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N
um

erous studies have docum
ented rare-earth elem

ent (R
EE) m

obility in 
hydrotherm

al and m
etam

orphic 
fluids, but the processes and tim

ing of R
EE 

m
obility are rarely w

ell constrained. The R
ound Top laccolith in the Trans-Pe

-
cos m

agm
atic province of w

est Texas, a R
EE ore prospect, has crosscutting 

fractures filled w
ith fluorite and calcite along w

ith a variety of unusual m
in

-
erals. M

ost notably am
ong these is an yttrium

 and heavy rare-earth elem
ent 

(Y
H
R
EE) carbonate m

ineral, w
hich is hypothesized to be lokkaite based on 

elem
ental analyses. W

hile the R
ound Top laccolith is dated to 36.2 ± 0.6 M

a 
based on K/A

r in biotite, U
-Pb 

fluorite and nacrite ages presented here clearly 
show

 the m
ineralization in these veins is younger than 6.2 ± 0.4 M

a (the age 
of the oldest 

fluorite). This discrepancy in dates suggests that 
fluids interacted 

w
ith the laccolith to m

obilize R
EE m

ore than 30 m
.y. after igneous em

place
-

m
ent. The tim

ing of observed REE m
obilization overlaps w

ith Rio G
rande rift 

extension, and w
e suggest that F-bearing 

fluids associated w
ith extension 

m
ay be responsible for initial m

obilization. A
 later generation of 

fluids w
as 

able to dissolve 
fluorite, and w

e hypothesize this later history involved sul
-

furic acid. S
ynchrotron spectroscopy and laser ablation±inductively coupled 

plasm
a±m

ass spectrom
etry (LA

-IC
P-M

S
) U

-Pb dating of m
inerals that record 

these fluids offer trem
endous potential for a m

ore fundam
ental understanding 

of processes that are im
portant not only for REE but other ore deposits as w

ell.

■
1. IN

TRO
D
U
CTIO

N

Laser ablation±inductively coupled plasm
a±m

ass spectrom
etry (LA

-IC
P-M

S
) 

has revolutionized geochem
ical analyses because it signi

ficantly reduces m
ea

-
surem

ent tim
e and allow

s for sam
ple exploration in the form

 of elem
ental m

aps 
and sam

ple transects. LA
-IC

P-M
S
 is especially useful for m

aking trace-elem
ent 

m
easurem

ents on rocks w
ith heterogeneous com

positions and com
plex 

fluid 
histories. The ability to preserve m

ineral fabrics is particularly im
portant in 

geochronology, w
here spatiotem

poral records aid geologic interpretations. 
For com

plex geologic system
s, such as hydrotherm

ally or m
etam

orphically 
altered

 ro
cks, d

etail o
ften

 o
ccu

rs o
n
 scales sm

aller th
an

 even
 a <200 u

m
 

laser can distinguish. In these cases, pairing LA
-IC

P-M
S
 w
ith spectroscopic 

techniques such as Ram
an or synchrotron is an innovative w

ay to assess the 
geochem

ical com
position of the rocks being analyzed.

H
ydrotherm

ally altered rocks often have com
plicated tectonic and 

fluid 
histories that m

ake it dif
fi

histories that m
ake it dif

fi
histories that m

ake it dif
cult to reconstruct the processes leading to ore gen

-
esis in the rock record. D

ating these geologically com
plex deposits rem

ains 
challenging. G

eochronologic m
ethods, including K

-A
r and A

r-A
r on K

-bear
-

ing vein m
aterials; S

m
-N

d on 
fluorite and garnet; R

b-S
r on sphalerite; U

-Pb 
and Th-Pb on calcite and several other less abundant U

-bearing phases have 
added considerably to constraining ore m

ineralization. M
ore recently, the 

application of in situ techniques such as laser ablation IC
P-M

S
 and sensitive 

high-resolution ion m
icroprobe (S

H
R
IM

P) has greatly expanded the scope for 
dating m

ineralization, particularly w
ith U

-Pb dating of carbonates and opal 
(Li et al., 2004; Pfaff et al., 2009; B

urisch et al., 2017; Tan et al., 2017; Yang et 
al., 2017; W

alter et al., 2018).
W
e studied a suite of hydrotherm

al veins that crosscut the R
ound Top lac

-
colith (referred to subsequently as R

ound Top) in the Trans-Pecos m
agm

atic 
province of w

est Texas. These veins contain high concentrations of trace ele
-

m
ents such as REE and U

 and are heterogeneous on a m
icro-scale. W

e used a 
variety of m

icroscopy and spectroscopy techniques to elucidate the m
ineralogy 

and details of R
EE enrichm

ent in this im
portant R

EE deposit. B
ased on these 

findings, w
e used LA

-IC
P-M

S
 U
-Pb dating of 

fluorite, nacrite, and calcite to place 
age constraints on vein form

ation events. The com
bined approaches allow

 
us to identify at least tw

o types of 
fluids that show

 clear relationships to R
EE 

m
obilization. Pairing absolute and relative geochronology w

ith R
EE patterns, 

w
e identify m

ultiple R
EE rem

obilization events that occurred betw
een 6 and 

4 M
a. Know

ledge of the tim
ing of geochem

istry of these 
fluids m

ight offer clues 
into the speci

fic com
plexing ligands and the m

echanism
 for rem

obilization.
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atrick-

B
a
ez 

g
e

o
m
etr

y. 
P

h
ot

o
n 

fl
u
x 

at t
his 

i
nci

d
e

nt 
b
e
a

m 
e

n
er

g
y 

w
as 

~
3 ×

 10
9 

p
h

ot
o

ns 
p
er s

ec
o

n
d. 

