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Abstract We present an inference scheme that maps relative lateral tensions along the cell
wall based on the cell outline coordinates. The full tension-inference approach presented
here includes the primary scheme that maps the tension distributions on the discretized
cell outlines and their optimizations to smooth polynomials. We have studied the stability
of the primary scheme against small noise analytically and have shown that the scheme
is more stable to noise when discretization of the cell outline is coarser. We have found
agreement quantitatively between the error bounds predicted by the analysis and the error
computed from numerical experiments, when the scheme is applied to synthetic cell outlines
from a computational model of hyper-elastic thin-shell deformation. Then, we develop an
optimization method that effectively restores the spatial resolution of the primary scheme by
converting the discrete tension distributions to smooth polynomials. In the end, we apply the
full scheme to map tension distributions in moss protonemal cells.

1 Introduction

Varying mechanical properties influence the emergent growth and morphogenesis of living
organisms. As such, many efforts are made to understand their forms by studying how tissues
actively generate stresses and respond to these stresses both mechanically and chemically. In
single cells, with and without a cell wall enclosure, their characteristic length and morphol-
ogy are regulated differently. While actomyosin-induced stretches and osmotic pressure can
deform animal cells easily, the architecture and integrity of plant, fungi, and bacteria cells
are maintained by the cell wall structure, which provide support against mechanical stresses.
Hence, the advancing knowledge of stress and mechanical property distribution in the cell
wall improves our understanding of growth and morphogenesis in wall-cell organisms.

As for wall structures of single cells, multiple approaches have been developed to map the
stresses [1–7]. Since many single cell structures take a quasi-axially symmetric shape, and
their thickness is much smaller than the size of the cell, the majority consider only the in-plane
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tensile stresses, or alternatively the lateral tensions which are the in-plane tensile stresses
multiplied by the cell-wall thickness along the meridional and circumferential directions [1–
5], while a few consider the full possible mechanical interaction (e.g., bending [6,7] and shear
stresses [8]). When only the lateral tensions are considered in counterbalancing the turgor
pressure, one can map the relative tension distributions from reconstructing the curvatures
from the image data, as has been done in [5,9,10]. However, when errors are introduced to
the reconstructed cell outline during imaging recording and processing, it is a challenge to
reconstruct curvatures reliably. It is unknown how this inference scheme responds to noise,
and thus, the reliability of the inferred lateral tensions is not clear. As a result, many groups
still rely on full biomechanical models with extra material property assumptions to map the
tension distributions by simulations (e.g., [4,11])

In this paper, we present an inference scheme that maps lateral tensions along the cell
wall based on the cell outline coordinates. The full tension-inference approach presented in
this study includes the primary scheme that map the tension distributions on the discretized
cell outlines and their approximated polynomial representation. We have studied the stability
of the primary scheme against small noise analytically and have found agreement between
the error bounds predicted by the analysis and the error computed from numerical experi-
ments when the scheme is applied to synthetic cell outlines from a computational model of
hyper-elastic thin-shell deformation. In the end, we apply the full scheme to map tension
distributions in moss protonemal cells (see Fig. 1).

The paper is organized as follows. In Sect. 2, we provide the background of the geometry
and mechanics in axially symmetric cell walls. In Sect. 3, we formulate the basic inference
scheme that computes the tensions as step-function distributions based on the cell outline
coordinates and perform sensitivity analysis to this scheme. In particular, we provide a for-
mula of how small cell outline perturbation propagates to meridional and circumferential
tensions. In Sect. 4, we apply the scheme to infer the tension distributions from cell out-
lines generated by a computational model. We show the relative error between the inferred
tensions, and the simulated tensions agree within the error bound distribution predicted by
the sensitivity analysis. In Sect. 5, we formulate an optimization scheme that converts the
primary step-function tensions to smooth polynomial distributions. In Sect. 6, we apply the
full inference scheme to map tensions in moss protonema. We discuss our results in tensions

Fig. 1 Representative chloronema (top panels) and caulonema (low panels) cells. Left, bright field pictures;
right, fluorescent image of cell wall stained with calcofluor-white. Scale bar 20µm
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Fig. 2 a Schematic of the cell wall represented by the curve �r(s) = (r(s), z(s)) where s is the arc length
from a reference point. b The cell wall is represented by a list of markers �ri = (ri , zi ). The length and angle

of the linear segment between �ri and �ri+1 are denoted by li+1/2
m and αi+1/2, respectively

with their connections to the material property and growth on the cell wall and conclude in
Sect. 7.

