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Abstract
How can we learn a dynamical system to make forecasts, when some variables are unobserved?

For instance, in COVID-19, we want to forecast the number of infected and death cases but we

do not know the count of susceptible and exposed people. While mechanics compartment models

are widely-used in epidemic modeling, data-driven models are emerging for disease forecasting.

We first formalize the learning of physics-based models as AutoODE, which leverages automatic

differentiation to estimate the model parameters. Through a benchmark study on COVID-19 fore-

casting, we notice that physics-based mechanistic models significantly outperform deep learning.

Such performance differences highlight the generalization problem in dynamical system learning

due to distribution shift. We identify two scenarios where distribution shift can occur: changes

in data domain and changes in parameter domain (system dynamics). Through systematic experi-

ments on several dynamical systems, we found that deep learning models fail to forecast well under

both scenarios. While much research on distribution shift has focused on changes in data domain,

our work calls attention to rethink generalization for learning dynamical systems.

Keywords: Dynamical system, deep learning, generalization, COVID-19 forecasting.

1. Introduction

Dynamical systems (Strogatz, 2018) describe the evolution of phenomena occurring in nature, in

which a differential equation, dy/dt = fθ(y, t), models the dynamics of a d-dimensional state

y ∈ R
d. Here fθ is a non-linear operator parameterized by parameters θ. Learning dynamical

systems is to search a good model for a dynamical system in the hypothesis space guided by some

criterion for performance. In this work, we study the forecasting problem of predicting an sequence

of future states (yk, ...,yk+q−1) given an sequence of historic states (y0, ...,yk−1).
A plethora of work has been devoted to learning dynamical systems. When fθ is known,

physics-based methods based on numerical integration are commonly used for parameter estima-

tion (Houska et al., 2012). Raissi and Karniadakis (2018); Al-Aradi et al. (2018); Sirignano and

Spiliopoulos (2018) propose to directly solve y by approximating f with neural networks that take

the coordinates and time as input. When fθ is unknown and the data is abundant, data-driven meth-

ods are preferred. For example, deep learning (DL), especially deep sequence models (Benidis
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et al., 2020; Sezer et al., 2019; Flunkert et al., 2017; Rangapuram et al., 2018) have demonstrated

success in time series forecasting. In addition, Wang et al. (2020b); Ayed et al. (2019b); Wang et al.

(2020c); Chen et al. (2018) have developed hybrid DL models based on differential equations for

spatiotemporal dynamics forecasting.

Our study was initially motivated by the need to forecast COVID-19 dynamics. While mechan-

ics compartment models are widely used in epidemic modeling, data-driven deep learning models

are emerging for disease forecasting. We formalize automatic differentiation for estimating mech-

anistic model parameters, which we name as AutoODE. Specifically, we use numerical integration

to generate state estimate and minimize the difference between estimate and the ground truth with

automatic differentiation (Baydin et al., 2017; Paszke et al., 2017). We also propose a novel com-

partmental model, ST-SuEIR, which obtains a 57.4% reduction in mean absolute errors for 7-days

ahead prediction. We perform a comprehensive benchmark study of various methods to forecast

the cumulative number of confirmed, removed and death cases.1 To our surprise, we found that

physics-based models significantly outperform deep learning methods for COVID-19 forecasting.

To understand the inferior performance of DL, we experiment with several other dynamical sys-

tems: Sine, SEIR, Lotka-Volterra and FitzHugh–Nagumo. We observe that DL models suffer from

distribution shift, often leading to poor generalization performance. In particular, two distribution

shift scenarios may occur: changes in data distribution and changes in parameters that govern the

dynamics of the system. Our findings highlight the unique challenge of using DL models for learn-

ing dynamical systems. To bridge the gap between physics-based and data-driven modeling, we

need robust methods that can deal with both distribution shift scenarios for the forecasting task. To

summarize, our contributions are the following:

1. We study dynamical systems for forecasting, even with unobserved variables. We formalize

auto-differentiation for physics-based mechanistic models as AutoODE and propose a novel

compartmental model for forecasting COVID-19. Our method obtains a 57.4% reduction in

mean absolute error for 7-days ahead prediction compared to the best DL competitor.