X-r
a
y fl

u
or

esc
e

nc
e 

s
p
ectr

a 
w
er

e c
oll

ect
e

d 
usi

n
g t

w
o si

n
gl

e-
el

e
m
e

nt 
V
ort

e
x-

E
X silic

o
n-

drift-
di

o
d
e 

d
et

e
ct

or
s 

a
n

d 
o

n
e f

o
ur-

el
e

m
e

nt 
V
ort

e
x-

M
E
4 

sili
c

o
n-

drift-
di

o
d
e 

d
et

e
ct

or (
SII 

N
a

n
ot

ec
h

n
ol

o
g
y). 

C
o

m
p

ositi
o

n
al 

m
a

ps 
w
er

e c
oll

ect
e

d i
n 

a c
o

nti
n

u
o

us sc
a

n 

m
o

d
e 

as 
d
escri

b
e

d i
n 

L
a

nzir
otti 

et 
al. (

2
010).

F
oll

o
w-

u
p s

y
nc

hr
otr

o
n 

X
R
F 

el
e

m
e
nt

al i
m
a
gi

n
g 

w
as 

p
erf

or
m
e
d 

at t
h
e s

u
b

mi
-

cr
o
n-r

es
ol

uti
o
n 

X-r
a
y s

p
ectr

osc
o
p
y (

S
R

X) 
a
n
d 

X-r
a
y 

fl
u
or

esc
e
nc

e 
micr

o
pr

o
b
e 

(
X
F

M) 
b
e
a

mli
n
es 

at t
h
e 

N
ati

o
n
al 

S
y
nc

hr
otr

o
n 

Li
g
ht 

S
o
urc

e II (
N

S
L

S-II), 
as 

w
ell 

as t
h
e 

b
e
a

mli
n
e 

1
3-I

D-
E 

at t
h
e 

a
d
v
a
nc

e
d 

p
h
ot

o
n s

o
urc

e (
A
P

S). 
At t

h
e 

S
R

X 
b
e
a

m
-

li
n
e, s

a
m
pl

es 
w
er

e 
m
o
u
nt

e
d 

at 
3
5

 t
o i

nci
d
e
nt 

b
e
a

m, 
w
hil

e 
a t

hr
e
e-

el
e

m
e
nt 

silic
o
n-

drift-
di

o
d
e 

d
et

ect
or 

w
as 

pl
ac

e
d 

at 
9
0

 r
el

ati
v
e t

o t
h
e i

nci
d
e
nt 

b
e
a

m. 
X

R
F 

m
a
ps 

w
er

e c
oll

ect
e
d 

b
y r

ast
er sc

a
n
ni

n
g s

a
m
pl

es t
hr

o
u
g
h t

h
e 

micr
o-f

oc
us

e
d 

b
e
a

m 
wit

h 
a s

p
ot siz

e 
of 

2 
×
 
2 

µ
m. 

At t
h
e 

X-r
a
y fl

u
or

esc
e
nc

e 
micr

o
pr

o
b
e (

X
F

M) 

b
e
a

mli
n
e, 

a l
ar

g
e 

X
R
F 

m
a
p 

w
as c

oll
ect

e
d 

wit
h t

h
e s

a
m
pl

e 
m
o
u
nt

e
d 

at 
4
5

 r
el

a-

ti
v
e t

o t
h
e 

micr
o-f

oc
us

e
d i

nci
d
e
nt 

b
e
a

m 
wit

h 
a s

p
ot siz

e 
of 

5 ×
 
8 

µ
m. 

D
at

a 
w
er

e 

c
oll

ect
e
d 

usi
n
g 

o
n-t

h
e-fl

y sc
a
n
ni

n
g 

wit
h 

a 
1
2
5 

ms 
d

w
ell ti

m
e 

usi
n
g 

a f
o
ur-

el
e

m
e
nt 

V
ort

e
x-

M
E
4 silic

o
n-

drift-
di

o
d
e 

d
et

ect
or 

wit
h i

nci
d
e
nt 

e
n
er

g
y t

u
n
e
d t

o 
1
7.

3 k
e

V. 
At 

b
e
a

mli
n
e 

1
3-I

D-
E, s

a
m
pl

es 
w
er

e 
m
o
u
nt

e
d 

at 
4
5

 r
el

ati
v
e t

o t
h
e i

nci
d
e
nt 

b
e
a

m, 

a
n
d s

a
m
pl

es 
w
er

e r
ast

er sc
a
n
n
e
d 

wit
h 

a 
micr

o-f
oc

us
e
d s

p
ot siz

e 
of 

1 
×
 
1 

µ
m. 

X-r
a
y 

fl
u
or

esc
e
nc

e 
w
as 

m
e
as

ur
e
d 

wit
h 

a
n i

nci
d
e
nt 

b
e
a

m 
e
n
er

g
y t

o t
w
o 

diff
er

e
nt 

e
n
er

gi
es 

a
b
o
v
e 

a
n
d 

b
el

o
w t

h
e 

U 
L-

e
d
g
e 

bi
n
di

n
g 

e
n
er

g
y, 

1
7.

0
8 

a
n
d 

1
7.

1
8 k

e
V, 

usi
n
g 

a f
o
ur-

el
e

m
e
nt silic

o
n-

drift-
di

o
d
e 

d
et

ect
or (

Hit
ac

hi) 
m
o
u
nt

e
d 

at 
9
0

 r
el

ati
v
e t

o 

i
nci

d
e
nt 

b
e
a

m. 
T

w
o i

nci
d
e
nt 

b
e
a

m 
e
n
er

gi
es, 

1
7.

0
8 

a
n
d 

1
7.

