
Using Visualization to Reduce the Cognitive Load
of Threshold Concepts in Computer Programming

1st Victor Winter
Computer Science Department
University of Nebraska-Omaha

Omaha, USA
vwinter@unomaha.edu

2th Michelle Friend
Teacher Education Department
University of Nebraska-Omaha

Omaha, USA
mefriend@unomaha.edu

3rd Michael Matthews
Mathematics Department

University of Nebraska-Omaha
Omaha, USA

michaelmatthews@unomaha.edu

4nd Betty Love
Mathematics Department

University of Nebraska-Omaha
Omaha, USA

blove@unomaha.edu

5th Sanghamithra Vasireddy
Computer Science Department
University of Nebraska-Omaha

Omaha, USA
svasireddy@unomaha.edu

Abstract—This Full Paper in the Research to Practice Cate-
gory reports on an empirical empirical study in which novel
educational tools and techniques were employed to teach funda-
mentals of problem decomposition – a cognitive task transcending
disciplines. Within the discipline of computer science, problem
decomposition is recognized as a foundational activity of software
development. Factors that contribute to the complexity of this
activity include: (1) recognizing patterns within an algorithm,
(2) mapping the understanding of an algorithm to the syntax of
a given programming language, and (3) complexity intrinsic to
the problem domain itself.

Cognitive load theory states that learning outcomes can be
positively affected by reducing the extraneous cognitive load
associated with learning objectives as well as by changing the
nature of what is learned. In the study reported upon here, a
novel instructional method was developed to decrease students’
cognitive load. Novel instructional content supported by a custom
visualization tool was used in a classroom setting in order to help
novice programmers develop an understanding of function-based
problem decomposition within the context of a visual domain.
Performance on outcome measures (a quiz and assignment)
were compared between the new method and the traditional
teaching method demonstrated that students were significantly
more successful at demonstrating mastery when using the new
instructional method.

Index Terms—computational thinking, mathematical thinking,
visual thinking, spatial reasoning, functional programming

I. INTRODUCTION

Learning to program presents a variety of cognitive chal-
lenges. First, there is an abstraction between the commands
typed into the computer and the output; novices must be able
to understand and predict the outcome of program statements.
Second, constructing a complex program is itself also cogni-
tively demanding, as the programmer must keep track of a
variety of statements, program state, and predicted outputs.

One way to lower the cognitive load associated with pro-
gramming is through the use of visualization. Environments

This material is based upon work supported by the National Science
Foundation under Grant No. 1712080.

such as Scratch [5] use visualization in two ways. First,
the block-based syntax is itself a visualization of program
statements, with program elements puzzle-shaped to facilitate
program-writing. Second, Scratch programs create animations,
concretizing program output. Scratch programmers can easily
figure out which parts of a program fit together through the
use of block shapes, and can test whether their output behaved
as predicted by observing the resulting animation when the
program runs.

Beyond syntax and predicting program output, there are a
number of skills that must be developed in order to construct
programs whose execution embody non-trivial computations.
Computational problem decomposition – the ability to compu-
tationally solve a problem by decomposing the problem into
smaller composable computations – is an important activity in
the construction of programs. Within this activity, the creation
and use of functions play an important role.

For novice programmers who have little mathematical back-
ground, the creation and use (i.e., the understanding) of
functions represents a threshold concept – akin to the usage
of tools by early man. In other words, learning to create and
use functions is like crossing a threshold, after which novices
are transformed through their ability to manipulate powerful
program abstractions.

Another threshold concept is the second order use of
functions within a computation. By this we mean the creation
and use of functions composed of other (previously created)
functions. In his book The Age of Spiritual Machines, Ray
Kurzweil proposes the Law of Accelerating Returns [3] which
describes the importance of this second order use in terms of
tool making: “Technology goes beyond mere tool making; it
is a process of creating ever more powerful technology using
the tools from the previous round of innovation. In this way,
human technology is distinguished from the tool making of
other species. There is a record of each stage of technology,
and each new stage of technology builds on the order of the

978-1-7281-1746-1/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on April 26,2022 at 17:53:03 UTC from IEEE Xplore. Restrictions apply.

previous stage.” [4]
This article focuses on the advanced feature set of the

Bricklayer Grid (a custom web app) and the extent to which
these features can facilitate the exploration and understanding
of inductively-defined visual artifacts for mathematically-weak
novice programmers. The visual artifacts considered belong to
a class of fractal which we call Laces. The set of Laces is
a strict subset of a more complex class of pattern referred
to by Stephen Wolfram as nested patterns [20]. Laces are
interesting because their construction algorithms are (concep-
tually) concise and the artifacts that result can (depending on
scale) oftentimes be surprising, beautiful, unanticipated, and
mathematically interesting.