2. We perform a benchmark study of physics-based mechanistic models and data-driven DL

methods for predicting the COVID-19 dynamics among the cumulative confirmed, removed

and death cases. We notice that physics-based models significantly outperform DL methods

for COVID-19 forecasting, especially for the number of infected and removed cases.

3. We expand our study to other systems including Lotka-Volterra, FitzHugh–Nagumo and SEIR
dynamics. We observe that the inferior performance of DL is mainly due to distribution

shift. Many widely used DL models often fail to learn the correct dynamics when there is

distribution shift either in the data or the parameters of the dynamical system.

2. Related Work

Learning Dynamical System The seminal work by Steven L. Brunton (2015) proposed to solve

ODEs by creating a dictionary of possible terms and applying sparse regression to select appro-

priate terms. But it assumes that the chosen library is sufficient. Physics-informed deep learning

directly solves differential equations with neural nets given space x and time t as input (Raissi and

Karniadakis, 2018; Al-Aradi et al., 2018; Sirignano and Spiliopoulos, 2018). This type of methods

cannot be used for forecasting since future t would always lie outside of the training domain and

1. Reproducibility: We open-source our code https://github.com/Rose-STL-Lab/AutoODE-DSL; the COVID-19 data

we use is from John Hopkins Dataset https://github.com/CSSEGISandData/COVID-19.
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neural nets cannot extrapolate to unseen domain (Kouw and Loog, 2018; Amodei et al., 2019). Lo-

cal methods, such as ARIMA and Gaussian SSMs (Salinas et al., 2019; Rasmussen and Williams.,

2006; Du et al., 2016) learn the parameters individually for each time series. Hybrid DL models,

e.g. Ayed et al. (2019b); Wang et al. (2020c); Chen et al. (2018); Ayed et al. (2019a) integrate

differential equations in DL for temporal dynamics forecasting.

Deep Sequence Models Since accurate numerical computation requires lots of manual engineer-

ing and theoretical properties may have not been well understood, deep sequence models have been

widely used for learning dynamical systems. Sequence to sequence models and the Transformer,

have an encoder-decoder structure that can directly map input sequences to output sequences with

different lengths (Vaswani et al., 2017; Wu et al., 2020; Li et al., 2020; Rangapuram et al., 2018;

Flunkert et al., 2017). Fully connected neural networks can also be used autoregressively to produce

multiple time-step forecasts (Benidis et al., 2020; Lim and Zohren, 2020). Neural ODE (Chen et al.,

2018) is based on the assumption that the data is governed by an ODE system and able to generate

continuous predictions. When the data is spatially correlated, deep graph models, such as graph

convolution networks and graph attention networks (Velickovic et al., 2017), have also been used.

Epidemic Forecasting Compartmental models are commonly used for modeling epidemics. Chen

et al. (2020) proposes a time-dependent SIR model that uses ridge regression to predict the trans-

mission and recovery rates over time. A potential limitation with this method is that it does not

consider the incubation period and unreported cases. Pei and Shaman (2020) modified the compart-

ments in the SEIR model into the subpopulation commuting among different places, and estimated

the model parameters using iterated filtering methods. Wang et al. (2020a) proposes a population-

level survival-convolution method to model the number of infectious people as a convolution of

newly infected cases and the proportion of individuals remaining infectious over time. Zou et al.

(2020) proposes the SuEIR model that incorporates the unreported cases, and the effect of the ex-

posed group on susceptibles. Davis et al. (2020) shows the importance of simultaneously modeling

the transmission rate among the fifty U.S. states since transmission between states is significant.