1
8 k

e
V, 

a
b
o
v
e 

a
n
d 

b
el

o
w 

t
h
e 

U 
L-

e
d
g
e 

bi
n
di

n
g 

e
n
er

g
y, 

w
er

e 
us

e
d 

at 
1
3-I

D
E t

o c
orr

ect f
or s

p
ectr

al 
o
v
er-

l
a
ps 

of t
h
e 

U 
L-

e
d
g
e 

e
missi

o
n li

n
es 

wit
h 

e
missi

o
n li

n
es 

d
u
e t

o 
R
b 

a
n
d 

Sr 
K-

e
d
g
e 

fl
u
or

esc
e
nc

e, 
w
hic

h i
n 

fl
u
orit

e c
a
n 

b
e 

v
er

y 
pr

o
n
o
u
nc

e
d 

wit
h 

e
n
er

g
y 

dis
p
er

si
v
e 

a
n
al

ysis 
at t

h
e 

e
n
er

g
y r

es
ol

uti
o
n 

of t
h
e 

d
et

ect
or. 

T
h
es

e 
o
v
erl

a
ps 

ar
e str

o
n
g
est 

o
n t

h
e 

U 
L

α
 
e

missi
o
n li

n
e 

b
ut 

n
e
gli

gi
bl

e 
w
h
e
n 

g
e
n
er

ati
n
g 

m
a
ps 

usi
n
g t

h
e 

U 
Lι.

S-
X

R
F 

micr
o

pr
o

b
e 

m
e
as

ur
e

m
e

nts 
w
er

e 
m
a

d
e i

n t
h
e ™ 

t
e

n
d
er

 
e

n
er

g
y r

a
n

g
e 

of 
1 t

o 
5 k

e
V, 

at t
h
e t

e
n

d
er 

e
n
er

g
y 

X-r
a
y s

p
ectr

osc
o

p
y (

T
E

S) 
b
e
a

mli
n
e 

8-
B

M 

a
n

d 
at 

N
S
L

S-II 
a

n
d 

at 
b
e
a

mli
n
e 

X
1
5

B 
at 

N
S
L

S (
N

ort
hr

u
p 

et 
al., 

2
01

6; 
N

ort
hr

u
p, 

1S
u

p
pl

e
m
e

nt
al 

M
at

eri
al

s. 
S

u
p

p
orti

n
g 

M
at

eri
al

s 
1: 

O
utcr

o
p 

p
h

ot
os. 

D
at

a 
S
et 

S
1: 

U-
T

h-
P

b r
a

w 
d
at

a 
wit

h 

d
at

a r
e

d
ucti

o
n 

m
at

h. 
D
at

a 
S
et 

S
2: 

R
E

E 
d
at

a f
or 

e
ac

h 

mi
n
er

al 
a

n
al

yz
e

d. 
D
at

a 
S
et 

S
3: 

M
et

a
d
at

a 
ass

oci
at

e
d 

wit
h 

d
at

a 
ac

q
uisiti

o
n, 

pr
oc

essi
n

g, 
a

n
d r

e
p

orti
n

g f
ol

-

l
o

wi
n

g 
H

or
st

w
o

o
d 

et 
al. (

2
01

6). 
D
at

a 
S
et 

S
4: 

C
o

m
pil

a-

ti
o

n 
of 

W
C-

1 st
a

n
d
ar

d 
a

n
al

ys
es 

ass
oci

at
e

d 
wit

h 
e
ac

h 

u
nk

n
o

w
n 

a
n
al

yt
e. 

Ta
bl

e 
S
1: 

C
o

m
pil

ati
o

n 
of 

a
g
es 

or
g
a

-

niz
e

d 
b
y s

a
m

pl
e. 

Pl
e
as

e 
visit 

htt
ps://

d
oi.

or
g/

10.
11

3
0

/
G

E
S
0
2
1
3
9.

S
1 

or 
acc

ess t
h
e f

ull-t
e
xt 

articl
e 

o
n 

w
w

w

.
gs

a
p

u
bs.

or
g t

o 
vi

e
w t

h
e 

S
u

p
pl

e
m
e

nt
al 

M
at

eri
als.
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�
Pi

c
ci

o
n
e 

et 
al.

|
Fl

u
orit

e 
U-

P
b 

a
g
e 

c
o
nstr

ai
nts 

o
n r

ar
e-

e
art

h 
el

e
m
e
nt 

m
o

biliz
ati

o
n

G
E

O
S

P
H

E
R

E
|

V
ol

u
m
e 

1
5

|
N
u

m
b
er 

X

�
��

�
��

�
��

�
�
�
��

2
019). I

nci
d
e

nt 
b
e
a

m 
e

n
er

g
y 

w
as s

et t
o 

3
5
5
5 

e
V 

wit
h 

Si (
111) 

m
o

n
oc

hr
o

m
at

or 

cr
yst

als 
a

n
d f

oc
us

e
d t

o 
a 

5 
×
 
10 

µ
m s

p
ot siz

e f
or l

ar
g
e 

el
e

m
e

nt
al 

m
a

ps 
a

n
d f

or 

micr
o

b
e
a

m 
X-r

a
y 

a
bs

or
pti

o
n s

p
ectr

osc
o

p
y 

a
n

d 
w
as r

e
d

uc
e

d t
o 

2 
×
 
3 

µ
m f

or fi
n
e 

m
a

p
pi

n
g. 

E
arli

er 
m
e
as

ur
e

m
e

nts 
at 

X
1
5

B (
N

S
L

S 
pr

ec
ur

s
or t

o 
T

E
S) 

us
e

d 
a s

p
ot 

siz
e 

of 
10 

×
 
1
5 

µ
m 

a
n

d 
Si (

111) 
m

o
n

oc
hr

o
m
at

or. 
S
a

m
pl

es 
w
er

e 
ori

e
nt

e
d 

at 
4
5

 

t
o 

b
e
a

m, 
a

n
d fl

u
or

esc
e

nc
e 

w
as 

m
e
as

ur
e

d 
usi

n
g 

a 
C
a

n
b
err

a 
ultr

a-l
o

w
±
e
n
er

g
y 

G
e 

d
et

ect
or. 