2 Geometry and mechanics along the cell wall

Given the thickness of the cell wall is much thinner than its observed radii of curvatures, we
describe its thin-shell wall structure as a surface of revolution. The shape of the cell wall
is represented by the curve �r(s) = (z(s), r(s)), where z is the coordinate along the axis of
symmetry, r is the local distance from the axis of symmetry (i.e., local cell width), and s is
the arc length from a reference point. See Fig. 2. We further define α to be the angle from
the local tangent t̂ , in the direction of increasing s, to the r -axis (0 ≤ α ≤ π). That is,

t̂ = cos α × r̂ + sin α × ẑ. (1)

Similarly, we have the local outward normal of the cell wall

n̂ = sin α × r̂ − cos α × ẑ. (2)

Then, we define the curvature along the meridional direction to be κs = −n̂ · dt̂/ds (so it is
positive at the tip), and from Eqs. (1) and (2), we have

κs = dα/ds. (3)

Similarly, the circumferential curvature is given by κθ = −n̂ · dθ̂/dsr where θ̂ is the unit
vector along the direction orthogonal to n̂ and t̂ , dsr is the incremental displacement along
θ̂ , and dθ̂/dsr = −r̂/r . Thus, we have

κθ = sin α/r. (4)

Accounting for the force balance ∇s · σ + Pn̂ = 0 between the turgor pressure P and lateral
tensions σ (s) = σs t̂ ⊗ t̂ + σθ θ̂ ⊗ θ̂ for axially symmetric surfaces [12], we can derive

d(σs t̂)/ds + (σs − σθ )r̂/r + (−σs sin α/r + P)n̂ = 0. (5)
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σs and σθ are the tension pair along the meridional and the circumferential direction, respec-
tively. They are in-plane meridional and circumferential stresses multiplied by the cell wall
thickness, respectively.

While Eq. (5) gives the algebraic equation

κsσs + κθσθ = P, (6)

between tensions along n̂-direction, it gives the differential equation ∂(σs sin α)/∂r = P −
(σs sin α)/r along ẑ-direction. We can find σs sin α = Pr/2 as its solution. Taking this
together with Eq. (4), we have

κθσs = P/2. (7)

Equations (6) and (7) connecting tensions and the turgor pressure lead to

σs = P/(2κθ ) (8)

σθ = P/(2κθ ) × (2 − κs/κθ ). (9)

Given Eqs. (8) and (9), one can infer the local tensions σs and σθ relative to turgor pressure
P based on the local curvatures κs and κθ , as has been done in [5,9,10]. Below, we present
our tension inference scheme based on the assumption P �= 0 and is a constant along the
cell outline.

3 Tension inference scheme

We discretize the cell outline curves by N+1 marker points �ri = (zi , ri ), i = 1, 2, . . . , N+1,
connected by N linear segments. See Fig. 2 for one cell outline and its discretization. On
each linear segment �i+1/2, i = 1, 2, . . . , N , we compute its angle αi+1/2, length li+1/2

m ,
and the averaged local distance from the axis of symmetry (i.e., local cell width), r i+1/2

m , by

αi+1/2 = arctan[(zi+1 − zi )/(ri+1 − ri )] (10)

li+1/2
m = |�ri+1 − �ri | (11)

r i+1/2
m = (ri + ri+1)/2. (12)

Reconstructing the meridional curvature on the non-boundary linear segments (i =
2, 3, . . . , N − 1) by κ

i+1/2
s = [dα/ds]i+1/2 ≈ [αi+1 − αi ]/ li+1/2

m in finite difference
of the angles averaged on the marker points αi = (αi−1/2 + αi+1/2)/2 and αi+1 =
(αi+1/2 + αi+3/2)/2, we derive

κ
i+1/2
s = (αi+3/2 − αi−1/2)/(2li+1/2

m ). (13)

On the two boundary linear segments �1+1/2 and �N+1/2, we define α1−1/2 = π − α1+1/2

and αN+3/2 = 2π − αN+1/2 and still use Eq. (13) to approximate κ
1+1/2
s and κ

N+1/2
s . We

reconstruct the circumferential curvature on all the linear segments �i+1/2 (i = 1, 2, . . . , N )
by