3. Learning Dynamical Systems

3.1. Problem Formulation

Denote y ∈ R
d as observed variables and u ∈ R

p as the unobserved variables, we aim to learn a

dynamical system given as ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dy

dt
= fθ(t,y,u)

du

dt
= gθ(t,y,u)

y(t0) = y0

u(t0) = u0.

(3.1)

In practice, we have observations (y0,y1, ...,yk−1) as inputs. The task of learning dynamical sys-

tems is to learn fθ and gθ, and produce accurate forecasts (yk, ...,yk+q−1), where q is called the

forecasting horizon.
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3.2. Data-Driven Modeling

For data-driven models, we assume both f and g are unknown. We are given training and test

samples either as sliced sub-sequences from a long sequence (same parameters, different initial

conditions) or independent samples from the system (different parameters, same initial conditions).

In particular, let pS be the training data distribution and pT be the test data distribution. DL seeks a

hypothesis h ∈ H : Rd×k �→ R
d×q that maps a sequence of past values to future values:

h(y
(i)
0 , ...,y

(i)
k−1) = ŷ

(i)
k , ..., ŷ

(i)
k+q−1 (3.2)

where (i) denotes individual sample, k is the input length and q is the output length.

Following the standard statistical learning setting, a deep sequence model minimizes the training

loss L̂1(h) =
1
n

∑n
i=1 l(y

(i), h), where y(i) = (y
(i)
0 , ...,y

(i)
k+q−1) ∼ pS is the ith training sample, l

is a loss function. For example, for square loss, we have

l(y(i), h) = ||h(y(i)
0 , ...,y

(i)
k−1)− (y

(i)
k , ...,y

(i)
k+q−1)||22

The test error is given as L1(h) = Ey∼pT [l(y, h)]. The goal is to achieve small test error L1(h) and

small |L̂1(h)− L1(h)| indicates good generalization ability.

A fundamental difficulty of forecasting in dynamical system is the distributional shift that nat-

urally occur in learning dynamical systems (Kouw and Loog, 2018; Amodei et al., 2019). In fore-

casting, the data in the future pT often lie outside the training domain pS , and requires methods to

extrapolate to the unseen domain. This is in contrast to classical machine learning theory, where

generalization refers to model adapting to unseen data drawn from the same distribution (Hastie

et al., 2009; Poggio et al., 2012).

3.3. Physics-Based Modeling

Physics-based modeling assumes we already have an appropriate system of ODEs to describe the

underlying dynamics. We know the function f and g, but not the parameters. We can use automatic

differentiation to estimate the unknown parameters θ and the initial values u0. We coin this proce-

dure as AutoODE. Similar approaches have been used in other papers (Rackauckas et al., 2020; Zou

et al., 2020) but have not been well formalized. The main procedure is described in the algorithm 1.

In the meanwhile, we need to ensure u and y have enough correlation that AutoODE can correctly

learn all the parameters based on the observable y only. If u and y are not correlated or loosely

correlated, we may be not able to estimate u solely based on the observations of y.

Algorithm 1: AutoODE

0: Initialize the unknown parameters θ,u0 in Eqn. 3.1 randomly.

1: Discretize Eqn. 3.1 and apply 4-th order Runge Kutta (RK4) Method.

2: Generate estimation for y: (ŷ0, ..., ŷk)
3: Minimize the forecasting loss with the Adam optimizer,

L2(θ,u0) =
1
k

∑k−1
i=0 ||ŷi(θ,u, t)− yi(θ,u, t)||2.

4: After convergence, use estimated θ̂, û0 and 4-th order Runge Kutta Method to

generate final prediction, (yk, ...,yt+q−1).
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NeuralODE (Chen et al., 2018) uses the adjoint method to differentiate through the numerical

solver. Adjoint methods are more efficient in higher dimensional neural network models which re-

quire complex numerical integration. In our case, since we are dealing with low dimension ordinary

differential equations and the RK4 is sufficient to generate accurate predictions. We can directly

implement the RK4 in Pytorch and make it fully differentiable.

