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Look Closer: Bridging Egocentric and Third-Person
Views With Transformers for Robotic Manipulation

Rishabh Jangir”, Nicklas Hansen

Abstract—Learning to solve precision-based manipulation tasks
from visual feedback using Reinforcement Learning (RL) could
drastically reduce the engineering efforts required by traditional
robot systems. However, performing fine-grained motor control
from visual inputs alone is challenging, especially with a static
third-person camera as often used in previous work. We propose
a setting for robotic manipulation in which the agent receives
visual feedback from both a third-person camera and an egocentric
camera mounted on the robot’s wrist. While the third-person cam-
era is static, the egocentric camera enables the robot to actively
control its vision to aid in precise manipulation. To fuse visual
information from both cameras effectively, we additionally propose
to use Transformers with a cross-view attention mechanism that
models spatial attention from one view to another (and vice-versa),
and use the learned features as input to an RL policy. Our method
improves learning over strong single-view and multi-view baselines,
and successfully transfers to a set of challenging manipulation tasks
on a real robot with uncalibrated cameras, no access to state infor-
mation, and a high degree of task variability. In a hammer manip-
ulation task, our method succeeds in 75 % of trials versus 38 % and
13% for multi-view and single-view baselines, respectively. Project
website can be found https://jangirrishabh.github.io/lookcloser/.

Index Terms—Reinforcement Learning,
Manipulation Planning.

Visual Learning,

1. INTRODUCTION

OST solutions for robotic manipulation today rely on

highly structured setups that allow for full state infor-
mation, fine-grained robot calibration, and predefined action
sequences. This requires substantial engineering effort, and the
resulting system is intolerant to changes in the environment.
Visual feedback from a mounted camera has gained popular-
ity as an inexpensive tool for relaxing the assumption of full
state information [1]-[4], and Reinforcement Learning (RL)
has emerged as a promising technique for learning flexible
control policies without the need for detailed human engineering
[5]-[8]. Together, vision-based RL could enable use of robots
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in unstructured environments through flexible policies operating
directly from visual feedback, without assuming access to any
state information [9]-[12].

However, solving complex precision-based manipulation
tasks in an end-to-end fashion remains very challenging, and
current methods often rely on important state information that is
difficult to obtain in the real world [2], [13]-[16], and/or rely on
known camera intrinsics and meticulous calibration [3], [17] in
order to transfer from simulation to the real world. We argue that
for a system to be truly robust, it should be able to operate from
visual feedback, succeed without the need for camera calibra-
tion, and be flexible enough to tolerate task variations, much like
humans. In particular, Land et al. [18] find that when humans
perform a complex motor task, the oculo-motor system keeps
the centre of gaze very close to the point at which information is
extracted, also known as visual fixation. However, previous work
in visual RL often limit themselves to a single, static third-person
monocular camera, which makes extraction of local information
from areas of interest challenging, and uncalibrated cameras
only exacerbate the problem.

In this work, we propose a setting for vision-based robotic
manipulation in which the agent receives visual feedback from
two complementary views: (i) a third-person view (global in-
formation), and (ii) an egocentric view (local information),
as shown in Fig. 1. While the third-person view is static, the
egocentric camera moves with the robot gripper, providing the
robot with active vision capabilities analogous to the oculo-
motor system in humans. Because the agent has control over
its egocentric vision, it can learn to actively position its camera
such that it provides additional information at regions of interest,
e.g. accurate localization of points of contact in fine-grained
manipulation tasks.

To fuse visual feedback from the two views effectively, we
propose to integrate an explicit modeling of visual fixation
through a network architecture with soft attention mechanisms.
Specifically, we propose to use Transformers [19] with a cross-
view attention module that explicitly models spatial attention
from one view to another. Each view is encoded using separate
ConvNet encoders, and we fuse their corresponding feature
maps by applying our cross-view attention module bidirection-
ally. In this way, we let every spatial region in the egocentric
view highlight the corresponding regions of interest in the third-
person view, and vice-versa. We use the learned features as input
for an RL policy and optimize the network end-to-end using a
reward signal. This encourages the agent to actively control the
egocentric camera in a way that maximizes success.