κ
i+1/2
θ = sin αi+1/2/r i+1/2

m . (14)

Based on the reconstructed curvatures, we can infer tensions between the markers by

σ
i+1/2
s = P/(2κ

i+1/2
θ ) (15)
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σ
i+1/2
θ = σ

i+1/2
s (2 − κ

i+1/2
s /κ

i+1/2
θ ). (16)

Although walled cells do not fluctuate as much as animal cells, the perturbation to the actual
cell outline may arise in the imaging recording, processing, and the cell outline reconstruction.
How sensitive is the inferred tensions to the inaccuracy of the cell marker positions? To
quantify the stability of the result against local perturbations of cell marker positions, we
consider the effect of an arbitrary small perturbation in cell marker positions (δzi , δri )’s and
compute the resulted relative perturbations on the local inferred tensions (δσs/σs)

i+1/2 and
(δσθ/σθ )

i+1/2 through Eqs. (10)–(16):

(
δσs

σs

)i+1/2

= −
(

δκθ

κθ

)i+1/2

(17)

(
δσθ

σθ

)i+1/2

= −
(

2(1 − β)

2 − β

δκθ

κθ

+ β

2 − β

δκs

κs

)i+1/2

(18)

where β = κs/κθ and

(
δκs

κs

)i+1/2

= δαi+3/2 − δαi−1/2

αi+3/2 − αi−1/2 −
(

δlm
lm

)i+1/2

(19)

(
δκθ

κθ

)i+1/2

= δαi+1/2

tan αi+1/2 −
(

δrm
rm

)i+1/2

(20)

where

δαi+1/2 = tan αi+1/2

1 + (tan αi+1/2)2

(
δzi+1 − δzi

zi+1 − zi
− δr i+1 − δr i

r i+1 − r i

)
(21)

δli+1/2
m = sin αi+1/2(δzi+1 − δzi ) + cos αi+1/2(δr i+1 − δr i ) (22)

δr i+1/2
m = (δr i+1 + δr i )/2. (23)

From the above perturbation analysis, we can see the effect of location on the sensitivity
of the tensions. From Eqs. (17), (18) and (20), we show the inferred tensions are most
sensitive to the perturbation at the tip region with tan αi+1/2 → 0 and r i+1/2

m → 0. We
can also see the effect of local curvatures on the sensitivity of the circumferential tension.
From Eq. (18) alone, we show at locations where β = κs/κθ → 2, tension inferences along
the circumferential direction are unstable to small perturbations. Finally, we can see that the
sensitivity of both tensions is affected by the discretization resolution of the cell outline.
From Eqs. (17), (18), (19), and (21), we show the inferred tensions are more sensitive to the
local perturbation everywhere as marker points are closer along z- and r -axis, respectively,
when (zi+1 − zi ) → 0, (r i+1 − r i ) → 0. This observation makes a counterintuitive point
that when the discretization is finer (coarser), the inference scheme is less (more) stable to
noise.

Although the locally inferred tensions from Eqs. (10)–(16) do not require equidistant
discretization of the cell outline, in the following results, we discretize the cell outlines
equidistantly along the arc length where the discretization resolution can be controlled glob-
ally. Note that the value of the turgor P does not affect the sensitivity analysis Eqs. (17)–(23).
In this paper, we assume P = 1, which is equivalent to inferring the tensions rescaled by the
turgor pressure magnitude. If P is given in practice, one can multiply the relative tensions
by the value of P .
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4 Inferring tensions from synthetic data

To test the accuracy of the inference scheme, especially in the presence of noise, we generate
synthetic data of cell outlines from a simple mechanical model (see “Appendix A” for details).
Figure 3a shows an example of a cell outline simulated from deforming a half-ellipsoid r2 +
z2/4 = 1 by the turgor pressure P = 1. Figure 3b shows the meridional and circumferential
tension distributions along the N = 128 linear segment from the simulation, where the
circumferential tension is larger than the meridional tensions everywhere except at the tip.
Both tensions decrease as approaching the tip. We apply the inference scheme with both low
resolution (using NI = 16 linear segments) and high resolution (using NI = 128 linear
segments) and find the inferred tensions agree well with the simulated tensions in both low
and high resolution with below 10% and 2.5% relative error, respectively, throughout the cell
outline (see Fig. 4). Thus, the precision is improved when the resolution is higher. However,
our perturbation analysis has suggested that the high-resolution inference may not be the best
choice in practice due to noise.

