
A Computer Scientist Teaches Gen Ed Math

Victor Winter

Department of Computer Science
University of Nebraska-Omaha

vwinter@unomaha.edu

Betty Love

Department of Mathematics
University of Nebraska-Omaha

blove@unomaha.edu

Michelle Friend

Department of Teacher Education
University of Nebraska-Omaha

mefriend@unomaha.edu

Michael Matthews

Department of Mathematics
University of Nebraska-Omaha

michaelmatthews@unomaha.edu

Abstract—A nationwide effort is underway to provide stu-
dents pursuing higher education with options for satisfying gen-
eral education (gen ed) math requirements. Within the context
of this effort, computer science has an opportunity to introduce
students to programming fundamentals and computer science
principles while also satisfying gen ed math requirements. This
paper is an experience report that describes initial efforts at the
University of Nebraska-Omaha in piloting a course, satisfying
the gen ed math requirements for non-STEM majors, whose
content spans computer science, mathematics as well as the
visual arts.

Keywords-mathematical thinking; computational thinking;
spatial reasoning; computer programming; visual arts

I. INTRODUCTION

Historically speaking, college algebra has been used

across the United States at institutions of higher learning

to fulfill the general education (gen ed) requirements related

to mathematics and quantitative reasoning. The genesis of

the exclusionary idea that college algebra be the only option

to satisfy gen ed math requirements solidified in response

to the utility of calculus-based mathematics for war-related

efforts during WWII and the Cold War that followed [1].
Providing college algebra as the only option for satisfying

gen ed math requirements, however, is not particularly well-

suited for students pursuing studies in non-STEM disci-

plines. For these disciplines, the mathematical formulas and

procedures studied in college algebra are oftentimes seen

as abstract and arcane and of little practical use [7]. In

many cases, a student’s time would be more effectively spent

pursuing mathematical subjects other than advanced algebra

(e.g., statistics or data science) [3] [2].
The mismatch between the educational goals of college

algebra and the needs of various non-STEM disciplines

has had a staggering negative impact on graduation rates

[9] [7] [4] [6] [5]. The high failure rates typical of col-

lege algebra courses have provoked a national search for

This work is funded in part by the National Science Foundation under
grant IUSE-1712080. Any opinions, findings, and conclusions, or recom-
mendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

alternatives which would support students in successfully

gaining the mathematical and quantitative reasoning skills

and knowledge deemed necessary for their field of study.

As a consequence, many universities now offer a variety of

courses that can be used to fulfill gen ed math requirements.

A course on statistics, for example, is now offered as

an option to satisfy gen ed math requirements at many

universities. In a similar vein, and in response to an executive

order given in 2017, the California State University (CSU)

system now offers a number of courses that satisfy gen

ed math requirements. Mathematical Ideas and The Power
of Mathematics are the titles of two foundation that CSU

students in certain majors can now take in lieu of college

algebra.

In response to gen ed math-related challenges, and with

the support of the NSF, a group of faculty at the University of

Nebraska-Omaha have developed a course called Introduc-
tion to Mathematical and Computational Thinking (MCT)

which satisfies the general education math requirements,

thereby serving as an alternative to the traditional college

algebra pathway.

This paper reports on the findings of the pilot offering of

MCT. The primary research questions related to the pilot are

the following:

1) Can the novel educational content and environment

used in MCT improve students’ overall attitudes to-

wards math?

2) What should be the appropriate depth of the com-

putational and mathematical content for this student

population?

3) Are assignments engaging?

A student attitudes survey as well as a 2-part mathography
were the instruments used to gather data relating to questions

1 and 3. Instructor and TA reflections as well as analysis of

student transcripts were the instruments used to collect data

for questions 2 and 3.

793

2019 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-5584-5/19/$31.00 ©2019 IEEE
DOI 10.1109/CSCI49370.2019.00151

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Artifacts created using Bricklayer.

II. MATERIALS AND METHODS

Introduction to Mathematical and Computational Think-
ing (MCT) extends and modifies the content and ed tech

infrastructure of an online ecosystem called Bricklayer.