II. BACKGROUND

The research presented in this paper is informed by and
grounded in cognitive load theory [13] and threshold theory
[10].

1) Cognitive Load Theory: Cognitive load theory [13] [16]
is a learning theory in which the application of an individual’s
working memory is the primary determinant underlying the
amount of and rate at which learning can occur. Information
to be processed during the act of learning is defined in terms
of the cognitive load it places on working memory.

Cognitive load theory identifies three sources of (cogni-
tive) load: (1) intrinsic cognitive load – the inherent/natural
complexity underlying what is to be learned, (2) extraneous
cognitive load – complexity introduced as a result of instruc-
tional design, and (3) germane cognitive load – an individual’s
“working memory resources available to deal with the element
interactivity associated with intrinsic cognitive load” [14].

Element interactivity is a load crosscutting concept that
provides the yardstick used to measure cognitive load [14].
Element interactivity captures the amount of information that
must simultaneously be considered for a given knowledge
level. From the perspective of instructional design, a key
observation is that element interactivity can be reduced by
raising the learner’s knowledge level.

Though recognized as important, learner motivation lies
beyond the scope of cognitive load theory. “Cognitive Load
Theory works on the assumption that the students are fully
engaged and fully motivated...Cognitive Load Theory has
nothing to say about students staring out the windows and
not listening...When I say CLT has nothing to say about, I’m
not saying its unimportant. It’s just not part of theory” [15,
p. 1]. Research has shown a significant correlation between
motivational and cognitive processing [2]. The intuition here
is that motivation governs the level of mental investment a
learner is willing to make.

2) Cognitive Load Reducing Instructional Techniques: The
cognitive load reducing instructional techniques that most
closely relate to our work are: (1) segmentation and (2)
subgoal labeling. Both of these techniques can be seen as
falling in the category of grouping mechanisms. That is,
mechanisms whose purpose is to decompose a computation
and increase the understanding of the resulting decomposition.

Segmentation concerns itself with breaking down the
steps of a worked example into separate (conceptually self-
contained) meaningful pieces. The segmentation can be pro-
vided by the instructor or the students can be tasked with
performing the segmentation on their own. Segmentation has
been shown to have positive effects in cases involving dynamic
visualizations – videos or animations in which unsegmented
information is presented in a continuous stream. Spanjers et
al. [12] further showed that segmentation of worked examples
had positive effects on learning outcomes when compared to
corresponding non-segmented worked examples.

Subgoal labeling involves the assignment of labels to
worked examples that have been segmented. The purpose of
a label is to meaningfully summarize (or capture) the infor-
mational content of the segment with which it is associated.
This helps learners distinguish structural information from
incidental information. Subgoal labeling has been shown to
be effective in the STEM disciplines in cases where problem
solving has a procedural nature. In [7] [6], subgoal labeling
was shown to be an effective instructional strategy for the
construction of mobile apps created using a drag-and-drop
programming environment.

3) Threshold Theory: Threshold theory [10] is premised
on the assumption/observation that in many fields of study, the
acquisition of knowledge is not achieved in a uniform manner.
Threshold theory posits that, along an educational path, there
are certain concepts that, once learned, permit a new and
previously inaccessible way of thinking about something. In
the theory, such concepts are called threshold concepts. A
threshold concept “represents a transformed way of under-
standing, or interpreting, or viewing something, without which
the learner cannot progress, and results in a reformulation of
the learners’ frame of meaning” [10, p. ix]

III. PROGRAMMING CONSTRUCTS AND TOOLS

The empirical study on which this article reports revolves
around a specific set of features developed for an in-house
web app called the Grid. For this reason, we provide a detailed
look at the Grid and its features as they pertain to the research
question of this study.

A. Bricklayer

This work is contextualized within the Bricklayer edu-
cational ecosystem – a low-threshold infinite-ceiling system
designed to teach math and computer science in ways that are
engaging as well as technically meaningful. This is accom-
plished through the integration of a variety of web apps and
tools that facilitate a thoughtful and systematic exploration
of construction techniques underlying 2- and 3-dimensional
block-based art (e.g., pixel art and geometric patterns) as well
as the expression of such ideas in code.

