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Ising models with frustrated next-nearest-neighbor interactions present a rich array of modulated
phases. These phases, however, assemble and relax slowly, which hinders their computational study.
In two dimensions, strong fluctuations further hamper determining their equilibrium phase behavior
from theoretical approximations. The exact numerical transfer matrix (TM) method, which bypasses
both difficulties, can serve as a benchmark method once its own numerical challenges are surmounted.
Building on our recent study [Hu and Charbonneau, Phys. Rev. B 103, 094441 (2021)], in which
we evaluated the two-dimensional axial next-nearest-neighbor Ising (ANNNI) model with transfer
matrices, we here extend the effective usage of the TM method to Ising models with biaxial, diagonal,
and third-nearest-neighbor frustration (BNNNI, DNNI, and 3NNI models). The high-accuracy TM
numerics help resolve various physical ambiguities about these reference models, thus providing a
clearer overview of modulated phase formation in two dimensions.

I. INTRODUCTION

A ferromagnetic Ising model frustrated by next-
nearest-neighbor antiferromagnetic interactions offers a
minimal description of systems with short-range attrac-
tive and long-range repulsive (SALR) interactions [1, 2].
Because even such a simple model family leads a rich set
of modulated morphologies—depending on the strength,
length scale and orientation of the frustration—it has
been used to recapitulate the material behavior of sys-
tems as diverse as magnetic ordering in metals and su-
perconductors [3, 4], and microphase formation in sur-
factants [5, 6].
From a statistical physics standpoint, two-dimensional

versions of these models are especially interesting. Strong
thermal fluctuations alter the nature of phase transitions
and lead to novel equilibrium behaviors, such as floating
incommensurability and Kosterlitz-Thouless (KT)-type
criticality [7, 8]. These models are thus often referred to
as the simplest benchmark model for experimental sys-
tems, such as magnetic monolayers, and serve as refer-
ence for richer models that more closely capture these
solid state systems [9]. Certain features of these mod-
els, however, are challenging to capture in theoretical
and numerical studies. As a result, long-standing de-
bates persist, including about the putative existence of
the critical incommensurate (IC) phase in the axial and
biaxial next-nearest-neighbor Ising (ANNNI and BNNNI,
respectively) models [10] as well as the order of the phase
transition in the diagonal nearest-neighbor Ising (DNNI)
model [11]. Over the last decade, significant advances
have been made in surmounting some of the underlying
technical difficulties. For the aforementioned ambiguities
in particular, recent studies have confirmed the existence
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of the IC phase in the ANNNI model [12–14] as well as
the order of the transition and the location of the Potts
critical point in the DNNI model [15, 16]. Yet both qual-
itative and quantitative uncertainties persist, and oth-
ers emerge in light of these advances (see, for instance,
Refs. [17–19]). A benchmark method that provides re-
sults that are exact, or with well-controlled limitations,
for target systems would thus be particularly helpful to
make complete physical sense of these models.
In this context, the use of numerical transfer matri-

ces (TM), which provide high-accuracy numerical solu-
tions, appears enticing. In fact, the idea is not new.
TM were used on frustrated Ising models starting in the
1980s [20–22], but then struggled to provide qualitative—
let alone quantitative—insight. The challenge is that
only strips of finite width L can be solved with TM, hence
a careful finite-size scaling analysis must also be part of
the thermodynamic extrapolation, in the limit L → ∞.
Given that the algorithmic complexity of TM grows ex-
ponentially with L and that frustrated models exhibit
large pre-asymptotic corrections, limited computational
resources then resulted in physical obfuscation. Expo-
nential improvement to computational hardware over the
years (following Moore’s Law) coupled with more efficient
eigensolvers [23] offer hope that the situation might have
since improved. For instance, TM now provide definitive
solutions of even fairly complex (quasi-)one-dimensional
continuum-space systems [24–28].
In a recent work [14], we reported the TM resolu-

tion of various long-standing ambiguities about the two-
dimensional ANNNI model at a reasonable computa-
tional cost, thanks to the combination of various algorith-
mic optimizations. Because this approach is sufficiently
generic to be adapted to related lattice models, this ar-
ticle revisits a series of frustrated lattice models: the
ANNNI, DNNI, and BNNNI models as well as the generic
third-nearest-neighbor Ising (3NNI) model. We notably
resolve long-standing ambiguities surrounding the DNNI
model at intermediate frustration, and build quantitative
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phase diagrams for the BNNNI and 3NNI models. The
rest of this paper is organized as follows. In Sec. II, we
provide a complete description of these models, review
their key properties, and discuss some of the remaining
phase ambiguities, before introducing the TM approach.
Section III presents TM results for these models. A brief
conclusion follows in Sec. IV.

II. MODELS AND METHODS

In this section we describe the various next-nearest-
neighbor Ising models on a square lattice considered in
this work, and highlight some of the existing results and
predictions. We also briefly describe the numerical TM
method. Additional technical details can be found in
Appendix A and B.

A. ANNNI model

The ANNNI model is a minimal model for lamellar
microphase formers. Its Hamiltonian reads

HANNNI = −J
∑

〈i,j〉

sisj + κJ
∑

〈i,j〉ANNN

sisj − h
∑

i

si, (1)

for spin variables si = ±1, coupling constant J > 0,
next-nearest-neighbor frustration strength along the ax-
ial direction κ > 0 and an external field h. (For all models
considered here, J = 1 sets the unit of energy, and we set
h = 0.) For κ = 0, this model reduces to the standard
ferromagnetic Ising model, and for κ < 1/2, the order-
disorder transition remains part of the Ising universality
class. For κ > 1/2, the antiphase 〈2〉 (of period 4, ↑↑↓↓),
which forms the energetic ground state, melts into a crit-
ical IC phase at Tc2, and then becomes fully disordered
at Tc1. Although the existence of the IC phase has long
been debated [10], recent studies provide clear evidence
of its persistence, i.e., Tc1 > Tc2 for all κ > 1/2 [12–14].

B. DNNI model

The diagonal nearest-neighbor Ising model modifies
the Ising model by including non-axial nearest neighbor
interactions. Its Hamiltonian reads

HDNNI = −J
∑

〈i,j〉

sisj + κJ
∑

〈i,j〉DNN

sisj − h
∑

i

si, (2)

using the same parameter notation as for the ANNNI
model. (This model is also known as the next-nearest-
neighbor–or frustrated–Ising model, and as the J1-J2
Ising model, but we here denote it DNNI to distinguish
it more saliently from the other models considered.) The
energetic ground state of the DNNI model is ferromag-
netic for κ < 1/2 and striped with 〈1〉 (of period 2, ↑↓)

for κ > 1/2. In both cases, melting leads directly to a
disordered phase, but whether or not the transition re-
mains first-order in nature around κ = 1/2 has long been
debated. The putative first-order regime indeed appears
to narrow as the quality of numerical studies improves.
Predictions for a Potts point dividing the weakly-first-
order from the continuous transition vary from κ∗ ≃
0.9 [29, 30], 0.67(1) [15, 16] to ≃ 0.54 [19]. For κ < 1/2, it
has generally been assumed that the transition is part of
the Ising universality class, but recent cluster mean-field
approximation and effective-field theory study suggest
that a narrow first-order transition regime might then
also be present [16, 17]. Several simulation studies fur-
ther suggest a nonzero transition temperature at κ = 1/2
proper, i.e., Tc(κ = 1/2) > 0 [18, 31, 32], in marked
contrast to prior works [11, 33–36]. Because theoretical
approximations behave irregularly around κ = 1/2 [37],
however, a conclusive assessment has thus far remained
out of reach.

C. BNNNI and 3NNI models

Including biaxial next-nearest-neighbor interactions,
i.e., couplings with Euclidean third-nearest-neighbor, to
the DNNI model gives rise to the 3NNI model (also
known as the J1-J2-J3 Ising model [38]). Its Hamilto-
nian reads

H3NNI =− J
∑

〈i,j〉

sisj + κJ
∑

〈i,j〉BNNN

sisj + κ′J
∑

〈i,j〉DNN

sisj

− h
∑

i

si,
(3)

and setting κ′ = 0 recovers the BNNNI model, which we
consider first.
The BNNNI model has a ferromagnetic ground state

for κ < 1/2, and the transition to the high-temperature
paramagnetic phase is thought to exhibit Ising univer-
sality in that regime. For κ > 1/2 the model presents
two distinct energetic ground states [Fig. 1(d)]: 4 × 4
checkerboard order, or diagonal stripes of width 2. Early
Monte Carlo simulations suggested that melting of these
structures proceeds through a first-order transition [39],
but later work found the thermodynamics not to be so
straightforward. Multiple metastable states indeed de-
velop at intermediate temperatures [40], and a two-step
transition involving a critical IC phase at 1/2 < κ <
κ∗ [22, 41–43] has been proposed. It is further unclear
whether the Lifshitz point takes place at finite κ∗, or
whether κ∗ → ∞. Even studies suggesting the former
offer but a qualitative determination of κ∗ [42].
Landau and Binder determined the energetic ground

state structure of the more general 3NNI model with
antiferromagnetic Ising interactions [39] (see Fig. 1(d)),
which can be mapped onto ferromagnetic Ising inter-
actions by flipping every other spin on the lattice. In
short, while the ferromagnetic (F) phase persists for
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FIG. 1. Schematics of the (a) ANNNI, (b) DNNI, and (c) 3NNI models on a square lattice. Arrows denote spins, and lines
indicate Ising nearest-neighbor (red), diagonal NN (green) and (bi)axial NNN (blue) interactions. (d) T = 0 phase diagram for
the 3NNI model.

