
Journal of Systems Architecture 125 (2022) 102435

A
1
n

a

b

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Process scenario discovery from event logs based on activity and timing
information
Zhenyu Zhang a,b,∗, Caleb Johnson a, Nalini Venkatasubramanian b, Shangping Ren a

Department of Computer Science, San Diego State University, San Diego, CA 92182, United States of America
Department of Computer Science, University of California Irvine, Irvine, CA 92697, United States of America

A R T I C L E I N F O

Keywords:
Process mining
Process scenario discovery
Event logs
Wastewater treatment
Cyber–physical systems

A B S T R A C T

Wastewater treatment processes are inherently dynamic due to the large variations in influent wastewater
flow rate, weather conditions, concentration,and composition. The utilization of trace clustering techniques in
process mining research field is an excellent way to analyze both the execution and confirm the compliance
of wastewater treatment processes. However, much of existing trace clustering research has been focused
on applying activity names to assist process scenarios discovery without considering other information in
event logs. In addition, many existing algorithms commonly used in the literature, such as k-means clustering
approach, require prior knowledge about the number of process scenarios existed in the log, which sometimes
are not known aprior. This paper presents an approach that uses timing information to assist in discovering
process scenarios from event logs in wastewater treatment processes without requiring any prior knowledge
about process scenarios. A real wastewater treatment process provided by a domain expert is used as a case
study to investigate the effectiveness and validity of the approach. We also use five real-life event logs to
compare the performance of the proposed approach for process scenario discoveries with the commonly used
𝑘-means clustering approach in terms of model’s harmonic mean of the weighted average fitness and precision,
i.e., the F1 score. The experiment data shows that (1) the proposed approach is able to discover the process
scenarios from event logs in wastewater treatment domain; (2) the process scenario models obtained with the
additional timing information have both higher fitness and precision scores than the models obtained without
the timing information.
1. Introduction

Wastewater treatment processes are inherently dynamic due to the
large variations in influent wastewater flow rate, weather conditions,
concentration, and composition. Due to these characteristics, the study
of wastewater treatment processes requires a specific and non-generic
approach. Process mining has emerged as a new research field in the
past decade that uses data, generally in the form of event logs, to un-
derstand and improve real-world processes. Specifically in the domain
of wastewater treatment, where different scenarios exist, the utilization
of process mining is an excellent way to analyze both the execution and
confirm the compliance of wastewater treatment processes.

The most important learning task within the field of process mining
is process discovery, which is concerned with the derivation of process
models from event logs. Over time, a range of process discovery algo-
rithms have been proposed, such as Alpha algorithm [1], region-based
approaches [2,3], and heuristic approach [4], to name a few. Despite

∗ Corresponding author at: Department of Computer Science, San Diego State University, San Diego, CA 92182, United States of America.
E-mail addresses: zzhang4430@sdsu.edu (Z. Zhang), cjohnson6200@sdsu.edu (C. Johnson), nalini@ics.uci.edu (N. Venkatasubramanian), sren@sdsu.edu

(S. Ren).

the demonstrated usefulness of process discovery algorithms, they face
challenges in an environment where different scenarios exist [5–8].
When different scenarios are grouped into one process model not only
the accuracy of the model representing the reality reduces, but, more
importantly, the complexity of the model becomes incomprehensible.
This results in it being difficult, if not impossible, to achieve the goal of
better understanding, monitoring and improving the current processes.

Trace clustering techniques are often used to assist in discovering
different process scenarios. Most existing trace clustering methods [6,9–
11] often contain two major steps. First, use a set of transformation
rules to convert each trace in a given event log into a vector. Second,
apply clustering algorithms, such as 𝑘-means [10], to the vectors and
partition them into different clusters. This results in partitioning the
corresponding event log into different subsets of logs where event traces
in the same subset most likely belong to the same scenario. Once
an event log is partitioned into different clusters, process discovery
vailable online 17 February 2022
383-7621/© 2022 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.sysarc.2022.102435
Received 21 October 2021; Received in revised form 31 January 2022; Accepted 6
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

February 2022

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:zzhang4430@sdsu.edu
mailto:cjohnson6200@sdsu.edu
mailto:nalini@ics.uci.edu
mailto:sren@sdsu.edu
https://doi.org/10.1016/j.sysarc.2022.102435
https://doi.org/10.1016/j.sysarc.2022.102435
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2022.102435&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Systems Architecture 125 (2022) 102435Z. Zhang et al.

t
f

t
m

o
t
a
t
c
i
a
o

t
t
t
i
a
i
t
s
l
p
t
m
a
a

a
a
i

Fig. 1. Workflow of using timing information and density-based approach for process scenario discovery in wastewater treatment process.
2

t
i
s

2

r
w
p
r
e
t
T
l

D
i
𝛼
e

D
e

D
|

s
t
w
d

echniques are applied to individual clusters to obtain process models
or different scenarios.
Event logs often contain rich information, such as activity names,

imestamps, activity executors, etc. However, our observation is that
ost transformation rules used in trace clustering techniques [6,9–11]

to convert an event trace to a vector only use the activity name infor-
mation in the event log. We hypothesize that if additional information
is added into the constructing vectors, we shall obtain process models
that more accurately reflect model fitness and precision criteria. We
have also observed that the commonly used trace clustering algorithms,
e.g., 𝑘-means [6,10,11], need a priori knowledge about the number
f scenarios 𝑘, which is unfortunately not available for wastewater
reatment application. The question is, do we have an approach to offer
good solution without the requirements of domain knowledge related
o the number of scenarios? The last observation is that the shape of all
lusters found by commonly used trace clustering techniques [6,10,11]
s convex which is very restrictive. Due to the characteristics of wastew-
ter treatment processes, we should propose an approach for discovery
f clusters with arbitrary shape.
In this paper, we present an approach that uses timing information

o assist in discovering process scenarios from event logs in wastewater
reatment processes. This approach has three steps. First, we obtain
ime dependent sets from a process model produced by applying an ex-
sting process discovery algorithm on event logs. Second, we construct
ggregated vectors that contain both activity information and timing
nformation which is derived from the time dependent set and event
ime stamps. Third, we apply a density-based approach to generate
ubsets of event logs where event traces in the same subset are most
ikely under the same scenarios. A real wastewater treatment process
rovided by a domain expert is used as a case study to investigate
he effectiveness and validity of the approach. To evaluate the perfor-
ance of the proposed approach for process scenario discoveries, we
pply an existing process discovery algorithm, e.g., the HeuristicsMiner
lgorithm [12], to obtain a process model from each subset. We then
compare the weighted average fitness, the weighted average precision,
and 𝐹1 score against the commonly used clustering approach, i.e., the
existing approach [10]. Fig. 1 depicts the workflow of our approach.

The paper is organized as follows. Section 2 introduces definitions
nd notations used in the rest of the paper. We develop an approach to
ssist in discovering process scenarios in wastewater treatment process
n Section 3. Section 4 investigates the effectiveness of the approach
2

t

using a real wastewater treatment process and evaluates the proposed
approach in terms of three criteria, i.e., the weighted average fitness,
the weighted average precision, and 𝐹1 score using real life even logs,
and discusses our findings. Section 5 discusses the related work and we
conclude in Section 6.

. Definitions and notations

In this section, we first formalize notations and definitions related
o event logs used in this paper, and then introduce the process model
n terms of a Petri net . Some of the definitions are cited here for
elf-containment.

.1. Event logs

The starting point for process mining is an event log. An event log
ecords information about activities as they take place. For this paper,
e adopt definitions that are similar to the ones given in [13]. In
articular, for a given activity set 𝛺, an event entry 𝑒 in an event log
ecords an activity happening within the operation of a process. An
vent trace 𝜎 is a finite sequence of event entries that are ordered by
heir occurrence time. An event log 𝐿 consists of a set of event traces.
he formal definitions of an event entry, an event trace, and an event
og are given below.

efinition 1 (Event Entry). Given an activity set 𝛺, an event entry 𝑒
s a tuple (𝛼, 𝜏), where 𝛼 ∈ 𝛺 is an activity and 𝜏 is the timestamp of
. Labeling functions act : 𝑒 ↦ 𝛼 is used to get the activity of the event
ntry. □

efinition 2 (Event Trace). An event trace 𝜎 is a finite sequence of
vent entries [𝑒1,… , 𝑒𝑖,… , 𝑒𝑛] where 𝑒𝑖 = (𝛼𝑖, 𝜏𝑖). □

efinition 3 (Event Log). An event log 𝐿 is a set of event traces {𝜎}.
𝐿| denotes the cardinality of 𝐿. □

For illustrative purposes, we consider a simplified event log as
hown in Table 1. This event log 𝐿 contains information about five
races, i.e., 𝐿 = {𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5}. Note that the ordering of activities
ithin a trace is relevant, while the ordering of activities among
ifferent traces is of no importance. The log shows that for trace 1,

he activities A, B, C, D were executed, i.e., 𝜎1 = [𝑒1, 𝑒2, 𝑒3, 𝑒4] where



Journal of Systems Architecture 125 (2022) 102435Z. Zhang et al.