To show this, we add noise to the computed cell outline by perturbing the coordinates
�ri ’s with small displacements drawn from a uniform distribution U (−δm/2, δm/2) in both
zi → zi + U (−δm/2, δm/2) and ri → ri + U (−δm/2, δm/2) independently, where δm
is defined as the displacement noise. We first investigate the behavior of high-resolution
inference with NI = 128. For very small δm = 0.01% × the cell maximal width, both
inferred meridional and circumferential tensions are close enough to the simulated ones
(see Fig. 5, top). Interestingly, the meridional tension inferences are more accurate than the
circumferential ones. We will show later this observation is quantitatively consistent with
the perturbation analysis. As we increase δm = 0.1% × the cell maximal width, inferred

Fig. 3 a Simulated cell outlines
without (dashed lines) and with
(solid lines) turgor pressure. b
Meridional (red) and
circumferential (blue) tensions
from the simulation. The z- and
r -axes are rescaled by the cell
maximal width without turgor
pressure
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Fig. 4 Inferred meridional tensions (red) and circumferential tensions (blue) as step functions versus synthetic
tensions from the simulation (black). For the low-resolution inference (a), we use the number of linear segments
NI = 16 to compare with the computed tension distribution from the simulation using N = 128. We show that
the relative errors in both meridional and circumferential tensions are below 0.1 (b). For the high-resolution
inference (c), we use the same number of linear segments NI = 128 as that used in the simulation N = 128.
We show that the relative error in both meridional and circumferential tensions is below 0.025 (d). Note
in c, synthetic tensions from the simulation are overlapped by the inferred meridional tensions (red) and
circumferential tensions (blue). The z-axis is rescaled by the cell maximal width without turgor pressure.
Turgor pressure P = 1 is assumed to infer the relative tensions

tensions are no longer close to the simulated ones using NI = 128 linear segments (see
Fig. 5, bottom).

The perturbation analysis predicts that inferred tensions are more sensitive to the pertur-
bation as marker points are closer. This means decreasing the number of linear segments NI

in inferring the same cell outline improves the stability of the scheme to the noise. Indeed,
we show with δm = 0.1%× the cell maximal width, and application of the inference scheme
with NI = 64 is able to generate reliable inferences with relative error below 0.5. See
Fig. 6a–c. As we further increase δm = 1% × the cell maximal width, we have to decrease
NI = 16 to generate reliable inferences with relative error below 0.5. See Fig. 6d–f. Notice
in Fig. 6b, c and e, f, we have also plotted the upper bound of the relative errors (see the black
step functions) predicted by perturbation analysis. The numerical relative errors are indeed
bounded by the theoretical bounds. Thus, we have quantitatively validated our perturbation
analysis. Notice the prediction made by the analysis that the inferred meridional tension has
a larger sensitivity to the local perturbation at the tip region is also validated (See Fig. 6b,
e). In summary, we show theoretically and numerically that this inference scheme is more
robust to noise when the discretization is coarser. However, when the discretization becomes
coarse, the resolution of the inferred tension is limited by the step-function representation.
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Fig. 5 Inferred meridional
tensions (red) and circumferential
tensions (blue) versus tensions
from the simulation (black) with
0.01% noise (top) and 0.1% noise
(bottom). The inferred meridional
tensions (red) are very accurate
and almost overlap with the
simulated meridional tension. For
both cases, we use the same
number of linear segments
NI = 128 as that used in the
simulation N = 128. Note
synthetic meridional tensions
from the simulation are
overlapped by the inferred
meridional tensions (red). The
z-axis is rescaled by the cell
maximal width without turgor
pressure. Turgor pressure P = 1
is assumed to infer the relative
tensions

5 Optimizing the primary inference scheme

To improve the step-function representation of the tension distribution with N linear seg-
ments, and to better use multiple data samples, we convert the step functions into a polynomial
by degree n p ≤ N − 1:

P(z) =
n p∑
i=0

ai z
i (24)

where the coefficients ai ’s are obtained by minimizing the sum of the squared integral∑M
h=1