κ+ κ′ < 1/2, the ground state either follows that of the
BNNNI model—4×4 checkerboard or diagonal stripes of
width 2 (both denoted 4×4, for convenience)—at large κ,
or that of the DNNI model—〈1〉 stripes—at large κ′. At
large frustration, the separation line is given by κ′ = 2κ;
and at intermediate frustration, the 〈2〉 phase is also a
ground state. By contrast to the ANNNI model, how-
ever, the modulation can here grow along either axial
directions (on a square lattice), hence the ground state is
eight-fold (instead of four-fold) degenerate. The transi-
tion is further thought to be first-order—as for the 8-state
Potts model—instead of continuous [38].
Interestingly, the lattice gas representation of the 3NNI

model is also the two-dimensional counterpart to the
Widom-Wheeler lattice microemulsion model [6] (with
h corresponding to the chemical potential). The 3NNI
model presents a 〈2〉 phase—a lamellar microphase in
the language of Ref. 6—as a result of the competition be-
tween DNN and BNNN interactions. Our investigation
of the 3NNI model thus concentrates on this particular
regime.

D. Numerical TM method

Although these two-dimensional models lack an ana-
lytic solution, TM can numerically solve the exact par-
tition function of a semi-infinite strip of width L, and
the results can then be analyzed using finite-size scaling
approaches to extrapolate the thermodynamic behavior
in the limit L→ ∞.
Generically, TM encode the interaction between sub-

sequent layers states a and a′ as

Ta,a′ = exp[−β(Vx(a) + Vz(a, a
′))], (4)

where β = 1/kBT is the inverse temperature (the Boltz-
mann constant is set to unity, kB = 1), and Vx and Vz are
intra- and inter-layer interaction energies, respectively.
The partition function of the strip of length N is given
by tr

(

TN
)

, and in the limit of N → ∞, Z is given by the

leading eigenvalue of TN , λN0 . The free energy per spin

is thus

βf = − lnλ0
L

, (5)

and the marginal probability of a state a is given by the
product of (normalized) left and right eigenvector of λ0,
P (a) = ϕ−1

0 (a)ϕ0(a) (after normalizing as
∑

a P (a) = 1).
Given the leading eigenvalue and eigenvector, thermody-
namic observables can be obtained exactly, including the
internal energy per spin, βu = −∂(βf)/∂T , and the spe-
cific heat per spin, c = ∂u/∂T .
One of the key advantages of TM is that they also

provide the correlation length ξ, which help identify the
location and nature of phase transitions. Given that the
conditional probability of finding a subsequent layer state
a′ after layer a is [28]

P (a′|a) = Ta,a′ϕ0(a
′)

λ0ϕ0(a)
, (6)

the generic conditional probability for a′ having a dis-
tance N from a is then

P (N)(a′|a) =
TN

a,a′ϕ0(a
′)

λN0 ϕ0(a)
= P (a′)+

|{a}|−1
∑

i=1

(

λi
λ0

)N
ϕi(a)ϕ

−1
i (a′)ϕ0(a

′)

ϕ0(a)
,

P (N)(a′|a)− P (a′) ∼ exp

[

N ln

( |λ1|
λ0

)]

= exp(−N/ξ1),
(7)

where |{a}| is the total number of states and ξ1 =
−1/ ln(|λ1|/λ0) is the leading correlation length. Sub-
dominant lengths can be analogously defined as ξi =
−1/ ln(|λi|/λ0) for i > 1.
Beyond that point, each model presents certain pecu-

liarities. (TM prescripts are thus used to distinguish be-
tween the ANNNI (A), BNNNI (B), DNNI (D) and 3NNI
(3) models as well as to denote the direction of propaga-
tion.) For the ANNNI model, because the interaction is
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anisotropic, the TM can be propagated either perpendic-
ularly (⊥,ATM) [20] or parallel (‖,ATM) [21] to the direc-
tion of the next-nearest-neighbor interaction. Although
the former is markedly smaller 2L×2L (vs 4L×4L), in the
modulated regime the latter converges much faster to the
asymptotic scaling as L increases. For the DNNI model,
because interactions reach no further than the first sub-
sequent layer, ⊥,DTM can be constructed by modifying

⊥,ATM and is thus also of size 2L × 2L. For the BNNNI
and 3NNI models, TM propagation along the diagonal of
the square lattice, /TM, has been suggested as preferable

at finite L [22], in order to better capture the ordering in
the direction of the antiphase modulation. This choice
also results in a TM of size 2L × 2L. In all cases, the
TM size can be significantly reduced by leveraging the
model symmetry, as described in Appendix B. (In prac-
tice, the TM is not explicitly computed but implicitly
represented by a matrix-vector subroutine, as described
in Appendix A.)

III. RESULTS AND DISCUSSION

In this section we present TM results for various frus-
trated models at finite L as well as the finite-size scal-
ing analysis used to extrapolate the thermodynamic be-
havior in the limit L → ∞. We provide results for the
ANNNI model that complement our recent analysis of
that system [14], and discuss the behavior of the DNNI
model, paying particular attention to the physical ambi-
guities previously reported in the literature. For the more
computationally challenging BNNNI model we propose a
phase diagram and discuss various remaining uncertain-
ties. Finally, we examine the 〈2〉 regime of the generic
3NNI model with κ = κ′/2, which are frustration con-
ditions akin to those of a three-dimensional surfactant
model.

A. ANNNI model

For the ANNNI model, we first obtain the subleading
correlation length using both ⊥TM and ‖TM. These re-
sults are mainly intended to serve as reference for other
models. In order to probe further the existence of a
critical IC (or floating) phase, we also compare the do-
main wall free energy, using a scheme first proposed for
the density matrix renormalization group (DMRG) ap-
proach [44].
Comparing the leading correlation length, ξ1, obtained

from ⊥TM and ‖TM highlights the anisotropic nature of

the model (Fig. 2). In particular, as T increases results
from ⊥TM decay non-smoothly due to the crossing of
sub-dominant correlation lengths [Fig. 2(a), inset]. This
phenomenon, which generically accompanies a structural
crossover [27], here bespeaks a stepwise change in the
modulation period [14]. For L = 24, for example, two
distinct steps can be identified, both involving ξ1 = ξ2
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FIG. 2. Leading correlation length for the ANNNI model
with κ = 0.6 in (a) ⊥TM, L = 8, 12, ..., 24 and (b) ‖TM,
L = 8, 10, ..., 16, from blue to red. The ordering transition
position, Tc2 = 0.89(1) (dashed line) is given as reference.
Results from ‖TM converge more smoothly and cleanly to
the thermodynamic limit. Inset: First few leading correlation
lengths in (a) ⊥TM for L = 24 and (b) ‖TM for L = 16.
Eigenvalue crossings in the former leads to a complex T de-
pendence of the corresponding ξ1.

(associated with doubly degenerate eigenvalues) cross-
ing the subleading ξ3 and ξ4. These features, however,
complicate the evolution of ξ1, and hence hinder the lo-
cal exponent analysis and the determination of the IC
phase [14, 21, 22]. By contrast, results for ‖TM evolve
smoothly with T . The non-monotonic growth of ξ1 = ξ2
(associated with complex conjugate eigenvalues) at in-
termediate T can thus be construed as a signature of the
critical IC phase, and its boundaries, Tc1 > Tc2, can be
identified by analyzing the local exponent [14]. In ad-
dition, the subleading correlation lengths ξ3 and ξ4 are
found to merge at the 〈2〉-to-IC phase transition temper-
ature, Tc2(L), hence providing an additional (and consis-
tent) estimate of Tc2 to those from Ref. 14.
The stepwise change in the modulation period can also

been identified from the domain-wall free energy obtained
from comparing two systems under different boundary
conditions [45],

τ
(+/−)
L (T ) = L[f

(+/−)
L (T )− f

(+/+)
L (T )]σL, (8)

where f
(+/−)
L (or f

(+/+)
L ) are the free energy of a system
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FIG. 3. Domain wall free energy τ
(+/−)
L (T ) for the ANNNI

model with κ = 0.6 from ⊥TM with L = 14, 18, ..., 28 from
blue to red lines. The extrapolation of τ (+/−)(T ) from Eq. (9)
with the scaling expected for the antiphase, B = 2 (black solid
line), vanishes at T = 0.91(1). The extrapolation with the
scaling expected for the critical point, B = 1 (dashed black
line), gives Tc2 = 0.89(1). Both are numerically consistent
with previous estimates [14]. Inset: extrapolating the posi-
tions of local peaks (crosses), valleys (squares) and the first
zeros (circles) are consistent with Tc2 (dotted lines are guides
for the eye).

fixing s1 = +1 and sL = −1 (or +1), respectively, and

σL = ±1 in that the ground state τ
(+/−)
L is positive.

In the 〈2〉 phase, and for modulations congruent with L
mod 4 ≡ 2, the expected finite-size scaling is [45]

τ (+/−)(T )− τ
(+/−)
L (T ) ∼ L−B, (9)

where the exponent is observed to be B = 2 in the 〈2〉
phase [45], but pre-asymptotic corrections grow upon ap-
proaching the critical temperature, Tc, whereat scaling
theory gives B = 1 [46].
Following Ref. 44, we first fit the results with B = 2

and extrapolate the thermodynamic τ (+/−)(T ) over a
broad range of 0.6 < T <∼ Tc2 (Fig. 3). The result
is fully consistent with that former study, predicting
Tc2 = 0.91(1) (vs 0.907 [44]). Alternatively, setting
B = 1 (the expected critical scaling) gives Tc2 = 0.89(1).
The two estimates thus differ only marginally, and are
both consistent with recent quantitative estimates for the
transition temperature [13, 14].