i

2

n

D

w
b
n

t
t
m
I
(
t
m

𝑚

A
m
{
n
w

a
k
f
p

t
i
m
l

3
c

s
p

Table 1
An example of event logs.
Trace identifier Activity Timestamp

Trace 1 A 08:15
Trace 2 A 08:24
Trace 3 A 09:30
Trace 1 B 10:24
Trace 3 B 10:24
Trace 2 C 10:26
Trace 1 C 10:25
Trace 4 A 11:45
Trace 2 B 11:46
Trace 2 D 12:23
Trace 5 A 13:14
Trace 4 C 13:17
Trace 1 D 13:19
Trace 6 A 13:39
Trace 3 C 14:09
Trace 6 B 14:19
Trace 3 D 14:29
Trace 4 B 14:43
Trace 5 E 15:22
Trace 6 C 15:29
Trace 5 D 15:45
Trace 4 D 16:10
Trace 6 D 16:43

𝑒1 = (𝐴, ‘‘08 ∶ 15’’), 𝑒2 = (𝐵, ‘‘10 ∶ 24’’), 𝑒3 = (𝐶, ‘‘10 ∶ 25’’), and
𝑒4 = (𝐷, ‘‘13 ∶ 19’’). Due to the page limit, we omit the representations
of the trace 2, 3, 4, 5, and 6 which are similar to the representation
of trace 1. Each trace starts with the execution of activity A and ends
with activity D. We also observe that if activity C is executed within
a trace, activity B is also executed. However, for some traces, activity
C is executed before activity B, while for some others, it is the other
way around. The activity of event entries in a event trace is obtained
a by labeling function. For instance, the activity of 𝑒1 in trace 1 is 𝐴,
.e., 𝑎𝑐𝑡(𝑒1) = 𝐴.

.2. Petri net

The majority of process mining algorithms [3,14,15] use a Petri
et [2] to represent process models.

efinition 4 (Petri net [16]). A Petri net 𝑁 is a tuple (𝑃 , 𝑇 , 𝐹 ), where

• 𝑃 is a finite set of places;
• 𝑇 is a finite set of transitions, 𝑃 ∩ 𝑇 = ∅; and
• 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) is a set of directed arcs. □

Given a Petri net 𝑁 = (𝑃 , 𝑇 , 𝐹 ) and a place 𝑝 ∈ 𝑃 , we use notation
∙𝑝 to represent a set of transitions taking place immediately before a
place 𝑝, i.e., ∙𝑝 = {𝑡|𝑡 ∈ 𝑇 ∧ (𝑡, 𝑝) ∈ 𝐹 }, we also call ∙𝑝 the pre-set of 𝑝.
Notation 𝑝∙ is used to represent a set of transitions immediately after
place 𝑝, i.e., 𝑝∙ = {𝑡|𝑡 ∈ 𝑇 ∧ (𝑝, 𝑡) ∈ 𝐹 }, 𝑝∙ is also called the post-set of 𝑝.

The state of a Petri net 𝑁 = (𝑃 , 𝑇 , 𝐹 ) is represented by its markings
hich is a distribution of tokens on places 𝑃 . A marking of 𝑁 is defined
y a mapping function 𝑚 ∶ 𝑃 → N, where N is the set of natural
umbers. A place 𝑝 is marked by a marking 𝑚 if 𝑚(𝑝) > 0.
The execution semantics of a Petri net 𝑁 = (𝑃 , 𝑇 , 𝐹 ) are defined by

ransition firings which specify the enabling conditions and the marking
ransformations of the Petri net. A transition 𝑡 ∈ 𝑇 is enabled by a
arking 𝑚, if 𝑚 marks all places in its pre-set ∙𝑡, i.e., ∀𝑝 ∈ ∙𝑡 ∶ 𝑚(𝑝) > 0.
n a Petri net 𝑁 = (𝑃 , 𝑇 , 𝐹 ), with transition 𝑡 ∈ 𝑇 , and marking 𝑚,
𝑁,𝑚)

𝑡
←←←←→ denotes that transition 𝑡 is enabled at the marking 𝑚 under

he Petri net 𝑁 . The firing of an enabled transition 𝑡 transforms the
arking 𝑚 to 𝑚′ as below:

′(𝑝) =

⎧

⎪

⎨

⎪

𝑚(𝑝) − 1 𝚒𝚏 𝑝 ∈ ∙𝑡 ∧ 𝑝 ∉ 𝑡∙
𝑚(𝑝) + 1 𝚒𝚏 𝑝 ∉ ∙𝑡 ∧ 𝑝 ∈ 𝑡∙
𝑚(𝑝) 𝚘𝚝𝚑𝚎𝚛𝚠𝚒𝚜𝚎

(1)
3

⎩

p

Fig. 2. A Petri net example.

Given a Petri net 𝑁 = (𝑃 , 𝑇 , 𝐹 ), a transition 𝑡 ∈ 𝑇 , and two
markings 𝑚,𝑚′, according to formula (1), (𝑁,𝑚)

𝑡
←←←←→ (𝑁,𝑚′) denotes

that the enabled transition 𝑡 results in marking 𝑚′. We use the sim-
ilar way to represent the firing sequence of the transitions 𝑡1,… , 𝑡𝑛,
i.e., (𝑁,𝑚𝑠𝑡𝑎𝑟𝑡)

𝑡1
←←←←←←←←→

𝑡2
←←←←←←←←→ …

𝑡𝑛
←←←←←←←←→ (𝑁,𝑚𝑒𝑛𝑑 ), where 𝑚𝑠𝑡𝑎𝑟𝑡 is the initial marking,

𝑚𝑒𝑛𝑑 is the new marking derived by firing the sequence of 𝑡1,… , 𝑡𝑛.
To explain on the definitions listed above, we use the Petri net

shown in Fig. 2 to provide a more concrete example. In the graphical
representation, places, transitions, arcs, and tokens are represented by
circles, squares, arrows, and black dots respectively. The Petri net 𝑁
shown in Fig. 2 is defined as (𝑃 , 𝑇 , 𝐹 ), where 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4},
𝑇 = {𝑡1, 𝑡2}, and 𝐹 = {(𝑡1, 𝑝1), (𝑝1, 𝑡2), (𝑡2, 𝑝2), (𝑡2, 𝑝3), (𝑡2, 𝑝4), (𝑝2, 𝑡1)}.
The current marking is 𝑚 = {(𝑝1, 3), (𝑝2, 0), (𝑝3, 0), (𝑝4, 1)}. Hence, the
transition 𝑡2 is enabled by the marking 𝑚 denoted by (𝑁,𝑚)

𝑡2
←←←←←←←←→.

ccording to formula (1), the firing of the transition 𝑡2 transforms the
arking 𝑚 to the new marking 𝑚′, i.e., (𝑁,𝑚)

𝑡2
←←←←←←←←→ (𝑁,𝑚′), where 𝑚′ =

(𝑝1, 2), (𝑝2, 1), (𝑝3, 1), (𝑝4, 2)}. Note that, for a marking 𝑚, if a place does
ot contain any token, i.e., (𝑝, 0), we omit it for simplicity. For instance,
e can simplify 𝑚 = {(𝑝1, 3), (𝑝2, 0), (𝑝3, 0), (𝑝4, 1)} to 𝑚 = {(𝑝1, 3), (𝑝4, 1)}.
Note that the process models that are mined by most of the existing

lgorithms [3,14,15] are subclasses of the Petri net . One such subclass
nown as a workflow net expands the Petri net by introducing three
urther constraints: (1) there is one and only one input place where a
rocess starts, (2) there is one and only one output place where the
process ends, and (3) all elements are on a path from the input place
to the output place. The formal definition is given below.

Definition 5 (Workflow Net [17]). A net 𝑁 = (𝑃 , 𝑇 , 𝐹 ) is a workflow
net, if it is a Petri net and satisfies the following constraints:

• There is one and only one input place 𝑖, i.e.

1. ∃𝑖 ∈ 𝑃 , s.t. ∀𝑡 ∈ 𝑇 , (𝑡, 𝑖) ∉ 𝐹 ,
2. ∃𝑖1, 𝑖2 ∈ 𝑃 , (∀𝑡 ∈ 𝑇 , (𝑡, 𝑖1) ∉ 𝐹 ∧ (𝑡, 𝑖2) ∉ 𝐹 ) → 𝑖1 = 𝑖2.

• There is one and only one output place 𝑜, i.e.