S
etti

n
g 

a
n 

e
n
er

g
y 

of 
3
5
5
5 

e
V sti

m
ul

at
es 

fl
u

or
esc

e
nc

e fr
o

m t
h
e 

U 

M
5  

e
d

g
e, t

h
e 

Y 
L3  

e
d

g
e, 

a
n

d t
h
e 

S, 
Si, 

Al, 
a

n
d 

M
g 

K-
e

d
g
es 

b
ut is 

b
el

o
w t

h
e 

C
a 

K-
e

d
g
e t

o 
a
v
oi

d i
nt

erf
er

e
nc

es fr
o

m t
h
at 

m
aj

or 
el

e
m
e

nt. 
E

n
er

g
y sc

a
n

ni
n

g 
w
as 

c
o

n
d

u
ct

e
d i

n 
q

ui
c
k 

o
n-t

h
e-

fl
y 

m
o

d
e, 

1
0
±3

0 
s
e
c

o
n

d
s 

p
er 

s
c
a

n 
wit

h 
m

ulti
pl

e 

sc
a

ns 
at s

el
ect

e
d 

pi
x
els 

of t
h
e 

el
e

m
e

nt
al 

m
a

ps.

3.5 Laser 
Ablation Ele

ment 
Analyses and 

U-
Pb 

Geochronology

L
as

er 
a

bl
ati

o
n
±i

n
d

ucti
v
el

y c
o

u
pl

e
d 

pl
as

m
a
±

m
ass s

p
ectr

o
m
etr

y (
L

A-I
C

P-
M

S) 

a
n
al

ys
es 

w
er

e c
o

n
d

uct
e

d 
at t

h
e 

F
acilit

y f
or Is

ot
o

p
e 

R
es

e
arc

h 
a

n
d 

St
u

d
e

nt 
Tr

ai
n
-

i
n

g (
FI

R
S
T) 

at 
S

B
U. 

A 
2
1
3 

U
V 

N
e

w 
Wa

v
e l

as
er s

yst
e

m c
o

u
pl

e
d t

o 
a

n 
A

gil
e

nt 

7
5
0
0c

x 
q

u
a

dr
u

p
ol

e I
C

P-
M

S 
w
as 

us
e

d f
or t

h
e 

a
n
al

ys
es. 

D
at

a s
ets i

ncl
u

d
e 

2
3
8U, 

2
3
2T

h, 
2
0
8P

b, 
2
0
7P

b, 
a

n
d 

2
0
6P

b is
ot

o
p
es, 

w
hic

h 
w
er

e c
oll

ect
e

d s
e

q
u
e

nti
all

y f
or 

0.
1 

s
ec

o
n

ds 
e
ac

h t
hr

o
u

g
h

o
ut 

3
0 s

ec
o

n
d 

a
bl

ati
o

ns. 
A

n 
8
0 

µ
m s

p
ot siz

e 
w
as 

us
e

d 

f
or 

m
ost 

of t
h
e 

a
n
al

ys
es (

4
0 

a
n

d 
1
6
0 

µ
m s

p
ots 

w
er

e 
als

o 
us

e
d i

n s
o

m
e 

of t
h
e 

s
e

q
u
e

nc
es). 

F
or 

all 
of t

h
e 

a
n
al

ytic
al s

essi
o

ns, 
u

nk
n

o
w

ns 
w
er

e 
br

ack
et

e
d 

b
y 

at l
e
ast 

fi
v
e st

a
n

d
ar

d s
p

ots, 
a

n
d t

w
o st

a
n

d
ar

d s
p

ots 
w
er

e i
nt

er
s

p
er

s
e

d 
aft

er 

e
v
er

y 
fi

v
e 

u
n
k

n
o

w
n 

s
p

ot
s. 

A t
y

pi
c
al 

s
e
s
si

o
n i

n
cl

u
d
e
s 

2
0
±3

0 
u

n
k

n
o

w
n
s 

a
n

d 

1
6
±
2
0 st

a
n

d
ar

ds. 
T

h
e 

W
C-

1 c
alcit

e st
a

n
d
ar

d (
R
o

b
erts 

et 
al., 

2
01

7) 
w
as 

us
e

d 
as 

a st
a

n
d
ar

d 
of k

n
o

w
n 

a
g
e f

or 
all 

mi
n
er

al
o

gi
es (c

ar
b

o
n
at

e, 
fl

u
orit

e, 
a

n
d 

ot
h
er 

mi
n
er

als) 
d

u
e t

o t
h
e l

ack 
of st

a
n

d
ar

ds f
or t

h
es

e 
u

n
us

u
al 

mi
n
er

als, 
a

n
d 

N
ati

o
n
al 

I
n
stit

ut
e 

of 
St

a
n

d
ar

d
s 

a
n

d 
Te

c
h

n
ol

o
g
y (

NI
S
T) 

6
1
2 

w
a
s 

u
s
e

d f
or 

P
b i

s
ot

o
p
e 

fr
acti

o
n
ati

o
n c

orr
ecti

o
n 

a
n

d f
or 

a
p

pr
o
xi

m
ati

n
g 

el
e

m
e

nt c
o

nc
e

ntr
ati

o
ns 

usi
n

g 

si
g

n
al i

nt
e

n
sit

y r
ati

o
s. 