∫
sh

( fh(s) − P(s))2 ds along the cell outline sh , over M data samples, which gives

φ =
M∑
h=1

∫ bh

ah
( fh(z) − P(z))2 Wh(z)dz (25)

where ah and bh are lower and upper bounds of z and Wh(z) = ds/dz = 1/ sin(α(z)) for the
hth cell outline. Then, we expand φ

(
a0, . . . , anp

)
into
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Fig. 6 Inferred tension distributions as step functions along linear segments. With ten synthetic image data
generated by perturbing the simulated marker-point coordinates within 0.1% × (cell width) in displacement,
we infer tension distributions by discretizing the cell outlines by NI = 64 linear segments (a–c). We show that
the inference scheme is more stable in the meridional tension, as shown in red step functions in a and b. The
circumferential tensions are more sensitive to perturbations, as shown in blue step functions in a and d. The
relative errors from the perturbed synthetic data are below the error bounds from the perturbation analysis, as
shown in black step functions in b and c. For a larger perturbation of 1% × (cell width) in displacement, as
guided by the perturbation analysis, we have inferred tension distributions by discretizing the cell outlines by a
lower number of NI = 16 linear segments (d) and have achieved comparable relative errors (e–f) (meridional
data in red and circumferential data in blue). The z-axis is rescaled by the cell maximal width without turgor
pressure. Turgor pressure P = 1 is assumed to infer the relative tensions

φ =
M∑
h=1

∫ bh

ah
f 2
h (z)Wh(z)dz − 2

M∑
h=1

n p∑
i=0

ai

∫ bh

ah
zi fh(z)Wh(z)dz

+
M∑
h=1

n p∑
i=0

n p∑
j=0

aia j

∫ bh

ah
zi+ jWh(z)dz.

To minimize φ, we have

0 = ∂φ

∂ak
= −2

M∑
h=1

∫ bh

ah
zk fh(z)Wh(z)dz +

M∑
h=1

n p∑
i=0

ai

∫ bh

ah
zi+kWh(z)dz

+
M∑
h=1

n p∑
j=0

a j

∫ bh

ah
z j+kWh(z)dz
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Fig. 7 Inferred tension distributions as polynomial functions. (Meridional data in red and circumferential
data in blue.) Using the inferred step-function tensions from 100 synthetic image data with N = 16 linear
segments, a n p = 15th degree polynomial is constructed from the least square integral problems (a). See text
for details of the method. The relative errors for both tensions are within 8% (b). By increasing the number of
synthetic noisy samples to 100 (c, d), the tension is less oscillatory in amplitude (c), and the relative errors are
further reduced everywhere except the tip region (d). By reducing the degree of the polynomial to be n p = 3
(e), we can reduce the oscillation both in amplitude and wavenumber (f). The z-axis is rescaled by the cell
maximal width without turgor pressure. Turgor pressure P = 1 is assumed to infer the relative tensions

for k = 0, 1, . . . , n p . As such, we obtain the normal equation system to solve a =
(a0, . . . , anp )

T from Ha = c where

Hi j =
M∑
h=1

∫ bh

ah
zi+ jWh(z)dz and ci =

M∑
h=1

∫ bh

ah
zi fh(z)Wh(z)dz (26)

for i = 0, 1, . . . , n p and j = 0, 1, . . . , n p . To show the effectiveness of this optimization
method, we generate ten data samples by perturbing the simulated cell outline in Fig. 3 within
1% cell width in displacement, and for each data sample, we use the primary tension inference
scheme from Sect. 4 with N = 16 to generate the step-function tension distributions. Then,
we apply the optimization method with n p = N −1 = 15 to convert the tension distribution
to the smooth distributions (see Fig. 7a). The inferred tensions closely oscillate around the
simulated tension values along the cell outline, which can be seen more clearly from Fig. 7b,
which shows the relative errors between the smoothed inferred tension and the simulated
tension. Nevertheless, the errors in both tensions are overall smaller than the errors from the
step-function inference (compare with Fig. 6e, f). The errors in circumferential tensions are
still larger than the meridional ones almost everywhere, which echos the error behavior in
the step-function inference (see Fig. 6e, f). We show the oscillatory errors can be reduced in
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Fig. 8 a Simulated cell outlines with non-monotonic cell width along the z-axis (solid lines). This shape is
generated by the same elliptical shape without turgor pressure (dashed line) and with a decrease the elastic
moduli along z-direction when turgor pressure P = 1 is applied.b Inferred meridional (red) and circumferential
(blue) tensions against 1% × (cell width) displacement noise. The simulated tensions are marked in black.
The inferred meridional tension overlaps with the simulated one. The inferred circumferential tension overlaps
with the simulated one except near the rear boundary. The z-axis is rescaled by the cell maximal width without
turgor pressure. Turgor pressure P = 1 is assumed to infer the relative tensions