For T > Tc2, τ
(+/−)
L (T ) oscillates around 0, suggest-

ing that the modulation period varies with T , a clear
signature of the IC phase. Extrapolating the first peak
and valley further suggests that these oscillations coa-
lesce at Tc2 and thus vanish in the thermodynamic limit
L→ ∞. The zigzagging behavior weakens at larger κ yet
the smoother oscillations around 0 are still observable at
large L for κ >∼ 1.5. Such oscillatory yet vanishing free en-
ergy difference for the (+/+) and (+/−) boundary con-
ditions further supports the floating IC phase scenario.

The interfacial results are therefore fully consistent with
the length scale analysis of Ref. 14, and are also consis-
tent with the DMRG results [44] obtained for much larger
systems (L ∼ 102 vs 101 in TM). However, the interfacial
results do not exhibit a clear high temperature boundary
for the IC phase, let alone a quantitative estimate of Tc1.

B. DNNI model

For the DNNI model, we first compare the correlation
length, internal energy and domain wall free energy re-
sults with those of the ANNNI model from Ref. 14 and
Sec. III A. We then attempt to resolve the phase ambi-
guities described in Sec. II B.

1. Overview of thermodynamic observables

The evolution of ξ1 for the DNNI model is smooth
and monotonic (see, e.g., Fig. 4(a)); no eigenvalue cross-
ing or splitting is observed. Unlike the ANNNI model,
which presents an algebraic growth, ξ1 ∼ Lθ(T ), over a
temperature range [14, 21], the DNNI model displays an
algebraic scaling only at a single temperature. Also, the
anisotropy exponent is then θ = 1 (ξ1/L ≈ const), as
expected for models with isotropic interactions [47]. The
crossing point of ξ1/L further provides an accurate esti-
mate of Tc. Other robust estimators include the crossing
point of the internal energy (examined for the ANNNI
model for 0 ≤ κ < 0.5 [14]) and the peak of the specific
heat [Fig. 4(b)]. Because the finite-L transition temper-
ature estimates, T ∗(L), change little with L throughout
different phase regimes, transition temperatures can of-
ten be estimated with up to five significant digits [16].
(Around κ = 1/2, the situation is more complex, as dis-
cussed below.)
We also evaluate the domain wall free energy using

Eq. (8) [Fig. 4(c)]. As expected, τ
(+/−)
L follows the finite-

size scaling of Eq. (9) in the ordered striped phase. For
B = 1, it is extrapolated to vanish at Tc. (The ∼ 0.01
deviation from Tc is likely due to pre-asymptotic correc-
tions to scaling.) Unlike in Fig. 3, here no signature of

oscillation is observed for τ
(+/−)
L (T > Tc). This mono-

tonic evolution is robust for various κ both below and
above 1/2. The DNNI model thus clearly lacks an in-
commensurate phase, or its finite L echo.

2. Tc determination

With an understanding of the behavior for various
phase transition estimators in hand, we now quantita-
tively evaluate Tc. In particular, we wish to determine
whether limǫ→0 Tc(1/2+ ǫ) = 0. As shown in Fig. 5(a,c),
a crossing point in T -u curve is detected for both side
of κ = 1/2, but is absent right at κ = 1/2 down to nu-
merical accuracy (in practice, ∼ 10−10) [Fig. 5(b)]. The
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FIG. 4. Finite-size results for various observables of the DNNI model with κ = 0.6 for L = 8, 12, ..., 32 (from blue to red lines).
Recall that Tc = 0.971(1) (dashed vertical lines). (a) The leading correlation length crosses at a single fixed point for all L.
Inset: the first few leading correlation lengths for L = 24. No correlation length splitting or crossing is observed. (b) Energy
per spin u and (Inset) specific heat c per spin. Both ξ1/L and u present a fixed point and c peaks sharply at Tc. (c) Domain

wall free energy for L = 14, 18, ..., 28 from blue to red lines. The extrapolated τ (+/−) from Eq. (9) (black solid line) vanishes
at Tc (dashed line).
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FIG. 5. Phase transition determination for the DNNI model
around κ = 1/2. (a-c) Internal energy above the ground state,
u0 = −(1+2|ǫ|), for ǫ = κ−1/2 = 0.002, 0,−0.002. (d, e) ex-
trapolation of Tc via different estimators indicated in legends
(see text for details) for ǫ = 0.002 and 0, respectively. Dashed
lines are fitted using Eq. (10) with empirical exponents t = 1
and 0.486, respectively, and quadratic fits are used for T ∗

c (L)
and T ∗

ξ (L). These different estimators are mutually consis-
tent, and for (e) reproduce the results of Ref. 18. (f) For
ǫ → 0+, Tc vanishes logarithmically as in Eq. (11) (red line).

crossing thus seemingly takes place at T = 0, as does the
phase transition, but further evidence is needed.
A systematic comparison reveals that for ǫ > 0 T ∗

u (L)
barely shifts with L, while for ǫ < 0 significant pre-

asymptotic corrections appear [see Fig. 5(a,c)]. We thus
apply an empirical fitting form to extrapolate Tc,

T ∗(L) = Tc +AL−t (10)

with a fitting constant A and empirical exponent t (t = 1
for κ > 1/2). Note that other estimators, such as the
location of specific heat and the correlation length peaks
[see Fig. 7(c)], T ∗

c (L) and T ∗
ξ (L), provide consistent es-

timates [Fig. 5(d)], but require a quadratic correction to
Eq. (10), BL−2t, and are thus less accurate. The esti-
mator T ∗

u (L) is therefore uniquely robust in this regime.
The underlying theoretical explanation for this observa-
tion, however, remains to be developed. Thanks to the
exceptionally small finite-size corrections to T ∗

u (L) and
the high TM accuracy, Tc can be determined down to
ǫ = 10−5 [Fig. 5(f)]. (For ǫ < 0, the shift of T ∗

u with L
makes a comparable extrapolation more haphazard.) Re-
markably, for ǫ > 0 the resulting transition temperature
scales logarithmically as

Tc(κ) ≈ − 2.16

ln(κ− 1/2)
. (11)

We thus confidently conclude that Tc(κ = 1/2) = 0.
To better understand why Ref. 18 concluded differ-

ently, we replicate their analysis in Fig. 5(e) (with the
same t = 0.486), and consider T ∗

ξ (L) as well. Both

extrapolations give Tc(κ = 1/2) = 0.22(1), as Ref. 18
found. We thus understand that previous extrapolation
attempts have been obfuscated by the complex and sig-
nificant pre-asymptotic corrections to various variables
around κ = 1/2. These corrections are further discussed
in Sec. III B 3.

3. Order of transition

Another actively debated aspect of the DNNI model
is the order of its various ordering phase transitions. In
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FIG. 6. Finite-size scaling of the DNNI peak specific heat
for various κ: δc∗/δL ∼ L−1 for the Ising-type continuous

transition (κ = 0.3, 0.45); and ∼ Lα/ν−1 with 0 < α/ν ≤ 1
for the AT-type continuous transition (κ = 0.67, 0.75, 1). In
the first-order regime (κ = 0.48, 0.55, 0.6), the quantity is
expected to approach a constant, but for 1/2 < κ < κ∗ the
slope of the fitting line instead varies continuously.
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FIG. 7. The DNNI model exhibits pronounced pre-
asymptotic corrections around κ = 1/2: (a) peak specific
heat c∗(L) for around κ = 1/2; and (b, c) leading correla-
tion length for L = 8, 12, ..., 32 at κ = 0.485 and 1/2 with
Tc (dashed line in b). For κ = 0.485, as L grows the cross-
ing points between subsequent ξ1/L (asterisk between L = 28
and 32) approach Tc, while the local peak vanishes.

principle, this can be determined from the scaling of the
peak specific heat:

1. For an Ising-type continuous phase transition (ex-
pected for small κ),

c∗(L) ≈ A lnL+ c0, (12)

where c0 denotes the background specific heat and
A is a fitting constant.

2. For a first-order transition (expected for 1/2 < κ <
κ∗ and speculated for κ† < κ < 1/2),

c∗(L) = AL+ c0. (13)

For a weakly first order transition, however, the ex-
pected large pre-asymptotic corrections may lead
to an effective scaling that deviates from linear,
and/or to a delay of the onset of asymptotic regime.

3. For an Ashkin-Teller (AT)-type phase transition
(expected for κ ≥ κ∗),

c∗(L) = ALα/ν + c0, (14)

where α is the heat capacity exponent and ν is the
correlation length exponent, and 0 < α/ν ≤ 1. In
particular, α/ν = 1 characterizes the Potts critical
point.