To demonstrate the effectiveness of our method, we conduct
extensive empirical evaluation and compare to a set of strong
baselines on four precision-based manipulation tasks:
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Multi-view robotic manipulation. We propose a method for vision-based robotic manipulation that fuses egocentric and third-person views using

a cross-view attention mechanism. Our method learns a policy using reinforcement learning that successfully transfers from simulation to a real robot, and
solves precision-based manipulation tasks directly from uncalibrated cameras, without access to state information, and with a high degree of variability in task

configurations.

Fig. 2. Real robot setup. Image depicting our real-world environment for the
Peg in Box task. The third-person camera is static, and the egocentric camera
moves along with the robot arm. See Fig. 1 for camera view samples.

1) Reach, atask in which the robot reaches for a goal marked
by a red disc placed on the table,

2) Push, a task in which the robot pushes a cube to a goal
marked by a red disc, both placed on the table,

3) Peg in Box, a task in which the objective is to insert a peg
tied to the robot’s end-effector into a box placed on the
table,

4) Hammer, a task in which the objective is to hammer in an
out-of-position peg.

Each of the four tasks are shown in Fig. 1. We find that
our multi-view setting and cross-view attention modules each
improve learning over single-view baselines, and we further
show that our method successfully transfers from simulation
to a real robot setup (shown in Fig. 2) with uncalibrated cam-
eras, no access to state information, and a high degree of task
configuration variability. In the challenging Hammer task, our
method is significantly more successful during transfer than
any of our baselines, achieving a success rate of 75% versus
38% for a multi-view baseline without cross-view attention, and
only 13% and 0.0% for our single-view baselines. Finally, we
qualitatively observe that (i) multi-view methods appear less
prone to error due to lack of camera calibration, and (ii) our
proposed cross-view attention mechanism improves precision
in tasks that require fine-grained motor control.

II. RELATED WORK

Vision-Based Robotic Manipulation: Learning RL policies for
end-to-end vision-based robotic manipulation via task supervi-
sion has been widely explored [7]-[12], [20], [21]. For example,
Lillicrap et al. [7] solve simulated continuous control tasks
directly from images with no access to state information, and
Zhan et al. [12] shows that vision-based RL can solve real-world
manipulation tasks efficiently given a small number of expert
demonstrations. Despite this progress it is still very challenging
— especially for vision-based policies — to transfer learned skills
to other environments, e.g. Sim2Real [22]-[24]. To facilitate
transfer, related work also leverage important state information
such as object pose, which is readily available in simulation
but difficult to obtain in the real world [2], [13]-[17]. While this
approach is valid, it is limited by the accuracy of pose estimation
algorithms which typically require a well calibrated system
and/or reference models [3], [17], [25], [26]. In comparison,
our approach learns directly from raw images and transfers to a
real robot with uncalibrated cameras.

Multi-View Robotic Manipulation: Multi-modal sensor fusion
is a well-studied problem in robotics [9], [16], [27], [28]. For
example, Lee et al. [27] propose a method for fusing vision
and haptic feedback without explicit supervision. However,
using multiple views of the same modality remains a relatively
underexplored topic that has only recently gained interest [16],
[29], [30]. Akinola et al. [29] show that third-person views from
multiple, statically placed cameras improves policy learning in
precision-based manipulation tasks over a single view. Specifi-
cally, their algorithm aggregates features encoded from multiple
cameras by simple addition and performs RL on top of these
features. In addition to camera inputs, they assume access to
state information from the gripper. OpenAl et al. [16] explore a
multi-view robotic manipulation setting similar to ours, but they
require privileged state information that is not easily available
in the real world, e.g. full object and goal states. Concurrent to
our work, Chen et al. [30] propose a framework for learning 3D
keypoints for control from multiple third-person views. While
they similarly to Akinola et al. [29] demonstrate benefits from
additional views, keypoint detection remains prone to error from
uncalibrated cameras. All of the aforementioned works only
consider manipulation tasks in simulation, and do not consider
the problem setting of robotic manipulation from egocentric and
third-person cameras without access to state information. In this
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work, we develop a real robotic system that operates strictly
from uncalibrated egocentric and third-person cameras.

