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Abstract

Social distancing, an essential public health measure to
limit the spread of contagious diseases, has gained signif-
icant attention since the outbreak of the COVID-19 pan-
demic. In this work, the problem of visual social distanc-
ing compliance assessment in busy public areas, with wide
field-of-view cameras, is considered. A dataset of crowd
scenes with people annotations under a bird’s eye view
(BEV) and ground truth for metric distances is introduced,
and several measures for the evaluation of social distance
detection systems are proposed. A multi-branch network,
BEV-Net, is proposed to localize individuals in world coor-
dinates and identify high-risk regions where social distanc-
ing is violated. BEV-Net combines detection of head and
feet locations, camera pose estimation, a differentiable ho-
mography module to map image into BEV coordinates, and
geometric reasoning to produce a BEV map of the people
locations in the scene. Experiments on complex crowded
scenes demonstrate the power of the approach and show
superior performance over baselines derived from methods
in the literature. Applications of interest for public health
decision makers are finally discussed. Datasets, code and
pretrained models are publicly available at GitHub1.

1. Introduction
Social distancing, the strategy of maintaining a safe dis-

tance between people in public spaces, has been shown to

be an effective measure against the transmission of conta-

gious pathogens, including influenza virus and coronavirus

[57, 7, 23]. However, the monitoring of social distancing

by human observers is neither practical in many settings nor

scalable. This has motivated an interest in methods to detect

and count social distancing violations automatically. While

1https://github.com/daizhirui/BEVNet
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Figure 1: Set of tasks proposed for social distancing compliance

assessment. Given an input image, models are expected to jointly

predict camera geometry (top left), bird’s eye view heatmap of

person locations (bottom left), local risk map highlighting areas

with high probability of infection (right), as well as individual and

global risk level for the entire scene (annotated over the risk map).

non-vision-based methods are available 2, they typically re-

quire users to install certain applications on their mobile de-

vices, and are limited in precision of distance estimates.

Computer vision offers a viable alternative for the col-

lection of social distance measurements. In particular, it

has several advantages for the monitoring of public spaces.

First, it can leverage surveillance cameras that are already

available in many public locations. No expensive infrastruc-

ture changes are required.

Second, anonymization of visual data is straightforward

by removing all facial identities, as the system has no access

to other sensitive information of pedestrians. This makes it

much more privacy preserving than the monitoring of mo-

bile devices, or similar approaches. On the other hand,

2The DP-3T contact tracing protocol [59], for example, estimates dis-

tances using Bluetooth signal on smartphones.
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it can produce complete statistics of social distancing vi-

olations, as there is no prerequisite on the population (e.g.

smartphone with Bluetooth enabled). While not suited for

contact-tracing, these statistics can be very useful to deci-

sion makers, e.g. to enable the implementation of highly

localized “lock-downs,” time-varying control of pedestrian

access to certain areas, etc.

Computer vision has a long history of sensing humans in

images. Object detection [14, 17, 16, 52, 37] and instance

segmentation [8, 21, 35] recognize and localize objects by

bounding boxes or pixel-wise masks. While effective for

close objects and sparsely populated scenes [12, 39], de-

tection quality degrades substantially for far cameras and

busy spaces, involving significant degrees of occlusion. In

fact, on such scenes, it is even impossible to collect accurate

bounding box annotations. Social distancing measuring is

more closely related to crowd-counting methods [66, 5, 42],

which are trained to produce a heatmap that highlights the

head location of every person in the scene. However, be-

cause these methods don’t explicitly reason about scene ge-

ometry, they are unsuitable to estimate distances between

individuals. Furthermore, head locations are not ideal for

estimating scene distances, since heads do not lie on a

shared plane in 3D, due to people height variation. Much

more accurate distance estimates can usually be obtained by

reconstructing the scene ground plane and measuring feet

distances. This, however, presents additional challenges,

due to occlusion.

In this work, we consider the problem of social distanc-

ing compliance assessment (SDCA), which aims to measure

the distances between individuals in a scene and detect vio-

lations of social distancing thresholds. Based on the above

observations, we argue that SDCA requires a geometry-

aware approach, where the relevant extrinsic parameters of

the camera are estimated and used to generate a bird’s eye

view (BEV) map of people locations, as illustrated in Fig-

ure 1. We propose a novel benchmark for SDCA, CityUHK-

X-BEV, which repurposes the CityUHK-X dataset [28] to

the SDCA problem, by adding ground-plane annotations.