To eliminate the background correction, we here consider
the finite differentiate, which scales as

δc∗/δL = [c∗(L + 1)− c∗(L− 1)]/2 = ALb, (15)

with b = α/ν − 1 for continuous transitions and with
b = 0 (a plateau) for first-order transitions. Results for
selected κ are reported in Fig. 6. Fitting Eq. (15) gives
α/ν = −0.01(3) and 0.09(10) for κ = 0.3 and 0.45, re-
spectively, both consistent with an Ising-type transition
with α = 0. In the (expected) weakly first-order regime
1/2 < κ < κ∗, however, the fitting slope decreases with
κ. For instance, κ = 0.55 and 0.6 give b = 0.32(2) and
0.02(1), respectively, instead of b = 0 throughout. This
drift, which was also reported in Monte Carlo simulations
of small systems [39], suggests that pronounced finite-size
corrections are here at play. The TM approach thus also
cannot clearly identify κ∗. Nevertheless, the regime of
effective α/ν > 1 deviates sufficiently significantly from
the AT scenario (0 < α/ν ≤ 1) to marginally favor the
weakly first-order over the continuous AT-type transi-
tion. By contrast, the drift of α/ν observed at larger κ
(e.g., κ = 0.75 and 1 give α/ν = 0.61(2) and 0.33(2), re-
spectively) is consistent with the AT-type transition with
a varying exponent [15, 16].
By contrast, the Ising-type (at small κ) and the weakly

first-order (speculated for κ† < κ < 1/2) regimes can be
distinguished more straightforwardly from b = −1 and
0, respectively. A clear b = −1 scaling persists at least
up to κ = 0.45. For κ = 0.48, however, δc∗/δL first
decreases with L, and then grows slightly before plateau-
ing. Although pre-asymptotic features partly muddle the
physical picture, this trend clearly deviates from physical
expectations for an Ising-type transition. It is instead
reminiscent of a weakly first-order transition, and thus
support the theoretical speculations of Refs. 16 and 17
that such a regime should exist for κ† < κ < 1/2 with
κ† >∼ 0.45. (Reference 18 concluded that a continuous
transition takes place for κ = 0.48, based on the ab-
sence of discontinuity in u(T ), but did not consider the
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weakly first-order transition scenario.) Interestingly, a
recent computation for a low-connectivity Bethe lattice
suggests that such a weakly first-order transition in the
vicinity of the multicritical point (κ <∼ 1/2 in the DNNI
model) is a mean-field feature [48]. This behavior thus
clearly differs from the fluctuation-induced discontinuity
of the weakly first-order transition for 1/2 < κ < κ∗.
This difference might also explain the markedly dis-

tinct scaling properties observed on either side of κ = 1/2
[as noted in Fig. 5(a,c)]. Slightly above κ = 1/2, even
thought pre-asymptotic corrections prevent a quantita-
tive determination of α/ν (see, e.g., κ = 0.55 in Fig. 6),
the monotonic growth of c∗(L) is qualitatively consis-
tent with a weakly first-order scenario. For example,
at κ = 0.502, c∗(L) grows nearly linearly already for
L ≥ 28 [Fig. 7(a)]. By contrast, slightly below κ = 1/2
deviations from scaling are confounding even for the sake
of qualitative speculations. For instance, for κ = 0.485,
c∗(L) decreases at intermediate L before increasing again.
From κ = 0.485 to 0.499, this pre-asymptotic behavior
extends to even larger L as κ→ 1/2. Moreover, the range
of small L growth extends as well, leaving but a purely
monotonic growth at κ = 1/2. The evolution of ξ1 also
hints at a complex finite-size behavior for κ <∼ 1/2. For
example, for κ = 0.485, a local peak appears at small
L but disappears as L increases [Fig. 7(b)], and then a
crossing is recovered around Tc. As κ further approaches
1/2, this local peak survives for larger systems and is ex-
pected to persist for all L → ∞ at κ = 1/2 [Fig. 7(c)].
In this limit case, ξ1 approaches a constant at both low
and high T , but a peak persists (the effective exponent
d ln ξ1/d lnL approaches 1), thus suggesting a disorder-
disorder transition (albeit possibly shifting to T = 0 in
the limit L→ ∞).
In summary, while a signature of a first-order tran-

sition is observed at κ = 0.48, a pronounced finite-size
dependence of various observables prevents a clear char-
acterization of the range κ† < κ < 1/2. We nevertheless
differentiate sizable pre-asymptotic corrections that had
previously been (incorrectly) associated with a continu-
ous transition [18, 35, 49]. Particular caution should thus
be applied in conducting future studies of this regime.

C. BNNNI model

For the BNNNI model, we mainly analyze the signa-
tures of the phase transition in the antiphase regime
(κ > 1/2), in order to obtain an overall quantitative
phase diagram, which has so far eluded simulation-based
approaches.

1. Correlation length scaling

We first consider the T evolution of correlation lengths
with ‖TM and /TM for κ = 0.6 (Fig. 8). In both
cases, ξ1 evolves non-monotonically as a result of mul-
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FIG. 8. Leading correlation length for the BNNNI model with
κ = 0.6 in (a) ‖TM with L = 8, 12, 16 (solid lines) and L =
6, 10, 14 (dashed lines), and (b) /TM with L = 8, 12, ..., 32,
from blue to red lines, respectively. Asterisks mark the turn-
ing point T ∗

1 (L), defined in Eq. (17), used to extrapolate Tc1.
Inset: the first four leading correlation lengths in (a) ‖TM
with L = 16 and (b) /TM with L = 24. Dashed lines denote
degenerate correlation length related by complex conjugate
subleading eigenvalues. Vertical dashed lines in both panels
denote the transition temperature Tc2 = 0.283(3).

tiple eigenvalue crossings. These features are reminis-
cent of the ANNNI results and markedly differ from their
DNNI counterparts, which suggest that a critical phase
between Tc1 and Tc2 might be present here as well. For

‖TM, a sharp local peak emerges slightly above the an-
tiphase regime for congruent L mod 4 ≡ 0, and shifts
to lower T as L increases. Quantitatively extrapolating
transition temperatures from this observable is, however,
not realistic given the limited range of accessible system
sizes and the size congruence constraint. By contrast,

/TM presents a much more straightforward trend. As

L grows, ξ1/L (i) seemingly diverges in the commensu-
rate antiphase, (ii) approaches a constant in the putative
IC phase, Tc2 ≤ T ≤ Tc1, and (iii) vanishes in the dis-
ordered paramagnetic phase [22, 47]. From the lowest
temperature crossing points of ξ1/L between systems of
two nearby sizes, T ∗

2 (L), we can extrapolate Tc2 using an
empirical scaling form

T ∗
2 (L)− Tc2 = A1L

−1(1 +A2L
−1), (16)

where A1 and A2 are fitted constants. Although the scal-
ing of the correction is not known a priori, the resulting
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FIG. 9. Finite-size scaling of characteristic temperatures in

/TM for the BNNNI model with (a) κ = 0.6 and (b) κ =
0.8. The extrapolation of T ∗

2 (L) (crosses) and T ∗
1 (L) (squares)

with Eq. (16) provide estimates for Tc2 and Tc1, respectively.
Empty squares are excluded from the fit. Due to the non-
monotonicity of T ∗

1 (L), Tc1 is not estimated in (a).

extrapolation is nearly linear for all κ between 0.55 and
2 [See Fig. 9 for example], thus lending credence to this
scaling form. For κ = 0.6, in particular, fitting results
from L = 14 to 30 gives Tc2 = 0.283(3).

While for the ANNNI model Tc1 can be determined
from the finite-size scaling of the local exponent YL =
δ ln ξ1/δ lnL via the ‖TM approach [14], here the situa-
tion is not as straightforward. Eigenvalue crossings in-
deed persist even in the /TM analysis [Fig. 8(b)]. As a
result, a bump-like peak appears in the plateau regime
for L = 24, 28 but retreats for L = 32. (For L = 32,
a second peak in ξ3 appears but does not cross ξ1 nor
ξ2.) In order to understand the physical origin of this
effect, recall that the angular argument of this pair of
complex conjugate subleading eigenvalues corresponds to
the modulation period. A sharp peak thus corresponds
to the presence of a real eigenvalue (with wavenumber
q = arg(λ1)/(2π) = 0). Because the modulation can
propagate along either diagonal directions, this peak in-
dicates that the modulation perpendicular to the TM
propagation direction momentarily dominates within the
relevant temperature window. Said differently, L is then
commensurate with the preferred wavenumber. The
overall scaling trend, however, remains unaffected.

The numerical challenge of determining Tc1 neverthe-
less remains. A first option is to consider the scaling of
the anisotropy, as for the ANNNI model [14, 21]. Al-
though small systems display a smooth evolution [22],
those with larger L exhibit complex oscillations. The
correlation length scaling in the IC phase regime is thus
severely affected by the choice of boundary condition—
again possibly resulting from the interference between
preferred wavenumber and L—hence preventing a clear
determination of Tc1. A second option is to restrict mod-
ulation to lie along the TM direction of propagation by
examining the leading correlation length associated with
a complex eigenvalue, ξ′1. Given the smooth evolution of
ξ′1 with L, it is then reasonable to extrapolate Tc1. As a

finite-L echo of Tc1, we consider the local minimum

∂ ln ξ′1
∂T

∣

∣

∣

∣

T∗

1
(L)

= 0, (17)

which graphically corresponds to the turning point of T -
ln(ξ′1/L). As L increases, T ∗

1 (L) first decreases but the
monotonic trend does not persist [e.g., T ∗

1 (L = 28) >
T ∗
1 (L = 24), see Fig. 9(a)]. As κ increases, both the
ξ1 plateau and its turning onset weaken. Because eigen-
value crossing is absent for the largest L considered and
T ∗
1 (L) evolves smoothly and monotonically, a tentative

extrapolation of Tc1 using Eq. (16) is possible for κ ≥ 0.8
[Fig. 9(b)]. We thus have that Tc1 > Tc2, beyond the
uncertainty range, up to κ = 1.5, and the signature of
the critical phase is qualitatively visible up to at least
κ = 2. This evidence marginally supports the absence
of a Lifshitz point, i.e., κ∗ = ∞. The ANNNI and
the BNNNI models both exhibit a similar correlation
length plateau, thus suggesting that an IC phase exists
in the former as well [14]. We should note, however, our
Tc1 values are more tentative than those of the ANNNI
model [14] because similar finite-size corrections—non-
monotonic trend of T ∗

1 (L)—may be observed at larger
L (although less severely). Hence we cannot exclude as
strongly as for the ANNNI model that the BNNNI IC-like
phase might disappear in the thermodynamic limit.