Bricklayer [12] [13] is a collection of interactive web

apps, downloadable software, YouTube videos, and read-

ing material that facilitates a thoughtful and systematic

exploration of construction techniques underlying 2- and 3-

dimensional block-based visual art. Such exploration pro-

vides opportunities to exercise and develop spatial reasoning

abilities as well as mathematical and computational thinking

skills [14]. Bricklayer is open-source, freely-available, and

can be found at:

https://bricklayer.org

Bricklayer programming is done using a (freely available)

integrated development environment called the Bricklay-

erIDE. More specificially, within the BricklayerIDE, pro-

grams are written in the general-purpose functional pro-

gramming language SML, with graphical and tool integra-

tion capabilities provided by the Bricklayer library. Thus,

Bricklayer provides users with an authentic programming

environment1 in which mathematical and computational

skills can be developed. The output of Bricklayer programs

are files which, through system-level scripts, are seamlessly

integrated with third-party tools such as: LEGO® Digital

Designer (LDD), LDraw, Minecraft, and STL viewers such

as 3D Builder. The collage shown in Figure 1 highlights

some of Bricklayer’s artifact construction potential.

In addition to the Bricklayer graphics library (imple-

mented in SML), the Bricklayer ecosystem also provides

a second graphics library (implemented in javascript), with

reduced functionality, called Bricklayer-lite. Bricklayer-lite

is a visual programming language whose programs have

a syntax consisting of assembled puzzle pieces which are

similar in appearance to Scratch programs. Bricklayer-lite

programs can be developed and executed through a web

browser using a Google Blockly-based IDE, which we

(also) refer to as Bricklayer-lite. A noteworthy capability of

Bricklayer-lite is that, in addition to producing an artifact,

the execution of a Bricklayer-lite program will produce a

well-formed and well-formatted Bricklayer (ASCII) program

text which can be executed (outside of the bricklayer-lite

1In this context, authenticity characterizes the degree to which a lan-
guage realistically combines computational thinking with general-purpose
programming.

794

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

framework) using the BricklayerIDE.

A. Participants

At the University of Nebraska-Omaha (UNO), prior to the

offering of Introduction to Mathematical and Computational
Thinking(MCT), college algebra was the only option to

satisfy the gen ed math requirement. At UNO, more than

1, 600 students enroll in gen ed math every year and the

DWF rate for the college algebra course is generally greater

than 30%. Sadly, in gen ed math circles, the DFW rate

mentioned is actually not bad. In a 2012 opinion piece in

the New York Times, Hacker reported that the DWF rate for

the City University of New York was 57% [9].

From the pool of 1600 UNO students that take gen ed

math annually, approximately 32 students go on to pursue

a STEM degree requiring calculus while the rest pursue

non-STEM majors. To gain a better understanding student’s

backgrounds, the MCT instructor pulled the transcripts for

all the students enrolled in the MCT pilot. These transcripts

showed students that were very successful (e.g., mostly A’s

and B’s) in their academic pursuits outside of math. The

scholastic difficulties faced by these students, all of which

were non-STEM majors, was overwhelmingly localized to

college algebra and its prerequisites. In general, in this

student pool it is not uncommon to find students that have

taken (and failed) the traditional college algebra gen ed math

course multiple times while otherwise enjoying a high GPA.

B. Educational Objectives and Topics

The educational objectives of MCT are as follows: de-

velop an understanding of pattern and algorithm, both in-

formally and formally using the discrete domain of vi-

sual block-based-based art. Physical construction tools (e.g.,

LEGO and graph paper) as well as virtual tools (e.g., web

apps providing enhanced versions of graph paper) were

employed to explore and develop techniques for creating

2D artifacts, especially artifacts containing patterns.

Frieze and wallpaper patterns (e.g., tessellations) represent

a large and mathematically interesting set of artifacts in

which the elements of pattern are size invariant (e.g., the

size of tiles in a tessellation remains fixed). As such the

coordinates for positioning tiles are governed by arithmetic

progressions. Translational symmetries, reflection symme-

tries, and rotational symmetries provide attributes for under-

standing and classifying these artifacts.