B. The Grid

The Grid [17], shown in Figure 1, is a Bricklayer web app
that allows users to choose a color by clicking on a palette,
then clicking on cells in the displayed grid to fill each with

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on April 26,2022 at 17:53:03 UTC from IEEE Xplore. Restrictions apply.

the chosen color. The app was designed to replace graph paper
and colored markers in allowing users to create pixel art.
The process of creating an image is iterative and often labor
intensive.

Fig. 1: The Grid.

The Grid’s standard capabilities include: (1) saving images
of Grid artifacts, (2) saving and loading json files containing
models of Grid artifacts, (3) undo and redo operations, and (4)
repositioning an artifact within a Grid (e.g., moving an artifact
to the left, right, up or down).

C. Exploring Static and Dynamic Elements of Pattern

Grid artifacts are static in nature in the same sense that
paintings, drawn on canvas, are static in nature. In more
technical terms, an image of a Grid artifact captures the state
of the Grid (with respect to cell occupancy) at a given point
in time. In such images, dynamic elements of the construction
process (e.g., the order in which cells are occupied to create
the artifact) are tacit as is the algorithm used to construct the
artifact, which is left to inference.

To address this limitation, the Grid was extended to include
an advanced set of features and interactions to (1) make
explicit various dynamic elements underlying artifact creation,
and (2) facilitate the exploration and examination of the
exposed dynamic elements.

When exploring dynamic elements of artifact creation, three
Grid features are of central importance: Create Frame (copy),
Frame Mode (similar to paste), and Show Graph.

It should be noted that the Grid’s frame metaphor is similar
to, though different from the typical copy-paste metaphor used
in text editors. The notion of frame draws on abstractions from
film-making where the central focus is on animation. A frame
is a finite function (i.e., an array) from integers (i.e., indexes)
to grid states. At present, the input domain of the frame
function is {0, 1, . . . , 5}. The Grid also supports rudimentary
animation of artifact construction (which is not discussed in
this article).

1) Frames: When selected, the Create Frame button will
take a snapshot of (i.e., capture) the current state of the grid
and associate this state with a particular index (i.e., input) of
the frame function. The first snapshot will associate the current
grid state with frame 0, the second snapshot will associate the
current grid state with frame 1 and so on. We use the term
frame artifact to denote a grid state that is stored in the frame
function.

Complimenting the Create Frame button is a Frame Mode
button which can be toggled on and off. When the Frame Mode
is off, mouse clicks can be used to create an artifact using
the standard “one mouse click for each cell to be colored”
approach. However, when the Frame Mode is on, a mouse
click will result in the placement of the entire contents of the
most recently created frame artifact at the position selected by
the mouse click. More specifically, the lower-left corner of the
bounding box of the frame artifact will be positioned at the
cell corresponding to the mouse click.

The frame function facilitates the systematic exploration
and development of artifact construction techniques based on
abstraction and inductive thinking. An example is shown in
Fig 2. Beginning with an empty grid, one can use standard
construction techniques to create an initial artifact. One can
then use the Create Frame feature to take a snapshot of the
artifact. Taking this initial snapshot will have the effect of
updating the frame function so that the input 0 is associated
with the artifact (i.e., frame(0) = artifact). With the Frame
Mode on, one can then place copies of the captured artifact
using single mouse clicks. Thus, the creation of the captured
artifact has been abstracted to a single mouse click. When a
desired grid state has been reached (e.g., the next artifact in
a sequence of imagined artifacts), one can again capture the
(entire) artifact using the Create Frame feature. In this way,
abstract thinking is exercised through the association of single
mouse clicks with artifacts of increasing size and complexity.

2) Artifact Graphs: As seen in Fig 3, using the Grid’s
Show Graph feature, the sequence of mouse clicks that created
a frame artifact can also be displayed as a directed graph,
overlayed on an otherwise empty grid. In such graphs, ver-
tices capture positional information corresponding to mouse
clicks and edges capture ordinal information (the order in
which mouse clicks occurred). For example, a directed edge
between vertex vi and vi+1 indicates that the mouse-click
corresponding to vi occurred immediately before the mouse
click corresponding to vi+1. We use the term artifact graph
(or graph when the context is clear) when referring to the
graphical representation of a Grid artifact.

When the Show Graph mode is selected, the Grid displays
information relating to artifact graphs in both visual and
symbolic terms. Graphs are displayed visually in terms of
dots (vertices) and lines (edges). Each value (i.e., input) in
the domain of the frame function will have a corresponding
artifact graph. Artifact graphs corresponding to any subset of
the input domain of the frame function can be selected for
simultaneous display. In such displays, the artifact graph for
each frame input is assigned a unique color to help distinguish

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on April 26,2022 at 17:53:03 UTC from IEEE Xplore. Restrictions apply.