1. ∃𝑜 ∈ 𝑃 , s.t. ∀𝑡 ∈ 𝑇 , (𝑜, 𝑡) ∉ 𝐹 ,
2. ∃𝑜1, 𝑜2 ∈ 𝑃 , (∀𝑡 ∈ 𝑇 , (𝑜1, 𝑡) ∉ 𝐹 ∧ (𝑜2, 𝑡) ∉ 𝐹 ) → 𝑜1 = 𝑜2

• For a pseudo transition 𝜉 ∉ 𝑇 , the net (𝑃 , 𝑇 ∪{𝜉}, 𝐹 ∪{(𝑜, 𝜉), (𝜉, 𝑖)})
is a strongly connected net. □

It is worth pointing out that the three constraints neither change
he syntax or the execution semantics of a Petri net . Since our work
s based on the workflow nets that are derived from existing process
ining algorithms, the process model refers to the workflow net in the
ater sections of this paper.

. Discovering different scenarios in wastewater treatment pro-
esses

In this section, we develop an approach to discover the process
cenarios from a given event log in wastewater treatment domain. In
articular, we firstly obtain time dependent sets from a process model

roduced by applying an existing process discovery algorithm on the



Journal of Systems Architecture 125 (2022) 102435Z. Zhang et al.

e
b
f
i
h
t
i
p
d

3

e
d
a

p
d
d

Fig. 3. A process model corresponding to the event log.
O

a
𝜎

o

ntire event logs. Second, we construct aggregated vectors that contain
oth activity information and timing information which is derived
rom the time dependent set and event time stamps. As mentioned in
ntroduction, for a given event log, often times, we do not know aprior
ow many different scenarios are embedded in the log. Hence, for the
hird step, we apply a density-based approach to partition the event log
nto a set of sub-logs based on the aggregated vectors so that existing
rocess discovery algorithms can be applied on the sub-logs to obtain
ifferent process scenarios in terms of process models.

.1. Obtain time dependent sets from a process model

In the following, we first use an example to illustrate the steps to
xtract the time dependent set for each transition in a process model
erived from a given event log file. We then give an algorithm that
utomates the steps.
Consider the event log shown in Table 1. We apply an existing

rocess mining algorithm, for instance, the inductive miner algorithm
eveloped by [18], on the event log. The obtained workflow net is
epicted in Fig. 3. As shown in Fig. 3, the workflow net starts at task A
and finish after task D. In the workflow net constructed by the inductive
miner algorithm, there are invisible transitions represented in black
rectangles, such as 𝜀1 and 𝜀2, in Fig. 3. Invisible transitions are only
for routing purposes. They are produced by process mining algorithms,
not represent recorded activities in event logs.

Before we show how to extract a time dependent set of a transition,
we first give its formal definition.

Definition 6 (Time Dependent Set). Given a workflow net 𝑁 = (𝑃 , 𝑇 , 𝐹 ),
where 𝑇 = 𝐴 ∪ 𝛤 , 𝐴 ∩ 𝛤 = ∅. 𝐴 is a set of non-invisible transitions, and
𝛤 is a set of invisible transitions. The time dependent relation set 𝛩(𝑡)
of a transition 𝑡 ∈ 𝐴 is defined as follows:

𝛩(𝑡) ={𝑎 ∈ 𝐴|(𝑎 ∙ ∩ ∙ 𝑡 ≠ ∅) ∨ (∃𝜀1,… , 𝜀𝑖 ∈ 𝛤 ∶ 𝑎 ∙ ∩ ∙ 𝜀1 ≠ ∅
∧ 𝜀1 ∙ ∩ ∙ 𝜀2 ≠ ∅ ∧⋯ ∧ 𝜀𝑖−1 ∙ ∩ ∙ 𝜀𝑖 ≠ ∅ ∧ 𝜀𝑖 ∙ ∩ ∙ 𝑡 ≠ ∅)}

Example 1. Consider the event log given in Table 1 and a corre-
sponding process model shown in Fig. 3, which is derived by applying
an inductive miner algorithm [18] on the given log. In the process
model constructed by the inductive miner algorithm, there are activities
represented in rectangles and invisible activities represented in black
rectangles, such as 𝜀1 and 𝜀2, in Fig. 3. Invisible activities and circles
in the process model are only for routing purposes. They are produced
by process mining algorithms, but not recorded in event logs.

For activity 𝐷’s time dependent set, as the invisible activity 𝜀2 is
connected to the target activity 𝐷, we need to trace back until we
find a visible activity that connects to the invisible activity 𝜀2, which
are activity 𝐵 and 𝐶. Hence, activity 𝐷’s time dependent set 𝛩(𝐷) =
{𝐸,𝐵, 𝐶}. Similarly, the time dependent sets of the activity 𝐴, 𝐵, 𝐶, and
𝐷 are 𝛩(𝐴) = ∅, 𝛩(𝐵) = {𝐴}, 𝛩(𝐶) = {𝐴}, and 𝛩(𝐸) = {𝐴}, respectively.

Algorithm 1 gives the procedure of obtaining the time dependent set
for each activity in a process model. The time complexity of algorithm
1 is 𝑂(𝑁3), where 𝑁 is the number of transitions in the workflow net.
4

Algorithm 1 Extracting Time Dependent Set of a Transition
Input: a workflow net 𝑁 = (𝑃 , 𝑇 , 𝐹 ), a transition 𝑥
utput: The time dependent set 𝛩 of transition 𝑥
1: Define three sets 𝛩(𝑥) = {} ; 𝐴 = {} ; 𝛤 = {}
2: for each transitions 𝑡 ∈ 𝑇 do
3: if 𝑡 is non-invisible transition then
4: 𝐴 = 𝐴 ∪ {𝑡}
5: else
6: 𝛤 = 𝛤 ∪ {𝑡}
7: end if
8: end for
9: for each transition 𝑡0 ∈ 𝑇 do
10: if ∙𝑥 ∩ 𝑡0∙ ≠ ∅ then
11: 𝛩(𝑥) = 𝛩(𝑥) ∪ {𝑡0}
12: end if
13: end for
14: repeat
15: Define break condition: 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝐹𝑎𝑙𝑠𝑒
16: for each transition 𝑡1 ∈ 𝛩(𝑥) do
17: if 𝑡1 ∈ 𝛤 then
18: 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑇 𝑟𝑢𝑒
19: 𝛩(𝑥) = 𝛩(𝑥) − {𝑡1}
20: for each transition 𝑡2 ∈ 𝑇 do
21: if ∙𝑡1 ∩ 𝑡2∙ ≠ ∅ then
22: 𝛩(𝑥) = 𝛩(𝑥) ∪ {𝑡2}
23: end if
24: end for
25: end if
26: end for
27: until 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
28: return 𝛩𝑥

3.2. Construct aggregated vectors using time dependent set

For the second step, we construct aggregated vectors that contain
both activity name from event traces and timing information derived
from the time dependent set and event entry timestamps. We first apply
a similar approach used in [10] to map each event trace 𝜎 in a given
event log into an activity vector (⃗𝜎), which is defined below.

Definition 7 (Activity Vector (⃗)). Given an event trace 𝜎 and an
ctivity set 𝛺, the activity vector ⃗ corresponding to an event trace
is ⃗𝜎 = (1(𝛼1),… ,𝑛(𝛼𝑖)), where 𝑛 = |𝛺|, 𝛼𝑖 ∈ 𝛺, and  (𝛼𝑖) is the

number of times the activity 𝛼𝑖 occurs in the trace 𝜎.

Based on the definition, for event log 𝐿 given in Table 1, we have
the activity set 𝛺 = {𝐴,𝐵, 𝐶,𝐷,𝐸}, hence the size of all activity vector
|⃗| = 5. Furthermore, for Trace 1 (𝜎1), its corresponding activity vector
⃗𝜎1 = (1, 1, 1, 1, 0), where ⃗𝜎1 [5] = 0 indicates that activity 𝐸 does not
ccur in Trace 1.
There is another important piece of information contained in an

event trace, i.e., the time stamp of each recorded activity. Our idea



Journal of Systems Architecture 125 (2022) 102435Z. Zhang et al.

v
i
i
l
f

v

√

t
a
s

a
a
t
a

is to extend the activity vector by adding timing information related
activities in a given trace. Our hypothesis is with additional activity
related to timing information, we will be able to discover more accurate
scenarios.

To obtain the timing information related to each activity in a given
trace, we first introduce the following definitions.

Definition 8 (Time Dependent Pair (𝛼, 𝛽)). Given an event log’s activity
set 𝛺, for any two activities 𝛼, 𝛽 ∈ 𝛺, if 𝛽 ∈ 𝛩(𝛼), the activities 𝛼
and 𝛽 are called a time dependent pair denoted as (𝛼, 𝛽), and the set
of all time dependent pairs in a given activity set 𝛺 is denoted as
 =

⋃

𝛼∈𝛺{(𝛼, 𝛽)|𝛽 ∈ 𝛩(𝛼)}.

For instance, in Example 1, activity 𝐷’s time dependent set is 𝛩(𝐷) =
{𝐵,𝐶,𝐸}, the corresponding time dependent pairs are (𝐷,𝐵), (𝐷,𝐶),
and (𝐷,𝐸). Furthermore, the set of all time dependent pairs correspond-
ing to the event log presented in Example 1 is  = {(𝐵,𝐴), (𝐶,𝐴),
(𝐷,𝐵), (𝐷,𝐶), (𝐷,𝐸), (𝐸,𝐴)}.

