cases, a student’s time would be more effectively spent
pursuing mathematical subjects other than advanced algebra
(e.g., statistics or data science) [3] [2].

The mismatch between the educational goals of college
algebra and the needs of various non-STEM disciplines
has had a staggering negative impact on graduation rates
[91 [71 [4] [6] [5]. The high failure rates typical of col-
lege algebra courses have provoked a national search for

This work is funded in part by the National Science Foundation under
grant IUSE-1712080. Any opinions, findings, and conclusions, or recom-
mendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

Betty Love
Department of Mathematics
University of Nebraska-Omaha
blove @unomaha.edu

Michelle Friend
Department of Teacher Education
University of Nebraska-Omaha
mefriend @unomaha.edu

alternatives which would support students in successfully
gaining the mathematical and quantitative reasoning skills
and knowledge deemed necessary for their field of study.
As a consequence, many universities now offer a variety of
courses that can be used to fulfill gen ed math requirements.
A course on statistics, for example, is now offered as
an option to satisfy gen ed math requirements at many
universities. In a similar vein, and in response to an executive
order given in 2017, the California State University (CSU)
system now offers a number of courses that satisfy gen
ed math requirements. Mathematical Ideas and The Power
of Mathematics are the titles of two foundation that CSU
students in certain majors can now take in lieu of college
algebra.

In response to gen ed math-related challenges, and with
the support of the NSF, a group of faculty at the University of
Nebraska-Omaha have developed a course called Introduc-
tion to Mathematical and Computational Thinking (MCT)
which satisfies the general education math requirements,
thereby serving as an alternative to the traditional college
algebra pathway.

This paper reports on the findings of the pilot offering of
MCT. The primary research questions related to the pilot are
the following:

1) Can the novel educational content and environment
used in MCT improve students’ overall attitudes to-
wards math?

2) What should be the appropriate depth of the com-
putational and mathematical content for this student
population?

3) Are assignments engaging?

A student attitudes survey as well as a 2-part mathography
were the instruments used to gather data relating to questions
1 and 3. Instructor and TA reflections as well as analysis of
student transcripts were the instruments used to collect data
for questions 2 and 3.

978-1-7281-5584-5/19/$31.00 ©2019 IEEE
DOI 10.1109/CSCl149370.2019.00151

793

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Artifacts created using Bricklayer.

II. MATERIALS AND METHODS

Introduction to Mathematical and Computational Think-
ing (MCT) extends and modifies the content and ed tech
infrastructure of an online ecosystem called Bricklayer.

Bricklayer [12] [13] is a collection of interactive web
apps, downloadable software, YouTube videos, and read-
ing material that facilitates a thoughtful and systematic
exploration of construction techniques underlying 2- and 3-
dimensional block-based visual art. Such exploration pro-
vides opportunities to exercise and develop spatial reasoning
abilities as well as mathematical and computational thinking
skills [14]. Bricklayer is open-source, freely-available, and
can be found at:

https://bricklayer.org

Bricklayer programming is done using a (freely available)
integrated development environment called the Bricklay-
erIDE. More specificially, within the BricklayerIDE, pro-
grams are written in the general-purpose functional pro-
gramming language SML, with graphical and tool integra-
tion capabilities provided by the Bricklayer library. Thus,
Bricklayer provides users with an authentic programming

794

environment! in which mathematical and computational
skills can be developed. The output of Bricklayer programs
are files which, through system-level scripts, are seamlessly
integrated with third-party tools such as: LEGO® Digital
Designer (LDD), LDraw, Minecraft, and STL viewers such
as 3D Builder. The collage shown in Figure 1 highlights
some of Bricklayer’s artifact construction potential.

In addition to the Bricklayer graphics library (imple-
mented in SML), the Bricklayer ecosystem also provides
a second graphics library (implemented in javascript), with
reduced functionality, called Bricklayer-lite. Bricklayer-lite
is a visual programming language whose programs have
a syntax consisting of assembled puzzle pieces which are
similar in appearance to Scratch programs. Bricklayer-lite
programs can be developed and executed through a web
browser using a Google Blockly-based IDE, which we
(also) refer to as Bricklayer-lite. A noteworthy capability of
Bricklayer-lite is that, in addition to producing an artifact,
the execution of a Bricklayer-lite program will produce a
well-formed and well-formatted Bricklayer (ASCII) program
text which can be executed (outside of the bricklayer-lite

'In this context, authenticity characterizes the degree to which a lan-
guage realistically combines computational thinking with general-purpose
programming.