2. Heat capacity evolution

We next investigate the evolution of the heat capacity.
Because ‖TM and /TM exhibit different finite-size fea-
tures, we consider both. For ‖TM, a sharp peak grows
with L, but its temperature is marginally smaller than
that of the local peak of ξ1. Correspondingly, the internal
energy grows stepwise with a decreasing step height as L
increases, as observed in Monte Carlo simulations [40]
and in the ⊥TM solution of the ANNNI model [14].
This behavior is consistent with a Pokrovsky-Talapov
type transition, at which the heat capacity divergence
is discontinuous (with scaling exponent α′ → ∞) from
the antiphase side. For /TM, the c(T ) curve is multi-
ply peaked. The lowest temperature peak is the highest,
whereas higher temperature peaks grow and shift to lower
T as L increases. These peaks appear to evolve toward
Tc2 [Inset of Fig. 10(b)], as does the finite-L-echo of the
IC phase in the ANNNI model [14]. The analogy between
the two models suggests that for κ > 1/2 the antiphase of
the BNNNI model also undergoes a Pokrovsky-Talapov
transition [8] at Tc2, followed by critical IC phase [7] that
terminates at a KT transition at Tc1. The IC phase, if
it exists, would then be characterized by an algebraically
diverging correlation length and present a stepwise evo-
lution of the modulation in finite systems.
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FIG. 10. Specific heat for the BNNNI model for κ = 0.6 in (a)

‖TM for L = 8, 12, 16 and (b) /TM for L = 8, 12, ..., 32, from
blue to red. Vertical dashed lines denote Tc2 = 0.283(3). The
position of the sharp peak in (a) is about 1% higher than that
of the local peak of ξ1 for L = 12, 16 [Fig. 8(a)]. Insets: (a)
energy per spin for the same systems. (b) The heat capacity
peak temperatures, T ∗, are extrapolated (using a quadratic
fitting form) to merge at Tc2 ≈ 0.3 as 1/L → 0.

3. Phase diagram

Combining the correlation length and heat capacity
results offers a consistent phase diagram of the BNNNI
model (see Fig. 11). The simple ferromagnetic regime
at κ < 1/2 presents an Ising-type transition at Tc—as
identified by ξ1/L crossings—to the paramagnetic phase.
(Quantitative estimates are fully consistent with earlier
TM [22] and free fermion approximation [43] results.) An
additional disorder line can be identified from the split-
ting of subleading eigenvalues from a pair of complex
conjugates (at high T ) into two distinct real numbers
(at low T ). Being non-critical, these two lines are only
marginally affected by finite-size corrections [22]. For
κ > 1/2, two transitions can be identified, Tc2 < Tc1,
as discussed in Sec. III C 1. Prior estimates for Tc2 vary
dramatically, but our results robustly fall between those
of Ref. 39 and those of Ref. 43. Around κ = 1/2, the TM
approach suggests that the phase boundary has a finite
slope on both sides of the multicritical point, thus sup-
porting the free fermion approximation results over those
of the renormalization group approach [41]. For Tc1, var-
ious qualitative proposals have been made [41, 42], but

0 0.5 1 1.5
0

1

2

3

FIG. 11. Phase diagram for the BNNNI model. The TM ap-
proach provides phase boundaries for the ferromagnetic 〈∞〉-
paramagnetic (squares), degenerate antiphases (AP) to IC
(crosses), and paramagnetic-IC (circles) transition. The dis-
order line (asterisks) subdivides the paramagnetic phase into
q = 0 and q > 0 modulation wavenumbers. Configuration
snapshots generated by planting [28] with /TM use blue and
yellow points to denote +1 and −1 spins, respectively.

to the best of our knowledge no quantitative estimates
were reported. Our results, albeit still somewhat impre-
cise, are consistent with the two-step melting scenario
persisting over a wide range of κ and the presence of
intermediate critical IC phase.

D. 3NNI model

We finally consider the generic 3NNI model. As shown
in Fig. 1(d), the ground state configuration of this model
depends on both κ and κ′. The model is thus expected
to present different types of order-disorder transitions, as
characterized by the correlation length scaling (Fig. 12).
In parameter regimes corresponding to the ferromag-
netic, 〈1〉 or 4 × 4 ground state configurations, these
lengths indeed behave distinctly. Different regimes anal-
ogous to those observed in other models can further be
identified (Fig. 12).

• In the ferromagnetic regime, ξ1/L curves cross then
kink as T increases, as they would for the thermo-
dynamic phase transition Tc and for the disorder
line crossover of the BNNNI model (the dotted line
in Fig. 11), respectively.

• In the 〈1〉 regime, ξ1/L decays monotonically and
presents a single fixed point. The order of phase
transition as well as the critical exponent values
in the continuous transition regime also vary with
the choice of (κ, κ′) [38], as in the DNNI model
[Fig. 4(a)].
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FIG. 12. Correlation length scaling of the 3NNI model for
different frustration parameters. For ‖TM, solid and dashed
lines denote systems with L = 8, 12, 16 and L = 6, 10, 14,
from blue to red, respectively. For /TM, lines denote L =
8, 12, ..., 28, from blue to red. In (a-d), the ground states are
ferromagnetic, 〈1〉, 4× 4 and 〈2〉, respectively [See Fig. 1(d)].
In (e, f), the ground state is disordered. Note that results
in (e) are truncated at large L and low T , because numerical
instability of the eigensolver then gives rise to complex λ0.

• In the 4 × 4 regime, the ξ1/L curves from /TM
plateau after the crossing, as in the BNNNI model
[Fig. 8(b)].

The 〈2〉 phase of the 3NNI model, however, melts
differently from that of the ANNNI model. As shown
in [Fig. 12(d)], ξ1/L curves cross at single point (for
congruent L mod 4), then decay monotonically with-
out exhibiting any shoulder [cf. Fig. 2(b)]. This transi-
tion has been identified as being first-order [38, 39], but
the distinction between a first-order and a Pokrovsky-
Talapov transition is ambiguous in Monte Carlo simula-
tions [39, 40]. These two features here clearly support
the former over the latter.

As mentioned in Sec. II C, the three-dimensional ver-
sion of the 3NNI model was proposed as a minimal model
of microemulsions. Frustration parameters were then set
to κ = κ′/2 in order to match the oil-water-surfactant
representation [5, 6]. As frustration increases, this pa-
rameter choice here results in crossing the 〈2〉—lamellar-
like—regime, and then following the 〈1〉–4× 4 boundary,
at which the system is always disordered. We specifically
consider the large frustration regime (κ = κ′/2 > 1/2).
For ‖TM [Fig. 12(e)], ξ1/L grows monotonically with de-

creasing T but no crossing is detected. Presumably ξ1/L
then diverges at a zero temperature phase transition. For
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FIG. 13. (a) Phase diagram for the 3NNI model for κ = κ′/2.
The TM approach provides phase boundaries for the ferro-
magnetic 〈∞〉-paramagnetic (squares), 〈2〉 antiphases to para-
magnetic (crosses), and the disorder line (asterisks) subdi-
vides the paramagnetic phase into q = 0 and q > 0 modu-
lation wavenumbers. Configuration snapshots generated by
planting [28] with ‖TM use blue and yellow dots to de-
note +1 and −1 spins, respectively. (b, c) The modulation
wavenumber q given by ‖TM for (b) the 3NNI model with

κ = 0.15, κ′ = 0.3, and (c) ANNNI model with κ = 0.6 in
L = 8, 12, 16, from blue to red.

/TM [Fig. 12(f)], however, the ξ1/L peak shifts to lower
T at large L, a behavior reminiscent of what happens at
κ = 1/2 in the DNNI model [Fig. 7(c)]. Moreover, in the
limit κ(= κ′/2) → ∞, the model reduces to two penetrat-
ing and decoupled DNNI antiferromagnets with κ = 1/2.
The ‖TM and /TM approaches for the 3NNI model are
then equivalent to the /TM and ⊥TM approaches for the
DNNI model, respectively. The model is thus always dis-
ordered beyond a zero-temperature phase transition [33].

Figure 13(a) presents a sketch of the κ-T phase dia-
gram for the 3NNI model with κ = κ′/2. The emer-
gence of lamellar microphases at intermediate frustration
is characteristics of SALR microphase formers [2, 26, 50,
51]. Specifically, a single first-order transition bounds the
〈2〉 phase for 1/6 < κ < 1/2. The wavenumber q along
the axial direction jumps at the transition [Fig. 13(b)],
as expected of a first-order transition scenario. This be-
havior sharply contrasts with the stepwise decrease of q
in the ANNNI model [Fig. 13(c)], which is expected to
follow a square-root singularity in the thermodynamic
limit [10, 44, 52]. The disordered phases in these two
models are also morphologically different. In the 3NNI
model, spin clusters of width 2 (↑↑) echo the modulation
once it has melted. For the ANNNI model, spins instead
form layers of width > 2 in the vicinity of T > Tc1 [14],
echoing the floating IC phase instead. In summary, the
first-order scenario for the 3NNI model at κ = κ′/2 is
reminiscent of its three-dimensional counterpart, which
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also exhibit a weakly first-order transition at the melting
of the modulated phase [6].