Definition 9 (Timing Vector (⃗ )). Given a time dependent pair set ,
the timing vector ⃗ , |⃗ | = ||, represents the maximal time duration
between two activities of a given time dependent pair (𝛼, 𝛽) ∈ . For a
given trace 𝜎 = [𝑒1,… , 𝑒𝑚], the value of the timing vector ⃗𝜎 [(𝛼, 𝛽)] is
defined as: ⃗𝜎[(𝛼, 𝛽)] = max{𝜏 (𝑒𝑖) − 𝜏 (𝑒𝑗 ) | 1 ≤ 𝑖, 𝑗 ≤ 𝑚 ∧ 𝑖 ≠ 𝑗 ∧ 𝑒𝑖, 𝑒𝑗 ∈
𝜎 ∧ 𝛼(𝑒𝑖) = 𝛼 ∧ 𝛼(𝑒𝑗 ) = 𝛽}.

Consider Trace 1(𝜎1) in Table 1 and a time dependent pair (𝐵,𝐴).
The trace 𝜎1 contains the activity 𝐵 at time ‘‘10:24’’, the activity 𝐴’s
time stamp is ‘‘08:15’’. The time duration between the activity 𝐴’s
time stamp and the activity 𝐵’s time stamp is 129, with minutes as the
time units. Hence we have ⃗𝜎1 [(𝐵,𝐴)] = 129, indicating that activity
𝐵 occurs at most 129 time units after the occurrence of activity 𝐴 in
𝜎1. Algorithm 2 gives the detailed steps of obtaining the timing vector
from an event trace.

Algorithm 2 Construct Timing Vector
Input: An event trace 𝜎 = {𝑒1,⋯ , 𝑒𝑛} and the set of all time dependent

pairs  =
⋃

𝛼∈𝛺
{(𝛼, 𝛽)|𝛽 ∈ 𝛩(𝛼)}

Output: The corresponding timing vector ⃗𝜎 = (𝛤 (𝛼1, 𝛽1),⋯ , 𝛤 (𝛼𝑖, 𝛽𝑗 )),
where the 𝛤 (𝛼𝑖, 𝛽𝑗 ) indicates the maximal time duration
between two activities of a given time dependent pair (𝛼𝑖, 𝛽𝑗 ) ∈ 

1: for 𝑖 = 1 to 𝑛 do
2: 𝑗 = 𝑖 − 1
3: while 𝑗 ≠ 0 do
4: if (𝑒𝑖, 𝑒𝑗 ) ∈  then
5: if 𝜏 (𝑒𝑖) − 𝜏 (𝑒𝑗 ) > 𝛤 (𝛼(𝑒𝑖),𝛼(𝑒𝑗 )) then
6: 𝛤 (𝛼(𝑒𝑖),𝛼(𝑒𝑗 )) = 𝜏 (𝑒𝑖) − 𝜏 (𝑒𝑗 )
7: end if
8: end if
9: 𝑗 = 𝑗 − 1
10: end while
11: end for

Before we aggregate the activity and timing vectors to obtain a
ector that contains both activity information and timing information
n an event trace, we normalize the activity and timing vectors. Normal-
zation of the activity and timing vector is used to prevent features with
arge numerical values from dominating in distance-based objective
unctions which is used in trace clustering. For a given event trace 𝜎,
the corresponding activity vector and timing vector are ⃗ = (𝑎1,… , 𝑎𝑚)
and ⃗ = (𝑡1,… , 𝑡𝑛), respectively, we apply

⃗
‖⃗‖

and ⃗
‖⃗ ‖

to normalize the

ectors, where ‖⃗‖ =
√

𝑎21 +⋯ + 𝑎2𝑛 and ‖⃗ ‖ =
√

𝑡21 +⋯ + 𝑡2𝑛. Finally,

we aggregate the normalized activity and normalized timing vectors.
5

Table 2
Aggregated vectors transferred from the event log presented in Table 1.

Activity information Timing information

 (𝐴)  (𝐵)  (𝐶)  (𝐷)  (𝐸) (𝐵,𝐴) (𝐶,𝐴) (𝐷,𝐵) (𝐷,𝐶) (𝐷,𝐸) (𝐸,𝐴)

⃗𝜎1 0.500 0.500 0.500 0.500 0.000 0.419 0.423 0.569 0.566 0.000 0.000
⃗𝜎2 0.500 0.500 0.500 0.500 0.000 0.759 0.458 0.004 0.439 0.000 0.000
⃗𝜎3 0.500 0.500 0.500 0.500 0.000 0.144 0.742 0.652 0.053 0.000 0.000
⃗𝜎4 0.500 0.500 0.500 0.500 0.000 0.624 0.322 0.305 0.642 0.000 0.000
⃗𝜎5 0.577 0.000 0.000 0.577 0.577 0.000 0.000 0.000 0.000 0.151 0.988

Fig. 4. Illustration of the strategy about the density-based algorithm.

Definition 10 (Aggregated Vector (⃗)). Given an event trace 𝜎, as-
sume the corresponding activity and timing vectors are ⃗𝜎 = (𝑎1,… ,
𝑎𝑖,… , 𝑎𝑚) and ⃗𝜎 = (𝑡1,… , 𝑡𝑗 ,… , 𝑡𝑛), respectively, the aggregated
vector ⃗ corresponding to an event trace 𝜎 is ⃗𝜎 = ( 𝑎1

‖⃗‖

,… , 𝑎𝑖
‖⃗‖

,

… , 𝑎𝑚
‖⃗‖

, 𝑡1
‖⃗ ‖

,… ,
𝑡𝑗

‖⃗ ‖

,… , 𝑡𝑛
‖⃗ ‖

), where 𝑎𝑖 = ⃗𝜎 [𝑖], 𝑡𝑗 = ⃗𝜎 [𝑗], ‖⃗‖ =

𝑎21 +⋯ + 𝑎2𝑛, and ‖⃗ ‖ =
√

𝑡21 +⋯ + 𝑡2𝑛.

Consider Trace 1(𝜎1) in Table 1, the aggregated vector correspond-
ing to 𝜎1 is ⃗𝜎1 = (0.5, 0.5, 0.5, 0.5, 0, 0.419, 0.423, 0.569, 0.566, 0, 0). Ta-
ble 2 gives the vector value for the other four traces. Note that,
we can also use weighted concatenation to aggregate the normalized
activity and timing vectors. The weighted values provide a way to
emphasize which perspective should have more impact on the outcome
of discovery process scenarios.

3.3. Discover process scenarios with density based clustering algorithm

Given an event log 𝐿, we first construct the set of aggregated vectors
{⃗1,… , ⃗𝑛}, we then apply the density-based algorithm to partition
he event log into a set of sub logs. Finally, existing process discovery
lgorithms can be applied on the sub logs to obtain different process
cenarios in terms of process models.
We use Fig. 4 to illustrate the basic idea used in the density-based

lgorithm to partition the event log into a set of clusters. For simplicity,
ssume the cardinality of event trace’s aggregated vector |⃗| = 2,
herefore, each aggregated vector (an event trace) can be mapped to
point in a two-dimensional domain shown in Fig. 4.
Consider the sample sets of aggregated vectors depicted in Fig. 4,

we can easily and clearly detect two different process scenarios of
aggregated vectors and noise not belonging to any of those scenarios.
For instance, aggregated vector 𝐴 and 𝐵 belong to two different process
scenarios. However, the aggregated vector 𝐶 is noise. The main reason
why we recognize the clusters is that within each cluster, we have
a typical density of points which is considerably higher than outside
of the cluster. Furthermore, the density within the areas of noise is
lower than the density in any of the clusters. The key idea is that



Journal of Systems Architecture 125 (2022) 102435Z. Zhang et al.

t

o
0
0
0

c
r
o

𝑁
v
w
o
l
L
v
a
t


o
p

a
p
t
T

4

l
v
f
l
t
t
d
t
d
p
P
e
u
s
o
a

for each point of a cluster the neighborhood of a given radius has to
contain at least a minimum number of points, which the density in
the neighborhood has to exceed a threshold. Hence, we would have
to define the two appropriate parameters which are the following. The
distance that will be used to locate the points in the neighborhood of
any point and the minimum number of points clustered together for a
region to be considered dense. Then, we can retrieve all points that are
reachable from the given point using the these two parameters. There is
no easy way to get the knowledge related to the parameters in advance,
the existing technique in the literature to determine the parameters of
the cluster is heuristic [19–21]. Sometimes, the two parameters can be
set by domain experts [9].

Let 𝑑(⃗𝑖, ⃗𝑗 ) denote Euclidean distances between aggregated vectors
⃗𝑖, ⃗𝑗 . Let 𝐸𝑝𝑠 denote the distance measure that will be used to
locate the points in the neighborhood of any point. Let 𝑀𝑖𝑛𝑃 𝑡𝑠 denote
the minimum number of points clustered together for a region to be
considered dense.