4. Case study: COVID-19 Forecasting

We benchmark different methods for predicting the COVID-19 dynamics among the cumulative

confirmed, removed and death cases. We propose an extension of the SuEIR compartmental model,

and estimate the model parameters with AutoODE.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi/dt = −[
∑

j βi(t)Aij(Ij + Ej)Si]/Ni,

dEi/dt = [
∑

j βi(t)Aij(Ij + Ej)Si]/Ni − σiEi,

dUi/dt = (1− μi)σiEi,

dIi/dt = μiσiEi − γiIi,

dRi/dt = γiIi,

dDi/dt = ri(t)dRi/dt.

Ni = Si + Ei + Ui + Ii +Ri

(4.1)

4.1. Spatiotemporal-SuEIR

We present the Spatiotemporal-SuEIR (ST-SuEIR) model given in Eqn. (4.1) and details

are listed as below. We estimate the unknown parameters βi, σi, μi, and γi, which correspond to

the transmission, incubation, discovery, and recovery rates, respectively. We also need to estimate

unobserved variables u = {S,E, U} , the cumulative numbers of susceptibles, exposed and unre-

ported cases, and predict the observed variables y = {I, R,D}, cumulative numbers of infected,

removed and death cases. The total population Ni = Si + Ei + Ui + Ii + Ri is assumed to be

constant for each U.S. states i.

Low Rank Approximation to the Sparse Transmission Matrix Aij We introduce a sparse trans-

mission matrix A to model the transmission rate among the 50 U.S. states. A is the element-wise

product of the U.S. states adjacency matrix M and the transmission matrix C, that is, A = C�M ∈
R
50×50. M is a sparse 1-0 matrix that indicates whether two states are adjacent to each other. C

learns the transmission rates among the all 50 states from the data. A = C�M means that we omit

the transmission between the states that are not adjacent to each other. We make C sparse with M as

C contains too many parameters and we want to avoid overfitting. To further reduce the number of

parameters and improve the computational efficiency to O(kn), we use a low rank approximation

to generate the correlation matrix C = BTD, where B,D ∈ R
k×n for k << n.

Piecewise Linear Transmission Rate βi(t) Most compartmental models assume the transmission

rate βi is constant. For COVID-19, the transmission rate of COVID-19 changes over time due to

government regulations, such as school closures and social distancing. Even though we focus on

short-term forecasting (7 days ahead), it is possible that the transmission rate may change during

the training period. Instead of a constant approximation to βi, we use a piece-wise linear function

over time βi(t), and set the breakpoints, slopes and biases as trainable parameters.
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MAE 07/13 ∼ 07/19 08/23 ∼ 08/29 09/06 ∼ 09/12

I R D I R D I R D

FC 8379 5330 257 559 701 30 775 654 33

Seq2Seq 5172 2790 99 781 700 40 728 787 35

Transformer 8225 2937 2546 1282 1308 46 1301 1253 41

NeuralODE 7283 5371 173 682 661 43 858 791 35

GCN 6843 3107 266 1066 923 55 1605 984 44

GAT 4155 2067 153 1003 898 51 1065 833 40

SuEIR 1746 1984 136 639 778 39 888 637 47

ST-SuEIR 818 1079 109 514 538 41 600 599 39

Table 1: Proposed ST-SuEIR wins in predicting I and R: 7-day ahead prediction MAEs on

COVID-19 trajectories of accumulated number of infectious, removed and death cases.

Death Rate Modeling: ri(t) The relationship between the numbers of accumulated removed and

death cases can be close to linear, exponential or concave in different states. We assume the death

rate ri(t) as a linear combination of ait+ bi to cover both the convex and concave functions, where

ai and bi are set as learnable parameters.