Fractals such as the Menger sponge (3D), the Menger

carpet (2D), and space-filling curves are examples of an

altogether different class of artifacts. These artifacts are

generally created using an inductive construction algorithm

where the construction of a larger artifact involves creating

one or more copies of smaller artifacts. In the case of

fractals, geometric progressions provide the mathematics

for determining coordinates and the size of these artifacts

(measured in unit blocks) grow exponentially. Inductive

construction algorithms can also be used to create artifacts

whose coordinates are governed by arithmetic progressions

as shown in Figure 2.

a1 a2 a3

Figure 2: An artifact sequence [10].

Elementary cellular automata provide examples of con-

struction algorithms that are rule-based which create com-

plex artifacts of an altogether different nature. And last,

but not least, is (patternless) pixel art, whose construction

algorithms are labor intensive and place emphasis on the

importance of reliable manual processes.
Informal (e.g., non-verbal) understanding of construction

algorithms can be developed through manual processes

(e.g., unplugged paper-and-pencil constructions or virtual

constructions involving mouse-clicks). Such (manual) ex-

plorations are suitable for the construction of 2D artifacts.

In this setting, composition (including inductive compo-

sition) and decomposition can be explored as techniques

for understanding how artifacts can be constructed. This

informal understanding of algorithm serves as the foundation

for developing the ability to express such ideas in formal

symbolic terms. The formalism in which this expression

is developed is an environment consisting of the general-

purpose functional programming language SML extended

with a set of graphics libraries that provide suitable ab-

stractions for creating visual artifacts of the kind described.

From a very basic starting point, the sophistication of graph-

ics abstractions and language constructs is then gradually

increased thereby increasing the expressive power of the

programmer. Through the use of parameterization the code

creating an artifact can be generalized. The introduction

of user-defined functions provides a means to a significant

increase in abstraction and expressive power.
The transition from 2D to 3D introduces an additional set

of challenges. Three dimensional artifacts generally contain

significantly more blocks that their two dimensional cousins.

For example, a 10× 10 square contains 100 blocks while a

10×10×10 cube contains 1000 blocks. This increase in size

creates conditions that confront the limitations of third-party

display tools such as LDraw and LEGO Digital Designer.

To mitigate these issues, abstractions are provided and tech-

niques developed to reduce the number of blocks contained

in an artifact (e.g., hollow cubes can be created). How-

ever, number sense, coarse grained estimation, and counting

skills are very beneficial in the design stage of 3D artifact

construction. For example, an application of the inclusion-

exclusion principle reveals that a hollow 10× 10× 10 cube

795

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

contains 600 − 120 + 8 = 488 blocks. The understanding

of coordinates in three dimensions is also significantly more

complex (and abstract) than the understanding of coordinates

in two dimensions. In 2D, one can use graph paper (or its

virtual equivalent) to develop an understanding of the po-

sitional relationships between the components of an artifact

(e.g., the upper-right corner of a square touching the lower-

left corner of a rectangle). This kind of prototyping can

contribute significantly to the understanding of key aspects

of an artifact. Reasoning about similar relationships in three

dimensions is significantly more abstract and relies more

heavily on spatial and mathematical reasoning.

The final portion of the course introduces predicates

and general traversals. Predicates allow for property-based

descriptions of artifacts and traversals enable the property-

based construction of artifacts. For example, traversing an

8 × 8 square and placing a black brick in cells whose

coordinates sum to an even number will yield a checkerboard

pattern.

Collectively, the content of the MCT course contains

elements of quantitative reasoning, symbolic reasoning, spa-

tial reasoning, computational thinking, critical thinking, and

mathematical thinking. The domains and nature of the mate-

rial are such that the each of the stated educational elements

can be explored to a considerable depth, thus making the

general course suitable for a variety of audiences.

