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ABSTRACT

New uranium-lead (U-Ph) analyses of carbonate deposits in the Navajo Sandstone in
southeastern Utah (USA) yielded dates of 200.5 £+ 1.5 Ma (earliest Jurassic, Hettangian Age)
and 195.0 £ 7.7 Ma (Early Jurassic, Sinemurian Age). These radioisotopic ages—the first re-
ported from the Navajo erg and the oldest ages reported for this formation—are critical for
understanding Colorado Plateaun stratigraphy becanse they demonstrate that initial Navajo
Sandstone deposition began just after the Triassic and that the base of the unit is strongly

time-transgressive by at least 5.5 m.y.

INTRODUCTION

The Navajo Sandstone in southeastern Utah
{United States) represents the largest erg in Earth
history (e.g., Blakey et al., 1988), cropping out
on much of the Colorado Plateau (Fig. 1). Fos-
sils are generally lacking, poorly preserved, and/
or not age diagnostic. Determining the age of
the Navajo Sandstone has, therefore, been chal-
lenging. The Navajo Sandstone contains car-
bonate deposits laid down in lakes and springs
{Parrish et al., 2017} from which we report the
first radioisotopic ages, acquired by U-Pb dat-
ing. The dates reported here set the stage for
future work on the development of the Navajo
erg and provide a framework for understanding
mechanisms of the evolution of the basin in the
Jurassic Period.

PREVIOUS WORK ON THE AGE OF
THE NAVAJO SANDSTONE

The Navajo Sandstone is the upper formation
of the Glen Canyon Group, which in southern
Utah and northern Arizona includes the Wing-
ate Sandstone, Moenave Formation, Kayenta
Formation, and Navajo Sandstone (generalized
in Fig. DR1A in the GSA Data Repository').

*E-mail: jparrish@ vidaho.edu

These are lithostratigraphic units, and definition
of the boundaries between them is commonly
arbitrary, particularly where they interfinger and/
or have gradational relationships. The literature
on the Glen Canyon Group is voluminous, and
a comprehensive review is outside the scope of
this report. Useful general reviews are Blakey
(2008) and Dickinson (2018). and additional
reviews can be found in Peterson and Pipirin-
gos (1979), Blakey (1989), and Sprinkel et al.
(2011}, as well as others.

The Wingate and Navajo Sandstones are
predominately eolian (Blakey, 1989); the Moe-
nave and Kayenta Formations contain inter-
bedded eolian, fluvial, and lacustrine deposits
(e.g., Clemmensen et al., 1989; Blakey, 2008;
Suarez et al., 2017). The Moenave Formation is
divided into two members, the Dinosaur Can-
yon Member and the overlying Whitmore Point
Member. The Moenave Formation is overlain
by the Springdale Sandstone, which has been
assigned variously as the upper member of the
Moenave Formation (Steiner, 2014a) or, more
commonly, the lower member of the overlying
Kayenta Formation (Lucas and Tanner, 2006;
Dickinson, 2018, p. 93). In east-central Utah, the
Glen Canyon Group consists solely of the Wing-
ate Sandstone, Kayenta Formation, and Navajo
Sandstone. The Kayenta Formation interfingers

with the lower part of the Navajo Sandstone
across a broad region from southwestern Utah
to northeastern Arizona (Blakey, 1989; Hassan
et al., 2018). The Glen Canyon Group is under-
lain by the Upper Triassic Chinle Formation,
which includes the Black Ledge sandstone (e.g.,
Blakey, 2008; Fig. DR1A).

Age assignments of the Glen Canyon Group
and underlying formations have been in a state
of flux (Marsh, 2014), partly because of dis-
crepancies between the geochronological and
biostratigraphic records—a global problem in
chronostratigraphy—but also because of pos-
sible overreliance on the continental biostrati-
graphic record (Olsen et al., 2010; see also Irmis
etal., 2010; Marsh, 2014). Quantitative age esti-
mates have come from detntal zircon (DZ) and
magnetostratigraphy (Fig. 2).