Weighted Loss Function We set the unknown parameters in Eqn. (4.1) as trainable, and apply

AutoODE to minimize the following weighted loss function:

L(A,β,σ,μ,γ, r) =
1

k

k−1∑
t=0

w(t)

[
l(Ît, It) + α1l(R̂t, Rt) + α2l(D̂t, Dt)

]
,

with weights α1, α2 and loss function l(·, ·) which we will specify in the following section. We

utilize these weights to balance the loss of the three states due to scaling differences, and also

reweigh the loss at different time steps. We give larger weights to more recent data points by setting

w(t) =
√
t. The constants, α1, α2 and k are tuned on the validation set.

4.2. Experiments on forecasting COVID-19 Dynamics

We use the COVID-19 data from Apr 14 to Sept 12 provided by Johns Hopkins University (Dong

et al., 2020). It contains the cumulative numbers of infected (I), recovered (R) and death (D) cases.

We investigate six DL models on forecasting COVID-19 trajectories: sequence to sequence with

LSTMs (Seq2Seq), Transformer, autoregressive fully connected neural nets (FC), NeuralODE,

graph convolution networks (GCN) and graph attention networks (GAT). We standardize I , R and D
time series of each state individually to avoid one set of features dominating another. We use sliding

windows to generate samples of sequences before the target week and split them into training and

validation sets. We perform exhaustive search to tune the hyperparameters on the validation set.

We also compare SuEIR (Zou et al., 2020) and ST-SuEIR. We rescale the trajectories of

the number of cumulative cases of each state by the population of that state. We use the quantile
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Figure 1: Proposed ST-SuEIR wins: I , R and D predictions for week 08/23 ∼ 08/29 in Mas-

sachusetts by our proposed ST-SuEIR and the best performing DL model FC.

regression loss (Wen et al., 2018) for all models. All the DL models are trained to predict the number

of daily new cases instead of the number of cumulative cases because we want to detread the time

series, and put the training and test samples in the same approximate range. All experiments were

conducted on Amazon Sagemaker (Liberty et al., 2020).

Table 1 shows the 7-day ahead forecasting mean absolute errors of three features I , R and D
for the weeks of July 13, Aug 23 and Sept 6. We can see that ST-SuEIR overall performs better

than SuEIR and all the DL models. FC and Seq2Seq have better prediction accuracy of death

counts but all DL models have much bigger errors on the prediction of week July 13. Figure 1

visualizes the 7-day ahead COVID-19 predictions of I , R and D in Massachusetts by ST-SuEIR
and the best performing DL model, FC. The prediction by ST-SuEIR is closer to the target and

has smaller confidence intervals. This demonstrates the effectiveness of our hybrid model, as well

as the benefits of our novel compartmental model design.

5. Generalization in Learning Dynamical Systems

We explore the potential reasons behind the inadequate performance of DL models on COVID-19

forecasting. It is known that distribution shift often leads to poor generalization in DL. A model’s

performance deteriorates quickly when the test data distribution is different from training. We

explore two distribution shift scenarios: changes in the data where the observation domain differs;

and changes in parameters where the dynamics of the system in training and test differs.

5.1. Dynamical Systems

Apart from COVID-19 trajectories, we also investigate the following three non-linear dynamics.

Lotka-Volterra (LV) system (Ahmad, 1993) of Eqn.(5.1) describes the dynamics of biological

systems in which predators and preys interact, where d denotes the number of species interacting

and pi denotes the population size of species i at time t. The unknown parameters ri ≥ 0, ki ≥ 0 and

Aij denote the intrinsic growth rate of species i, the carrying capacity of species i when the other

species are absent, and the interspecies competition between two different species, respectively.

FitzHugh–Nagumo (FHN) FitzHugh (1961) and, independently, Nagumo et al. (1962) derived

the Eqn.(5.2) to qualitatively describe the behaviour of spike potentials in the giant axon of squid
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neurons. The system describes the reciprocal dependencies of the voltage x across an axon mem-

brane and a recovery variable y summarizing outward currents. The unknown parameters a, b, and

c are dimensionless and positive, and c determines how fast y changes relative to x.