C. Data Collection

In the MCT pilot, a variety of data was collected, both

qualitative and quantitative. Curricular successes and not-

successes (not full failures, but less successful than ideal)

are based on both instructor and student reflections. Student

attitudes are the results of a pre- and post-course survey, as

described in section III-C.

A major source of data was a reflective activity known

as a “mathography” - an autobiography of their history with

mathematics [8]. The post-course mathography assignment

directed students to reflect specifically on their experience in

MCT, and was administered by the education researcher. A

total of eight students completed the post-course mathogra-

phy. Students were asked to describe their peak experience in

the course, their lowest experience in the course, good things

about the course, and things they would suggest changing.

III. RESULTS

A. Curricular Successes

Pixel Art – a highly engaging coding assignment in

MCT involved the construction of a pixel art image where

the image is selected by the student rather than being

assigned by the teacher. Constructing pixel art requires a

reliable construction process that includes (1) an overall

construction algorithm (e.g., which brick to place next), (2)

discipline in adhering to the construction algorithm during

the implementation phase, (3) testing – frequent program

execution, and (4) validation – manual confirmation that

the image being created by the code is consistent with the

original image. During construction, a variety of calculation-

based problems naturally arise regarding the determination

of cell coordinates. For example, a brute-force approach

involves the calculation of coordinates manually in absolute
terms as distances from the origin. A less labor intensive

approach is to calculate coordinates in relative terms as

offsets from locally known positions (e.g., the blue brick

is to be placed 1 position to the right of previously placed

brick). Subitizing2 abilities can also be exercised during

pixel art construction, especially for images composed of

a small number of colors (e.g., black and white images).

Various algorithms can be employed in the construction of

pixel art. Determining a suitable construction algorithm for

a particular pixel art image is influenced by the properties

of the artifact (e.g., its complexity and symmetries), the set

of available brick shapes. One greedy algorithm involves

partitioning the image into monochromatic regions and then

“coloring in” regions in order of decreasing size. Other con-

struction algorithms seek to leverage patterns or symmetry

present in the image. However, the most general algorithm

for effectively constructing pixel art is to decompose a pixel

art image into a sequence of rows/column and then construct

the artifact one row/column at a time. In this approach, you

create a row/column, validate its correctness,and then move

on to the next row/column.

One of my peak experiences was when we did an
assignment involving pixel art. We got the freedom to
choose any type of art picture that we would want to
create using Bricklayer.

– Student 2

Art Shows – an art show is an engaging Bricklayer

programming assignment where students are given a large

degree of freedom. Art show submissions can be constrained

through the use of themes. One example of an an art show

theme would restrict submissions to the set of artifacts

which can be constructed (primarily) using circles and

rings. Another theme might focus on artifacts relating to

architecture. A distinguishing feature of an art show is the

presentation of student work. Specifically, student works

of art (i.e., Bricklayer artifacts) are displayed for all the

students to see. The (student) audience is asked to identify

interesting aspects of an artifact such as use of color,

structural complexity, creativity, and so on. A discussion can

be initiated about the code that would be needed to recreate

the artifact (e.g., is the artifact easily recreated by others?).

In addition, the instructor can perform an inspection of the

code used to create the artifact providing a live critique of

2Subitizing is the ability to “see” the number of elements in a collection
without explicitly counting. Instantly recognizing the number of dots on
the face of a die is an example of subitizing.

796

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

the aspects of the program such as organizational structure,

choice of variable names, and even formatting.

Code-alongs – a code-along is an activity where the

instructor and students develop code in the classroom in real-

time in lock-step. Rather that taking notes in the traditional

paper-and-pencil fashion, in a code-along students are ex-

pected to create executable code on their own machines. The

requirement is that the code being created by the students

needs to be well-formatted, executable and also correct.

If needed, this expectation can be enforced by requiring

students to submit their code at the end of the code-along.

The benefit of code-alongs is that it lets students confront,

in a supportive environment, the myriad of problems that

can arise during software development. Problems range from

syntax errors and type errors to system-level issues (e.g.,

location of files and proper file extensions).