the amplitude by introducing more data samples (Fig. 7c, d) and can be also reduced in both
the amplitude and the wavenumber by decreasing n p (see Fig. 7e, f when n p = 3). However,
the improvement in precision with both auxiliary approaches is not phenomenal.

To further test the effectiveness of our method, we have implemented the method with
different cell outline shapes. See Fig. 8 for the inferred tension in comparison with the
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simulated tension for a cell with non-monotone cell width along z-axis. We generate ten
data samples by perturbing the simulated cell outline in Fig. 8 within 1% cell width (the
maximal in r ) in displacement, and we generate the polynomial using the ten step-function
tension distributions with N = 16. The overall relative error is below 5% except for the
circumferential tension at near the rear boundary. At the rear boundary, due to the coarse
discretization, the inferred circumferential tension is lower than the simulated tension when
the tension is increasing drastically toward the boundary point.

6 Tension inference with moss data

At last, we apply the full inference scheme to infer the average tensions for two different
types of moss protonemata, caulonemata, and chloronemata. We obtain 14 caulonema cell
outlines and 16 chloronema cell outlines from one-week old moss tissue (See Fig. 9a, c
for cell outlines and see “Appendix B” for details of experiment, image acquisition, and
processing). We show that the tensions relative to turgor pressure in chloronemata is higher
in both directions at all locations than those in caulonema. Our results show that the tension is
maximal along the circumferential direction, which is in agreement with what has been found
during the tip growth of Chara rhizoid [9] and pollen tubes [5]. However, in root hairs, it has
been found that the circumferential tension can be smaller than the meridional tension near
the tip [10]. In addition, we have found at the tip of both types of cells are with lower tension
level than other locations, which is in contrast to what has been found in root hair [10], while
in agreement with what has been found during the tip growth of Chara rhizoid [9] and pollen
tube [5]. In [13], multiple species of single walled cells have been studied in connecting
their geometrical phenotype to growth distribution. It will be interested to apply our method
to single walled cells from multiple species and connect their geometrical phenotype to the
mechanical phenotype and compare the mechanical phenotype across species.

7 Discussion and conclusion

These results on the moss image data, as well as the synthetic data, suggest that small changes
in cell diameter can have a significant mechanical effect on the cell wall. Our results show
that the cell walls bear more tension along the circumferential direction, and the tension along
the circumferential direction is more sensitive to the positional perturbations. Interestingly,
a recent study applying a theory-data combined approach shows the lateral wall stiffness
robustly scales with the cell diameter [7]. In fact, feedback mechanisms from the stress to
the material properties have long been proposed and have been under study for a long time
[14–20]. The above points altogether indicate that cell diameter, or equivalently the cell
circumferences, may be limited in a feedback system where larger circumferential growth
causes larger circumferential tension and then induces circumferential stiffening and stop fur-
ther circumferential expansion. This may be relevant to the overall function of chloronemata,
because larger cells have the capacity for increased photosynthesis, and chloronemata contain
larger and more abundant chloroplasts than caulonemata [21], suggesting a primary role of
these cells in photosynthesis. Future analyses of the cell wall of chloronemata and caulone-
mata will clarify how the plant controls its diameter and if a limit reached by chloronemal
cells exists.