Step 1: Using the standard ap-
proach, construct the artifact
shown using mouse clicks on
cells (0, 0), (1, 0), and (1, 1).
Use the Create Frame button to
capture the artifact.

Step 2: With Frame Mode set to
on, the artifact shown here can
be constructed by extending the
artifact created in the previous
step through two mouse clicks,
one mouse click on cell (2, 0)
and the other on cell (2, 2). Af-
ter the construction is complete,
use the Create Frame button to
capture the artifact.

Step 3: Use an approach similar
to Step 2 to create the artifact
shown here using through two
mouse clicks, one mouse click
on cell (4, 0) and the other on
cell (4, 4).

Step 4: Use an approach sim-
ilar to Step 2 to create the ar-
tifact shown here through two
mouse clicks, one mouse click
on cell (8, 0) and the other on
cell (8, 8).

Fig. 2: Frame-based artifact construction of the reverseL Lace.

one frame graph from another. Figure 3 shows two artifact
graphs.

In the Grid, graphs are also displayed symbolically in terms
of sequences of vertex coordinates. Collectively, the graphs
provide an important informational layer between the visual
representation of a (manually created) Grid artifact and a
Bricklayer program that describes a computation capable of
creating this artifact.

Because of the features described in previous paragraphs,
the Grid can be used as a tool to provide scaffolding for
a variety of learning objectives relating to mathematical and
computational thinking.

D. Example: The Inductive Construction of a Lace

Tessellations and fractals represent two significant classes of
patterns (both of which can be constructed using frames). In
Bricklayer, we classify an artifact as a fractal if its extension
admits infinite self-similarity. An interesting type of fractal
includes block-based constructions which are porous. In three
dimensions, such fractals are referred to as sponges with the
Menger sponge being perhaps the best known example. In

the literature, the two dimensional version of a sponge is
sometimes referred to as a carpet. We use the term Lace to
refer to such two dimensional artifacts because we feel the
term more appropriately communicates their porous nature.

Figure 2 shows an artifact sequence whose elements are
instances of a particular kind of lace which (due to its
general shape) we call the reverseL Lace. The reverseL lace
can be constructed using a variety of algorithms (including
elementary cellular automata rule 102 [8]). Figure 3 shows
the artifact graphs (with symbolic data omitted) corresponding
to two different algorithms, each of which is capable of
creating a reverseL lace. In this study, our discussion focuses
on creating a Bricklayer program corresponding to the frame-
based inductive construction algorithm shown in Figure 2.

The basics of creating code from the information stored
in the Grid’s frame function is as follows. For each frame
i, starting with i = 0, implement a non-recursive Bricklayer
function capable of creating the artifact frame(i). Bricklayer
functions must be parameterized on coordinates enabling the
artifact they create to be placed at arbitrary locations. The
result of this construction process is a sequence of user-
defined function declarations where the implementation of
frame(0) represents the base case. The body of the base case
consists of a sequence of Bricklayer function calls that, when
executed, produce the artifact captured in frame(0). For the
construction algorithm we are considering, the frame(i + 1)
artifact is defined inductively in terms of a composition of
frame(i) artifacts positioned at various coordinates. From
the perspective of coding, this means that the body of the
Bricklayer function implementing frame(i + 1) consists of a
sequence of calls to the function implementing frame(i). Note
that, for each frame the symbolic data corresponding to its
artifact graph provides the coordinate sequence to be used as
the actual parameters for the function calls occurring in the
body of frame(i+ 1).

The generation of recursive code derived from frame infor-
mation can be approached as a sequence of program trans-
formations. Figure 4 shows the code resulting from the first
translation according to the process described in the previous
paragraph. Note that, from a technical standpoint, the resulting
code is not recursive. Also note that the mindset behind
the construction algorithm implemented is compositional (not
decompositional). We use the terms pseudo-recursive or induc-
tive to describe the computational nature of such programs.

A pseudo-recursive program of the kind shown in Figure
4 can be incrementally converted into a recursive program
through two additional correctness-preserving transformations.
The purpose of the first transformation is to isolate the com-
putational differences between frame bodies. This is accom-
plished by expressing the bodies of frame functions in terms
of let-blocks containing locally declared variables. The reason
behind the introduction of local variables is to abstract and
computationally isolate the numeric differences across frame
bodies. Figure 5 shows the code that results from introducing
let-blocks with local variables into the bodies of our frame
functions.