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

framework) using the BricklayerIDE.

A. Participants

At the University of Nebraska-Omaha (UNO), prior to the
offering of Introduction to Mathematical and Computational
Thinking(MCT), college algebra was the only option to
satisfy the gen ed math requirement. At UNO, more than
1,600 students enroll in gen ed math every year and the
DWEF rate for the college algebra course is generally greater
than 30%. Sadly, in gen ed math circles, the DFW rate
mentioned is actually not bad. In a 2012 opinion piece in
the New York Times, Hacker reported that the DWF rate for
the City University of New York was 57% [9].

From the pool of 1600 UNO students that take gen ed
math annually, approximately 32 students go on to pursue
a STEM degree requiring calculus while the rest pursue
non-STEM majors. To gain a better understanding student’s
backgrounds, the MCT instructor pulled the transcripts for
all the students enrolled in the MCT pilot. These transcripts
showed students that were very successful (e.g., mostly A’s
and B’s) in their academic pursuits outside of math. The
scholastic difficulties faced by these students, all of which
were non-STEM majors, was overwhelmingly localized to
college algebra and its prerequisites. In general, in this
student pool it is not uncommon to find students that have
taken (and failed) the traditional college algebra gen ed math
course multiple times while otherwise enjoying a high GPA.

B. Educational Objectives and Topics

The educational objectives of MCT are as follows: de-
velop an understanding of pattern and algorithm, both in-
formally and formally using the discrete domain of vi-
sual block-based-based art. Physical construction tools (e.g.,
LEGO and graph paper) as well as virtual tools (e.g., web
apps providing enhanced versions of graph paper) were
employed to explore and develop techniques for creating
2D artifacts, especially artifacts containing patterns.

Frieze and wallpaper patterns (e.g., tessellations) represent
a large and mathematically interesting set of artifacts in
which the elements of pattern are size invariant (e.g., the
size of tiles in a tessellation remains fixed). As such the
coordinates for positioning tiles are governed by arithmetic
progressions. Translational symmetries, reflection symme-
tries, and rotational symmetries provide attributes for under-
standing and classifying these artifacts.

Fractals such as the Menger sponge (3D), the Menger
carpet (2D), and space-filling curves are examples of an
altogether different class of artifacts. These artifacts are
generally created using an inductive construction algorithm
where the construction of a larger artifact involves creating
one or more copies of smaller artifacts. In the case of
fractals, geometric progressions provide the mathematics
for determining coordinates and the size of these artifacts
(measured in unit blocks) grow exponentially. Inductive

795

construction algorithms can also be used to create artifacts
whose coordinates are governed by arithmetic progressions
as shown in Figure 2.

a1 a2

as

Figure 2: An artifact sequence [10].

Elementary cellular automata provide examples of con-
struction algorithms that are rule-based which create com-
plex artifacts of an altogether different nature. And last,
but not least, is (patternless) pixel art, whose construction
algorithms are labor intensive and place emphasis on the
importance of reliable manual processes.

Informal (e.g., non-verbal) understanding of construction
algorithms can be developed through manual processes
(e.g., unplugged paper-and-pencil constructions or virtual
constructions involving mouse-clicks). Such (manual) ex-
plorations are suitable for the construction of 2D artifacts.
In this setting, composition (including inductive compo-
sition) and decomposition can be explored as techniques
for understanding how artifacts can be constructed. This
informal understanding of algorithm serves as the foundation
for developing the ability to express such ideas in formal
symbolic terms. The formalism in which this expression
is developed is an environment consisting of the general-
purpose functional programming language SML extended
with a set of graphics libraries that provide suitable ab-
stractions for creating visual artifacts of the kind described.
From a very basic starting point, the sophistication of graph-
ics abstractions and language constructs is then gradually
increased thereby increasing the expressive power of the
programmer. Through the use of parameterization the code
creating an artifact can be generalized. The introduction
of user-defined functions provides a means to a significant
increase in abstraction and expressive power.