IV. CONCLUSIONS

Using a numerical TM approach, we have resolved var-
ious long-standing questions about the phase behavior of
a series of two-dimensional frustrated Ising models. For
the ANNNI model, the domain-wall free energy results
support the existence of the critical IC phase, thus ex-
tending our recent analysis [14]. For the DNNI model,
the TM results confirm the location of the transition in
the limiting case Tc(κ = 1/2) = 0, and support and
distinguish the weakly first-order transition scenario for
κ† < κ < 1/2 and for 1/2 < κ < κ∗. For the BNNNI
model, a strong signature of the critical IC phase is iden-
tified, even though its upper boundary remains imprecise.
For the 3NNI model, the lamellar modulated regime has
been shown to melt with a single first-order transition,
in contrast to that of the ANNNI model. Combining
these findings provides a systematic overview of modu-
lated phase formation, and high-accuracy benchmarks for
future theoretical and numerical approaches.
The numerical TM method nevertheless still suffers

from an insufficiently wide range of system sizes under
certain circumstances, such as for determining the
BNNNI Tc1. Some of these problems will be resolved,
in time, as computers architecture improves. Relaxing
exactness, such as by using inexact eigensolvers [53] or
truncated configuration representations as in the DMRG
approach [44, 54] might however be more time effective.
More immediately, the TM approach could certainly be
used to other lattices models such as spin-1 and Potts
models.

Data relevant to this work have been archived and can
be accessed at the Duke Digital Repository [55].
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Appendix A: Decomposition for the matrix-vector

multiplication

In this Appendix we detail the transfer matrix decom-
position scheme used for two-dimensional frustrated Ising
models. Although this approach was first implemented

in the 1980s [20–22], earlier reports omitted most tech-
nical details. This Appendix and the following aim to
fill this gap, and thus facilitate future extensions of these
methods.
The general strategy is as follows. Although transfer

matrix entries are straightforwardly expressed in Eq. (4),
storing the whole matrix T in memory becomes quickly
beyond practical reach as L increases. The solution relies
on using iterative eigenvalue algorithms (such as power
iteration or Krylov subspace-based iterations) that only
require a matrix-vector multiplication subroutine, with
vector v as input and w = Tv as output, and thus avoid
explicitly storing T. Because T is structured, we further
decompose it into a product of sparse matrices, which
saves additional memory space as well as computer time.
In this Appendix, we first introduce the algorithm in the
context of ANNNI model in d = 2, and then generalize
it to the DNNI and 3NNI (including BNNNI) models.

1. ANNNI model propagated perpendicular to the

axial direction

We first consider the ⊥TM case for the ANNNI model
[Fig. 14(a)]. In this case, we denote the spin layer state
s = ({±1}L) as an L dimensional binary vector, which
is encoded with an L-bit unsigned integer, a, so that
0 ≤ a ≤ 2L − 1 naturally include all possible layer con-
figurations with a1, ..., aL ∈ {0, 1}. The physical state s

and machine-expressed state a are related by the simple
mapping ai = 1 → si = 1 and ai = 0 → si = −1.
The energetic contribution of intra-layer interactions

of this state is then

Vx(a) = −J
L
∑

i=1

sisi+1 + κJ

L
∑

i=1

sisi+2 − h

L
∑

i=1

si. (A1)

Technically, this expression can be evaluated using bit-
wise operations. For convenience we first define the net
number of positive spins as a function of a, such that
netp(a) = 2 popc(a)− L, where popc counts the bits set
to 1. One can then write

Vx(a) = J netp(a ∧ rol(a, 1))− κJ netp(a ∧ rol(a, 2))

− h netp(a),
(A2)

where rol is rotate-left-shift (ror is similarly rotate-right-
shift) and ∧ is bitwise xor. Similarly, the contribution of
the energy of the neighboring layer reads

Vz(a, a
′) = −J

L
∑

i=1

sis
′
i

= J netp(a ∧ a′).
(A3)

Formally, the transfer matrix T̊ of size Nstates = 2L

(as shorthand for ⊥,AT̊) has entries

T̊aa′ = e−β(Vx(a)+Vz(a,a
′)) = Tx

a,a ×Tz
a,a′ . (A4)
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FIG. 14. Schematics of inter-layer interaction in (a) ⊥,ATM and ⊥,DTM, (b) ‖,ATM and ‖,3TM, (c) /,3TM. Black lines denote
spin layers; red, blue and green lines denote the inter-layer nearest-neighbor Ising, (bi)axial NNN, and diagonal interactions,
respectively. Note that in (c) the inter-layer nearest-neighbor Ising interaction for (s, s′) involves every other spin s2, s4, ... on
a layer.

The binary representation of the entry index a, a′ nat-
urally gives the spin configuration of the corresponding
layer state, as described above. T̊ can further be de-
composed into a diagonal matrix Tx with entries Tx

a,a =

e−βVx(a) and a symmetric (and centrosymmetric) matrix

Tz with entries Tz
a,a′ = e−βVz(a,a

′).
The partition function of an N -layer system can be ex-

pressed using tr
(

T̊N
)

, which however is not symmetric.

To leverage the efficiency of fast numerical eigensolvers
for symmetric matrices, we define an alternate symmetric
transfer matrix

T = (Tx)1/2Tz(Tx)1/2. (A5)

which has the same the eigenvalues as the original matrix,
and eigenvectors related by

{

ϕ(T) = (Tx)−1/2ϕ(T̊),

ϕ−1(T) = ϕ−1(T̊)(Tx)1/2,
(A6)

where the superscript −1 denotes the left eigenvector. In
zero external field, h = 0, T is further centrosymmetric
(Ta,a′ = T2L−a−1,2L−a′−1). As a result of this trans-
formation, we have that: (i) all eigenvalues are real; (ii)
all eigenvectors are orthogonal; (iii) every eigenvector is
either symmetric or skew-symmetric [56] when h = 0.
Because the size of T grows exponentially with L, stor-

ing the full matrix in memory becomes first inefficient
and then impractical as L increases. However, a sub-
routine that computes matrix-vector multiplications on
the fly can be used to extract the first several leading
eigenvalues and eigenvectors. A direct multiplication re-
quires O(4L) arithmetic operations, but can be reduced
by factorizing Tz into sparse matrices as [57]

Tz = Tz,LTz,L−1 · · ·Tz,1, (A7)

where Tz,i has two nonzero entries in each row,
{

Tz,i
a,a = eβJ ,

T
z,i
a,a′ = e−βJ .

(A8)

The off-diagonal indexes a′ = a∧ rol(1, i− 1) here denote
the configurations obtained by flipping the i-th spin from
a. Note thatTx,i is transformed fromTz,1 by re-indexing
a to rol(a, i−1), formulated by the permutation operation

Tz,i = (PT )i−1Tz,1Pi−1 (A9)

where Pi is the permutation matrix with indexes (a, a′)
to be 1 and 0 otherwise. Inserting Eq. (A9) into Eq. (A7)
and knowing PTP = I;PL = I gives

Tz = (PTz,1)L. (A10)

In summary, the matrix-vector multiplication can be con-
ducted by a sequence of multiplication with sparse ma-
trices

Tv = (Tx)1/2(PTz,1)L(Tx)1/2v (A11)

with complexity O(2LL).
In addition, we have that T is invariant under the per-

mutation of circularly shifting one spin, such that

T = PTTP, (A12)

where PL = I. If ϕ is an eigenvector of T, then Pϕ is
also an eigenvector of T associated with same eigenvalue
λ, because

T(Pϕ) = PTϕ = λPϕ. (A13)

As a result, an eigenvector of non-degenerate eigenvalue
is invariant under the permutation of P, and degener-
ate eigenvectors associated with degenerate eigenvalue
(and their linear combinations) form a cyclic group. This
structural property can be used to optimize the extrac-
tion of leading eigenvalues, as described in Appendix B.

2. ANNNI model propagated along the axial

direction

We now consider ‖TM for the ANNNI model

[Fig. 14(b)]. In this case, we denote three subsequent
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layers as a, a′, a′′ where the state of each layer is encoded
as an L-bit integer, as above. The energetic contribution
of a then includes NN interactions with itself and with
a′ as well as NNN interaction with a′′,











Vx(a, a
′) = −J∑L

i=1 sisi+1 − J
∑L

i=1 sis
′
i

−h∑L
i=1 si,

Vz(a, a
′′) = κJ

∑L
i=1 sis

′′
i .

(A14)

The bitwise operations then reads











Vx(a, a
′) = J netp(a ∧ rol(a, 1)) + J netp(a ∧ a′)

−h netp(a),
Vz(a, a

′) = −κJ netp(a ∧ a′′).
(A15)

We define the transfer matrix T (as shorthand for

‖,AT) with entries

T(a,a′),(a′,a′′) = e−β(Vx(a,a
′)+Vz(a,a

′′))

= Tx
(a,a′),(a,a′) ·Tz

(a,a′),(a′,a′′),
(A16)

The rows and columns of T are indexed by a combi-
nation of two L-bit integers (a, a′) and (a′, a′′), so that
Nstates = 22L. This construction results in a matrix of
size 4L × 4L. Again we decompose T into a diagonal
matrix Tx with entries Tx

(a,a′),(a,a′) = e−βVx(a,a
′) and a

sparse matrix Tz with entries Tz
(a,a′),(a′,a′′) = e−βVz(a,a

′′)

and 0 otherwise. The number of nonzero entries is then
8L. The partition function of aN -layer system is given by
tr
(

TN
)

. Unlike in Section A1, Tz is here no longer sym-
metric. A general eigensolver is then required to solve the
eigenproblem. Although generic eigenvalues can be com-
plex, from the Perron-Frobenius theorem we have that
the leading eigenvalue is always a positive real number
as are the entries of the leading (left and right) eigenvec-
tors.
Because the value of the nonzero entries in Tz does

not depend on a′, ‖,AT
z
(a,a′),(a′,a′′) can be mapped into

⊥,AT
z
a,a′′ with the interaction strength replaced by κJ

(instead of −J in Eq. (A8)). Given that the complexity
for the matrix-multiplication with ⊥,AT

z is O(2LL), and

that there are 2L operations (for different a′) in total,
the complexity for the matrix-multiplication with ‖,AT

z

is O(4LL). Hence, the matrix-multiplication operation
on ‖,AT also has a time complexity of O(4LL).