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on April 26,2022 at 17:53:03 UTC from IEEE Xplore. Restrictions apply.

(a) The composite artifact graph for an inductive (compositional)
construction.

(b) The artifact graph for a recursive (decompositional) construction.

Fig. 3: Artifact graphs corresponding to a compositional and decompositional construction algorithm of the reverseL lace.

open Level_3;

fun frame0 (x,y) =
(

put2D (1,1) BLACK (x ,y);
put2D (1,1) BLACK (x+1,y);
put2D (1,1) BLACK (x+1,y+1)

);

fun frame1 (x,y) =
(

frame0 (x ,y);
frame0 (x+2,y);
frame0 (x+2,y+2)

);

fun frame2 (x,y) =
(

frame1 (x ,y);
frame1 (x+4,y);
frame1 (x+4,y+4)

);

build2D (32,32);

frame2 (0, 0);

show "reverseL lace";

Fig. 4: A direct translation of frame information into code.

Performing the second transformation requires the discovery
of one (or more) mathematical function(s) whose inputs are
integers corresponding to the frame indices i (e.g., 1 or 2),
and whose outputs, when added to the x and z coordinates
in the frame body, will yield coordinates corresponding to the
symbolic data (provided by the Grid) associated with frame(i).
The purpose of these mathematical functions is to capture (i.e.,
computationally abstract) the mathematical similarity shared
across all frames (with the possible exception of frame(0)).

open Level_3;

fun frame0 (x,y) =
(
put2D (1,1) BLACK (x ,y);
put2D (1,1) BLACK (x+1,y);
put2D (1,1) BLACK (x+1,y+1)

);

fun frame1 (x,y) =
let
val shift = 2;

in
frame0 (x ,y);
frame0 (x+shift,y);
frame0 (x+shift,y+shift)

end;

fun frame2 (x,y) =
let
val shift = 4;

in
frame1 (x ,y);
frame1 (x+shift,y);
frame1 (x+shift,y+shift)

end;

build2D (32,32);

frame2 (0, 0);

show "reverseL lace";

Fig. 5: Introducing let-blocks.

In our running example, this similarity is captured by the
following function.

f(i) = 2i, in Bricklayer, 2i is expressed as power 2 i

The function call f(i) can be used to compute the data
specific to frame i, for all frames in the range i > 0. In

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on April 26,2022 at 17:53:03 UTC from IEEE Xplore. Restrictions apply.

open Level_3;

fun frame 0 (x,y) =
(

put2D (1,1) BLACK (x ,y);
put2D (1,1) BLACK (x+1,y);
put2D (1,1) BLACK (x+1,y+1)

)

| frame i (x,y) =
let
val shift = power 2 i;
val previous = i - 1;

in
frame previous (x ,y);
frame previous (x+shift,y);
frame previous (x+shift,y+shift)

end;

build2D (32,32);

frame 2 (0, 0);

show "reverseL lace";

Fig. 6: A recursive computation.

turn, this permits the corresponding set of frame function
definitions, which are parameterized on coordinates (x, z) to
be abstracted (i.e., syntactically collapsed) into a single more
general frame function definition that is parameterized on i
and (x, z). Figure 6 shows the result of this transformation.

Due to their uniformity, the algorithms underlying the
inductive construction of Laces represent pristine (i.e., clean)
examples of the second order use of functions. In addition,
the complexity of a Lace’s fractal nature strongly encourages
its construction through functional decomposition. For these
reasons, the domain of Laces was chosen for our study.

IV. METHOD

The participants in the empirical study described in this
article are novice programmers enrolled in a general education
mathematics course that we have developed. The course cur-
riculum develops the fundamentals of mathematical and com-
putational thinking in a non-algebra based manner suitable for
non-STEM majors. This quasi-experiment compared student
performance on two quizzes and a create-a-lace assignment
where (in Spring 2018) non-frame-based instruction asked
students to create a lace in the Grid using a given “stamping
pattern”, or (in Fall 2018) frame-based instruction asked
students to create a lace in the Grid using a given “stamping
pattern” supported by frames AND to also create a bricklayer
program whose execution creates the lace.