Further comparing the relative tension distributions to the turgor pressure in caulonemata
and chloronemata, we see that the minimum value for relative tension at the tip is larger in
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Fig. 9 a 14 caulonema outlines. b Inferred canonical meridional (red) and circumferential (blue) tensions
of caulonema. c 16 chloronema outlines. d Inferred canonical meridional (red) and circumferential (blue)
tensions of chloronemata. Chloronema has higher level of relative tensions to the turgor pressure. In b and
d, the solid (dashed) lines are the tension inferences from using NI = 20 (NI = 10) linear segments and
n p = 19th (n p = 9th) degree polynomial. For the NI = 20 and NI = 10 cases, each linear segment covers
an arc length of 8 and 16 in pixel size along the cell wall, respectively. The r - and z-axes are rescaled by
0.315µm. Turgor pressure P = 1 is assumed to infer the relative tensions

chloronemata. This may have implications for how fast these two cells can grow, consistent
with the observation that growth rates are faster in caulonemata [22]. A prediction of this
is that increasingly thinner cells may be able to withstand faster secretion and growth rates.
For the tension distribution in caulonemata and chloronemata, we show here that the tip
of both types of cells has a lower relative tension level than other locations. A site of low
relative tension that coincides with active secretion may provide a buffer, where the material
properties of the cell wall can be in flux. For example, while the cell requires increased
extensibility at the tip to grow, the reduced tension should diminish the likelihood of the
cell bursting in the process. Notice the range of turgor pressure has not been measured in
chloronemata and caulonemata in this study or elsewhere to our knowledge. It has been
measured in other systems such as in tip-growing pollen tubes from Lilium longiflorum using
a pressure probe [23]. For Lilium longiflorum, the turgor pressure values ranged between
0.1 and 0.4 MPa. We will measure the turgor pressure in Physcomitrella patens protonemata
in the future work. Then, the absolute tension values can be simply computed from relative
tensions multiplied by the measured turgor pressure.

Although this simple image-based method based on Eqs. (8) and (9) has been applied in
the previous work [5,9,10], the stability and limitations of this method have not been charac-
terized in detail. In this work, we have addressed these two major difficulties and have further
optimized the representation of inferred tensions from this method. The tension distribution
is connected to both cell wall component deposition [2,24–28] and material property adap-
tations [1–4,7,20,29], as discussed above. Being able to map tensions independently from
cell wall component deposition and material property adaptations can clear up the avenue
to, in the future, systematically map tension distributions together with cell wall component
deposition and material property adaptations.

123



662 Page 14 of 17 Eur. Phys. J. Plus (2020) 135:662

Acknowledgements This work was in part supported by NSF Grant DMS-2012330 to M.W and MCB-
1253444 to L.V.

Data availability statement This manuscript has associated data in a data repository. [Authors’ comment:
The code that is used in Fig. 9 and explained in Appendix B are available at https://github.com/DanukGOAT/
Cell-Wall-Tension-Inference.]

8 Appendix A: A simple model of cell-wall mechanics

To test the accuracy of the inference scheme and its stability to small perturbations, we
generate synthetic data by a simple mechanical model, where we combine the force balance
Eq. (5) with a constitutive law between the lateral tensions and the lateral strains λs and λθ

[30–32]:

σs = 1

2
μh(1/(λθ )

2 − 1/(λs)
2) + Kh(λsλθ − 1) (27)

σθ = 1

2
μh(1/(λs)

2 − 1/(λθ )
2) + Kh(λsλθ − 1). (28)

This is equivalent to assuming the cell wall as a thin compressible neo-Hookean material
where μh = h × μ and Kh = h × K are the rescaled shear and bulk modulus, respectively,
as the multiplication between the local cell wall thickness h and shear modulus μ and the
bulk modulus K , respectively. We can compute λs and λθ , respectively, by λs = ds/ds0

and λθ = r/r0, where ds (ds0) is the current (intrinsic) differential meridional arc length
and r (r0) is the current (intrinsic) radial distance from the z-axis. As shown in Fig. 2(b), we
discretize the cell wall outline with linear segments between lattice-free marker points. By
integrating Eq. (5) from the middle point (zi−1/2

m , r i−1/2
m ) between (zi−1, ri−1) and (zi , ri ),

and the middle point (zi+1/2
m , r i+1/2

m ) between (zi , ri ) and (zi+1, ri+1) along the discretized
outline, we obtain the approximated force balance equations