The Kayenta Formation, Moenave Forma-
tion, and Black Ledge sandstone have yielded
DZ ages broadly consistent with their deposi-
tional ages as determined from biostratigraphy
or magnetostratigraphy (Dickinson and Geh-
rels, 2009a; Table DR1 in the Data Reposito-
ry). Marsh (2014) dated the Kayenta Formation
with DZ in northern Arizona at 183.7 + 1.7 Ma,
~12 m.y. younger than the dates obtained by
Dickinson and Gehrels (2009a) from their clos-
est sample location of the Kayenta Formation
near Moenkopi, Arzona (Fig. 1; Table DR2).
DZ ages from the Moenave Formation west of
Kanab, Utah, yielded dates ca. 201.3 Ma (Su-
arez et al., 2017; Fig. 2; Table DR2). The Chinle
Formation, which underlies the Glen Canyon
Group, is well dated using DZ (Irmis et al.,
2011; see also Riggs et al., 2003; Ramezani
etal., 2011). The youngest dates from the Chinle
Formation are 203-204 Ma (Rhaetian) from the
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| Figure 1. Map of study

area and sample loca-
tions, southeastern Utah
and surrounding areas
8 (USA) (seeTable DR3 [see
footnote 1] for more infor-
mation). Colors indicate
B formations sampled; see
1 Figure 2 for color expla-
nation. Inset at lower right
shows outline of Colorado
Plateau (UT—Utah; CO—
Colorado; NV—Nevada;
CA—California; AZ—Ari-

zona; NM—New Mexico).
E Inset at upper left is loca-

tion enlargement near
E Moab, Utah (black outline
i box in main map), marking
| sample locations for this
§ study: Rocky Tops (RT),
38.62881°N, 109.7T22T°W;
Horsethief Road (HR),
@ 38.597°N, 109.88651"W.
Solid yellow line shows
generalized outline of
. MNavajo Sandstone out-
crop; dotted yellow lines

are isopachs (Dickinson,
2018, his figure 55). Local-

ities are from: 1—Meolina-Garza et al. (2003); 2—Dickinson and Gehrels (2009a); 3—Marsh
(2014); 4—Bazard and Butler (1991); 5—5Steiner (2014a); 6—Steiner (2014b); 7—Steiner and
Tanner (2014); B—Umbarger (2018); %—Suarez et al. (2017); 10—Steiner and Helsley (1974);

11—this study.

lower part of the Church Rock Member in the
San Rafael Swell (Umbarger, 2018).

Efforts to define ages based on magneto-
stratigraphy of the Glen Canyon Group have
also yielded age estimates. These results were
calibrated against the Newark Basin (north-
eastern United States) magnetostratigraphy
(Molina-Garza et al., 2003; Kent et al., 2017;
Suarez et al., 2017), paleopole paths (Steiner
and Helsley, 1974; Bazard and Butler, 1991), or
the Paris Basin (France) (Steiner, 2014a, 2014b;
Steiner and Tanner, 2014; Yang et al., 1996).
With the exception of the estimates by Bazard
and Butler (1991), these results are broadly
consistent with the observed stratigraphic suc-
cession (Fig. DR1A; Table DR2). Importantly,
Steiner and Tanner (2014) reported that the Kay-
enta Formation in the Moab, Utah, region was
not correlative with the Kayenta Formation near
Kanab, Utah; Steiner and Helsley (1974) placed
the Kayenta Formation in the Moab area in the
Late Triassic.

The Moenave Formation in the Kanab area
has yielded bio-, chemo-, and magnetostrati-
graphic, as well as DZ, data (Donohoo-Hurley
et al.,, 2010; Lucas et al., 2011; Suarez et al.,
2017). Suarez et al. (2017) built on and corrected
the magneto- and biostratigraphy of Donohoo-
Hurley et al. (2010) and Lucas et al. (2011) at
Potter Canyon, Utah, who placed a brief re-
versed polarity interval in the Whitmore Point
Member in the latest Triassic. Suarez et al.’s
{2017y DZ ages led them to conclude that the
reversed polarity interval likely correlates to one
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of such intervals in the Hettangian in the Newark
Basin (Kent et al., 2017).