The transition from 2D to 3D introduces an additional set
of challenges. Three dimensional artifacts generally contain
significantly more blocks that their two dimensional cousins.
For example, a 10 x 10 square contains 100 blocks while a
10 x10x 10 cube contains 1000 blocks. This increase in size
creates conditions that confront the limitations of third-party
display tools such as LDraw and LEGO Digital Designer.
To mitigate these issues, abstractions are provided and tech-
niques developed to reduce the number of blocks contained
in an artifact (e.g., hollow cubes can be created). How-
ever, number sense, coarse grained estimation, and counting
skills are very beneficial in the design stage of 3D artifact
construction. For example, an application of the inclusion-
exclusion principle reveals that a hollow 10 x 10 x 10 cube

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

contains 600 — 120 4+ 8 = 488 blocks. The understanding
of coordinates in three dimensions is also significantly more
complex (and abstract) than the understanding of coordinates
in two dimensions. In 2D, one can use graph paper (or its
virtual equivalent) to develop an understanding of the po-
sitional relationships between the components of an artifact
(e.g., the upper-right corner of a square touching the lower-
left corner of a rectangle). This kind of prototyping can
contribute significantly to the understanding of key aspects
of an artifact. Reasoning about similar relationships in three
dimensions is significantly more abstract and relies more
heavily on spatial and mathematical reasoning.

The final portion of the course introduces predicates
and general traversals. Predicates allow for property-based
descriptions of artifacts and traversals enable the property-
based construction of artifacts. For example, traversing an
8 x 8 square and placing a black brick in cells whose
coordinates sum to an even number will yield a checkerboard
pattern.

Collectively, the content of the MCT course contains
elements of quantitative reasoning, symbolic reasoning, spa-
tial reasoning, computational thinking, critical thinking, and
mathematical thinking. The domains and nature of the mate-
rial are such that the each of the stated educational elements
can be explored to a considerable depth, thus making the
general course suitable for a variety of audiences.

C. Data Collection

In the MCT pilot, a variety of data was collected, both
qualitative and quantitative. Curricular successes and not-
successes (not full failures, but less successful than ideal)
are based on both instructor and student reflections. Student
attitudes are the results of a pre- and post-course survey, as
described in section III-C.

A major source of data was a reflective activity known
as a “mathography” - an autobiography of their history with
mathematics [8]. The post-course mathography assignment
directed students to reflect specifically on their experience in
MCT, and was administered by the education researcher. A
total of eight students completed the post-course mathogra-
phy. Students were asked to describe their peak experience in
the course, their lowest experience in the course, good things
about the course, and things they would suggest changing.

III. RESULTS

A. Curricular Successes

Pixel Art — a highly engaging coding assignment in
MCT involved the construction of a pixel art image where
the image is selected by the student rather than being
assigned by the teacher. Constructing pixel art requires a
reliable construction process that includes (1) an overall
construction algorithm (e.g., which brick to place next), (2)
discipline in adhering to the construction algorithm during
the implementation phase, (3) testing — frequent program

796

execution, and (4) validation — manual confirmation that
the image being created by the code is consistent with the
original image. During construction, a variety of calculation-
based problems naturally arise regarding the determination
of cell coordinates. For example, a brute-force approach
involves the calculation of coordinates manually in absolute
terms as distances from the origin. A less labor intensive
approach is to calculate coordinates in relative terms as
offsets from locally known positions (e.g., the blue brick
is to be placed 1 position to the right of previously placed
brick). Subitizing? abilities can also be exercised during
pixel art construction, especially for images composed of
a small number of colors (e.g., black and white images).

Various algorithms can be employed in the construction of
pixel art. Determining a suitable construction algorithm for
a particular pixel art image is influenced by the properties
of the artifact (e.g., its complexity and symmetries), the set
of available brick shapes. One greedy algorithm involves
partitioning the image into monochromatic regions and then
“coloring in” regions in order of decreasing size. Other con-
struction algorithms seek to leverage patterns or symmetry
present in the image. However, the most general algorithm
for effectively constructing pixel art is to decompose a pixel
art image into a sequence of rows/column and then construct
the artifact one row/column at a time. In this approach, you
create a row/column, validate its correctness,and then move
on to the next row/column.

One of my peak experiences was when we did an
assignment involving pixel art. We got the freedom to
choose any type of art picture that we would want to
create using Bricklayer.

— Student 2

Art Shows - an art show is an engaging Bricklayer
programming assignment where students are given a large
degree of freedom. Art show submissions can be constrained
through the use of themes. One example of an an art show
theme would restrict submissions to the set of artifacts
which can be constructed (primarily) using circles and
rings. Another theme might focus on artifacts relating to
architecture. A distinguishing feature of an art show is the
presentation of student work. Specifically, student works
of art (i.e., Bricklayer artifacts) are displayed for all the
students to see. The (student) audience is asked to identify
interesting aspects of an artifact such as use of color,
structural complexity, creativity, and so on. A discussion can
be initiated about the code that would be needed to recreate
the artifact (e.g., is the artifact easily recreated by others?).
In addition, the instructor can perform an inspection of the
code used to create the artifact providing a live critique of

2Subitizing is the ability to “see” the number of elements in a collection
without explicitly counting. Instantly recognizing the number of dots on
the face of a die is an example of subitizing.