D
at

a 
w
er

e r
e

d
u
c
e

d i
n i

olit
e (

P
at

o
n 

et 
al., 

2
0
11) 

u
si

n
g 

t
h
e 

U-
P

b 
G
e

o
c

hr
o

n
ol

o
g
y 

3 (
or 

4) 
d
at

a r
e

d
u
cti

o
n 

s
c

h
e

m
e f

or 
U-

P
b 

a
n
al

y
s
e
s 

wit
h 

NI
S
T 

6
1
2 

a
s t

h
e 

pri
m
ar

y 
P

b-
U 

st
a

n
d
ar

d. 
El

e
m
e

nt 
c

o
n
c
e

ntr
ati

o
n
s 

w
er

e 

pr
oc

ess
e

d 
wit

h t
h
e tr

ac
e-

el
e

m
e

nt 
d
at

a r
e

d
ucti

o
n sc

h
e

m
es (

D
R

S) i
n s

e
mi

q
u
a

n
-

tit
ati

v
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-Pb age constraints on rare-earth elem
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gradation betw
een layered sam

ples (Figs. 2B
 and 2D

) and highly brecciated 
sam

ples (Figs. 2C
, 2F, and 2G

). Calcite appears to m
ineralize last, 

filling spaces 
and perhaps displacing other m

inerals during grow
th in at least som

e cases. 
For exam

ple, in Figure 2B
, the green 

fluorite is fragm
ented and separated by 

calcite even though it form
s a layer over nacrite.

4.1.1 N
acrite

R
am

an m
apping of the m

icrocrystalline phase show
n in Figures 2B

, 2D
, 

and 2G
 (labeled n) is consistent w

ith nacrite A
l

2 S
i2 O

5 (O
H
)4  w

ith several strong 
R
am

an peaks at 126, 195, 318, 524, 747, 3619, and 3696 
∆
 cm

−1 (Figs. 3B
 and 3C

). 
R
am

an m
aps are consistent elem

ental chem
istry, w

hich indicates an A
l-rich 

phase. In som
e cases, other cations (particularly M

g and Fe) are present, w
hich 

m
ay indicate a solid solution w

ith dickite. R
am

an spectroscopy is not able to 
distinguish betw

een nacrite and dickite. H
ere, for sim

plicity, w
e refer to this 

phase as nacrite, although w
e note there m

ay be chem
ical com

plexity. The 
peak at 318 

∆
 cm

−1 is consistent w
ith 

fluorite, suggesting that this phase is a 
m
ix of nacrite + 

fluorite (Fig. 3C
). This nacrite and 

fluorite association is at the 
subm

icron scale, because it is not possible to distinguish betw
een them

 at 
the highest m

agni
fication w

ith the S
EM

 or m
apping w

ith a R
am

an spot size 
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C B
D

A

Figure 2. V
isible light im

ages of the sam
ples from

 the fracture. (A
) H
ost rock w

ith sm
all veins that are 

filled by nacrite and capped by 
fluorite. (B

) Fractured host rhyolite w
ith nacrite betw

een fragm
ents 

and on surfaces follow
ed by 

fluorite, w
hich is brecciated and cem

ented by calcite. (C
) B
recciated 

host rhyolite and nacrite that is cem
ented by calcite. (D

) Layered vein m
aterial w

ith the calcite on 
the bottom

 appearing to be the surface upon w
hich nacrite follow

ed by 
fluorite follow

ed by calcite 
grew

. These m
inerals appear to com

e from
 the top and bottom

. (E) B
recciated green 

fluorite w
ith 

calcite filling betw
een som

e fragm
ents. (F) B

recciated 
fluorite w

ith calcite cem
ent. (G

) B
reccia 

w
ith nacrite and 

fluorite clasts. (H
) Tw

o generations of calcite. The w
hite to am

ber calcite is highly 
enriched in rare-earth elem

ents (R
EEs). The brow

n calcite is low
 in R

EE but has high U
-Pb ratios. 

Labels are: h–
host; ah–

altered host; n–
nacrite; f–

fluorite; fc–
fluorite w

ith calcite; c–
calcite; 

b–
brecciated zone. N

ot visible here is the yttrium
 and heavy rare-earth elem

ent (Y
H
R
EE) carbon

-
ate that lines the breccia clasts and occurs betw

een 
fluorite and calcite. S

cale bars are all 1 cm
.

Fig
u
re 3. (A

) R
am

an
 m

ap
 o
f vein

 m
ate

-
rial. D

ark region on top is 
fluorite (spectra 

show
n in B

); lighter region on the bottom
 

is nacrite (spectra show
n in C

). (B
) R

am
an 

spectra indicate fluorite. (C
) R

am
an spec

-
tra from

 cryptocrystalline phase show
 the 

p
resen

ce o
f n

acrite. (D
) X

-ray d
iffractio

n 
(X

R
D
) sp

ectra o
f a selected

 cryp
to

crys
-

tallin
e p

h
ase in

d
icate m

ixtu
re o

f 
fl
u
o
rite, 

calcite, and a w
eakly crystalline phase(s) 

consistent w
ith nacrite.
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y c
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e
e

n 
fl

u
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e
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s
s
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o
n 

s
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a
c
e
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(
Fi
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5

D 
a

n
d 

6
Y).

Si
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arl
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n
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e 
a

n
d 

fl
u

orit
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a s

a
m
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h 
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i
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2
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a
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e c
o
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Y
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R
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o
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n
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h
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w
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b
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w
hit

e c
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E
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g
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p
ectr

a 
m
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p
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n
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Y s
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o

ws t
h
e 

p
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v
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v
e 
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h
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Y
H

R
E

E 
mi

n
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n
g cl

asts 
as 

w
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as 
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h
er s

urf
ac

es 

(
Fi
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6

Y 
a

n
d 

7
B
±7
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T

h
e 

Y
H

R
E

E c
ar
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o

n
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e is 
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o 
arr
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n

g
e

d i
n 

n
o

d
ul
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Fi

g. 
7

C). 

B
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e
d 

o
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E
D

S s
p
ectr

a, t
h
e 

R
E

E 
mi

n
er

al c
o

nt
ai

ns 
C
a, 

Y, 
C, 

O, 
a

n
d 

H
R

E
Es (

Fi
g. 