Algorithm 3 shows the procedure to partition the event log into
a set of clusters using the density-based algorithm from aggregated
vectors. The time complexity of the algorithm is 𝑂(𝑛 × 𝑙𝑜𝑔(𝑛)), where
𝑛 is the number of event traces in the event log 𝐿. We use Example 2
o illustrate Algorithm 3.

Algorithm 3 Event log partitioning

Input: A set of aggregated vectors 𝛱 = {⃗1,⋯ , ⃗
|𝐿|} and a set of

Euclidean distances  = {𝑑(⃗𝑖, ⃗𝑗 )|⃗𝑖, ⃗𝑗 ∈ 𝛱}; 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃 𝑡𝑠
be the two parameters.

Output: a set of the clusters related to aggregated vectors
1: 𝑘 ← 0
2: for each ⃗𝑖 ∈ 𝛱 do
3: if ⃗𝑖 is not labeled then
4: continue
5: end if
6: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡 ← Empty List
7: for each ⃗𝑗 ∈ 𝛱 do
8: if 𝑑(⃗𝑖, ⃗𝑗 ) ≤ 𝐸𝑝𝑠 then
9: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡 ∪ {⃗𝑗}
10: end if
11: end for
12: if |𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡| < 𝑀𝑖𝑛𝑃 𝑡𝑠 then
13: ⃗𝑖 is labeled as noise
14: continue
15: end if
16: 𝑘 ← 𝑘 + 1 and ⃗𝑖 is labeled as 𝑘
17: 𝑆𝑒𝑎𝑟𝑐ℎ𝐿𝑖𝑠𝑡 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡\{⃗𝑖}
18: for each ⃗𝑚 ∈ 𝑆𝑒𝑎𝑟𝑐ℎ𝐿𝑖𝑠𝑡 do
19: if ⃗𝑚 is labeled as noise then
20: ⃗𝑚 is labeled as 𝑘
21: end if
22: ⃗𝑚 is labeled as 𝑘
23: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡 ← Empty List
24: for each ⃗𝑛 ∈ 𝛱 do
25: if 𝑑(⃗𝑚, ⃗𝑛) ≤ 𝐸𝑝𝑠 then
26: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡 ∪ {⃗𝑛}
27: end if
28: end for
29: if |𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡| ≥ 𝑀𝑖𝑛𝑃 𝑡𝑠 then
30: 𝑆𝑒𝑎𝑟𝑐ℎ𝐿𝑖𝑠𝑡 ← 𝑆𝑒𝑎𝑟𝑐ℎ𝐿𝑖𝑠𝑡 ∪𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡
31: end if
32: end for
33: end for
6

B

Table 3
Characteristics of the event logs used for the evaluation.
DataSet Number of

traces
Number of
event entry

Average number of event
entry per trace

BPIC2013 [23] 819 2351 2.871
BPIC2020 [24] 10 500 56,437 5.374
Hospital billing [25] 100000 451359 4.514
Review process [26] 10 000 236360 23.636
Road traffic [27] 150370 561470 3.734

Example 2. Consider the set of aggregated vectors 𝛱 =
{⃗1, ⃗2, ⃗3, ⃗4, ⃗5} given in the Table 2, the set of Euclidean distances
f two aggregated vectors in 𝐿 is  = {(⃗1, ⃗2) = 0.203, (⃗1, ⃗3) =
.202, (⃗1, ⃗4) = 0.108, (⃗1, ⃗5) = 0.508, (⃗2, ⃗3) = 0.306, (⃗2, ⃗4) =
.124, (⃗2, ⃗5) = 0.507, (⃗3, ⃗4) = 0.281, (⃗3, ⃗5) = 0.508, (⃗4, ⃗5) =
.508}, and the two parameters are 𝐸𝑝𝑠 = 0.3 and 𝑀𝑖𝑛𝑃 𝑡𝑠 = 1.
According to Lines 2–5, we select an aggregated vector ⃗1, and

heck the label of aggregated vector ⃗1. We apply Line 6–11 of algo-
ithm for every aggregated vector in the set 𝛱 to find the neighborhood
f aggregated vector ⃗1. Since the distance between aggregated vectors
⃗1 and ⃗2, i.e. 𝑑(⃗1, ⃗2), is 0.203 and less than 𝐸𝑝𝑠, we add ⃗2 into list
𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡. After applying the step to the other three aggregated
ectors ⃗3, ⃗4, ⃗5, the 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡 becomes ⃗2, ⃗3, ⃗4. Then we check
hether the list 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡 contains at least a 𝑀𝑖𝑛𝑃 𝑡𝑠 of points
n Line 12–15. Based on Line 16 and 17, aggregated vector ⃗1 is
abeled as 1 and then removed from list 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡. We apply
ine 18–32 of algorithm to find the neighborhood of every aggregated
ector in the list 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿𝑖𝑠𝑡, i.e. ⃗2, ⃗3, ⃗4. We repeat the steps until
ll aggregated vectors are labeled, and partition the event log into
wo subsets, i.e., scenarios. The first subset of the event log contain
⃗1, ⃗2, ⃗3, ⃗4, and the second subset contain ⃗5

Finally, the existing process discovery algorithms can be applied
n the subset of logs to obtain different process scenarios in terms of
rocess models.
The proposed techniques of process scenarios discoveries in wastew-

ter treatment process is implemented on an existing open-source
rocess mining framework pm4py [22]. The implementation of the
echnique is available at https://github.com/stevenzzy9/Wastewater-
reatment-Process-Discovery.

. Experimental study

In this section, we firstly apply the technique developed in ear-
ier sections to the artificial logs to investigate the effectiveness and
alidity. Then we experimentally evaluate the proposed approach on
ive real-life event logs [23–27]. The characteristics of these event
ogs are summarized in Table 3. The artificial logs are generated from
he Processes and Logs Generator (Plg) [28], which is an open-source
ool that is used to generate artificial event logs based on the user-
efined process model. The objectives of our evaluations consist of
wo components. First, investigate the effectiveness in process scenarios
iscoveries in wastewater treatment process. To do so, we apply the
roposed approach on the artificial logs, which is generated from the
lg based real wastewater treatment process provided by a domain
xpert and examine the effectiveness of the approach. Second, we eval-
ate if having timing information can improve the quality of process
cenario models discovered from event logs. In order to achieve the
bjective, we choose an existing heuristic mining algorithm [12], and
pply it on the same event logs but with and without time information.

efore the evaluation, we first define our evaluation criteria.

https://github.com/stevenzzy9/Wastewater-Treatment-Process-Discovery
https://github.com/stevenzzy9/Wastewater-Treatment-Process-Discovery
https://github.com/stevenzzy9/Wastewater-Treatment-Process-Discovery


Journal of Systems Architecture 125 (2022) 102435Z. Zhang et al.

i
𝑓
d

m
h
i
c

4

p
d
d
b
p
e
t
f
p

t
t
m
a
e
a
d
a

4.1. Performance metrics

The quality of a process model is evaluated by two criteria, i.e., (1)
fitness 𝑓 , and (2) precision 𝑝. Fitness measures how well a model can
reproduce the process behavior contained in a log, and the precision
measures the degree to which the behavior made possible by a model
is found in a log [29]. The higher fitness value and precision value, the
better quality of the process model. We use the pm4py [22] library to
calculate the fitness value and precision value.

As we may have multiple scenarios in a given event log, we need
the weighted average fitness 𝑓𝑊 and precision 𝑝𝑊 to evaluate the
quality of the multiple scenario process models. Similar to the approach
in [30], the weighted average fitness and precision are calculated as
follows:

𝑓𝑊 =
∑𝑘

𝑖=1 𝑛𝑖 × 𝑓𝑖
|𝐿|

𝑝𝑊 =
∑𝑘

𝑖=1 𝑛𝑖 × 𝑝𝑖
|𝐿|

where 𝑘 is the number of subsets of logs representing the scenarios, 𝑛𝑖
s the number of event traces in the 𝑖th subset of a given event log, and
𝑖 and 𝑝𝑖 are the fitness value and precision value of the process model
erived from of subsets of logs, respectively.
The fitness and precision are two aspects of a process model which
ay not always be consistent. The 𝐹1 score [31] is defined as the
armonic mean of the weighted average fitness 𝑓𝑊 and precision 𝑝𝑊 ,
.e. 𝐹1 = 2×𝑓𝑊 ×𝑝𝑊

𝑓𝑊 +𝑝𝑊 . We will also use the 𝐹1 score as an evaluation
riteria.