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

the aspects of the program such as organizational structure,
choice of variable names, and even formatting.

Code-alongs — a code-along is an activity where the
instructor and students develop code in the classroom in real-
time in lock-step. Rather that taking notes in the traditional
paper-and-pencil fashion, in a code-along students are ex-
pected to create executable code on their own machines. The
requirement is that the code being created by the students
needs to be well-formatted, executable and also correct.
If needed, this expectation can be enforced by requiring
students to submit their code at the end of the code-along.
The benefit of code-alongs is that it lets students confront,
in a supportive environment, the myriad of problems that
can arise during software development. Problems range from
syntax errors and type errors to system-level issues (e.g.,
location of files and proper file extensions).

With respect to the efficacy of code-alongs, an enabling
feature of Bricklayer is that it is well suited to incre-
mental software construction processes in which frequent
execution of programs producing visually meaningful output
(e.g., partially completed visual artifacts) is possible. Such
incremental construction provides a robust framework for
synchronization between instructor-student program con-
struction and also demonstrates the value (e.g., reduced
complexity) in establishing a tight feedback loop between
the discovery and resolution of program errors.

During code-along the instructor frequently checks to
make sure the programs being developed by students are
up-to-date and functioning correctly. Such inspections en-
courage students to adopt a more proactive approach to
problem resolution (e.g., they will raise their hands when
they discover an error).

The code-alongs were also extremely helpful for under-
standing how the code works.

— Student 4

B. Curricular Not-Successes

Cellular automata and laces The rules governing the
construction of elementary cellular automata are an example
of a well-defined algorithm for constructing a set of artifacts.
Another set of artifacts, having scale symmetry, are two
dimensional versions of sponges, which we call laces (some-
times referred to by others as carpets). The construction of
a lace is governed by rules that involve a composition of
elements whose size is changing exponentially. The set of
laces is a strict subset of a class of pattern referred to by
Stephen Wolfram as nested patterns [15]. Both elementary
cellular automata and laces are interesting because their
construction algorithms are (conceptually) concise and the
artifacts that result can (depending on scale) oftentimes
be surprising, beautiful, unanticipated, and mathematically
interesting.

797

The artifact shown in Figure 3 is a lace which was
constructed through a sequence of mouse clicks.

- INNEEEEEEE .
0 1 & 5 6 7 8 9

3 4 10 11 12 13 14 15

Figure 3: An example of a lace.

In spite of their mathematical and algorithmic appeal,
exercises involving the construction of cellular automata and
laces did not achieve their desired results. Overall, students
had difficulty understanding the underlying construction
algorithms and could not effectively apply these algorithms
in general (i.e., to the construction of other cellular automata
and laces).

C. Student Attitudes Survey

Students in the class were asked by the education re-
searcher to take both a pre-course and post-course survey.
Several questions, shown in Table I, asked about expecta-
tions and experiences in the course. The S-STEM Math mea-
sure [11] is a series of eight questions measuring confidence
and interest in mathematics with questions such as “I am
good at math” and “Math is hard for me.” Three questions
addressed students’ attitudes about their experience and were
asked only on the post-course survey; these are shown in
Table II which shows both the mean result and the number of
students who were positive (4 or 5), neutral (3), or negative
(1 or 2) on each question. Nine students completed both the
pre- and post-course survey. The questions were out of a
five-point Likert scale, with a score of five being the high
answer (e.g. “Strongly agree”) and a score of one being the
low answer (e.g. “Strongly disagree”).