With respect to the efficacy of code-alongs, an enabling

feature of Bricklayer is that it is well suited to incre-

mental software construction processes in which frequent

execution of programs producing visually meaningful output

(e.g., partially completed visual artifacts) is possible. Such

incremental construction provides a robust framework for

synchronization between instructor-student program con-

struction and also demonstrates the value (e.g., reduced

complexity) in establishing a tight feedback loop between

the discovery and resolution of program errors.

During code-along the instructor frequently checks to

make sure the programs being developed by students are

up-to-date and functioning correctly. Such inspections en-

courage students to adopt a more proactive approach to

problem resolution (e.g., they will raise their hands when

they discover an error).

The code-alongs were also extremely helpful for under-
standing how the code works.

– Student 4

B. Curricular Not-Successes

Cellular automata and laces The rules governing the

construction of elementary cellular automata are an example

of a well-defined algorithm for constructing a set of artifacts.

Another set of artifacts, having scale symmetry, are two

dimensional versions of sponges, which we call laces (some-

times referred to by others as carpets). The construction of

a lace is governed by rules that involve a composition of

elements whose size is changing exponentially. The set of

laces is a strict subset of a class of pattern referred to by

Stephen Wolfram as nested patterns [15]. Both elementary

cellular automata and laces are interesting because their

construction algorithms are (conceptually) concise and the

artifacts that result can (depending on scale) oftentimes

be surprising, beautiful, unanticipated, and mathematically

interesting.

The artifact shown in Figure 3 is a lace which was

constructed through a sequence of mouse clicks.

Figure 3: An example of a lace.

In spite of their mathematical and algorithmic appeal,

exercises involving the construction of cellular automata and

laces did not achieve their desired results. Overall, students

had difficulty understanding the underlying construction

algorithms and could not effectively apply these algorithms

in general (i.e., to the construction of other cellular automata

and laces).

C. Student Attitudes Survey

Students in the class were asked by the education re-

searcher to take both a pre-course and post-course survey.

Several questions, shown in Table I, asked about expecta-

tions and experiences in the course. The S-STEM Math mea-

sure [11] is a series of eight questions measuring confidence

and interest in mathematics with questions such as “I am

good at math” and “Math is hard for me.” Three questions

addressed students’ attitudes about their experience and were

asked only on the post-course survey; these are shown in

Table II which shows both the mean result and the number of

students who were positive (4 or 5), neutral (3), or negative

(1 or 2) on each question. Nine students completed both the

pre- and post-course survey. The questions were out of a

five-point Likert scale, with a score of five being the high

answer (e.g. “Strongly agree”) and a score of one being the

low answer (e.g. “Strongly disagree”).

The post-survey results suggest that most students were

very positive about the experience in the course, with a small

number who were neutral or negative. There was a small

non-significant positive change in the pre- to post-course

survey results; most students were more positive after the

course, with a few decreasing results. The small sample size

contributes to the lack of significance, and a more robust

797

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

Table I: Pre- and Post-Survey Results (n=9)

Measure Pre-survey) Post-survey t (p)
mean (sd) mean (sd)

Right now how confident do you feel that you will/have succeed in MCT? 3.0 (1.12) 3.67 (1.12) -1.33 (0.21)
How interesting to you is/was the content of MCT? 3.22 (0.97) 4.0 (1.12) -1.49 (0.17)
How relevant is the class to your broader interests and goals? 2.89 (1.36) 2.22 (0.83) 1.20 (0.26)
S-STEM Math [11] 3.18 (0.7) 3.25 (0.92) -0.33 (0.75)

Table II: Post-Survey Results (n=9)

Question Mean (sd) Positive Neutral Negative
How glad are you that you took MCT? 4.0 (1.5) n=7 n=0 n=2
Learning the math taught in MCT was fun 4.4 (1.0) n=8 n=0 n=1
How did MCT compare to other math classes you have taken? 4.3 (0.8) n=7 n=3 n=0

determination of findings will be possible in future iterations

when more students enroll.