A. Introduction to Mathematical and Computational Thinking

Introduction to Mathematical and Computational Thinking
(MCT) is a new course, developed to satisfy the general
education mathematics requirement as an alternative to college
algebra for undergraduates at the University of Nebraska at
Omaha. The course is available to students who do not plan
to major in STEM subjects, as STEM majors require college

Fig. 7: An example of a quiz question.

algebra as a prerequisite. Many of the students who enroll have
previously failed the college algebra course. The course was
offered for the first time in spring 2018 and has been offered
continuously since. The content of the MCT course con-
tains elements of quantitative reasoning, symbolic reasoning,
computational thinking, critical thinking, and mathematical
thinking. The educational objectives of the MCT course are for
students to develop an understanding of pattern and algorithm,
both informally and formally within the discrete domain of
block-based visual art.

The educational objectives of MCT are pursued using
an educational ecosystem called Bricklayer [18]. Bricklayer
is a collection of interactive web apps, downloadable soft-
ware, YouTube videos, and reading material that facilitates
a thoughtful and systematic exploration of construction tech-
niques underlying 2- and 3-dimensional block-based visual
art (see Figure 8). Such exploration provides opportunities
to exercise and develop spatial reasoning abilities as well as
mathematical and computational thinking skills [1], [19].

In the course, students learn functional programming in
the Bricklayer educational ecosystem, writing programs that
result in two- and three-dimensional visual artifacts as output.
The mathematics in the course is both because of the overlap
between functions in mathematics and programming, and due
to a focus on patterns, decomposition, and algorithms.

B. Experimental Context

The study presented here was quasi-experimental in nature,
comparing student performance between semesters. The same
instructor taught the MCT course in Spring and Fall 2018.
Although the curriculum was not identical due to natural
variations in teaching and slight modifications due to standard
curriculum improvement processes, the content was nearly
identical.

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on April 26,2022 at 17:53:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Artifacts created using Bricklayer.

Within this context, student performance relating to the
construction of Laces from the Spring 2018 and Fall 2018
sections of MCT were used in the study. The data analyzed
consisted of two online quizzes, and one assignment.

The two online quizzes focused primarily measuring the
understanding of the first threshold concept described in
Section I – the use of a single abstraction in the creation
of a larger artifact. In the quizzes, the larger artifacts being
constructed were laces. Quizzes were automatically generated
from questions randomly drawn from a question bank and
students were permitted to take the quiz multiple times. Figure
7 shows an example of a question taken from the quiz question
bank.

The first quiz was given during class at the end of the lecture
on Laces. This first quiz consisted of five 1 point questions.
The second quiz was given as a homework assignment and
consisted of twenty 1 point questions. The questions for both
quizzes were randomly drawn from a question bank. Scores
are reported as a percentage correct.

The grid assignment involved the construction of a Lace.
For the Spring 2018 section, a specification for a Lace was
given and students were asked to use the Grid to create a
Lace of a particular size through single-cell mouse clicks.
The students in the Spring 2018 section were not asked to
write a program whose execution would also create the Lace
as this was deemed too difficult. This assignment was graded
out of 10 points. For the Fall 2018 section, a specification
for a Lace was given and students were asked to (1) use
frames to construct a Lace of a particular size, and (2) use
the information obtained from the Grid to create a program
whose execution would also create the Lace. The program
students were asked to create was of the type shown Figure
4. This assignment was graded out of 20 points. In both cases
the scores are reported as a percentage.

C. Participants

Data was collected from students who completed the
quizzes and assignment. Out of twelve students enrolled in
Spring 2018, all completed both quizzes, but two did not
complete the assignment and were excluded from analysis,
resulting in data from ten students. Out of seventeen students

enrolled in Fall 2018, one did not complete the second quiz or
assignment and two others did not complete the assignment,
resulting in data from fourteen students.

D. Research Question

Evidence from instructor-student interactions suggests that,
for the target audience, the creation of user-defined abstrac-
tions (e.g., functions that create custom artifacts) represent a
threshold concept [9] [11]. In other words, for these non-
STEM students who have weak math skills and are novice
programmers, the idea that they can write a function that
creates a custom artifact is a significant challenge; when they
understand and can use this idea it becomes an important tool
they can use to decrease work in creating new and complex
artifacts. A second threshold concept is the idea of nesting
these abstractions - creating functions that contain previously-
written functions. It is this second threshold concept that
underlies inductive construction of the Lace assignment. These
are powerful ideas, but also extremely challenging to the non-
STEM students enrolled in this course.

It is in this context that we ask the following research
question: Will the addition of up front (i.e., pre-coding)
tool support for visual abstractions related to function-based
creation and use positively impact student learning outcomes
related to the understanding of the function-based creation of
Laces?