The post-survey results suggest that most students were
very positive about the experience in the course, with a small
number who were neutral or negative. There was a small
non-significant positive change in the pre- to post-course
survey results; most students were more positive after the
course, with a few decreasing results. The small sample size
contributes to the lack of significance, and a more robust

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

Table I: Pre- and Post-Survey Results (n=9)

Measure Pre-survey) Post-survey t (p)
mean (sd) mean (sd)
Right now how confident do you feel that you will/have succeed in MCT? 3.0 (1.12) 3.67 (1.12) -1.33 (0.21)
How interesting to you is/was the content of MCT? 3.22 (0.97) 4.0 (1.12) -1.49 (0.17)
How relevant is the class to your broader interests and goals? 2.89 (1.36) 2.22 (0.83) 1.20 (0.26)
S-STEM Math [11] 3.18 (0.7) 3.25 (0.92) -0.33 (0.75)
Table II: Post-Survey Results (n=9)
Question ‘ Mean (sd) Positive Neutral Negative
How glad are you that you took MCT? 4.0 (1.5) n=7 n=0 n=2
Learning the math taught in MCT was fun 4.4 (1.0 n=8 n=0 n=1
How did MCT compare to other math classes you have taken? 4.3 (0.8) n=7 n=3 n=0

determination of findings will be possible in future iterations
when more students enroll.

D. Supportive Environment

Six out of the eight student reflections (i.e., mathogra-
phies) mentioned collaboration and the ease of getting help
as a major asset to the class. TAs were not only available
to help students as they completed in-class activities, but
also circulated and offered help proactively. Several students
mentioned that they had been reticent to ask for help in pre-
vious math classes, but that receiving help from a professor
or TA had made them see the value of getting assistance
when they were struggling. The culture of the class, where
making mistakes and needing help was normalized, seemed
to really help students who would otherwise not seek out
help. Time to work in class was also helpful, due to the
availability of TAs and professors, but also other students:
“we could talk about the assignments and brainstorm as a
class” - Student 1.

IV. DISCUSSION

In this section we discuss implications of this iteration of
the course, and plans for future improvement.

A. Student creativity

Students were particularly taken with the open-ended
nature of the assignments in the course, which allowed them
the freedom to choose many elements of their projects. Un-
like most math classes and many introductory programming
classes, which offer highly constrained assignments, this
course emphasized the artistic elements of output, which led
students to choose personally relevant work. Student 1 felt
overwhelmed by the initial pixel art assignment, reporting
she thought, “I could never create something that looks that
good!” But then she decided on a pixel art minion and was
so proud of her work she showed her family. Indeed, unlike
many introductory CS and mathematics courses, several
students remarked on showing their work to others.

798

I showed everyone in my life what I did [on the pixel
art assignment]. Even the kids at my job loved it.
— Student 2

B. Instructor Reflections

As an instructor, it is important to be aware that the
students enrolled in MCT will be different from students
enrolled in typical CS courses. In CS courses, it is not
uncommon for students to be proactive with respect to
assignments and grades. For example, a CS student may
request an extension on an assignment and question an
instructor as to why points were deducted on a particular
homework assignment or test. In contrast, the students in
MCT were more passive and it was not uncommon for
students to fall behind on the submission of homework
assignments which in some cases then led to attendance
failures. In response, a set of interventions aimed at getting
students back on track was initiated.

The physical classroom where MCT was taught was
unoccupied in the hour prior to the course. TA’s (and
sometimes the instructor) would typically show up early to
get the class setup (e.g., laptops ready). A growing number
of students also began showing up early. The TA’s would
ask the students if they needed help with anything and the
typical response was “yes”. These interactions were very
beneficial and resulted in the establishment of an informal
tutoring center/lab that occurred right before every class.

From the perspective of instruction a couple of things
were noteworthy about how students went about solving
homework problems. One thing that was noticeable was that
students oftentimes did not leverage in their construction
process information relating to symmetry. For example, if
one has calculated the coordinates of the midpoint of the
bottom side of a square, then one can use this information
to determine the midpoints of all the other sides of the
square (in contrast to recalculating the midpoint of each
side independently). It was also noticeable that the use of
prototypes was not systematically employed by students
in their artifact construction process. For example, a 2D
artifact can be sketched on paper or created online using

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

the Grid. This visual prototype can greatly facilitate orga-
nization, positional calculations as well as visually expose
any symmetries the artifact might possess.

In spite of a somewhat bumpy start, both the instructors
and TA’s observed a turning point was reached at the
beginning of the second half of the semester. It was around
this time that there was a sharp increase in the ability of
students to correctly answer questions asked by the instructor
during lectures. We have spent considerable time discussing
what brought about this change. While we have no definitive
answers at this time, we do believe the following.

o Throughout the semester, the MCT instructor placed
importance on the use of proper terminology (e.g.,
Cartesian coordinate system, rectangular prism, formal
parameters, actual parameters, etc.). We suspect that
this “technical jargon” represented a new vocabulary
for students which initially provided barriers to under-
standing lectures and problems statements.