SEIR system of Eqn.(5.3) models the spread of infectious diseases (HE, 1992). It has four com-

partments: Susceptible (S) denotes those who potentially have the disease, Exposed (E) models

the incubation period, Infected (I) denotes the infectious who currently have the disease, and Re-

moved/Recovered (R) denotes those who have recovered from the disease or have died. The total

population N is assumed to be constant and the sum of these four states. The unknown parameters

β, σ and γ denote the transmission, incubation, and recovery rates, respectively.

dpi
dt

=ripi

(
1−

∑d
j=1Aijpj

ki

)
,

i =1, 2, . . . , d. (5.1)

⎧⎪⎨
⎪⎩

dx

dt
= c(x+ y − x3

3
),

dy

dt
= −1

c
(x+ by − a).

(5.2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS/dt = −βSI/N,

dE/dt = βSI/N − σE,

dI/dt = σE − γI,

dR/dt = γI,

N = S + E + I +R.
(5.3)

5.2. Distribution Shift: Interpolation vs. Extrapolation

We define pS and pT as the training and the test data distributions. And the θS and θT denote

parameter distributions of training and test sets, where the parameter here refers to the coefficients

and the initial values of dynamical systems. A distribution is a function that map a sample space

to the interval [0,1] if it a continuous distribution, or a subset of that interval if it is a discrete

distribution. The domain of a distribution p, i.e. Dom(p), refers to the set of values (sample space)

for which that distribution is defined.

We define two types of interpolation and extrapolation tasks. Regarding the data domain, we de-

fine a task as an interpolation task when the data domain of the test data is a subset of the domain of

the training data, i.e., Dom(pT ) ⊆ Dom(pS), and then extrapolation occurs Dom(pT ) 
⊆ Dom(pS).
Regarding the parameter domain, an interpolation task indicates that Dom(θT ) ⊆ Dom(θS), and

an extrapolation task indicates that Dom(θT ) 
⊆ Dom(θS). Many machine learning setups focus on

the interpolation tasks. The extrapolation tasks correspond to the situations with distribution shift.

5.3. Scenario 1: unseen data in the different data domain

Through a simple experiment on learning the Sine curves, we show deep sequence models have

poor generalization on extrapolation tasks regarding the data domain, i.e. Dom(pT ) 
⊆ Dom(pS).
Specifically, we generate 2k Sine samples of length 60 with different frequencies and phases, and

randomly split them into training, validation and interpolation-test sets. The extrapolation-test set is

the interpolation-test set shifted up by 1. We investigate four models, including Seq2Seq (sequence

to sequence with LSTMs), Transformer, FC (autoregressive fully connected neural nets) and

NeuralODE. All models are trained to make 30 steps ahead prediction given the previous 30 steps.

Table 2 shows that all models have substantially larger errors on the extrapolation test set. Figure

2 shows Seq2Seq predictions on an interpolation (left) and an extrapolation (right) test samples.

We can see that Seq2Seqmakes accurate predictions on the interpolation-test sample, while it fails

to generalize when the same samples are shifted up only by 1.
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Figure 2: Seq2Seq predictions on an interpolation (left) and

an extrapolation (right) test samples of Sine dynamics,

the vertical black line in the plots separates the input

and forecasting period.

RMSE Inter Extra

Seq2Seq 0.012 1.242

Auto-FC 0.009 1.554

Transformer 0.016 1.088

NeuralODE 0.012 1.214

Table 2: RMSEs of the interpo-

lation and extrapolation

tasks of Sine dynamics.

5.4. Scenario 2: unseen data with different system parameters

Even when Dom(pT ) ⊆ Dom(pS), deep sequence models can still fail to learn the correct dynamics

if there is a distributional shift in the parameter domain, i.e., Dom(θT ) 
⊆ Dom(θS). For example,

the recovery rate γ in the epidemic may increase as more people are vaccinated. A tighter social

distancing policy would lead to smaller contact rate β. Thus, there is a great chance that new test

samples are outside of the parameter domain of training data. In that case, the DL models would

not make accurate prediction for COVID-19.

