

Experimental investigation of high-spin states in ^{90}Zr

P. Dey,^{1,*} D. Negi,^{1,†} R. Palit^{1,‡}, P. C. Srivastava,² Md. S. R. Laskar,¹ B. Das,¹ F. S. Babra,¹ S. Bhattacharya,³ Biswajit Das,¹ K. Rojeeta Devi,⁴ R. Gala,¹ U. Garg,⁵ S. S. Ghugre,⁶ E. Ideguchi,⁷ S. Kumar,⁴ A. Kundu,¹ G. Mukherjee,^{8,9} S. Muralithar,¹⁰ S. Nag,¹¹ S. Nandi,^{8,9} Neelam,⁴ M. Kumar Raja,¹² R. Raut,⁶ R. Santra,¹ A. Sharma,¹³ S. Sihotra,¹⁴ A. K. Singh,¹⁵ R. P. Singh,¹⁰ and T. Trivedi³

¹Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005, India

²Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India

³Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India

⁴Department of Physics & Astrophysics, University of Delhi, Delhi 110007, India

⁵Physics Department, University of Notre Dame, Notre Dame, Indiana 46556, USA

⁶UGC-DAE CSR Kolkata Centre, Kolkata 700098, India

⁷Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

⁸Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India

⁹Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India

¹⁰Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India

¹¹Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India

¹²Department of Physics, GITAM Institute of Science, GITAM University, Visakhapatnam 530045, India

¹³Department of Physics, Himachal Pradesh University, Summer Hill, Shimla 171005, India

¹⁴Department of Physics, Panjab University, Chandigarh 160014, India

¹⁵Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

(Received 13 December 2021; accepted 23 March 2022; published 11 April 2022)

High-spin states of ^{90}Zr have been investigated using the heavy-ion fusion-evaporation reaction $^{82}\text{Se}(^{13}\text{C}, 5n)$ at a beam energy of 60 MeV. Excited levels of ^{90}Zr have been observed up to an excitation energy of ≈ 13 MeV and a spin of $\approx 20\hbar$ with the addition of thirty-two new γ -ray transitions to the proposed level scheme. Structures of both the positive- and negative-parity states up to the highest observed spin have been interpreted with shell-model calculations using the GWBXG interaction and a ^{68}Ni core. Calculations suggest the role of neutron excitations across the $N = 50$ shell gap for states with greater than 7 MeV excitation energy. High-spin states in these bands are interpreted to be generated by the recoupling of stretched proton and neutron configurations.

DOI: [10.1103/PhysRevC.105.044307](https://doi.org/10.1103/PhysRevC.105.044307)

I. INTRODUCTION

Nuclei in the vicinity of shell closures are of particular interest in nuclear structure studies because they provide a platform for scrutinizing the validity and details of shell-model theories. It is now computationally feasible to extend shell-model calculations to higher excitations that incur a larger model space and an increased number of valence nucleons, to be used for the purpose. High-spin states in the $A \approx 90$ mass region, with $Z \approx 40$ and $N \approx 50$, have been subjects of investigation in many studies, both experimentally and theoretically [1–31]. These states have multiquasiparticle configurations, with the $g_{9/2}$ orbital playing a significant role towards the generation of high-spin states. The contribution of proton $g_{9/2}$ orbital comes into the picture either due to the (proton) particle occupancy of the orbital, which is for

nuclei with $Z > 40$, or due to excitations of protons from the fp orbitals into the $g_{9/2}$ orbital across the $Z = 40$ subshell gap. These excitations dominate the lower-energy part of the level scheme in these nuclei. Similarly, the role of neutron $g_{9/2}$ orbital towards the high-spin generation is seen to be either due to the already-present holes in it, which is the case for nuclei with $N < 50$, or to excitations across the $N = 50$ shell gap into the gd orbitals. Due to the larger energy of this gap, the contributions from these excitations underlying the high-spin states in $N = 50$ nuclei are observed at higher excitation energies. Such excitations of one or more neutrons from the $1g_{9/2}$ orbital into the $2d_{5/2}$ and $1g_{7/2}$ have been observed in the ^{86}Kr ($Z = 36$) [2], ^{87}Rb ($Z = 37$) [4], ^{88}Sr ($Z = 38$) [6], ^{89}Y ($Z = 39$) [11,12], ^{91}Nb ($Z = 41$) [21], ^{92}Mo ($Z = 42$) [23], ^{93}Tc ($Z = 43$) [27], ^{94}Ru ($Z = 44$) [29], and ^{95}Rh ($Z = 45$) [31] isotones, but it has yet to be confirmed in ^{90}Zr ($Z = 40$) [15]. The shell-model calculations have been used to describe observed excited states based on either proton excitation across $Z = 40$ or neutron excitation across $N = 50$. It will be intriguing to invoke the two excitations simultaneously for ^{90}Zr , which is the focus of the present study.

*piku.dey@tifr.res.in

†dinphysics@gmail.com

‡palit@tifr.res.in