The course content was heavily spatialized. The instruc-
tor would create a visual artifact and they ask students
to visualize transformations or modifications of the ar-
tifact (e.g., imagine rotating the artifact clockwise 90°,
what happens if these two artifacts are placed on top
of each other, etc). We suspect that students had little
prior experience with this type of engagement which
initially provided barriers to understanding lectures.

C. Plans for Improvement

Future classes will be “more flipped” giving students more
time to solve problems during class and ask for help. Also,
the before class tutoring center will be institutionalized. A
greater emphasis will be placed on prototyping (e.g., as-
signments will be updated to explicitly require prototyping).
Furthermore, LEGO® sets have been purchased to provide
a richer tactile prototyping environment.

Lastly, more emphasis will be placed on the recognition
and understanding basic forms of symmetry. An instructor
program has been created capable of generating random
artifacts possing a desired set of symmetries (e.g., 2-fold
symmetry and reflection symmetry). This program can also
add desired symmetry to an existing artifact. Complementing
this, an interactive web app is being developed, called
Mystique, in which students can develop their symmetric
reasoning capabilities.

V. CONCLUSION

Overall, the pilot version of the MCT course was con-
sidered a success. Of the ten students who completed the
course, all passed. Two sections of the course will be offered
in the future, and they have larger enrollments as news of this
alternative spreads. This suggests that a course that combines
art, programming, and mathematics can be successful in
providing an alternative pathway to the traditional algebra
route towards calculus, particularly for students who have

799

negative prior experiences or for whom calculus is not a
good fit. Carefully designed, computer science can fulfill a
need and support solid mathematics learning.

REFERENCES

[1] C. B. Allendoerfer. The Case Against Calculus.
Mathematics Teacher, 56(7):482-485, 1963.

The

[2] P. Burdman. Changing Equations: How Community Colleges
are Re-thinking College Readiness in Math. LearningWorks,
September 2013.

[3] P. Burdman. Should College Statistics Courses Substitute For
Intermediate Algebra? Stanford - The College Puzzle, October
2013.

[4] P. Burdman. DEGREES OF FREEDOM: Diversifying math
requirements for College readiness and graduation (report 1
of a 3-part series). Technical report, Policy Analysis for
California Education (PACE), April 2015.

[5] P. Burdman. DEGREES OF FREEDOM: Probing Math
Placement Policies at California Colleges and Universities
(Report 3 of a 3-part series). Technical report, Policy Analysis
for California Education (PACE), May 2015.

[6] P. Burdman. DEGREES OF FREEDOM: Varying Routes
to Math Readiness and the Challenge of Intersegmental
Alignment (Report 2 of a 3-part series). Technical report,
Policy Analysis for California Education (PACE), May 2015.
[71 J. Christopher Edley. At Cal State, algebra is a civil rights
issue. Highlighting Strategies for Student Success, June 2017.
[8] C. Drake. Turning points: Using teachers’ mathematics
life stories to understand the implementation of mathematics
education reform. Journal of Mathematics Teacher Education,
9(6):579-608, 2006.

[9] A. Hacker. Is Algebra Necessary? The New York Times, July
2012.

[10] D. Sladkey. Visual Patterns Pattern #189. www.visualpatterns.
org, 2018. Accessed: 2018-06-17.

[11] A. Unfried, M. Faber, D. S. Stanhope, and E. Wiebe. The
development and validation of a measure of student attitudes
toward science, technology, engineering, and math (s-stem).
Journal of Psychoeducational Assessment, 33(7):622-639,
2015.

[12] V. Winter. The World Needs More Computer Science! What
to do? In D. Conway, S. A. Hillen, M. Landis, M. T.
Schlegelmilch, and P. Wolcott, editors, Digital Media, Tools,
and Approaches in Teaching and Their Added Value, pages
119-141. Waxmann Verlag GmbH, Germany, 2015.

[13] V. Winter, B. Love, and C. Corritore. =~ The Bricklayer
Ecosystem - Art, Math, and Code. Electronic Proceedings
in Theoretical Computer Science (EPTCS), 2016.

[14] V. Winter, B. Love, and C. Corritore. The art of the
Wunderlich cube and the development of spatial abilities.
International Journal of Child-Computer Interaction, 2018.
[15] S. Wolfram. A New Kind of Science. Wolfram Media, Inc.,
2002.

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