(σs t̂)
i+1/2 − (σs t̂)

i−1/2

+ ln

(
ri

r i−1/2
m

)(
[(σs − σθ )r̂ − (σs sin α)n̂]/ cos α

)i−1/2

+ ln

(
r i+1/2
m

ri

)(
[(σs − σθ )r̂ − (σs sin α)n̂]/ cos α

)i+1/2

+ P

2

(
(lmn̂)i−1/2 + (lmn̂)i+1/2

)
= 0 (29)

on each marker point 2 ≤ i ≤ N between the tip and the rear boundary point. We index
the rear boundary point by i = 1 and the tip point by i = N + 1. At the rear boundary, we
assume the force balance along r -axis and fix its position along z-axis:

ln

(
r1+1/2
m

r1

) (
[(σs − σθ ) − (σs sin2 α)]/ cos α

)1+1/2

+(σs cos α)1+1/2 + P

2
(lm sin α)1+1/2 = 0 (30)

z1 = 0 (31)
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and we implement σs sin α = Pr/2 at the tip segment N + 1/2 and fix the tip position along
r -axis

(σs sin α)N+1/2 − PrN+1/2/2 = 0

rN+1 = 0 (32)

to close the system.

By approximating λ
i+1/2
s = (ds/ds0)i+1/2 ≈ (lm/ l0m)i+1/2 and λ

i+1/2
θ = (r/r0)

i+1/2 ≈
(rm/r0

m)i+1/2 on each linear segment, we can solve the cell outline by solving a nonlinear
system of �ri ’s ( 1 ≤ i ≤ N + 1) when �r0

i ’s are prescribed.
We have performed convergence test to various different cell outline initial configurations

and have found the computed cell outline coordinates as well as the tension distributions all
converge at least superlinearly as the number of the linear segments N increase. In Fig. 3a,
we set the rescaled shear and bulk modulus to be constant, μh = 5 and Kh = 5, respectively.
In Fig. 8a, we set both μh(s0) and Kh(s0) decreasing from 5 to 0.5 from the left rear end to
the tip following the formula x(s0) = 5/(1 + 9 × s0/L). Without turgor pressure, L is the
total arc length of the cell outline and s0 is the arc length from the rear boundary point.

9 Appendix B: Experimental protocols and image processing

Physcomitrella patens tissue was cultured using standard methods according to [21]. For
imaging, one-week old moss tissue was transferred to a microscope preparation equipped
with an agar pad as described in [33]. To stain the cell walls, before sealing the preparation,
30 µl of calcofluor-white (final concentration 10 µg/ml) were pipetted on the plants. Cells
were imaged with an inverted epifluorescence microscope Axiovert 200M (Zeiss) with a 20X
lens (N A = 0.3); the calcofluor-white signal was imaged with a DAPI filter. After image
acquisition, to obtain the outline of the cells we used the imageJ plugin “J Filament” [34].
The plugin outputs the z, r coordinates of each point of the cells outline.

Two cell outlines may have different orientations, and we need to rotate all the cell outlines
in order to register them along the same long axis. We develop the following optimization
problem to identify the orientation of the long axis and rotate the cell outlines accordingly.
For each coordinate dataset C := �ri = (zi , ri ), for i ∈ {1, 2, · · · , N } for a cell outline
(shown in Fig. 10a) , we have looked for the line ar + z + c = 0 which minimize the sum
of squares of distances from all the coordinates to the line

∑N
i=1 (ari + zi + c)2/(a2 + 1)

(See the orange line in Fig. 10b). We then rotate all the coordinates by the same angle
between the line which we found and the horizontal axis, using the tip point as the reference
(See the juncture of the red and blue curves in Fig. 10b). After the rotation (Fig. 10c), if
the new tip point (the point farthest to the right) is no longer the original tip point, we
take the new tip point as the tip point. All cell outlines are put together by overlapping
the tip points. Finally, we reflect the lower half of the cell outline above the horizontal
axis. For readers who are interested in using our methodology, we have shared the code at
https://github.com/DanukGOAT/Cell-Wall-Tension-Inference with written tutorial and input
data samples. This pipeline computes and plots rotated cell outlines (as in Fig. 9a, c) and
tension distributions (as in Fig. 9b, d) from the list of cell outline coordinates generated from
imageJ plugin “J Filament”.
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Fig. 10 Image processing of one single cell outline. a A typical cell outline obtained from imageJ plugin “J
Filament” [34]. The plugin outputs the z, r coordinates of each point of the cells outline. b The truncated cell
outline for Nm = 160 points from the tip point for both upper (blue) and lower (red) cell outline branches,
respectively. The major axis (orange) is identified from the optimization (see text). c The truncated cell outline
after registering the direction of the orange major axis in b as the new z-axis. The r - and z-axes are rescaled
by 0.315µm
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