METHODS

Samples were collected from six carbonate
units described by Parrish et al. (2017) in the
erg margin of the Navajo Sandstone (Fig. 1;
see sample descriptions in Table DR3). They
were analyzed by laser ablation for U/Pb (Table
DR4); three samples were then chosen for iso-
tope dilution analyses.

The carbonate samples were slabbed
(1-2 cm long, 1-2 mm thick) and polished for
laser ablation—inductively coupled plasma-mass
spectrometry (LA-ICPMS). Line scans with
LA-ICPMS helped identify areas of elevated
UiPh, which were subsequently targeted for spot
analyses. National Institute of Standards and
Technology standard NIST612 (trace elements
in glass) and the carbonate standard WC-1 (Rob-
erts et al., 2017) were used to correct for drift in
U and Pb and for Pb isotope fractionation, and to
correct downhole fractionation between U and
Pb using lolite software (Paton et al., 2011). La-
ser ablation results are provided in Table DR4.

The samples subjected to full analysis were
0805123 and 0805132 from the Rocky Tops
locality (Fig. DR1B) and 0805032 from the
Horsethief Road locality of Parrish et al. (2017).
Samples were microsampled with a Dremel tool,
spiked with a mixed ™U-"Pb spike, and dis-
solved in nitric acid. The samples were capped
and left on a hotplate for =12 h before being
dried for column chemistry.
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Figure 2. Summary of geochronological data
on Glen Canyon Group (southwestern USA)
and selected subjacent strata. Asterisks are
detrital zircon (DZ) dates; triangles are U-Pb
dates from this study. Thin vertical lines
(error bars) on DZ dates were provided by
their respective authors, except for DZ ages
at Potter Canyon and Black Canyon (Suarez
et al., 2017); those two ages and their emor
bars not resolvable at this scale. Thick vertical
lines are ages specified from magnetostratig-
raphy as reported by their respective authors.
Data are aranged roughly west (left) to east
(right). PC/BC—Potter Canyon, Arizona (AZ),
and Black Canyon, Utah (UT); KU—Kanab,
UT, area; KC—Kitchen Corral Canyon, UT;
MO—Moenkopi, AZ; TC—Tuba City area,
AZ; G5—Gold Spring, AZ; EC—Echo Cliffs,
AZ; SA—San Rafael Swell, UT; M—Moab,
UT, area; CR—Comb Ridge, UT; DO—Daolo-
res, Colorado. North Wash, UT (Fig. 1), is not
included because DZ ages were much older
than depositional ages (Dickinson and Geh-
rels, 2003a, 2009b; Table DR1 [see footnote 1]).
Data specifics are provided inTable DR2. Time
scale is from Gradstein et al. (2012); Norian-
Rhaetian boundary is from Kent et al. (2017).
Superscripts are citations from Figure 1 cap-
tion. S5 and ss—sandstone; Fm—formation;
Mbr—member.

The Pb and U cuts were both run on a Null
MC-ICPMS using a desolvating nebulizer in the
Facility for Isotope Research and Student Train-
ing (FIRST) lab at Stony Brook University, New
York, USA. The lead isotope standard reference
material (SRM) 981 was used for Pb analy-
ses, and New Brunswick Laboratory (NBL)
CRM-112-a (uranium metal assay and isoto-
pic standard) was used for U analyses. Samples
were bracketed by standards, and the bracketing
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Figure 3. Three-dimensional U-Pb Tera-Was-
serburg plot, projected to two dimensions,
where age represents forced intersection
with concordia curve (Ludwig, 2003). Error
ellipses are smaller than spots and difficult to
see. Two-sigma errors are shown inTable 1. A:
Data from samples 0805132 (red circles) and
0805123 (black circles) from Rocky Tops local-
ity, Utah, USA. B: Data from sample 0805032
from Horsethief Road locality, Utah. See
Figure 1 for sample localities. MSWD—mean
standard weighted deviation.

standards were used for fractionation correction.
Data were reduced using the PBDAT program
of Ludwig (1993), followed by IsoExcel (Lud-
wig, 2003). Data are plotted on Tera-Wasserburg
plots (Fig. 3), using the total Pb-U approach,
where the upper intercept is meaningless (and
not reported) and the lower intercept is the age
of the sample. More details on the methods are
provided in the Data Repository (methods and
descriptions; details of the analytical results are
in Table 1 and Table DR4).