.2. Effectiveness validation

This set of experiments is to examine the effectiveness of the pro-
osed approach for process scenario discovery in wastewater treatment
omain. More specifically, based on the process model provided by the
omain expert, we first use the Plg to generate five artificial event logs
y injecting an incremental amount of noise ranging from 1% to 20% to
roduce an event log that contains one thousand event traces. Then, for
ach artificial event log, we apply the proposed approach in Section 3
o partition the event log into clusters, and discover a process model
rom each subset of the event log using the heuristic mining algorithm
resented in [12].
Fig. 5 shows the wastewater treatment process model in the form of

he Business Process Modeling Notation (BPMN) [32]. All wastewater
reatment processes begin with influent wastewater arriving at a treat-
ent facility from sewage lines. The wastewater is sent through coarse
nd fine screens in order to remove both large and small objects, debris,
tc (respectively) from the water. After these first mandatory steps
re completed, the wastewater will go through different sub-processes
epending on if the water can be reused or if it will be disposed of at
landfill.
Figs. 6, 7, and 8 show the results produced by the proposed ap-

proach. The first scenario within the wastewater treatment process
shown in Fig. 6 is used to remove solid debris in the water, that range
anywhere from 0.01 in to 6 in. This process begins at the ‘‘Coarse
Screens’’ activity where the screens have openings of 0.25 in to 6 in.
These screens are used to remove the larger solids, such as rags, sticks,
rocks, etc. After the large debris is removed from the wastewater, it
moves to the ‘‘Fine Screens’’ activity where smaller particles are moved
from the water. Screens anywhere from 0.01 in to 0.25 in are used to
suspend solids in the water and clarify the water to acceptable levels.
The final processing step is the ‘‘Compacted Screenings’’ where after
the screens used previously are washed, they are then compacted to
reduce the amount of water and increase the concentration of solids.
The first scenario ends with the activity ‘‘Disposal to Landfill’’ where
waste is disposed of.
7

The second scenario within the wastewater treatment process shown
in Fig. 7 is used to treat sludge by converting to a solid form. The
same process of water going through the coarse/fine screens occurs the
same as the first scenario. Then, the water goes through the ‘‘Primary
Clarifiers’’ activity where solids are separated from the wastewater by
gravity in a clarification tank. After this activity, ‘‘Blending’’ routes
some of the water flow away from the treatment process so that it can
be blended with fully treated water later on before it is disposed of.
The ‘‘Anaerobic Digester’’ step continues the treatment process with
degrading organic matter by removing oxygen. The process can either
end at this point, or continue with the ‘‘Storage Tank’’ activity where
water can be stored before it is disposed of at a landfill.

The third scenario within the wastewater treatment process shown
in Fig. 8 is used to describe the liquid flow through the process. The
third scenario also starts with coarse/fine screen activities and then
goes to the ‘‘Primary Clarifiers’’ activity, similar to the second scenario,
to allow for solids to separate from the liquids. The liquid then moves
to the ‘‘Bio-reactor Tanks’’ where the liquid is treated by microfiltration
membrane bioreactors (MBR’s) that combine a suspended growth bio-
logical reactor along with microfiltration for secondary treatment of the
water. Then, depending on various chemical levels, clarity levels, etc.
the water will simultaneously travel to various other activities before
the end of the process. The first route is to the ‘‘Final Clarifier’’ activity
where an activated sludge process is used to settle out microorganisms.
Then the ‘‘Chlorine Contact Basin’’ is also used to disinfect the water
and remove microorganisms, bacteria, viruses, etc. from the water.
Water is then moved to ‘‘Ponds’’ where organic content and pathogens
are reduced/removed from the wastewater. Then the ‘‘De-chlorination
Pond’’ is used to reduce the levels of chlorine in the wastewater.
Before the process ends, the water is moved to either the ‘‘Effluent
Pumping Station’’ for transporting the water, or the Cascade Aerator to
oxidize iron and reduce dissolved gases. The second route within the
third scenario starts off with one of three activities. The first, ‘‘Gravity
Thickening’’ is used to condense biosolids in order to separate the solids
from the solid free supernatant. The second activity, ‘‘Dissolved-Air
Flotation Thickening’’, thickens sludge to bring solids to the surface
and therefore separates the solids and liquids. The final option is
‘‘Wastewater Centrifuge De-watering Thickening’’ where a high speed
rotation process separates water from the sewage. After one of these
processes is used to treat the wastewater, it is then sent to the ‘‘Blend
Tank’’ and the ‘‘Anaerobic Digester’’ for further treatment before the
process ends.

According to the wastewater treatment workflow from conventional
water reclamation plants, the wastewater treatment is a process in
which the solids in wastewater are partially removed and partially
changed by decomposition from highly complex, putrescible, organic
solids to mineral or relatively stable organic solids. Primary and sec-
ondary treatment removes the majority of BOD and suspended solids
found in wastewaters. The proposed approach utilize the duration of
each treatment activities and the frequence of event trace sequences
related to treatment processes for different waste forms to discover
the process scenarios in wastewater treatment. Based on the domain
expert’s verification, the evaluation results show that the proposed
approach is able to discover the process scenarios from event logs in
wastewater treatment domain.

4.3. Performance evaluation

This set of experiments is to evaluate whether adding the timing
information in constructing the vectors can improve process scenario
discovery performance. More specifically, given an event log, we ap-
ply the proposed approach presented in Section 3.2 to construct the
aggregated vectors that contain both activity information and timing
information. For the same event log, we also apply the heuristic mining
approach presented in [10] to obtain the activity vectors that contain

only the activity information. For both aggregated vectors and activity



Journal of Systems Architecture 125 (2022) 102435Z. Zhang et al.

v
i
f
i

m
t
a
a

Fig. 5. Wastewater treatment process model.
Fig. 6. Scenario one: Removing solid debris.
Fig. 7. Scenario two: Treating sludge.
Fig. 8. Scenario three: Treating liquid.
ectors, we apply the 𝑘-means algorithm to partition the event logs
nto 𝑘 clusters, where 𝑘 is from 2 to 5, and discover a process model
rom each subset of logs using the heuristic mining algorithm presented
n [4].
We use the pm4py tool [22] with the following settings: (1) process
ining algorithm is heuristic mining; (2) the dependency threshold of
he algorithm is 0.9; (3) the minimum number of occurrences of an
ctivity is 1; (4) the minimum number of occurrences of an edge is 1;
nd (5) the thresholds for the loops of length is 2. The weighted average
8

fitness, the weighted average precision, and the 𝐹1 score of the process
models are depicted in Tables 4, 5, and 6, respectively.

From the experiment results, it is clear that when we add timing
information into the vector, we are able to achieve higher weighted av-
erage fitness, weighted average precision, and 𝐹1 score, under different
𝑘 and with different real-life event logs.

For each event log, we also calculate the average improvement
percentage of different 𝑘 values which is shown in Table 7. We observe
that the improvements of the weighted average precision is better than
the weighted average fitness in general. The reason is that the weighted



Journal of Systems Architecture 125 (2022) 102435Z. Zhang et al.

t
p

g
m
b
t
t
T

Table 4
Weighted average fitness.

k = 2 k = 3 k = 4 k = 5

Without
timing
information

With
timing
information

Without
timing
information

With
timing
information

Without
timing
information

With
timing
information

Without
timing
information

With
timing
information

BPIC2013 0.951 0.998 0.952 0.961 0.970 0.972 0.979 0.981
BPIC2020 0.985 0.998 0.986 0.998 0.986 0.998 0.989 0.998
Hospital
billing

0.785 0.998 0.973 0.995 0.945 0.957 0.945 0.997

Review
process

0.898 0.956 0.915 0.957 0.925 0.963 0.939 0.962

Road traffic 0.768 0.976 0.823 0.976 0.963 0.979 0.969 0.975
Table 5
Weighted average precision.

k = 2 k = 3 k = 4 k = 5

Without
timing
information

With
timing
information

Without
timing
information

With
timing
information

Without
timing
information

With
timing
information

Without
timing
information

With
timing
information

BPIC2013 0.816 0.899 0.721 0.857 0.675 0.804 0.651 0.759
BPIC2020 0.943 0.953 0.876 0.941 0.876 0.907 0.989 0.996
Hospital
billing

0.883 0.917 0.792 0.890 0.870 0.907 0.863 0.944

Review
process

0.530 0.754 0.431 0.571 0.475 0.551 0.492 0.646

Road traffic 0.640 0.729 0.606 0.729 0.561 0.719 0.561 0.708
Table 6
𝐹1 score.

k = 2 k = 3 k = 4 k = 5

Without
timing
information

With
timing
information

Without
timing
information

With
timing
information

Without
timing
information

With
timing
information

Without
timing
information

With
timing
information

BPIC2013 0.879 0.946 0.821 0.906 0.796 0.880 0.782 0.855
BPIC2020 0.963 0.975 0.927 0.969 0.927 0.950 0.940 0.964
Hospital
billing

0.831 0.956 0.873 0.939 0.906 0.948 0.902 0.959

Review
process

0.667 0.843 0.585 0.716 0.627 0.701 0.646 0.733

Road traffic 0.698 0.835 0.688 0.837 0.709 0.829 0.709 0.819
Table 7
Average improvement percentage.