D. Supportive Environment

Six out of the eight student reflections (i.e., mathogra-

phies) mentioned collaboration and the ease of getting help

as a major asset to the class. TAs were not only available

to help students as they completed in-class activities, but

also circulated and offered help proactively. Several students

mentioned that they had been reticent to ask for help in pre-

vious math classes, but that receiving help from a professor

or TA had made them see the value of getting assistance

when they were struggling. The culture of the class, where

making mistakes and needing help was normalized, seemed

to really help students who would otherwise not seek out

help. Time to work in class was also helpful, due to the

availability of TAs and professors, but also other students:

“we could talk about the assignments and brainstorm as a

class” - Student 1.

IV. DISCUSSION

In this section we discuss implications of this iteration of

the course, and plans for future improvement.

A. Student creativity

Students were particularly taken with the open-ended

nature of the assignments in the course, which allowed them

the freedom to choose many elements of their projects. Un-

like most math classes and many introductory programming

classes, which offer highly constrained assignments, this

course emphasized the artistic elements of output, which led

students to choose personally relevant work. Student 1 felt

overwhelmed by the initial pixel art assignment, reporting

she thought, “I could never create something that looks that

good!” But then she decided on a pixel art minion and was

so proud of her work she showed her family. Indeed, unlike

many introductory CS and mathematics courses, several

students remarked on showing their work to others.

I showed everyone in my life what I did [on the pixel
art assignment]. Even the kids at my job loved it.

– Student 2

B. Instructor Reflections

As an instructor, it is important to be aware that the

students enrolled in MCT will be different from students

enrolled in typical CS courses. In CS courses, it is not

uncommon for students to be proactive with respect to

assignments and grades. For example, a CS student may

request an extension on an assignment and question an

instructor as to why points were deducted on a particular

homework assignment or test. In contrast, the students in

MCT were more passive and it was not uncommon for

students to fall behind on the submission of homework

assignments which in some cases then led to attendance

failures. In response, a set of interventions aimed at getting

students back on track was initiated.

The physical classroom where MCT was taught was

unoccupied in the hour prior to the course. TA’s (and

sometimes the instructor) would typically show up early to

get the class setup (e.g., laptops ready). A growing number

of students also began showing up early. The TA’s would

ask the students if they needed help with anything and the

typical response was “yes”. These interactions were very

beneficial and resulted in the establishment of an informal

tutoring center/lab that occurred right before every class.

From the perspective of instruction a couple of things

were noteworthy about how students went about solving

homework problems. One thing that was noticeable was that

students oftentimes did not leverage in their construction

process information relating to symmetry. For example, if

one has calculated the coordinates of the midpoint of the

bottom side of a square, then one can use this information

to determine the midpoints of all the other sides of the

square (in contrast to recalculating the midpoint of each

side independently). It was also noticeable that the use of

prototypes was not systematically employed by students

in their artifact construction process. For example, a 2D

artifact can be sketched on paper or created online using

798

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

the Grid. This visual prototype can greatly facilitate orga-

nization, positional calculations as well as visually expose

any symmetries the artifact might possess.

In spite of a somewhat bumpy start, both the instructors

and TA’s observed a turning point was reached at the

beginning of the second half of the semester. It was around

this time that there was a sharp increase in the ability of

students to correctly answer questions asked by the instructor

during lectures. We have spent considerable time discussing

what brought about this change. While we have no definitive

answers at this time, we do believe the following.

• Throughout the semester, the MCT instructor placed

importance on the use of proper terminology (e.g.,

Cartesian coordinate system, rectangular prism, formal

parameters, actual parameters, etc.). We suspect that

this “technical jargon” represented a new vocabulary

for students which initially provided barriers to under-

standing lectures and problems statements.

• The course content was heavily spatialized. The instruc-

tor would create a visual artifact and they ask students

to visualize transformations or modifications of the ar-

tifact (e.g., imagine rotating the artifact clockwise 90◦,

what happens if these two artifacts are placed on top

of each other, etc). We suspect that students had little

prior experience with this type of engagement which

initially provided barriers to understanding lectures.