RESULTS

The sampled limestone at Rocky Tops lies
65 m above the base of the Navajo Sandstone
(Fig. DR1B), and at Horsethief Road, ~90 m
above the base of the Navajo Sandstone (es-
timated using Google Earth). The Horsethief
Road site lies 11 km west-southwest of the
Rocky Tops site. The base of the Navajo
Sandstone is here defined as the top of the
last occurrence of red sandstone with fluvial
sedimentary structures.

Of the three samples that were screened from
Horsethief Road, two had favorable UfPh (Table
DR4). The Horsethief Road sample analyzed by
isotope dilution gave an age of 195.0+7.7 Ma
(Sinemurian; Fig. 2). All three of the samples
from Rocky Tops had favorable U/Pb. The two
samples of carbonate rocks analyzed by iso-
tope dilution from Rocky Tops yielded over-
lapping ages and, combined, give an age of
200.5 + 1.5 Ma (Hettangian). Other samples had
obvious diagenetic alteration or had low U/Pb
ratios and were not processed further. Sample
descriptions are provided in Table DR3.

TABLE 1. RESULTS OF SAMPLE AMALYSIS

DISCUSSION AND IMPLICATIONS

Uranium-lead (U-Pb) dating of carbonates is
a well-accepted geochronologic method (Ras-
bury and Cole, 2009), and the application of
LA-ICPMS analyses has greatly improved the
ability to identify samples with favorable U/Pb
(Roberts et al., 2017), as shown here.

A summary of the chronostratigraphic infor-
mation for the Glen Canyon Group and selected
subjacent units is illustrated in Figure 2. The pat-
terns are somewhat obscured by the data from Ba-
zard and Butler (1991), who gave stage-level des-
ignations to their magnetostratigraphy near Tuba
City, Anzona. Setting these aside, the data are,
within error, consistent with the observed strati-
graphic sequence from the Chinle Formation to
the Kayenta Formation (Fig. DR1A). Moreover,
the Kayenta Formation appears to be older in the
east, becoming younger to the west and south.

Given the consistency of these data, the ages
obtained here for the eastern Navajo Sandstone
stand out as being too old. The Sinemurian age
at Horsethief Road is slightly older than previ-
ous interpretations of the age of the lower part
of the Navajo Sandstone (e.g., Blakey, 2008;
Dickinson, 2018, and references therein). The
Hettangian age for the Rocky Tops samples in
this study, however, places the lower part of the
Navajo Sandstone much older than previously
suggested (e.g., Peterson and Pipiringos, 1979;
Dickinson, 2018; and many others).

Given the spotty nature of quantitative data on
the age of the Glen Canyon Group, a full assess-
ment of the significance of these results must be
tentative. Much of the information comes from
magnetostratigraphy, which is subject to error