Weighted average fitness Weighted average precision F1 score

BPIC2013 2.02% 16.00% 9.53%
BPIC2020 1.24% 4.09% 2.71%
Hospital billing 10.18% 8.06% 9.06%
Review process 5.09% 30.30% 20.12%
Road traffic 15.84% 20.81% 18.73%
average fitness resulted from the approach in [10] is closer to 1 than
the weighted average precision, which indicates the room for fitness
improvement is relatively small.

4.4. Comparison

This set of experiments is to compare our proposed approach with
the four commonly used process scenarios discovery approaches such as
the k-means approach (KM) [10], the Model-based approach (MB) [30],
he Distanced-based approach (DB) [9] and the Conserved Patterns ap-
roach (CP) [11] using real-life event logs.
For each real-life event logs, we use the different approaches to

enerate subsets of event logs where event traces in the same subset are
ost likely under the same scenarios. For each subset of logs produced
y the different approaches, we apply the inductive mining algorithm
o discover a process model, and calculate the weighted average fitness,
he weighted average precision, and the 𝐹1 score of the process models.
9

he results are depicted in Table 8.
From the experiment results, the performance of the proposed ap-
proach is 3.31%, 7.93%, and 5.61% higher than the commonly ap-
proaches with respectively for fitness, precision, and F1 score on average.
The proposed method outperforms four commonly used approaches
with different real-life event logs.

5. Related work

Over the past decade, a range of effective process discovery al-
gorithms have been proposed [33] in process mining field. Despite
the demonstrated usefulness of process discovery algorithms, these
algorithms face challenges in an environment where different scenarios
exist [5–8]. When different scenarios are grouped into one process
model, the complexity of the model becomes incomprehensible. The
work in [34] is the first study which applies trace clustering techniques
to assist in discovering the process scenarios in order to obtain more
accurate and interpretable process models from event logs. This study

proposed an approach to cluster the event traces based on the structural



JournalofSystemsArchitecture125(2022)102435

10

Z.Zhang
et
al.

Table 8
Weighted average fitness, weighted average precision, and F1 score.

BPIC 2013 BPIC 2020 Review process Toad traffic Hospital billing

Weighted
average
fitness

Weighted
average
precision

F1
score

Weighted
average
fitness

Weighted
average
precision

F1
score

Weighted
average
fitness

Weighted
average
precision

F1
score

Weighted
average
fitness

Weighted
average
precision

F1
score

Weighted
average
fitness

Weighted
average
precision

F1
score

Proposed
approach

0.985 0.877 0.928 0.998 0.887 0.939 0.951 0.646 0.769 0.974 0.719 0.827 0.936 0.793 0.859

KM approach 0.951 0.816 0.878 0.985 0.883 0.931 0.898 0.530 0.667 0.768 0.640 0.698 0.785 0.792 0.788
DB approach 0.952 0.721 0.821 0.986 0.876 0.928 0.915 0.431 0.586 0.823 0.606 0.698 0.973 0.774 0.862
CP approach 0.965 0.675 0.794 0.986 0.872 0.926 0.925 0.475 0.628 0.963 0.561 0.709 0.945 0.619 0.748
MB approach 0.972 0.651 0.780 0.989 0.889 0.936 0.939 0.492 0.646 0.969 0.561 0.711 0.931 0.663 0.774



Journal of Systems Architecture 125 (2022) 102435Z. Zhang et al.
patterns frequently occurring in the event log, and then partition the
corresponding event log into different subsets of logs where event traces
in the same subset most likely belong to the same scenario. Once
the event logs are partitioned into different clusters, process discovery
techniques can be applied on the clusters to obtain process models for
different scenarios.

The most straightforward idea for clustering traces methods relies
on traditional data clustering techniques [35]. Greco et al. [9] were
pioneers in studying the clustering of log traces within the process min-
ing domain. They use a vector space model considering the activities
to cluster the traces in an event log with the purpose of discovering
more simple process models for the subgroups. The authors propose
the use of disjunctive workflow schemas (DWS) for discovering process
models. The underlying clustering methodology is k-means clustering.
Song et al. [10] proposed an approach to construct a vector space model
for traces in an event log. In [10], the author allows for different kinds
of attributes, e.g., activity name, executor, to determine the vector
associated with each event trace, and then provide four clustering
techniques for trace clustering. In [6,11], they extend the existing
trace clustering techniques by improving the way in which control-flow
context information is taken into account. The control-flow context
information refers to the execution pattern of activities in the event log.
Jagadeesh et al. [6] propose a generic edit distance technique based on
the Levenshtein distance. The approach relies on substitution, insertion,
and deletion costs to partition the event log into a set of sub logs. Bose
et al. [11] propose a refinement of the technique by using conserved
patterns, which are Maximal, Super Maximal, and Near Super Maximal
Repeats. However, their implementation applies hierarchical clustering
instead of k-means.

Event logs contain abundant information, such as activity names,
time stamps, activity executors, etc. The most existing work focuses
on applying activity names information or control-flow context infor-
mation to assist process scenarios discovery. Unfortunately, not much
work is done in the area of clustering traces involving timing infor-
mation recorded in event logs. One exception is Appice’s work [36].
In [36], the author considers that traces of an event log can be rep-
resented in multiple trace profiles derived by accounting for several
perspectives such as activity, control flow, organization, and timestamp
of activities. Different from Appice’s work, we consider the timing
information which is derived from the time dependent set and event
time stamps.

In the wastewater treatment domain, the demands of wastewater
treatment facilities have increased and facilities require methods to
improve their treatment processes. For example, regulatory demands
from government bodies [37], such as the EPA, require wastewater
to meet increasingly strict quality standards in order to be safe. One
approach to solve this issue is by creating wastewater treatment process
models in order to analyze and improve these facilities’ processes. In
the domain of wastewater treatment, there are a variety of tools and
methods generally used in the modeling of treatment processes. One
popular tool, GPS-X, is often used in modeling [38,39] because it is
specifically designed for wastewater modeling and simulation. While
this does provide the user some level of convenience, these software
tools lack due to the need of frequent human input [38], levels of
uncertainty [37], among other factors. Our approach differs in the
aspect of how the data is processed and used to create models. By using
timing information to discover process scenarios, we lower the levels of
uncertainty in that the process models should more accurately reflect
the actual, real world scenarios occurring in the treatment process.

6. Conclusion

In this paper, we present an approach that uses timing information
to assist in discovering process scenarios from event logs in wastewater
treatment processes without a prior knowledge about the number of
scenarios 𝑘. The algorithm is implemented based on the open-source
11
process mining framework pm4py. A real wastewater treatment process
provided by a domain expert is used as a case study to investigate
the effectiveness and validity of the approach. The evaluation results
show that the algorithm is able to discover the process scenarios from
event logs in wastewater treatment domain. The experiments on real-
life event logs show that the process scenario models obtained with
the additional timing information have higher fitness and precision
scores than the models obtained without the timing information. These
results lead to the conclusions that timing information can improve
process scenario discovery performance, and the proposed approach
can discover different process scenarios more effectively in wastewater
treatment process. From the experiment results, we also notice that the
scenario discovery process is ‘mechanical’ in the sense that it does not
have domain experts involved or utilize domain experts’ knowledge in
the process. In future works, we will study how domain knowledge may
be represented and utilized in scenario discoveries.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

We thank Dr. Junjie Zhu (Princeton University) for providing the
real wastewater treatment process model. This work is supported in
part by NSF 1952247, NSF 1952225, and NSF 1929469.

References

[1] Wil Van der Aalst, Ton Weijters, Laura Maruster, Workflow mining: Discovering
process models from event logs, IEEE Trans. Knowl. Data Eng. 16 (9) (2004)
1128–1142.

[2] Marc Solé, Josep Carmona, Process mining from a basis of state regions, in:
International Conference on Applications and Theory of Petri Nets, Springer,
2010, pp. 226–245.

[3] Robin Bergenthum, Jörg Desel, Robert Lorenz, Sebastian Mauser, Process mining
based on regions of languages, in: International Conference on Business Process
Management, Springer, 2007, pp. 375–383.

[4] A.J.M.M. Weijters, Wil M.P. van Der Aalst, A.K. Alves De Medeiros, Process Min-
ing with the Heuristics Miner-Algorithm, Vol, 166, Tech. Rep. WP, Technische
Universiteit, Eindhoven, 2006, pp. 1–34.

[5] Stijn Goedertier, Jochen De Weerdt, David Martens, Jan Vanthienen, Bart
Baesens, Process discovery in event logs: An application in the telecom industry,
Appl. Soft Comput. 11 (2) (2011) 1697–1710.

[6] R.P. Jagadeesh Chandra Bose, Wil M.P. Van der Aalst, Context aware trace
clustering: Towards improving process mining results, in: Proceedings of the
2009 SIAM International Conference on Data Mining, SIAM, 2009, pp. 401–412.