Specifically, for each head location in the dataset, the corre-

sponding feet position is annotated, and mapped to the BEV,

using the known intrinsic and extrinsic camera parameters.

A novel set of evaluation criteria is introduced, each focus-

ing on a different aspect of the task: Localization metric that

measures the accuracy in detecting real-world locations of

people in the ground plane; local risk metric that evaluates

the capability to discover regions with high chance of infec-

tion; global risk metric that predicts the overall risk level

of captured scene. Figure 1 shows examples of these tasks.

Unlike many vision problems that localize object in the im-

age plane, these geometry-aware criteria directly evaluate

the capacity of models to make predictions in the 3D ground

plane, leading to outputs that are much more informative for

real-world applications that require metric information.

A multi-branch convolutional architecture, BEV-Net, is

then proposed to solve the SDCA task. BEV-Net follows an

encode-decoder structure, using a projective transformation

module to convert convolutional feature maps from image

view to BEV. The decoder is implemented with a pose re-

gression branch that estimates camera parameters and three

separate branches to predict feet, head and BEV heatmaps.

These branches are trained with individual losses, in a

multi-task manner. To compensate for the height variations

in the crowd, a group transformation module with spatial

self-attention is used to group people by head height and in-

dependently align the feet and head feature maps of the re-

sulting groups. Experiments show that the BEV-Net outper-

forms all DET and CC baselines under all proposed SDCA

evaluation metrics. It is further shown, through ablation ex-

periments, that both head and feet annotations are essential

to achieve the best prediction quality.

A number of applications of potential interest for pub-

lic health decision makers are then illustrated. These range

from the characterization of risks for a single image, as il-

lustrated in Figure 1, to global measures of scene risk, in-

tegrated over image datsets, as shown in Figures 7 and 8.

The latter can be used to identify events of unusually large

risk or inform the deployment of risk mitigation measures,

such as the introduction of obstacles in the scene to modify

walking patterns and other crowd behaviors.

The paper makes four major contributions: First, we in-

troduce the idea of using computer vision for joint geomet-

ric reasoning and social distancing compliance assessment

on public spaces. Second, a novel benchmark for SDCA in

crowd scenes, CityUHK-X-BEV, is introduced with person-

level annotations in bird’s eye view. Third, a multi-branch

convolutional network, BEV-Net, is proposed and shown

to achieve best SDCA results by learning to perform both

heatmap prediction and geometric reasoning. Finally, we

show promising results for several potential applications of

the SDCA framework in the public health domain.

2. Related Work
Object detection (DET). Object detection methods recog-

nize and localize multiple classes of objects with bounding

boxes. While early algorithms relied on hand-crafted visual

features [44, 9], the introduction of CNN-based detectors

[17, 16, 52, 4, 51, 38] trained on large-scale image databases

[10, 39] has enabled dramatic performance gains.

Existing approaches to SDCA have mostly relied on pre-

trained DET models, making few technical advances to

their architectures. [13] proposed to detect social distanc-

ing violations by regressing head and feet locations from

the bounding box of each detected person. While effective

for sparsely populated environments, such an approach does

not scale to busy spaces and distant cameras with a large

field of view, as is usually the case of large public spaces.
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In addition, [13] requires external homography calculation

based on markers manually placed in the scene. By contrast,

the proposed BEV-Net automatically estimates camera ge-

ometry and is able to estimate social distances for crowded

environments and wide field of view cameras.

Crowd counting (CC). Crowd counting focuses on count-

ing the number of people in an image. State-of-the-art

methods either learn to regress head counts from the image

data directly [46], or predict a people density map which is

then integrated to obtain the people count [66, 56, 5, 36, 40].

Crowd scene datasets tend to be collected in public spaces

and focus on busy scenes [63, 25, 60, 28], where the estima-

tion of head locations is difficult due to small people sizes

and significant occlusion. These are the scenes that we em-

phasize in this work, where we augment a popular crowd

counting dataset with rich annotations required for SDCA.