V. RESULTS

To assess the impact of frames the performance of the
Spring 2018 and Fall 2018 classes was compared with respect
to the two online quizzes and assignment described in Section
IV-B. The results are displayed in Table I.

Students in the Fall 2018 section who interacted with the
Grid with frames (m = 94%) did better on the assignments
than students who interacted with the Grid without frames in
Spring 2018 (m = 79%), (t(22) = −4.11, p < 0.001). The
difference in performance was not seen on the first quiz, where
students in the two sections did not perform significantly
differently (md = 1%, t(22) = −0.30, p = 0.77), but there
were significant differences between the two sections on both
the second quiz and the assignment.

Qualitatively, there were substantial differences between the
assignments submitted in each of the semesters. In Spring
2018, when students were instructed without frames, sub-
missions on the Laces assignment demonstrated significant
confusion. Figure 9 gives a sample of student work taken from
the spring (without frames) and fall (with frames) semesters.
The top left image was typical of student submissions; the top
right image displays the correct solution. Similarly, the bottom
left image is a typical student submission, and matches the
correct solution shown in the bottom right corner.

Even strong students in the Spring 2018 course were not
able to correctly create a Lace that demonstrated the recursive
pattern required by the assignment. The top left image in
Figure 9 was submitted by a student who did well in the course

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on April 26,2022 at 17:53:03 UTC from IEEE Xplore. Restrictions apply.

Student Lace (without frames) Solution Lace

Student Lace (with frames) Solution Lace

Fig. 9: Examples of Laces created by students and solution
Laces.

Spring 2018
without frames

Fall 2018
with frames

Quiz 1 m = 96%
sd = 7%

m=97%
sd = 11%

t(22)=-0.30
p=0.77

Quiz 2 m = 70%
sd = 23%

m=91%
sd = 13%

t(22)=-2.79
p=0.01

Grid
Assignment

m = 72%
sd = 22%

m = 93%
sd = 15%

t(22)=-2.74
p = 0.01

Total m=79%
sd = 10%

m = 94%
sd = 7%

t(22)=-4.11
p < 0.001

TABLE I: Comparison of results between semesters.

and demonstrated mastery of most concepts, yet initially strug-
gled with the recursion and pattern decomposition of Laces.
The confusion displayed qualitatively in student work is partly
masked in the quantitative results by the grading scheme,
in which good faith efforts resulted in no less than 50% of
the credit, meaning that the true difference in understanding
between the two groups is larger than demonstrated by the
significant difference in scores on the Grid assignment between
semesters. Eleven out of the fourteen students in Fall 2018,
who learned with frames, received a perfect score on the
assignment, while only three out of the ten students in Spring
2018, who learned without frames, received a perfect score.

VI. DISCUSSION

The Bricklayer educational ecosystem was created to facili-
tate engagement in mathematical and computational thinking.
By relying on humans’ natural ability to recognize and process
visual patterns, we have been able to help students engage in

powerful mathematical and computational structures. Students
develop and combine foundational skills needed to understand
patterns in this visual domain with the ability to express such
patterns in code. In Bricklayer programs, the first and second
order use of user-defined functions are threshold concepts
whose understanding entails significant cognitive loads.

To alleviate the high cognitive load associated with these
threshold concepts, the Bricklayer Grid web app has been
extended with a set of frame features. A frame in this context
operates like creating a stamp, in which a first-order pattern
can be applied to the canvas in the same pattern as a second-
order pattern and thus encourages algorithmic understanding
involving higher-level abstractions (aka frames). The purpose
of this feature set is to reduce the intrinsic cognitive load of
the targeted threshold concepts by changing the knowledge
level of the learner as well as providing tool support for this
new knowledge level.

A preliminary study involving non-STEM majors at our
university supports the position that the Grid’s frame feature
set positively contributes to student mastery relating to the
first and second order use of user-defined functions. In this
study, the Grid’s frame feature was used to reduce intrinsic
cognitive load associated with the understanding of Lace
construction. The Grid’s frame feature encourages algorithmic
understanding involving higher-level abstractions (aka frames).
The understanding of the frame feature and its relation to
abstraction can be developed incrementally: a single frame
(i.e., frame(0) = user-defined abstraction) can be used to
create a wide variety of tessellations. Through such exercises,
fluency in the thought processes underlying these constructions
increases thereby increasing the student knowledge level as it
relates to the first threshold concept – the use of user-defined
functions in the construction of (complex) artifacts. After this
has been accomplished, the use of the multiple frame feature
can be used to create both tessellations and laces. In this
manner, the student knowledge level as it relates to the second
threshold concept can be increased.