[7] Gabriel M. Veiga, Diogo R. Ferreira, Understanding spaghetti models with
sequence clustering for ProM, in: International Conference on Business Process
Management, Springer, 2009, pp. 92–103.

[8] Christian W. Günther, Process Mining in Flexible Environments, Technische
Universiteit, Eindhoven, 2009.

[9] .
[10] Minseok Song, Christian W. Günther, Wil M.P. Van der Aalst, Trace clustering in

process mining, in: International Conference on Business Process Management,
Springer, 2008, pp. 109–120.

[11] R.P. Jagadeesh Chandra Bose, Wil M.P. van der Aalst, Trace clustering based on
conserved patterns: Towards achieving better process models, in: International
Conference on Business Process Management, Springer, 2009, pp. 170–181.

[12] Anton J.M.M. Weijters, Wil M.P. Van der Aalst, Rediscovering workflow models
from event-based data using little thumb, Integr. Comput.-Aided Eng. 10 (2)
(2003) 151–162.

[13] Wil Van Der Aalst, Process Mining: Discovery, Conformance and Enhancement
of Business Processes, Vol. 2, Springer, 2011.

[14] A.J.M.M. Weijters, Wil M.P. van der Aalst, Process mining: discovering workflow
models from event-based data, in: Belgium-Netherlands Conf. on Artificial
Intelligence, Citeseer, 2001.

[15] Christian W. Günther, Wil M.P. Van Der Aalst, Fuzzy mining–adaptive process
simplification based on multi-perspective metrics, in: International Conference
on Business Process Management, Springer, 2007, pp. 328–343.

http://refhub.elsevier.com/S1383-7621(22)00032-7/sb1
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb1
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb1
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb1
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb1
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb2
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb2
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb2
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb2
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb2
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb3
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb3
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb3
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb3
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb3
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb4
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb4
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb4
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb4
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb4
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb5
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb5
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb5
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb5
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb5
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb6
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb6
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb6
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb6
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb6
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb7
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb7
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb7
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb7
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb7
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb8
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb8
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb8
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb10
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb10
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb10
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb10
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb10
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb11
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb11
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb11
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb11
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb11
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb12
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb12
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb12
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb12
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb12
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb13
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb13
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb13
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb14
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb14
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb14
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb14
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb14
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb15
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb15
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb15
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb15
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb15


Journal of Systems Architecture 125 (2022) 102435Z. Zhang et al.
[16] Jörg Desel, Wolfgang Reisig, Place/transition Petri Nets, in: Lectures on Petri
Nets I: Basic Models: Advances in Petri Nets, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1998, pp. 122–173.

[17] Wil M.P. Van der Aalst, A.J.M.M. Weijters, Laura Maruster, Workflow Mining:
Which Processes can be Rediscovered, Technical report, BETA Working Paper
Series, WP 74, Eindhoven University of Technology, Eindhoven, 2002.

[18] Alejandro Bogarín Vega, Rebeca Cerezo Menéndez, Cristobal Romero, Discov-
ering learning processes using inductive miner: A case study with learning
management systems (LMSs), Psicothema (2018).

[19] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al., A density-based
algorithm for discovering clusters in large spatial databases with noise, in: Kdd,
Vol. 96, 1996, pp. 226–231.

[20] Soumaya Louhichi, Mariem Gzara, Hanène Ben Abdallah, A density based
algorithm for discovering clusters with varied density, in: 2014 World Congress
on Computer Applications and Information Systems (WCCAIS), IEEE, 2014, pp.
1–6.

[21] Vivek S. Ware, H.N. Bharathi, Study of density based algorithms, Int. J. Comput.
Appl. 69 (26) (2013).

[22] State-of-the-art-process mining in Python. https://pm4py.fit.fraunhofer.de/.
[23] BPI challenge 2013. https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_

incidents/12693914/1.
[24] BPI challenge 2020. https://data.4tu.nl/collections/BPI_Challenge_2020/

5065541.
[25] Hospital billing - Event log. https://data.4tu.nl/articles/dataset/Hospital_Billing_-

_Event_Log/12705113.
[26] Synthetic event logs - review example. https://data.4tu.nl/articles/dataset/

Synthetic_event_logs_-_review_example_large_xes_gz/12716609.
[27] Road traffic fine management process. https://data.4tu.nl/articles/dataset/Road_

Traffic_Fine_Management_Process/12683249.
[28] Andrea Burattin, PLG2: Multiperspective process randomization with online and

offline simulations, in: BPM (Demos), 2016, pp. 1–6.
12
[29] Raffaele Conforti, Marcello La Rosa, Arthur H.M. ter Hofstede, Filtering out
infrequent behavior from business process event logs, IEEE Trans. Knowl. Data
Eng. 29 (2) (2016) 300–314.

[30] Jochen De Weerdt, Seppe Vanden Broucke, Jan Vanthienen, Bart Baesens, Active
trace clustering for improved process discovery, IEEE Trans. Knowl. Data Eng.
25 (12) (2013) 2708–2720.

[31] Wil Van Der Aalst, Data science in action, in: Process Mining, Springer, 2016,
pp. 3–23.

[32] Stephen A. White, Introduction to BPMN, Vol. 2, Ibm Cooperation, 2004.
[33] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, Fab-

rizio Maria Maggi, Andrea Marrella, Massimo Mecella, Allar Soo, Automated
discovery of process models from event logs: Review and benchmark, IEEE Trans.
Knowl. Data Eng. 31 (4) (2018) 686–705.

[34] Francesco Folino, Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, Mining usage
scenarios in business processes: Outlier-aware discovery and run-time prediction,
Data Knowl. Eng. 70 (12) (2011) 1005–1029.

[35] Anil K. Jain, Richard C. Dubes, Algorithms for Clustering Data, Prentice-Hall,
Inc., 1988.

[36] Annalisa Appice, Donato Malerba, A co-training strategy for multiple view
clustering in process mining, IEEE Trans. Serv. Comput. 9 (6) (2015) 832–845.

[37] E. Belia, Y. Amerlinck, Lorenzo Benedetti, B. Johnson, Gürkan Sin, Peter A.
Vanrolleghem, K.V. Gernaey, S. Gillot, M.B. Neumann, L. Rieger, et al., Wastew-
ater treatment modelling: dealing with uncertainties, Water Sci. Technol. 60 (8)
(2009) 1929–1941.

[38] H.M. Phillips, K.E. Sahlstedt, K. Frank, J. Bratby, W Brennan, S. Rogowski, D.
Pier, W. Anderson, M. Mulas, J.B. Copp, et al., Wastewater treatment modelling
in practice: a collaborative discussion of the state of the art, Water Sci. Technol.
59 (4) (2009) 695–704.

[39] Amra Serdarevic, Alma Dzubur, Wastewater process modeling, Coupled Syst.
Mech. 5 (1) (2016) 21–39.

http://refhub.elsevier.com/S1383-7621(22)00032-7/sb16
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb16
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb16
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb16
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb16
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb17
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb17
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb17
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb17
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb17
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb18
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb18
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb18
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb18
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb18
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb19
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb19
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb19
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb19
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb19
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb20
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb20
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb20
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb20
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb20
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb20
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb20
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb21
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb21
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb21
https://pm4py.fit.fraunhofer.de/
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914/1
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541
https://data.4tu.nl/articles/dataset/Hospital_Billing_-_Event_Log/12705113
https://data.4tu.nl/articles/dataset/Hospital_Billing_-_Event_Log/12705113
https://data.4tu.nl/articles/dataset/Hospital_Billing_-_Event_Log/12705113
https://data.4tu.nl/articles/dataset/Synthetic_event_logs_-_review_example_large_xes_gz/12716609
https://data.4tu.nl/articles/dataset/Synthetic_event_logs_-_review_example_large_xes_gz/12716609
https://data.4tu.nl/articles/dataset/Synthetic_event_logs_-_review_example_large_xes_gz/12716609
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb28
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb28
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb28
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb29
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb29
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb29
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb29
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb29
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb30
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb30
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb30
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb30
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb30
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb31
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb31
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb31
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb32
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb33
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb33
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb33
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb33
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb33
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb33
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb33
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb34
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb34
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb34
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb34
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb34
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb35
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb35
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb35
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb36
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb36
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb36
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb37
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb37
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb37
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb37
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb37
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb37
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb37
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb38
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb38
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb38
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb38
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb38
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb38
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb38
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb39
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb39
http://refhub.elsevier.com/S1383-7621(22)00032-7/sb39

	Process scenario discovery from event logs based on activity and timing information
	Introduction
	Definitions and notations
	Event logs
	Petri net

	Discovering different scenarios in wastewater treatment processes
	Obtain time dependent sets from a process model
	Construct aggregated vectors using time dependent set
	Discover process scenarios with density based clustering algorithm

	Experimental study
	Performance metrics
	Effectiveness validation
	Performance evaluation
	Comparison

	Related work
	Conclusion
	Declaration of competing interest
	Acknowledgment
	References