Most CC methods are trained to produce density maps

in the camera view, a simpler problem than the proposed

combination of SDCA tasks. An exception is WACC [64],

which learns to predict ground-plane heatmap directly. The

BEV-Net differs from this work in three main aspects: First,

WACC requires inputs from multiple cameras, while BEV-

Net is designed to work with a single camera view. Sec-

ond, WACC is supervised by head annotations only, lead-

ing to inaccurate ground-plane locations due to varying

head heights; BEV-Net addresses this by producing feet

annotations that, unlike heads, lie on the common ground

plane. Third, WACC assumes known geometry for all cam-

era views, while BEV-Net jointly learns to predict extrinsic

camera parameters.

Geometry in computer vision. The scene geometry re-

covery is a classical problem in computer vision [20]. This

can be decomposed into the estimation of camera parame-

ters and scene geometry, i.e., depth variability in different

parts of the scene. Since the introduction of deep learning,

both components have been estimated by neural networks,

typically by using two dedicated branches that are trained

jointly, in an end-to-end manner [32, 67, 18, 27]. The scene

reconstruction required by SDCA amounts to recovering the

ground plane and 3D feet locations of all individuals. This

is not trivial because feet locations are frequently occluded

in the camera view. BEV-Net addresses this by leverag-

ing head locations and the regularizing geometric constraint

that a standing person’s head and feet are co-located in BEV.

Social behavior analysis. Computer vision methods have

been applied to modeling human behavior in public spaces.

One line of work achieves this through the task of trajectory

prediction [34, 49, 29, 1, 19], which requires generating

plausible motion paths for pedestrians in the image plane.

Early work used physics models such as Social Force [22]

to account for interaction between humans [47, 50, 62, 53];

more recently, neural network modules were used to capture

such dependencies between agents, e.g. with recurrent net-
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Figure 2: Homography between BEV, IV, and world coordinates.

(a) BEV map with person location (uB , vB); (b) world model

with camera at height h, pitch angle θ and person at position (x, y)
on the ground plane; (c) image captured by camera with feet de-

tected at pixel location (uI , vI). Coordinates are converted across

views through homography matrices WTB and IHW ; gray area

denotes region of interest.

works [1, 3, 55] or graph convolutional networks [48, 58].

Other tasks for social behavior modeling have also been

explored, including early action detection [54, 30, 45] and

group activity recognition [6, 33, 24]. All of the above tasks

require temporal modeling on video data and semantic un-

derstanding of human activities; this work instead focuses

on sensing the spatial locations of people, which can be ef-

ficiently recovered from individual image frames.

3. Social Distancing Compliance Assessment
To the best of our knowledge, no prior work has at-

tempted to evaluate the quality of visual SDCA in busy pub-

lic spaces and large field-of-view scenes. In this section, we

propose a new dataset for this task.

3.1. Motivation
A dataset for SDCA should satisfy various requirements.

First, it should contain a wide range of scenes with varying

people densities. Second, it should include ground-truth lo-

cations for the people in the scene, either in 3D world co-

ordinates or in the form of a BEV heatmap. Optionally,

it could provide ground-truth for the intrinsic and extrinsic

camera parameters, allowing direct camera pose supervi-

sion during training and facilitating the recovery of ground

plane and homography between camera view and BEV.

DET datasets [11, 39, 65] are not suitable for SDCA

since the number of people per image tends to be low. CC

datasets are more relevant, as they contain abundant exam-

ples of people gathering in clusters—often within 1 to 2 me-

ters, the range of droplet transmission [61, 15, 31]—and the

scene/camera configurations are most suitable for monitor-

ing social distances in public spaces. However, geometric

meta-information is unavailable in most CC datasets.

CityUHK-X [28] is an exception, providing extrinsic

camera parameters, including height and pitch angle, which

make it a potential SDCA benchmark. Nevertheless, it has

limitations. Like other CC datasets, it only provides image

annotations for each head in the scene. Even with known

camera parameters, image head locations aren’t enough to
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Figure 3: Example ground-truth heatmaps overlaid on the input

image. Left: IV maps, with heads in green and feet in red. Re-

gion of interest is bounded by a red perspective box. Right: BEV

location map. Centers and bottom centers of heatmaps are aligned.

recover locations in world coordinates, as each individual’s

height is variable and unknown. Hence, additional annota-

tions are needed for the feet locations of each person in the

image, as well as head-feet correspondences.