REFERENCES

[1] M. Friend, M. Matthews, V. Winter, B. Love, D. Moisset, and I. Good-
win. Bricklayer: Elementary Students Learn Math Through Program-
ming and Art. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, SIGCSE ’18, pages 628–633, New York,
NY, USA, 2018. ACM.

[2] W.-H. Huang. Evaluating learners’ motivational and cognitive processing
in an online game-based learning environment. Computers in Human
Behavior, 27(2):694 – 704, 2011. Web 2.0 in Travel and Tourism:
Empowering and Changing the Role of Travelers.

[3] R. Kurzweil. Age of Spiritual Machines: When Computers Exceed
Human Intelligence. Penguin USA, New York, NY, USA, 1st edition,
1999.

[4] R. Kurzweil. The Law of Accelerating Returns. Essay, March 2001.
https://www.kurzweilai.net/the-law-of-accelerating-returns.

[5] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond.
The Scratch Programming Language and Environment. Trans. Comput.
Educ., 10(4):16:1–16:15, Nov. 2010.

[6] L. E. Margulieux and R. Catrambone. Using subgoal learning and
self-explanation to improve programming education. In A. Papafragou,
D. Grodner, D. Mirman, and J. Trueswell, editors, Proceedings of the
38th Annual Conference of the Cognitive Science Society, pages 2009–
2014. Cognitive Science Society, 2016.

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on April 26,2022 at 17:53:03 UTC from IEEE Xplore. Restrictions apply.

[7] L. E. Margulieux, M. Guzdial, and R. Catrambone. Subgoal-labeled
instructional material improves performance and transfer in learning to
develop mobile applications. In Proceedings of the Ninth Annual Inter-
national Conference on International Computing Education Research,
ICER ’12, pages 71–78, New York, NY, USA, 2012. ACM.

[8] Mathworld. Rule 102. http://mathworld.wolfram.com/Rule102.html.
[9] J. Meyer and R. Land. Threshold Concepts and Troublesome Knowl-

edge: Linkages to Ways of Thinking and Practising within the Disci-
plines. In 10th Improving Student Learning (ISL) Symposium, pages
412–424. Oxford Centre for Staff Development, 2002.

[10] J. Meyer, R. Land, and C. Baillie. Threshold Concepts and Transfor-
mational Learning. Educational futures. Sense Publishers, 2010.

[11] J. H. F. Meyer and R. Land. Threshold concepts and troublesome knowl-
edge (2): Epistemological considerations and a conceptual framework for
teaching and learning. ”Higher Education, 49(3):373–388, Apr 2005.

[12] I. A. E. Spanjers, T. van Gog, and J. J. G. van Merriënboer. Segmentation
of Worked Examples: Effects on Cognitive Load and Learning. Applied
Cognitive Psychology, 26(3):352–358, 2012.

[13] J. Sweller. Cognitive Load During Problem Solving: Effects on Learn-
ing. Cognitive Science, 12:257–285, 1988.

[14] J. Sweller. Element Interactivity and Intrinsic, Extraneous, and Germane
Cognitive Load. Educational Psychology Review, 22(2):123–138, April
2010.

[15] J. Sweller. John Sweller on Motivation (Founder of Cognitive
Load Theory). https://www.cyclesoflearning.com/home/
john-sweller-on-motivation-founder-of-cognitive-load-theory, 2018.
Accessed: 2018-05-08.

[16] T. van Gog and F. Paas. Cognitive Load Measurement. In N. M.
Seel, editor, Encyclopedia of the Sciences of Learning, pages 599–601,
Boston, MA, 2012. Springer US.

[17] V. Winter. The Grid, 2015. https://bricklayer.org/apps/grid lite/grid.
html.

[18] V. Winter, B. Love, and C. Corritore. The Bricklayer Ecosystem -
Art, Math, and Code. Electronic Proceedings in Theoretical Computer
Science (EPTCS), 2016.

[19] V. Winter, B. Love, and C. Corritore. The art of the Wunderlich cube
and the development of spatial abilities. International Journal of Child-
Computer Interaction, 2018.

[20] S. Wolfram. A New Kind of Science. Wolfram Media, Inc., 2002.

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on April 26,2022 at 17:53:03 UTC from IEEE Xplore. Restrictions apply.