7
D) 

a
n

d is 
m

ost lik
el

y l
okk

ait
e [

C
a(

Y,
G

d,
N

d,
D
y)

4 (
C

O
3 )

7  ¥  
9

H2 O].

4.1.4 
Calcite

C
alcit

e fr
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m 
wit
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n t

h
e 

v
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n 
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p
p
e
ar
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o 

b
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h
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p
h
as
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wit

h 
m
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e 

g
e

n
er

ati
o

ns t
h
at 

m
a
y 

b
e s

e
p
ar

at
e

d 
b
y 

diss
ol

uti
o

n s
urf
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es s

h
o
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n 

b
y t

h
e irr

e
g

u
-

l
ar c
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w
e
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e

n
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o
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a

n
y c
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u
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h
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e
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e 
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a
c
e
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st 
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p
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g
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n
g c
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o
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h 

d
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es 

n
ot 
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e 

e
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n
g 

v
ei
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n
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als 
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h
at 
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ol
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o

n f
oll

o
w
e

d 
gr

o
wt
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T

h
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a
y
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p
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o
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h
at 
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n
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b
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w
e
e

n 
w
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e 

a
n

d 
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o
w
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A
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h
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w
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n c
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a
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p
e
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m 
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n
g
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d c
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w
a
v
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l
e

n
gt

h ri
d
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Fi
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T
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d

g
es 
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e 

u
n
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n 

b
y 
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o

u
n

d
e

d 
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n c
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Fi
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n
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n
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r
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o
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e f
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h
e ri
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T
h
e 
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o

w
n c
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a
p

p
e

d 
b
y 

a s
p

o
n

g
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a
n c

al-

cit
e t

h
at 

a
p

p
e
ar

s t
o 

b
e 

a r
esi

d
u
e (

Fi
g. 

8
A). 

W
h
e

n 
p
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h
e

d, t
h
e 

w
hit

e c
alcit

e 

a
p

p
e
ar

s t
o 

b
e 

m
or

e 
a

m
b
er 

wit
h 

w
hit

e l
a
y
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s (
Fi

gs. 
8

B 
a

n
d 

8
C). 

T
h
es

e 
w

hit
e 

l
a
y
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s 
h
a
v
e 

el
e
v
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e
d 
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Fi

g. 
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w
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e t

h
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o
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g 
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o
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h
as l

o
w 

Y 
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g
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w
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G
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Scanning electron m
icroscopy im

aging and S-X
R
F m

apping w
ith TES

 reveal 
that the opaque w

hite layers w
ithin the brecciated 

fluorite sam
ple (Fig. 2E) are 

calcite filling dissolution voids after 
fluorite (Figs. 9B

 and 9C
). Silicon, S, and Y 

line dissolution surfaces (Figs. 9C
 and 9D

), and S
i and Y

 are highly correlated 
(Fig. 9D

). U
ranium

 is highly concentrated in 
fluorite, and the U

 m
aps show

 
cubic shapes that are now

 skeletal that are associated w
ith S

 (Figs. 8E and 
9E). Elem

ent dispersive spectra of the calcite, at high m
agni

fication, w
ithout 

evidence for other phases, show
 that A

l and Si are present at this scale (Fig. 9F).

4.1.5 M
ineral Relationships and REE Patterns

W
e studied a sam

ple that contains all of the recognized phases described 
above to illum

inate m
ineral relationships (Fig. 10). W

e used S
-X

R
F m

apping 
at hard (Fig. 10B

) and tender energy (Fig. 10C
) ranges to m

ap Ca, A
l, M

g, S, Si, 
Y, U

, and Fe in this sam
ple. A

l and M
g clearly delineate nacrite (Fig. 10B

). B
y 

com
parison, it is clear that S, Ca, Sr, Y, and U

 are elevated in nacrite (Figs. 10B
 

and 10C
). U

ranium
 is highly elevated but zoned in 

fluorite (Figs. 10B
 and 10C

). 
The YH

R
EE m

ineral, as illustrated by the m
ap pattern of Y, occurs betw

een cal
-

cite and nacrite (Figs. 10B
 and 10C

), and betw
een 

fluorite and calcite (Figs. 9D
 

and 9E), but not betw
een nacrite and 

fluorite.
R
are-earth elem

ent patterns based on elem
ent analyses by LA

-IC
PM

S
 show

 
differences betw

een phases. The REE patterns for the nacrite show
 pronounced 

negative C
e and Eu anom

alies, w
ith m

iddle and heavy R
EE enrichm

ent and a 
hum

p in the M
R
EE (Fig. 11A

). G
reen 

fluorite has low
er REE concentrations but a 

very sim
ilar pattern to the nacrite (Fig. 11B

). Calcite also show
s the pronounced 

negative C
e and Eu anom

alies, but it is far m
ore depleted in the LR

EEs and 
show

s a steep rise to the H
R
EE, quite distinct from

 the nacrite and 
fluorite REE 

patterns (Fig. 11C
). In som

e calcite sam
ples, there is a slight increase to higher 

enrichm
ent in the REE heavier than H

o, perhaps due to m
ixing w

ith the YH
R
EE 

m
ineral (Fig. 11C

). Rare-earth elem
ent patterns obtained on brow

n calcite show
 

sim
ilar patterns w

ith pronounced negative C
e and Eu anom

alies and H
R
EE 

enrichm
ent. Calcite crust does not have particularly elevated REE, although it 

does show
 the typical H

R
EE enrichm

ent of calcite. The Y
H
R
EE carbonate has 

m
iddle to heavy R

EE patterns w
ith a hum

p at Er (Fig. 11D
). S

om
e of the R

EE 
elevated areas are m

ore enriched in the light R
EE.