3.2. Annotation
The Amazon MTurk platform was used to collect feet

annotations for CityUHK-X with correspondences between

feet and heads. Given a crop of the scene image with an-

notated head location, MTurk workers were asked to an-

notate the center point between both feet, and to verify if

the feet were clearly visible (feet location is precise) or oc-

cluded (feet location is estimated). 87,746 feet locations

were annotated in the 2,982 scene images in CityUHK-

X. Among them, 63,669 (72.6%) were clearly visible and

24,077 (27.4%) occluded. Detailed description of the anno-

tation procedure can be found in the supplemental.

3.3. Ground-truth Generation
As illustrated in Figure 3, ground-truth is provided in the

form of three density maps: feet and head maps in image

view (IV maps), and person location map in BEV coordi-

nates (BEV map).

Image view maps. Following [66], the ground-truth head

and feet locations in image view are represented with

heatmaps Mhead and Mfeet composed by mixture of Gaus-

sians. Each Gaussian from the head (feet) heatmap is cen-

tered at the annotated head (feet) location of a person in the

image, with a fixed standard deviation σ = 5 pixels.

Bird’s eye view map. Given the image coordinates of anno-

tated keypoints and camera geometry, the BEV map MBEV

is generated using a homography. This is achieved by pro-

jecting the keypoints to world coordinates, choosing a suit-

able region of interest within the ground plane, then resam-

pling into a fixed-size BEV heatmap, as illustrated in Fig-

ure 2. First, the world coordinate frame is defined by set-

ting the ground plane to z = 0 and the camera sensor to

(0, 0, h), where h denotes camera height above ground. The

camera’s yaw angle is zero in this setting. Further assum-

ing that the camera has pitch angle θ, and zero roll (the roll

angle could be zero by transforming the input image prop-

erly), the transformation between world coordinates (x, y)
in the ground plane and image coordinates (uI , vI) is then

given by the homography (derivations in supplemental)
[
uI vI 1

]�
= IHW

[
x y 1

]�
, (1)

where IHW is constructed as a function of h, θ and intrinsic

camera parameters such as focal lengths (fu, fv).
Second, to define a proper region of interest (RoI) on

the ground plane, we require that the center (uB
c , v

B
c ) of

BEV map be projected to the image center (uI
c , v

I
c ), and

the bottom-center pixel in BEV be aligned with the bottom-

center image pixel, as indicated in 3. The scale factor s,

measuring distance in meters spanned per BEV pixel, is

then given by

s = 2(xc − xbc)/H = h/
[
β(vIcα+ fvβ)

]
(2)

where H is the height of the BEV map. The transformation

from BEV map coordinates (uB , vB) to world coordinates

in the ground plane is then given by the homography

[
x y 1

]�
= WTB

[
uB vB 1

]�
, (3)

where WTB is constructed to align the BEV map with im-

age center, and rescale to s meters per BEV pixel. Finally,

the homography between image and BEV map coordinates

is obtained by combining (1) and (3) into
[
uI vI 1

]�
= IHB

[
uB vB 1

]�
, (4)

where
IHB = IHW WTB . (5)

Given a set of feet locations {qj}dj=1 in image I , the

corresponding locations in BEV coordinates are given by

{IHB
−1qj}dj=1. Similar to the IV maps, the BEV map

MBEV is generated using a Gaussian kernel with σ = 5 px.

Example heatmaps are shown in figure 3.

3.4. Evaluation protocol
We propose two types of criteria for evaluating the qual-

ity of predicted BEV heatmaps for SDCA.

Localization error. Models are required to identify BEV

locations in real-world distance units (e.g. meters or feet),

for all individuals in the scene. Given a set of predicted

locations X̂ = {x̂i}Mi=1 and a set of ground-truth locations

X = {xi}Ni=1, the Chamfer distance [2]

D(X̂,X) =
1

M

M∑

i=1

min
j

‖x̂i − xj‖+ 1

N

N∑

j=1

min
i

‖x̂i − xj‖

(6)

is used to evaluate localization error in terms of real-world

distances. Predicted locations X̂ are determined from the

BEV heatmap, using non-maximum suppression of size

5 × 5 pixels, followed by pixel-wise thresholding at the

heatmap value 10−3. The non-zero entries of the post-

processed BEV map are then extracted and converted to

world coordinates using (3). We also evaluate the normal-

ized chamfer distance Dn(X̂,X) = D(X̂,X)
2d0

, which mea-

sures the localization error as a percent of the safe distance
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threshold. A minimum safe distance of d0 = 1.5m is used,

but can be adjusted per public health guidelines.