Sampla Weight u PD =ELE=PD 2q amor =POA=PD 20 amor = P=PD 2¢ armor el e 1] 2¢ amor
numper (mg) {ppm) (ppm) (%) (%) (%) (%)
0805032-1 8.8 33 0.9 10.08 0.3 26.402 015 0.60711 0.05 143223 0.06
0a0s032-2 136 14 o7 5.85 0.3 23 458 014 0.70432 0.1 168984 012
0a80s032-3 B3 24 (VR ] 87 0.3 24,265 015 0.65479 0.08 155516 0.09
08050324 16.1 3.0 16 5.72 0.2 22477 014 0.70771 0.07 1717e o.0a
0805032-5 B9 27 12 6.61 0.3 23.033 014 0.68857 0.09 165204 010
08050326 174 28 0.9 B8.95 0.2 25616 014 0.62505 0.05 140487 0.05
0a0s032-7 18.1 4.3 0.9 1153 0.2 28.571 014 0.56451 0.04 133547 0.04
08051231 221 23 i7 418 0.9 21.554 0.09 0. 73217 0.0 178482 0.m
oansi23-2 18.1 5.4 i8 B.26 06 25251 o023 0.63243 0.04 152201 0.03
0805123-3 339 4.0 01 5.25 06 23350 0.04 0.70813 0.06 172084 0.05
0a0s123-4 T 5.3 19 3 0.8 24.875 0.07 0.64133 0.01 154700 0.02
0805123-5 177 6.1 23 756 11 24,560 o 0.64875 0.12 156531 0.04
08051236 229 36 i7 6.07 11 23.1ar o 0.68540 0.02 166131 0.m
08051237 23 6.1 i7 B.46 0.70 26.603 0.05 0.60113 0.04 144304 0.02
0a0s123-8 231 5.4 22 6.4 114 23.970 012 0.66260 0.07 160302 0.03
08051230 23 6.4 i7 .94 0.57 27310 0.m 0.58858 0.03 140842 0.02
0805123-10 232 57 20 783 07 24971 0.05 0.63885 0.07 154119 0.04
0a0s132e-1 249 16 10 5.02 0.65 23203 0.04 0.70851 0.07 172472 0.05
nansiaze-2 295 0.5 i1 186 11 19.825 o 0.72808 0.07 193143 0.07
na0si13ze-a 174 13 i8 2.36 0.88 2020 010 0.77730 0.06 190264 0.04
08051328-5 19.1 0.8 o7 257 0.62 20.405 0.m 0. 77074 0.01 188245 0.m
na0s13ze-4 289 11 13 418 0.64 21.584 0.04 0.73138 0.01 178573 0.m
0805132R-1 19.5 27 14 5.53 0.70 22 868 0.04 0.69300 0.05 1682 o.0a
0805132R-2 222 0.8 i8 144 0.60 19.637 o.02 0.79876 0.01 195787 0.m
0805132R-3 30 0.8 23 3.90 0.97 21.347 010 0.739051 0.02 180488 0.m
080513274 277 18 15 3.67 0.62 21.202 003 0.7434 0.03 181408 0.03
0805132R-5 252 3.8 23 5.00 0.56 23,336 0.m 0.708713 0.13 1.72659 0.08

Nove: Samples were splked with 8 mixed ==Pp/==J splke to obiain Pb and U concanirations. Concentration emors are <0.5%. Allquots were cormected sor fractionation
by standard bracketing. Total procedural acks are <50 pg for both Ph and U. PEDAT softwarne (Ludwig, 1293) was used for data reduction, Including bliank subtraction
and error propagation. Samples 08051328 and 0805132R designate brown and red allquots of this sampla.
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because of gaps in the rock record that can ob-
scure the pattern of reversals. In addition, mag-
neto- and biostratigraphic time scales are only just
starting to be tied to radioisotopic dates at a level
of detail that makes connecting records world-
wide possible. For example, Kent et al. (2017),
building on years of previous work, constructed
a detailed magnetostratigraphic section for the
continental (lacustrine) Newark Basin tied to bio-
stratigraphic, radioisotopic, and astrochronologic
records, allowing for study of the time scale in
great detail. This record has been successfully
tied to other reconds (e.g., Hiising et al., 2014; Ol-
sen et al., 2018), including the marine Paris Basin,
to which Steiner (2014a, 2014b) and Steiner and
Tanner (2014) compared their data (Fig. 2). On
the Colorado Platean, the time scale of Kent et al.
{2017} has, to date, been compared with the Trias-
sic record (Kent et al., 2018; Olsen et al., 2019).

The results presented here indicate that the
base of the Navajo Sandstone is time-transgres-
sive, becoming younger to the southwest. The
base is time-transgressive by at least 5.5 m.y.
based on the information in Figure 2 (in compar-
ison to DZ data from near Moenkopi, Arizona;
Dickinson and Gehrels, 2009a,) and perhaps as
long as 20 m.y. (in comparison to DZ data at
Gold Spring, Arizona; Marsh, 2014).