For each of the three dynamics in section 5.1, we generate 6k synthetic time series samples

with different system parameters and initial values. The training/validation/interpolation-test sets

for each dataset have the same range of system parameters while the extrapolation-test set contains

samples from a different range. Table 3 shows the parameter distribution of test sets. For each

dynamics, we perform two experiments to evaluate the models’ extrapolation generalization ability

on initial values and system parameters. All samples are normalized so that Dom(pT ) = Dom(pS).

System Parameters Initial Values

Interpolation Extrapolation Interpolation Extrapolation

LV k ∼ U(0, 250)4 k ∼ U(250, 300)4 p0 ∼ U(30, 200)4 p0 ∼ U(0, 30)4

FHN c ∼ U(1.5, 5) c ∼ U(0.5, 1.5) x0 ∼ U(2, 10) x0 ∼ U(0, 2)

SEIR β ∼ U(0.45, 0.9) β ∼ U(0.3, 0.45) I0 ∼ U(30, 100) I0 ∼ U(10, 30)

Table 3: The initial values and system parameters ranges of interpolation and extrapolation test sets.

Table 4 shows the prediction RMSEs of the models on initial values and system parameter inter-

polation and extrapolation test sets. We observe that the models’ prediction errors on extrapolation

test sets are much larger than the error on interpolation test sets. Figures 3-4 show that Seq2Seq
and FC fail to make accurate prediction when tested outside of the parameter distribution even

though they make accurate predictions for parameter interpolation test samples.
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RMSE
LV FHN SEIR

k p0 c x0 β I0

Int Ext Int Ext Int Ext Int Ext Int Ext Int Ext

Seq2Seq 0.050 0.215 0.028 0.119 0.093 0.738 0.079 0.152 1.12 4.14 2.58 7.89

FC 0.078 0.227 0.044 0.131 0.057 0.402 0.057 0.120 1.04 3.20 1.82 5.85

Transformer 0.074 0.231 0.067 0.142 0.102 0.548 0.111 0.208 1.09 4.23 2.01 6.13

NeuralODE 0.091 0.196 0.050 0.127 0.163 0.689 0.124 0.371 1.25 3.27 2.01 5.82

AutoODE 0.057 0.054 0.018 0.028 0.059 0.058 0.066 0.069 0.89 0.91 0.96 1.02

Table 4: RMSEs on initial values and system parameter interpolation and extrapolation test sets.

Figure 3: Seq2Seq predictions on a k-

interpolation and a k-extrapolation

test samples of LV dynamics, the

vertical black line separates the input

and forecasting period.

Figure 4: FC predictions on a c-interpolation

and a c-extrapolation test samples of

FHN dynamics, the vertical black line

in the plots separates the input and

forecasting period.

AutoODE always obtains the lowest errors as it would be not affected by the range of parameters

or the initial values. However, it is a local method and we need to train one model for each sample.

In contrast, DL models can only mimic the behaviors of SEIR, LV and FHN dynamics rather than

understanding the underlying mechanisms.

6. Conclusion

We study the problem of forecasting non-linear dynamical systems. From a benchmark study of DL

and physics-based models, we find that FC and Seq2Seq have better prediction accuracy on the

number of deaths, while the DL methods generally much worse than the physics-based models on

the number of infected and removed cases. This is mainly due to the distribution shift in the COVID-

19 dynamics. On several other non-linear dynamical systems, we experimentally show that four DL

models fail to generalize under shifted distributions in both the data and the parameter domains.

Even though these models are powerful enough to memorize the training data, and perform well

on the interpolation tasks. Our study provides important insights on learning real world dynamical

systems: to achieve accurate forecasts with DL, we need to ensure that both the data and dynamical

system parameters in the training set can cover the domains of the test set. Future works include

incorporating compartmental models into deep learning models and derive theoretical generalization

bounds of dynamics forecasting for deep learning models.
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