Risk estimation error. Models are expected to measure

compliance with social distancing by estimating risk levels

in the scene, either locally or globally. Local risk levels

are represented as a heatmap R on the ground plane, with

greater values indicating locations with higher risk of in-

fection. Risk is estimated from the BEV localization map

MBEV of sect. 3.3 by applying a scale-adaptive kernel K
determined by a chosen infection risk model.

R(u, v) = MBEV(u, v) ∗K (u, v) . (7)

When the infection risk is defined as simply the number of

people within the safe distance to a person, K is a disk-

shaped kernel of radius r = d0/s, where s is the scale pa-

rameter of equation 2. Therefore, R(u, v) represents the

count of people within radius r of location (u, v). Eval-

uating the accuracy of the risk map by comparing pixel-

wise values can be sensitive to overcrowded areas and fail

to capture borderline cases. Instead, we pose local risk es-

timation as a segmentation problem: For a given image,

the network outputs a binary mask by thresholding the risk

heatmap, with positive regions indicating areas where trans-

mission is likely to occur; the prediction quality is evaluated

by intersection-over-union (IoU) w.r.t. ground-truth mask.

Global risk levels are defined by counting occurrences of

social distancing violation—the total number of people that

fail to maintain a minimum distance d0 from one another—

and normalizing by the area covered by the BEV map. This

is estimated by multiplying the BEV heatmap with the bi-

nary risk mask, then integrating over the space

Rg(r0) =
1

s2HW

∑

u,v
R(u,v)≥r0

MBEV(u, v) (8)

where r0 is a threshold on the acceptable risk level. Risk

above r0 is considered unsafe, indicating the possibilty of

infection due to violation of social distancing recommenda-

tions. Global risk error is measured by mean squared error

(MSE) between estimated and ground-truth risks.

Figure 1 shows sample outputs for the tasks described

above. The BEV heatmap MBEV relies on accurate detec-

tion of each individual, while local and global risk estimates

are more robust to minor localization errors, as the influence

of each person is spread out in the ground plane.This diverse

set of criteria assures that model outputs perform well with

respect to both metrics of interest for computer vision (lo-

calization) and public health practitioners (risk levels).

4. BEV-Net
In this section we present BEV-Net, a unified framework

for the solution of crowd counting, camera pose estimation

and social distancing compliance assessment.

4.1. Multi-branch Encoder-Decoder
The design of BEV-Net is based on the encoder-decoder

architecture commonly used in CC models [5, 42]. How-

ever, we have found that directly training an encoder-

decoder to generate BEV heatmaps leads to poor results,

since a fully convolutional architecture has difficulty mod-

elling the large and non-uniform displacements that exist

between a pixel location in the input image and the corre-

sponding location in the BEV map.

BEV-Net addresses this problem through the multi-

branch architecture of figure 4. The head and feet branches

are trained to predict heatmaps for head and feet in the im-

age view (IV), respectively. Standard convolutional encoder

and decoder layers suffice to implement these branches,

as the input image and the IV heatmaps are aligned. For

SDCA, these heatmaps are not of interest per se, since they

contain no metric information. However, the addition of the

two branches enables supervision for head and feat loca-

tions, which is critical to let the network select which image

features to pay attention to. In this sense, they can be seen

as a top-down attention mechanism.

All metric information is recovered by the central BEV

branch. This branch has two stages. The first is a pose re-

gression network that runs in parallel with head and feet

branches, enabling geometric reasoning by learning to pre-

dict the height h and pitch angle θ of the camera. This is im-

plemented with a CNN feature extractor, followed by layers

of MLP, and supervised by a pose-estimation loss. The sec-

ond stage uses the camera parameters to rectify the IV head

and feet feature maps, denoted FIV, head and FIV, feet, into

BEV coordinates. Given the predicted camera pose (ĥ, θ̂),
the IV feature maps are first aligned in BEV space through

projective transformation Thead and Tfeet (details in section

4.2 and 4.3). This produces a pair of feature maps FBEV, head

and FBEV, feet in BEV, which are then concatenated along

channel dimension and fed to the BEV decoder, eventually

producing the predicted BEV map.

4.2. BEV-Transform: Feature-level Homography
The projective transformation between IV and BEV (see

figure 3) creates a spatially varying displacement between

IV and BEV feature map locations. This makes it difficult

to predict the BEV map from the IV feature maps, since

the convolution operation is not naturally suited to model

spatially varying displacements. Inspired by [26], we ad-

dress this problem by designing a differentiable BEV Ho-

mography transformation module based on (4), called BEV-

Transform, to perform feature-level homography mapping.