C. Plans for Improvement

Future classes will be “more flipped” giving students more

time to solve problems during class and ask for help. Also,

the before class tutoring center will be institutionalized. A

greater emphasis will be placed on prototyping (e.g., as-

signments will be updated to explicitly require prototyping).

Furthermore, LEGO® sets have been purchased to provide

a richer tactile prototyping environment.

Lastly, more emphasis will be placed on the recognition

and understanding basic forms of symmetry. An instructor

program has been created capable of generating random

artifacts possing a desired set of symmetries (e.g., 2-fold

symmetry and reflection symmetry). This program can also

add desired symmetry to an existing artifact. Complementing

this, an interactive web app is being developed, called

Mystique, in which students can develop their symmetric

reasoning capabilities.

V. CONCLUSION

Overall, the pilot version of the MCT course was con-

sidered a success. Of the ten students who completed the

course, all passed. Two sections of the course will be offered

in the future, and they have larger enrollments as news of this

alternative spreads. This suggests that a course that combines

art, programming, and mathematics can be successful in

providing an alternative pathway to the traditional algebra

route towards calculus, particularly for students who have

negative prior experiences or for whom calculus is not a

good fit. Carefully designed, computer science can fulfill a

need and support solid mathematics learning.

REFERENCES

[1] C. B. Allendoerfer. The Case Against Calculus. The
Mathematics Teacher, 56(7):482–485, 1963.

[2] P. Burdman. Changing Equations: How Community Colleges
are Re-thinking College Readiness in Math. LearningWorks,
September 2013.

[3] P. Burdman. Should College Statistics Courses Substitute For
Intermediate Algebra? Stanford - The College Puzzle, October
2013.

[4] P. Burdman. DEGREES OF FREEDOM: Diversifying math
requirements for College readiness and graduation (report 1
of a 3-part series). Technical report, Policy Analysis for
California Education (PACE), April 2015.

[5] P. Burdman. DEGREES OF FREEDOM: Probing Math
Placement Policies at California Colleges and Universities
(Report 3 of a 3-part series). Technical report, Policy Analysis
for California Education (PACE), May 2015.

[6] P. Burdman. DEGREES OF FREEDOM: Varying Routes
to Math Readiness and the Challenge of Intersegmental
Alignment (Report 2 of a 3-part series). Technical report,
Policy Analysis for California Education (PACE), May 2015.

[7] J. Christopher Edley. At Cal State, algebra is a civil rights
issue. Highlighting Strategies for Student Success, June 2017.

[8] C. Drake. Turning points: Using teachers’ mathematics
life stories to understand the implementation of mathematics
education reform. Journal of Mathematics Teacher Education,
9(6):579–608, 2006.

[9] A. Hacker. Is Algebra Necessary? The New York Times, July
2012.

[10] D. Sladkey. Visual Patterns Pattern #189. www.visualpatterns.
org, 2018. Accessed: 2018-06-17.

[11] A. Unfried, M. Faber, D. S. Stanhope, and E. Wiebe. The
development and validation of a measure of student attitudes
toward science, technology, engineering, and math (s-stem).
Journal of Psychoeducational Assessment, 33(7):622–639,
2015.

[12] V. Winter. The World Needs More Computer Science! What
to do? In D. Conway, S. A. Hillen, M. Landis, M. T.
Schlegelmilch, and P. Wolcott, editors, Digital Media, Tools,
and Approaches in Teaching and Their Added Value, pages
119–141. Waxmann Verlag GmbH, Germany, 2015.

[13] V. Winter, B. Love, and C. Corritore. The Bricklayer
Ecosystem - Art, Math, and Code. Electronic Proceedings
in Theoretical Computer Science (EPTCS), 2016.

[14] V. Winter, B. Love, and C. Corritore. The art of the
Wunderlich cube and the development of spatial abilities.
International Journal of Child-Computer Interaction, 2018.

[15] S. Wolfram. A New Kind of Science. Wolfram Media, Inc.,
2002.

799

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 31,2020 at 21:11:57 UTC from IEEE Xplore. Restrictions apply.