3. DNNI Model

Because the horizontal and vertical directions of the
DNNI model are equivalent, a single transfer matrix can
be defined. The contribution of intra-layer states,

Vx(a) = −J
L
∑

i=1

sisi+1 − h

L
∑

i=1

si, (A17)

is independent of κ, while the energetic contribution of
neighboring layers reads

Vz(a, a
′) = −J

L
∑

i=1

sis
′
i + κJ

(

L
∑

i=1

sis
′
i−1 +

L
∑

i=1

sis
′
i+1

)

.

(A18)
The transfer matrix T (as shorthand for ⊥,DT) can thus
be decomposed into intra-layer and inter-layer interac-
tions as in Eq. (A5). For the DNNI model, the inter-layer
matrix Tz is also symmetric (and centrosymmetric when

h = 0) with entries Tz
a,a′ = e−βVz(a,a

′).
Again, Tz can be decomposed to reduce the complexity

of the matrix-vector multiplication, but we can no longer
use Eq. (A10). This scheme drops information about
s′i−1 after computing the inter-layer interaction for si−1,
which, although fine for the ANNNI model, for the DNNI
model leaves out the interaction between si and its diag-
onal neighbors, s′i−1 and s′i+1 [Fig. 14(a)]. To make up
for this loss, we introduce an auxiliary spin t1 = s′i for
spin indexes i = 1...L during the propagation. Because
periodic boundary conditions require s1 = sL+1, we in-
troduce an additional auxiliary spin for r1 = s′1. (In the
ANNNI model formulation, sL does not interact with s′1.)
The factorization of Tz is thus

Tz = S−1Tz,LTz,L−1...Tz,1S

= S−1(PTz,1|r1)(PTz,1)L−1S.
(A19)

The auxiliary matrix S (and S−1) maps (recovers) a
vector of dimension 2L to (from) 2L+2, namely,

(Sx)({s1, s2, ..., sL, ..., t1, r1}) =
{

x(s1, ..., sL), t1 = sL and r1 = s1
0, otherwise,

(A20)

and

(S−1y)(a) =
∑

t1,r1

y(a, t1, r1). (A21)

The matrix Tz,1, which denotes the contribution on
the inter-layer interaction for one spin, s1, has entries

Tz,1({s1, s2, ..., sL, t1, r1}, {s′1, s′2, ..., s′L, t′1, r′1}) =










eβJs1s
′

1
−κβJs1(t

′

1
+s′

2
), si = s′i(i = 2...L),

t1 = s′1, r1 = r′1,

0, otherwise.

(A22)
The permutation matrix P shifts spins {s1, ..., sL} to
{s2, ..., sL, s1} but does not change auxiliary spins. Note
that the term Tz,1|r1 in Eq. (A19) reflects the periodic
boundary condition that replaces s′2 by r1.
The overall time complexity of matrix-vector multipli-

cation remains O(2LL). The size of the temporary vector
is quadrupled compared to ⊥TM for the ANNNI model
because two auxiliary spins had to be included, but can
be halved by tracing r1 in the code (instead of as a vector
index) because it is only invoked for operations on Tz,L.
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4. BNNNI and 3NNI models

Because the BNNNI model is a special case of the 3NNI
model (with κ′ = 0), we only need to consider the lat-
ter. One possible transfer matrix construction thus re-
quires but minimal modification from ‖,ATM, namely in-
cluding diagonal nearest-neighbor and axial next-nearest-
neighbor interactions in the intra-layer part T(a,a′),(a,a′),

‖,3T
x
(a,a′),(a,a′)

= exp{−β[Vx(a, a′) + Vx,B(a) + Vx,D(a, a
′)]}

(A23)

where Vx,B and Vx,D are missing from the ANNNI model
in Eq. (A15),

Vx,B(a) = −κJ netp(a ∧ rol(a, 2)), (A24)

Vx,D(a, a
′) = −κ′J [netp(a ∧ rol(a′, 1))

+ netp(a ∧ ror(a′, 1))]. (A25)

The structure and complexity of the remaining algorithm
then remain unchanged.
However, as stated in the main text (Section IID), the

checkerboard and diagonal striped phases of the BNNNI
and 3NNI models are naturally modulated along the di-
agonals of a square lattice. To study the correlation
length of these modulations and to minimize the finite-
size disturbances observed in ‖,3T, we thus consider a
transfer matrix propagated along the diagonal direction,

/,3T, hence generalizing the approach of Ref. [22]. Note
that this arrangement requires L to be even.

As in Eq. (A5), the resulting transfer matrix can be de-
composed into intra-layer and inter-layer contributions.
The intra-layer matrix can be computed directly, and the
inter-layer matrix Tz can be decomposed similarly as for
the DNNI model (Eq. (A19))

Tz = S−1Tz,LTz,L−1...Tz,2S

= S−1(PTz,2|t1,t2)(PTz,2)L/2−1S.
(A26)

The auxiliary matrix S (and S−1) then maps (recovers)
a vector of dimension 2L to (from) 2L+4,

(Sx)({s1, s2, ..., sL, ..., t1, t2, r1, r2}) =
{

x(s1, ..., sL), (t1, t2, r1, r2) = (sL−1, sL, s1, s2)

0, otherwise,

(A27)
and

(S−1y)(a) =
∑

t1,t2,r1,r2

y(a, t1, t2, r1, r2). (A28)

The matrix Tz,2, which denotes the contribution on
the inter-layer interaction for two spins, s1 and s2,
[Fig. 14(c)], has entries

Tz,2({s1, ..., sL, t1, t2, r1, r2}, {s′1, ..., s′L, t′1, t′2, r′1, r′2}) =










exp{−βJ [(s′1(t2 + s2)− κ(s′1(t1 + s3) + s′2(t2 + s4))

−κ′(s′1s1 + s′2s2)]}, si = s′i(i = 3...L), (t1, t2, r1, r2) = (s′1, s
′
2, r

′
1, r

′
2),

0, otherwise.

(A29)

The permutation matrix P shifts layer configurations by
two spins, i.e., {s1, s2, ..., sL} → {s3, ..., sL, s1, s2}. The
term Tz,2|r1,r2 in Eq. (A26) reflects the periodic bound-
ary condition that replaces s′3, s

′
4 by r1, r2.

This arrangement of auxiliary spins can be viewed as a
generalization of the approach used for the DNNI model.
A spin si here involves interactions with si±2, which goes
beyond si±1 for the DNNI model. In general, for mod-
els with inter-layer interactions between si and s′i±b, 2b
auxiliary spins are needed, among which t spins are as-
sociated with an extended vector, then of size 2L+b. The
size of this vector controls the space complexity for the
matrix-vector multiplication. In addition to the 2b loops
for different choices of r spins, the time complexity is
then also larger, O(2L+2bL). For /,3T, in particular, the
number of operations and the intermediate vector size are
24 = 16 and 22 = 4 times that for ⊥,ATM, respectively.

Appendix B: Reducing space complexity with

symmetry

In this Appendix we describe computational schemes
used to reduce the size of the transfer matrix, and thus
significantly decrease the algorithmic space complexity.
The key idea is to identify equivalent states in order
to construct orthogonal bases (or irreducible represen-
tations [20], as have been implemented in related mod-
els [16, 57]). We here adapt this method following the
framework of the structured matrix decomposition de-
scribed in Appendix A. We first derive the general
method for structured matrices with certain permuta-
tion invariance, and then analyze the complexity of the
transfer matrix involved in solving the models of interest.
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1. General case

The n×nmatrixT is invariant under permutationsP1,
P2, ..., Pg, such that PT

i TPi = T for i = 1, ..., g and that
these transformations form a symmetry group G. Matrix
indexes are then grouped by these transformations. For
example, for a centrosymmetric matrix, under the trans-
formation of PTTP where P = (en, en−1, ..., e1), row and
column indexes are permuted as 0 → n − 1, 1 → n − 2
and so on. The indexes i and n− i− 1 are then deemed
equivalent, and thus there are n/2 equivalent sets in to-
tal.
We next construct a (non-square) matrix with orthog-

onal columns

Q ≡







1/
√
g1 0 ... ... 0

0 ... 1/
√
gi ... ...

... ... ... ... 1/
√
gn

1/
√
g1 ... ... ... ...






(B1)

of size n ×m, where m is the number of sets of equiva-
lent indexes (not to be confused with the magnetization).
Each column in Q is a column vector corresponding to
an equivalent index set of size gi. The entries in Qi are
nonzero, and set to 1/

√
gi, if and only if its row index is

in the set. Applying the similarity transformation on T

with these bases, we obtain a matrix of size m×m

M = QTTQ. (B2)

The eigenvalues of M are also eigenvalues of T, and
specifically, M and T have the same leading eigenvalue
with eigenvector ϕ0(T) = Qψ0(M).
Two-dimensional spin models under periodic boundary

condition are invariant under rotation of one spin (a Cn

axis) as well as under counting spins backwards (a σv
reflection), and hence belongs to the Cnv point group.
In absence of external field, h = 0, the model is also
invariant under flipping all spins (a σh reflection), and
hence it belongs to the Dnh group. The dimension of
M is asymptotically reduced by a factor that equals the
order of the symmetry group—2L for Cnv and 4L for
Dnh (Fig. 15). In this way, the transfer matrix size can
be compressed by a factor of 2L (or 4L if h = 0 and only
the leading eigenvalue is needed).