Given the predicted camera pose (ĥ, θ̂), for a plane

at height h0, BEV-Transform calculates the homography

transformation ˆ
IHB = H(ĥ − h0, θ̂) that maps BEV map

grid GB into the IV map sample grid GI :

[
uI vI 1

]�
= ˆ

IHB

[
uB vB 1

]�
, (9)

5405



Figure 4: The BEV-Net architecture is a multi-branch model that

jointly performs geometric reasoning (pose branch), image-view

keypoint localization (head & feet branch), and bird’s eye view

person localization (BEV branch).

where (uB , vB) and (uI , vI) are coordinates in GB and

GI respectively. Note that h0 is different for head and feet

planes. Hence, two matrices ( ˆ
IHB)i, i ∈ {head, feet} are

needed to transform the feature maps of head and feet, re-

spectively, in order to align them in BEV. In practice, more

matrices are used as revealed in Section 4.3.

Given these matrices, (9) is then used to transform the

feature maps from image to BEV coordinates, using

(FBEV,i)uB ,vB = (FIV,i)uI ,vI , i ∈ {head, feet} (10)

As in [26], this is implemented with a differentiable bi-

linear interpolation layer. It should be noted that when fea-

ture maps are internally resized by the network, the coordi-

nates (uI
c , v

I
c ) of image center and focal lengths (fu, fv) are

scaled proportionally to match the map size.

4.3. Group BEV-Transform with Spatial Attention
The determination of feet and head plane heights has dif-

ferent complexity. For feet, the height is determined triv-

ially as h0 = 0. For heads, however, since people’s heights

are different, the head annotations are not in the same hor-

izontal plane in the world frame. One possibility would be

to simply ignore head locations. However, the co-location

of the vertical projections of head and feet is a strong regu-

larization constraint for camera pose estimation.

To take advantage of this, BEV-Net relies on a set of head

planes that quantify the range of person heights. To cover

both adult and child heights, planes are placed at heights

1.1m, 1.2m, ..., 1.8m from the ground. People in differ-

ent regions of the image are then automatically assigned to

different height planes by a self-attention mechanism, as il-

lustrated in figure 5. The IV head feature maps (FIV)head

Figure 5: Architecture of Grouping BEV transform modules and

spatial attention mechanism

are first mapped by the homographies ( ˆ
IHB)head,i, i ∈

{1, . . . , 8}, associated with the different head heights, into

a set of BEV head feature maps {(FBEV)head,i}. An at-

tention branch consist of three convolutional layers is then

used to compute a weight map Wi per BEV head feature

map. The set of weight maps {Wi} are then normalized

by a 2D softmax layer, notated as {W̃i}. The resulting

spatially varying weighted combination of the feature maps∑8
i=1(FBEV)head,i ∗ W̃i is finally used as the BEV head

feature map (FBEV)head.

4.4. Multi-task Loss
As shown in figure 4, BEV-Net is trained with four loss

functions. The loss functions for the head, feet and BEV

branches are all MSE losses:

Li = MSE(M̂i,mMi) + αMSE(g(
M̂i

m
), g(Mi)) (11)

where α = 1.25×10−6, i ∈ {head, feet, BEV}, g(A) =∑
u,v Au,v gives the global people counting. We amplify

ground-truth heatmaps by a factor of m = 100 for bet-

ter convergence, following practices in [66]. The pose loss

combines two MSE losses, for camera height and pitch an-

gle:

Lpose = λangle(θ̂ − θ)2 + λheight(ĥ− h)2 (12)

where λangle and λheight are the weight factors. The final loss
is a weighted sum of the above four loss functions,

L = λBEVLBEV + λheadLhead + λfeetLfeet + Lpose (13)

The loss weights are set to λheight = 0.02, λangle = 2.0,

λhead = λfeet = 1.0, and λBEV = 8.0 in all experiments.

5. Experiments
In this section we present experimental evaluations of

SDCA on the CityUHK-X-BEV dataset.