4.2 U
-Pb G

eochronology

Fluorite, nacrite, and brow
n calcite w

ithin Round Top fractures are enriched 
in U

 and have favorable U
-Pb ratios. There are m

ultiple generations of all of 
these phases based on their relative order as w

ell as on the differences in color, 
geochem

istry, and ages. Traditional Tera-W
asserburg plots yield analytically 

indistinguishable ages to m
odi

fied Tera-W
asserburg plots using 

232Th-corrected 
208Pb as the norm

alizing isotope. Thus, w
e follow

 Parrish et al. (2018) and use 
the 86TW

 plot and com
m
on Pb-corrected, w

eighted-average 
238U

- 206Pb plots.
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Figure 9. (A
) V
isible light im

age of brecciated green 
fluorite sam

ple as show
n in Figure 3E. (B

) Scan
-

ning electron m
icroscopy (S

EM
) im

age from
 inset area outlined in blue box in A

. (C
) S
EM

 im
age 

of area outlined in purple box in B. (D
) X

15B
 RG

B
 m
ap of Y, Si, U

, respectively. (E) X
15B

 RG
B
 m
ap 

of Y, S, and U
, respectively. (F) Energy-dispersive X

-ray (ED
X
) spectra of calcite show

 that A
l and 

S
i are present even at high m

agni
fication.

Figure 10. (A
) V

isible light im
age of a layered vein as show

n in Figure 3D
. 

S
cale bar is 1 cm

. (B
) X

-ray 
fluorescence (X

R
F) elem

ental m
aps of the S

r 
K
-edge, C

a K
-edge, Y

 K
-edge, and U

 L-edge taken at X
-ray 

fluorescence m
i-

croprobe (X
FM

) beam
line; area corresponding to the sm

all orange rectangle 
in A

. (C
) X
R
F elem

ental m
aps of the A

l K-edge, Y L-edge, M
g K-edge, S K-edge, 

and U
 M
-edge taken at Tender Energy S

pectroscopy (TES
) beam

line; area 
corresponding to the larger purple rectangle in A

.
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4.2.1 Fluorite

Flu
o
rite is m

o
d
erately to

 h
ig
h
ly elevated

 in
 U
, w

ith
 co

n
cen

tratio
n
s o

f 
15±1500 ppm

 (D
ata S

et S
2 [footnote 1]). Pb and Th concentrations are, in 

m
ost cases, m

uch low
er than 1 ppm

. Fluorite has a range of 
238U

/ 206Pb from
 

200 to 2024 and ages that range from
 6.2 to 3.2 M

a (Fig. 12). The oldest flu-
orite identifi

ed is dark green, form
s directly on the host rock (Fig. 2A

), and 
gives an age of 6.2 ± 0.4 M

a (Fig. 12A
). S

lightly younger ages are found in 
the w

ell-studied sam
ple B

R
T-7 show

n in Figures 2E, 5, 6, and 9; this sam
ple 

has tw
o geochem

ically different generations (Fig. 6). The older fluorite gen
-

eration, found on the bottom
 of the sam

ple as oriented in Figure 6, gives an 
age of 5.5 ± 1.1 M

a (Fig. 12B
). The next oldest fluorite form

s very thin coatings 
of dark-purple fluorite on clasts of host rock (Fig. 2B

); it gives an age of 5.2 
± 0.1 M

a (Fig. 12C
). A

 dark-green fl
uorite that follow

s purple nacrite and fl
uorite 

precipitation gives an age of 5.0 ± 0.5 M
a (Fig. 12D

). G
reen fl

uorite clasts w
ithin 

calcite-cem
ented breccia (Figs. 2F and 2G

) are the next youngest generation 
and give overlapping ages of 4.9 ± 0.3 M

a and 4.7 ± 0.2 M
a (Figs. 12E and 12F). 

A
ll of the above ages are in fact indistinguishable from

 ca. 5 M
a. The second 

generation of fluorite found in the top of the B
R
T-7 (Figs. 2E, 5, 6, and 9) is 4.1 

± 0.6 M
a (Fig. 12G

). A
 dark-green fluorite that follow

s green nacrite gives the 
youngest fluorite age at 3.2 ± 0.4 M

a (Fig. 12H
).

4.2.2 N
acrite

N
acrite occurs in four different colors w

ith variable U
, Th, and Pb concen-

trations (D
ata Set S2 [footnote 1]). Th and Pb concentrations are far higher than 

fluorite, and thus the 
238U

/ 206Pb is generally low
er. The ages of nacrite overlap 

w
ith those of fl

uorite. The oldest generation of nacrite is tan and occurs as 
breccia clasts w

ith host rock (Fig. 2C
). This generation of nacrite is surrounded 

by a thin layer of purple fluorite and gives an indistinguishable age from
 that 

fluorite of 5.6 ± 1.3 M
a (Fig. 13A

). A
 purple nacrite layer from

 the sam
ple show

n 
in Figure 2B

 clearly crosscuts the host rock and gives an age of 3.5 ± 1.9 M
a 

(Fig. 13B
). A

nother purple nacrite layer capping green fluorite (Fig. 2D
) and a 

pink nacrite (Fig. 2G
) w

ith surrounding green fluorite give indistinguishable 
ages of 3.4 ± 0.4 M

a and 3.3 ± 1.0 M
a (Figs. 13C

 and 13D
). A

 green nacrite layer, 
also from

 Figure 2D
, gives a slightly younger age of 3.3 ± 0.1 M

a (Fig. 13E). 
The youngest nacrite m

easured w
as a sm

all green clast from
 the sam

ple in 
Figure 2G

, w
hich gave an age of 2.8 ± 0.6 M

a (Fig. 13G
).