2. ⊥TM and /TM

We now adapt this compressed matrix to our trans-
fer matrix calculation. We first consider ⊥TM. (The
construction of /TM is very similar to that of ⊥TM, as

we will see later.) Directly implementing Eq. (A11) to
calculate the matrix-vector multiplication

w = Mv = QTTQv = QT (Tx)1/2(PTz,1)L(Tx)1/2Qv

= QTw′

(B3)
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FIG. 15. The number m of equivalent state sets of differ-
ent symmetry group grows with layer length L for (a) ⊥TM
and (b) ‖TM. The values obtained follow certain integer
series [58]. Insets: m asymptotically scales with Nstates/L,
Nstates/(2L) and Nstates/(4L) under Cn, Cnv and Dnh sym-
metry, respectively.

gives essentially the same time and space complexity as
for calculating Tv. Further optimization is, however,
possible. Observing that entries in the intermediate vec-
tor w′

a that belong to the same equivalent states (a ∈ b)
are identical, we only need to compute one (among gb
identical entries) for each set of equivalent states in w′

to construct w, such that

wb =
√
gbw

′
a. (B4)

To take advantage of this property, we initialize an array
of equivalent states, denoted [b], containing one of the
states (a) in the set as well as the set size (gb). The num-
ber of equivalent sets approaches 2L/(4L) for h = 0 and
2L/(2L) otherwise. In both cases [b] has a space com-
plexity of O(2L/L). This list can be constructed in two
ways that each offer a different space/time complexity
balance. The first is to set up a temporary array of 2L

bits (thus with a O(2L) space complexity) and scanning
once (thus with a O(2L) time complexity). The second
is to enumerate each of the 2L states and check all of
its equivalent states by bit-wise operations (in a O(2LL)
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time complexity), and push the state to the array only if
it has the smallest index of all equivalent states. The to-
tal number of equivalent state [O(2L/L)] then gives the
space complexity.
Equation (B3) can then be evaluated in two parts.

First, we compute the inter-layer interactions of all states
a with L′ leftmost spins having the same configuration,
aℓ. Denoting the remaining L − L′ bits to their right as
ar, we hence have a ≡ aℓ.ar where “.” is the bit concate-
nation operation. In practice, we set up an intermediate

vector aℓ

v of size 2L−L′

such that

(

(0v)T , (1v)T , ..., (2
L
′

−1v)T
)T

= Qv. (B5)

Decoding each aℓ

v from [b] and v costs a time O(L×m) =

O(2L) and needs to run 2L
′

times. For each aℓ

v, we
further compute

aℓ

w′′ =
aℓ
(

(PTz,1)L−L′

(Tx)1/2)
)

· aℓ

v. (B6)

The time complexity of this step is O[(L−L′)2L−L′

] and

it is run 2L
′

times (or 2L
′−1 times for h = 0, because T is

then centrosymmetric). Second, for every non-equivalent
entry in w′, we also decompose the index a′ = (a′ℓ.a′r)

and incrementw′
a′ by exp

[

−βVz(aℓ, a′ℓ)
]

·a
ℓ

w′′
a′r . In sum-

mary this approach gives

w′
a′ = (Tx

a′,a′)1/2
∑

aℓ

exp
[

−βVz(aℓ, a′ℓ)
]

· a
ℓ

w′′
a′r , (B7)

and the time complexity for this step is O(2L
′ ×

m) = O(2L
′+L/L). Comparing the time complexities

of Eq. (B5), (B6) and (B7), we choose L′ = 1 + ⌊log2 L⌋
so that the total time complexity for matrix-vector mul-
tiplication remains O(2LL) and the space complexity is
reduced to O(2L/L).
The permutation operations that generate equivalent

states for /TM slightly differs from ⊥TM because the
layer then has a zigzag shape. Specifically, the system is
invariant after shifting two (instead of one) spins as well
as by first shifting one spin and then counting backwards
(instead of simply counting backwards). The number of
equivalent statesm then asymptotically approaches 2L/L
(or 2L/(2L) for h = 0). Because we consider two spins
(s1, s2) in every operation in Tz,2, we choose (an even)
L′ = 2(1+ ⌊log2 L/2⌋). The time and space complexities
remain the same as for ⊥TM, but with a larger prefactor.

3. ‖TM

Similarly to Eq. (B3), for ‖TM the matrix-vector mul-
tiplication is decomposed as

w = Mv = QTTQv = QT (Tx)(PTz,1)LQv = QTw′.
(B8)

Now, however, M is not symmetric. In addition to per-
mutation invariance, we can also take advantage of the
sparsity of ‖TM (Sec. A 2) to compute M · v. The extra

space needed is a vector of size 2L which is much smaller
than the vector size ofm = O(4L/L). The time complex-
ity can also be reduced because w′ has identical entries
for equivalent states.
The algorithm is as follows. First, we initialize the

array of equivalent states [b], as we did for ⊥TM, such
that each element is a pair of L-bit integers (a, a′) that
represents this set. Two extra arrays are stored for later
bookkeeping purposes:

1. An array of equivalent states for a alone, denoted
[c], along with the period of a under cyclic shift.
The size of [c] approaches m′ ≈ 2L/(4L) for Dnh

and m′ ≈ 2L/(2L) for Cnv bases.

2. An array of indexes [b′] for each representing state
(a, a′) in [b] that records the references in [b]
corresponding to the equivalent state with layers
swapped, (a′, a), denoted b′(a′, a).

The construction of [b′] can follow the construction of [b].
For each (a, a′) newly appended to [b], we find b′(a′, a).
If b′(a′, a) ≤ (a, a′), a binary search finds the index of
b′(a′, a) in [b]. (Each binary search takes on average
O(lnm) = O(L) operations, and hence the overall al-
gorithmic complexity remains unchanged.) In summary,
the initialization takes O(4L) operations, and storing [b]
takes space O(4L/L).
Second, we setup the subroutine for the matrix-vector

multiplication of Eq. (B3). Again we denote the indexes
of w and v as (a, a′) and (a′, a′′), respectively. For each

a′ in [c], we construct an intermediate vector a′

v such
that

(

(a
′

1v)T , (a
′

2v)T , ..., (a
′

m′v)T
)T

= Qv. (B9)

Because each a′

v is of size 2L and m′ of these vectors in
total, the complexity of this step is O(2Lm′) = O(4L/L).

For each a′

v, we compute

a′

w′′ =
(

P · ⊥Tz,1
)L · a′

v, (B10)

with J ′ = −κJ in Tz,1. It takes O(2LL) operations
per a′, and hence the total complexity of this step is
O(2LL× 2L/L) = O(4L).

The entries in the resulting vector,
a′

w′′
a correspond

to those of the intermediate vector w′ with

w′
b′(a,a′) = Tx

b′(a,a′),b′(a,a′)
a′

w′′
a. (B11)

Again, we have

wb =
√
gbw

′
a, (B12)

and hence Eq. (B11) needs to be evaluatedm = O(4L/L)
times.
In summary, the time complexity, O(4L), is improved

by a factor of L over that in Sec. A 2. The extra space
needed is O(m′) which is marginal given that input and
output vectors have sizes O(m).
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4. Remarks
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FIG. 16. Number of iterations Niter needed to solve for the
leading eigenvalue of (a) ⊥,ATM with κ = 0.6 and (b) ⊥,DTM
with κ = 0.6 for L = 8, 12, ..., 24, from blue to red lines.
Results of the compressed TM (main plots) and the original
2L × 2L TM (insets) are compared with the heat capacity
for L = 24 (light red strip, right axis). While Niter for the
original TM scheme exhibits a dramatic numerical slowdown
upon approaching the phase transition in both models (verti-
cal dashed lines) following the heat capacity trend, the com-
pressed TM scheme increases by at most a factor of three.

Thanks to these compressed TMs, the evaluation of
systems with L up to 36 for ⊥TM, 32 for /TM and 16
for ‖TM is accessible within 60 GB memory using the

Spectralib package [59]. For these largest systems and
an iteration convergence criterion of 10−10, computations
take about one day on eight cores for ⊥TM and /TM and
half a day on a single core for ‖TM. The time and mem-
ory needed for evaluating larger systems exceed currently
available computational resources and have thus not been
successfully achieved.
Interestingly, when evaluating T with an iterative

eigensolver, convergence slows down markedly around
transition temperatures (Fig. 16). (For the DNNI model,
the slowdown extends to the entire modulated phase.)
This property is related to the underlying physics of
these transitions. The condition number, which is de-
fined as the error of the output given a slightly erro-
neous (or finite-precision) input, is indeed related to the
specific heat, which corresponds to the energy fluctua-
tions, c = 〈(∆u)2〉/(kBT 2). When c is high, the output
of the eigenvectors (density of configurations) is unsta-
ble, which corresponds to a large condition number. The
slowdown for the compressed TM, however, is much less
pronounced. Said differently, the compressed TM is bet-
ter conditioned, which results in a more numerically sta-
ble algorithm and higher-accuracy results. In physical
terms, this suggests that part of the c growth is then
scaled away through the transformation to a compressed
TM.
A potential challenge for this decomposition, however,

is that subleading eigenvalues of T can lie either in
span(M) or in null(M). In other words, the spectral gap,
which gives the leading correlation length, of M does not
necessarily coincide with that of T. In practice, it is ob-
served that for ‖,AT, ⊥,DT, ‖,3T and /,3T in h = 0, the
subleading eigenvectors are all skew-symmetric, and are
preserved in the compressed TMs with Cnv bases. We
therefore identify the correlation length from the com-
pressed matrix. For ⊥,AT, however, the subleading eigen-
value is doubly degenerate (as in Ref. 20), and is observed
in the null space of M obtained from Cnv bases. The
original transfer matrix is thus used to identify the cor-
relation length in this case. As noted in Ref. 20 this
property follows from the symmetry of the bases. For
other models a similar argument might also be possible.
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