5.1. Experimental setup
Training procedure. The head, feet and pose branches

are pretrained for 50 epochs before training the BEV-Net

model. All the training process uses AdamW [43] with

learning rate lr = 0.0008 exponentially decreasing by fac-

tor 0.98 per epoch. A batch size of 8 and a train-validation

split of 4:1 was used in all experiments. After pre-training,

the BEV-Net is trained end-to-end. The BEV branch is first

trained for 5 epochs with frozen pre-trained branches. All

branches are then unfrozen step by step and jointly trained

for 195 epochs.
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Type Architecture Pretrain
BEV Heatmap

MSE ×10−7 ↓
Localization

Chamfer D × 1m / Dn% ↓
Local risk map

IoU% ↑
Global risk

MSE ×10−4 ↓

DET

Mask R-CNN [21] †
COCO [39]

3.89 2.26 / 75.3 46.63 43.35

Faster R-CNN [52] 2.71 1.53 / 51.0 67.01 9.91

CSP [41] † CityPersons [65] 4.21 4.57 / 152.3 28.75 62.26

CC

CSRNet [36] NWPU-Crowd [60] 4.03 5.49 / 183.0 26.80 57.72

DSSINet [40] ShanghaiTech B [66] 4.94 3.95 / 131.7 29.71 51.01

IV-Net (Head)
CityUHK-X [28]

5.36 3.90 / 130.0 30.01 40.19

IV-Net (Feet) 8.25 3.65 / 121.7 22.41 9.03

CC oracle — 5.61 3.51 / 117.0 30.17 48.13

SDCA

BEV-Net (Ours)

CityUHK-X-BEV

1.34 1.25 / 41.7 71.25 6.24
- Feet only 1.38 1.26 / 42.0 68.12 7.62

- Head only 2.03 1.32 / 44.0 67.43 8.95

- No group transf. 1.36 1.24 / 41.3 69.65 7.08

Table 1: SDCA performance, tested on CityUHK-X-BEV. Under BEV-Net: “Head/feet only” removes feet/head branch from model (fig. 4);

“No group transf.” uses a plain head branch w/o group transforms (sect. 4.3). CC oracle uses ground-truth head heatmap and camera pose.
† denotes model evaluated without fine-tuning.

Figure 6: BEV localization & risk heatmaps from different models. Both maps are back-projected to image space for visualization.

Comparisons. We compare BEV-Net to two types of base-

lines. A Detection-based approach (DET) utilizes a person

detector combined with the pretrained pose branch used by

BEV-Net. The bottom center of each bounding box is used

as the feet location qj
i . These locations are then converted

to world coordinates in BEV using IHB
−1qj

i with projec-

tion matrix IHB estimated from the predicted camera pose

(see section 3.3). We use pretrained CSPNet [41], Mask

R-CNN [21] and Faster R-CNN [52]. The Faster R-CNN

is finetuned on pseudo ground-truth bounding boxes gener-

ated from head/feet locations with aspect ratio 1/(3 cos θ).

A Counting-based approach (CC) uses standard crowd-

counting networks to generate IV head heatmaps, which

we project to BEV using the BEV-Transform and the same

pose branch used in DET methods. We use four networks:

finetuned CSRNet [41] and DSSINet [40]; and our IV-Net,

which is the head/feet branch in BEV-Net. The vertical

displacement between head locations and the ground plane

is compensated for by subtracting an average pedestrian

height used in [28]—1.75 meters—from the predicted cam-

era height. To explore the upper bound of counting-based

methods for SDCA, we introduce a CC oracle which uses

the ground-truth camera pose parameters and head maps.

Various ablations of the proposed BEV-Net are also eval-

uated. To study the effect of feet and head branches, we re-

move each of them from the architecture, leading to “Head

only” and “Feet only” variants. We further ablate the head

branch by replacing its group BEV-Transform module with

a naive BEV homography (“No group transf.”).

5.2. Quantitative results
Model performance. Table 1 summarizes the perfor-

mance of all methods in terms of the evaluation metrics

of Section 3.4. The BEV-Net outperforms all detection-

and crowd counting-based methods by a significant mar-

gin. Among different evaluation criteria, local and global

risk estimates,and normalized Chamfer distance showed the

most significant difference between models: BEV-Net ob-

tains over 25% higher IoU in local risk prediction, 7× lower

error in global risk, and a 20% reduction in normalized

Chamfer Distance. While detection methods like Faster R-

CNN can achieve relatively good localization performance

with tight bounding boxes after finetuning, their risk es-

timates remain unreliable due to low recall from missed

pedestrians. CC networks like DSSINet suffer from poor

ground-plane localization, which hurts their SDCA perfor-

mance in all criteria. Notably, even CC oracle with ground-

truth head locations and camera pose or the IV-Net that pre-

dicts feet heatmap fails to meet the accuracy of the BEV-

Net due to poor localization performance or feet occlusion.