4.2.3 Calcite

C
alcite occurs as m

ultiple generations w
ith dissolution surfaces in betw

een. 
For the m

ost part, the calcite has low
 U
 and unfavorable 

238U
/ 206Pb (D

ata S
et 

S
2 [footnote 1]). A

 w
hite calcite w

ith curved crystals m
akes up the m

atrix 
m
aterial for m

ost of the veins w
e studied and encases breccia clasts (Figs. 2F 

and 2G
). This calcite has low

 U
 and low

 U
-Pb and is therefore not suitable for 

dating; based on relative relationships, it occurs later than fl
uorite and the 

Y
H
R
EE m

ineral. A
nother calcite sam

ple has a distinctive brow
n color and has 

elevated Y and YH
R
EE carbonates on its low

er surface (Fig. 2H
). The elevated 

Y, as w
ell as the color and texture, suggest it is a separate generation from

 
the breccia-cem

enting w
hite calcite. This calcite has som

e layers of high U
-Pb. 

C
om

bined, the calcite gives an age of 1.7 ± 0.1 M
a (Fig. 13F).

■
5. D

ISCU
SSIO

N

5.1 U
-Pb G

eochronology

This study explores the utility of U
-Pb dating of fl

uorite, nacrite, and calcite 
paragenesis in REE m

ineralization. G
iven the ubiquitous occurrence of these m

in
-

erals in hydrotherm
al system

s, U
-Pb dating holds great potential for constraining 

the age of associated ore m
inerals. W

e use m
ultiple m

icroscopy techniques to 
investigate the relationships betw

een fl
uorite, nacrite, and vein m

ineralization, 
and w

e com
bine these observations w

ith LA
-IC

P-M
S
 elem

ent m
apping and U

-Pb 
dating to provide absolute tim

e constraints on R
EE m

ineralization.
A
n im

portant contribution of this w
ork is that fl

uorite and associated nacrite 
are far younger than the tim

e of igneous crystallization and therefore m
ust have 

been deposited by secondary fl
uid events. R

are-earth elem
ent ores are often 

assum
ed to be deposited during late stage igneous crystallization. H

ow
ever, 

the 6.2±2.8 M
a fl

uorite and nacrite ages strongly suggest that fl
uids respon

-
sible for m

ineralization are associated w
ith R

io G
rande rifting. C

om
bining 
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Figure 11. (A
) Rare-earth elem

ent (R
EE) pattern for nacrite and fl

uorite m
ixture; (B

) REE pattern for 
green and purple fluorite; (C

) R
EE pattern for calcite; and (D

) R
EE pattern for yttrium

 and heavy 
rare-earth elem

ent (Y
H
R
EE) carbonate m

ineral.
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geochronological evidence w
ith the im

aging techniques, w
e recognize the 

follow
ing sequence of events at Round Top: (1) fracturing and alteration of the 

host rock w
ith deposition of fl

uorite on fracture surfaces; (2) further fracturing of 
host rock and early nacrite deposition, lined by a second generation of fl

uorite, 
in this case, both purple and green; (3) even younger nacrite and fl

uorite line 
veins w

ithin the fractures and are capped by green fl
uorite of the sam

e ages; 
(4) brecciation of host and vein m

aterial w
ith evidence of som

e dissolution of 
fluorite; (5) breccia clasts are lined by a Y

H
R
EE carbonate; and (6) several gen

-
erations of calcite, som

e of w
hich are them

selves lined by the YH
R
EE carbonate 

(Fig. 14). The calcite that surrounds breccia clasts does not have U
-Pb ratios 

that allow
 us to date it, but brow

n calcite found in association w
ith it is 1.7 M

a 
(Fig. 2H

). N
acrite has high R

EE, Th, and U
, w

hile fl
uorite has low

 R
EE w

ith the 

sam
e pattern, low

 Th, and high U
. The w

hite calcite that postdates the Y
H
R
EE 

carbonate has extrem
ely H

R
EE-enriched patterns: up to 1000×

 H
R
EE concen-

trations of post-A
rchean A

ustralian shale (PA
A
S
). The dated brow

n calcite has 
low

 REE concentrations, and no REE m
inerals are observed after its form

ation. 
Thus, R

EE m
obility is constrained to be betw

een 6.2 and 1.7 M
a.

5.2 M
ultiple Fluid Events over the Past 6.2 M

a

The fluid responsible for earliest fracture vein m
ineralization produced an 

intim
ate m

ixture of cryptocrystalline nacrite (A
l

2 S
i2 O

5 (O
H
)4 ) and fluorite. The 

presence of nacrite m
ay suggest hydrotherm

al activity, as it has been found 
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FFigure 12. 
208Pb/

206Pb Tera-W
asserburg plots 

for fluorite. D
ates are given using both an-

chored and unanchored 
208Pb/

206Pb values. 
208Pb values are corrected using m

easured 
232Th follow

ing Parrish et al. (2018). M
S
W
D
–

m
ean square of w

eighted deviates.
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a
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h
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h
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h
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h
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h
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b
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b
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n
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d c
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C
O

N
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O
N
S
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h

o
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h
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h
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e
at 

p
ot

e
nti

al f
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L
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C
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M
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P
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d
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n
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of 
h
y
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o

-

t
h
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m
al 
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n
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u
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n
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h
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mi
n
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v
e
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n
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d
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e
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d
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p
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R
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p l
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w
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h
a
v
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e
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d
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d c
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E c
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b
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e
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b
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e
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2.
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M
a 

n
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n
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M
a c
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o

nsist
e

nt 
wit

h 

t
h
at 

of 
Ri

o 
Gr

a
n

d
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v
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u
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h
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e
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p
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s t
h
at 

a
n 

e
v
e

n 
m

or
e 

a
g

gr
essi

v
e 

fl
ui

d f
oll

o
w
e

d t
h
at 

w
as c

a
p
a

bl
e 

of 
diss
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vi

n
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h
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h
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o t
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h
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a
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n
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a
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P
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b
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