The lower part of the Navajo Sandstone in-
tertongues with the Kayenta Formation (Blakey,
1989, 2008; Hassan et al., 2018). Although the
Navajo erg is recognized to have eventually
overstepped the Kayenta fluvial system, the
timing of overstepping has been unclear (e.g.,
Blakey, 2008; Dickinson, 2018, p. 93). Fluvial
paleocurrent indicators of the Kayenta Forma-
tion indicate a westward or northwestward flow
(Blakey, 2008; Dickinson, 2018), whereas the
paleowind direction indicators in the Navajo
Sandstone are predominately toward the south-
east (Peterson, 1988). Thus, some Kayenta sand
was transported through or around the erg in riv-
ers and then transported back to the Navajo erg
by winds from the northwest (Peterson, 1988;
Parrish and Peterson, 1988). How this sand
transport pattern evolved through time as the
MNavajo Sandstone overstepped the Kayenta river
system remains an open question.

The data presented here indicate that the
oldest part of the Navajo erg, per se, is in the
eastern part of the basin. However, the Navajo
Sandstone may have been part of a much larger
erg complex including the Nugget Sandstone
to the northeast, the lower part of which has
been dated biostratigraphically as Late Triassic
(Britt et al., 2016). The Nugget Sandstone is
lithostratigraphically correlative with the entire
Glen Canyon Group, but the geochronological
constraints higher in the Nugget Sandstone are
poor (Sprinkel et al., 2011).

The river sediments deposited as the Kayenta
Formation were pushed farther south by the en-
croachment of the Navajo erg from the northeast
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(Blakey, 1989). This erg expansion is generally
interpreted as aridification of the region (e.g.,
Hassan et al., 2018), but this raises the question
(alluded to above) on the origination of the large
volume of sand that makes up the Navajo Sand-
stone in the west (Fig. 1). The very young date
for the Kayenta Formation obtained by Marsh
(2014) suggests that the Kayenta rivers may have
continued to supply sand throughout deposition
of the Navajo Sandstone, but given that the winds
were from the northwest (Peterson, 1988), wheth-
er those or other rivers could have continued to
be the source of the sand or whether there was
reworking from older erg deposits is unclear.

Another implication of the ages reported in
the Moab area for the uppermost Chinle Forma-
tion (Umbarger, 2018; Dickinson and Gehrels,
2009a), Kayenta Formation (Steiner and Hels-
ley, 1974), and Navajo Sandstone (this study) is
that the uppermost part of the Chinle Formation,
the Wingate Sandstone, the Kayenta Formation,
and the lower part of the Navajo Sandstone all
were deposited within ~2-3 m.y. This would be
consistent with filling of a structural trough just
west of the Uncompahgre highlands (Blakey,
2008), after which additional sediment bypassed
the area and was deposited farther west. Pre-
liminary observations indicate that there may be
more surfaces in the Navajo Sandstone that were
exposed for longer in the Moab area than farther
west (unpublished observations of authors 5.T.
Hasiotis, M.A. Chan, and 1. T. Parnish), where
sedimentation was more continuous.

Dickinson and Gehrels (2003, 2008, 2009,
2009b) provided dates for all of the Glen Can-
yon Group formations, but their samples were
stratigraphically unconstrained (Dickinson
and Gehrels, 2009b), as many were collected
from fallen blocks. This is true for several other
DZ ages, the exception being those of Suarez
et al. (2017). Vertical trends remain unknown.
Much more work, such as that proposed by Ol-
sen et al. (2010), is required to understand the
stratigraphic and climatic implications of the
ages reported here.

CONCLUSIONS

The U-Pb date of 200.5 £ 1.5 Ma in a car-
bonate unit in the lower part of the Navajo Sand-
stone near Moab, Utah, places that part of the
Mavajo Sandstone near the beginning of the
Jurassic Period, in the Hettangian Age; an ad-
ditional date of 195.0 £ 7.7 Ma (Sinemurian)
is also older than previously suggested ages for
the Navajo Sandstone. The Hettangian age is the
oldest reported for the Navajo Sandstone and
demonstrates the critical need for reevaluation
of the chronostratigraphy of the Glen Canyon
Group to understand its depositional history and
basinal events. These dates suggest a new frame-
waork for stratigraphic, sedimentologic, and pa-
leontologic studies across the Western Interior
of the United States.
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