This performance gap indicates that ground-plane model-

ing is essential for SDCA tasks, which cannot be effectively

addressed by conventional detection or crowd counting ap-

proaches that operate solely in camera view.

Ablation study. Also reported in Table 1 are ablated vari-

ants of BEV-Net. First, both “Head only” and ”Feet only”

models performed worse than the multi-branch BEV-Net.
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Figure 7: Top: Example scenes of different global risk level. Bot-
tom: Histogram of individual and scene risks in test set.

This suggests that both feet and head locations are impor-

tant for SDCA, which is intuitive: Head locations do not

lie on a shared 2D plane due to height variations among

the crowd, making it challenging to estimate real-world dis-

tances; feet locations lie on the ground plane, but are often

occluded in the camera view. Among the two, feet model-

ing is most effective. The “Head only” model struggles to

produce accurate BEV maps and localization results. This

is likely to be the case for all but very crowded scenes, with

large amounts of feet occlusion. Second, the group BEV-

Transform module of section 4.3 enabled considerable gain

over the vanilla implementation (“No group transf.”) under

IoU of local risk prediction and global risk error. This con-

firms that modeling height variations within the population

is beneficial for transforming image coordinates into BEV

with high precision.

5.3. Qualitative results

We next evaluate the visual quality of the BEV-Net re-

sults, and discuss its possible applications.

BEV heatmaps. Figure 6 compares BEV heatmaps and risk

maps predicted by different methods. Mask R-CNN [21],

Faster R-CNN [52] and CSPNet [41] suffer from low recall

of people detection, such that the risk maps fail to iden-

tify all regions with high risk of infection. CSRNet [36]

and DSSINet [40] can capture more risky areas, but are un-

able to predict the risk level correctly due to the ambiguity

in head heights. BEV-Net produces the closest localization

and risk heatmaps to ground-truth. Note how it accurately

predicts the risk “hot-spots” inside clusters of people.

Risk-based retrieval. The multi-modal outputs from BEV-

Net enable retrieval of images, individuals and clusters with

highest risk of infection. Figure 7 shows the distribution of

individual and scene risks in the dataset and examples of

events of different risk level. Individual risk is measured by

the local risk level at the ground-plane location of each per-

son. The graph shows that only 30% of detected individuals

are in compliance with the social distancing rule which pre-

vents two or more people from gathering together (i.e. risk

≥ 2). Under a less restrictive rule that relaxes the threshold

Figure 8: Mean risk map for test scenes, showing that people tend

to gather at escalator entrances, near pedestrian crossings, vendor

stalls, etc. Some results merit further investigation, e.g. why peo-

ple prefer to use the gates near the two ends in (f).

to five people, the compliance rises to 72%. We believe this

type of analytics is of interest for public health experts, e.g

to estimate transmission factors in real world scenes. Simi-

larly, the global risk measure can be used to detect events of

high risk, where viral transmission is most likely to occur.

Scene risk analysis. While we have so far focused on im-

age measurements, BEV-Net can also be used to estimate

intrinsic risk profiles of scenes. Figure 8 shows the average

risk map, over the test set, of several scenes. It can be ob-

served that high-risk areas coincide with entrances, corners,

passages or escalators. These risk maps could be used by

public health decision makers to identify potential infection

hot-spots and place obstacles or warning signs in the scene

to mitigate infection risks.

6. Conclusion
In this work, we have introduced the problem of social

distancing compliance assessment on busy public spaces,

from wide field-of-view cameras, without the need for man-

ual camera calibration or introduction of scene markers.

A novel benchmark was proposed for this problem, where

models are evaluated on their capability to localize people in

the ground plane through geometric reasoning, and to iden-

tify regions where social distancing is violated. A multi-

branch architecture, BEV-Net, was then presented, which

fuses information from head and feet annotations to gener-

ate a BEV reconstruction of pedestrian locations. Experi-

ments have shown that BEV-Net exceeds baseline methods

under all evaluation metrics. Several applications of interest

for public health decision makers have also been discussed.
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