Active Vision for Manipulation: Robots operating only from
egocentric images suffer from incomplete state information (oc-
clusion, small field-of-view), while when operating only from
third-person vision fail to capture more accurate interactions.
A natural solution to this problem is active vision. An active
vision system is one that can manipulate the viewpoint of the
camera(s) in order to investigate the environment and get better
information from it [31], [32]. Traditional methods for active
vision [33] either use hand-crafted utility functions [34] or
are uncertainty or reconstruction based [35], whereas learning
based [36] approaches explicitly learn these utility functions
for selecting the next-best view using ground truth labels. In
this work, we use the task-based reward to guide active vision.
Cheng et al. [37] propose an active vision system that learns
camera control policies directly from task-based rewards, in
coordination to the manipulation policies. However, they use
a separate camera to actively focus on objects of interest which
requires an additional manipulator. In a similar fashion, Zaky
et al. [38] use an additional manipulator to achieve an active
perception system. Importantly, these approaches do not show
real-world results. Our approach employs an egocentric camera
tied to the wrist of the robot for active vision. While it is hard to
both carry out manipulation and keep objects of interest in view
in this perspective, our two complementary cameras enable us
to achieve this through cross-view attention.

Attention Mechanisms in RL: Our multi-view fusion builds
upon the soft attention mechanism which has been widely
adopted in natural language processing [19], [39] and computer
vision [40], [41], and has recently been popularized in the
context of RL [28], [42]-[46]. For example, Jiang et al. [42]
propose an attention-based communication model that scales to
cooperative decision-making between a large amount of agents,
and Yang et al. [28] use a cross-modal Transformer to fuse
state information with a depth input in simulated locomotion
tasks. James et al. [46] is a parallel work that is closest to
our approach in their idea of using visual attention to attend
to parts of an input RGB image in robotic manipulation tasks.
However, like most other works on image-based RL, they restrict
their study to a single, fixed third-person view. We propose
a cross-view attention mechanism that fuses information from
multiple camera views, and we are — to the best of our knowl-
edge — the first to demonstrate the effectiveness of attention-
based policies in transfer from simulation to a real robot
setup.

III. BACKGROUND

Vision-Based Reinforcement Learning. We formulate in-
teraction between the agent’s vision-based control policy
and environment as an infinite-horizon Partially Observable
Markov Decision Process (POMDP) [47] described by a tuple
(S, A, P,po,r,7), where S is the state space, A is the action
space, P : S x A — Sisatransition function that defines a con-
ditional probability distribution P(-|s;,a;) over possible next
states given current state s; € S and action a; € A taken at time
t, Py is a probability distribution over initial states, r : S X A >
R is a scalar reward function, and «y € [0, 1) is a discount factor.
In a POMDP, the underlying state s of the system is assumed un-
available, and the agent must therefore learn to implicitly model
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Fig. 3. Sim2Real. Samples from our simulation and real world environments

for each view and two tasks, Peg in Box and Hammer. We emphasize that the
real world differs in both visuals, dimensions, dynamics, and camera views, but
roughly implement the same task as in simulation. Also note that there is only
an approximate correspondence between the samples from simulation and the
real world shown here.

states from raw image observations. Our goal is to learn a pol-
icy m: § — A that maximizes return Epr[> ;o o 7'r(s¢, ar)]
along a trajectory T’ = (s, S1,...,Sx) Where sg ~ Py, a; ~
7(-|s¢), and s;41 ~ P(+|s¢, a;), and we use the Soft Actor-Critic
[8] RL algorithm for policy search.

Soft Actor-Critic: (SAC) [8] is an off-policy actor-critic al-
gorithm that learns a (soft) state-action value function Qp :
S x A — R, a stochastic policy my as previously defined, and
optionally a temperature parameter 7. (g is optimized to min-
imize the (soft) Bellman residual [48], 7y is optimized using a
maximum entropy objective [49], [50], and 7y is optimized to
maintain a desired expected entropy; see [8] for further details.
For brevity, we generically refer to learnable parameterization
by a subscript 6 throughout this work.

Robot Setup: Our real-world setup is shown in Fig. 2. We use
a Ufactory xArm 7 robot with an xArm Gripper as the robot
platform in both our real-world and simulation experiments, al-
though our method is agnostic to the specific robot hardware. The
camera poses and the shape and size of objects in the simulation
roughly mimic that of the real-world. We use Intel RealSense
cameras for our experiments and apply the same pre-processing
to both the simulated and real images. Image samples from the
simulation and real-world robot setup can be seen in Fig. 3.
Using the Mujoco [51] simulation engine, we create a simulation
environment with the xArm robot and other objects as necessary
in the robotic tasks. Two cameras are mounted to overlook the
robot workspace where the task is being performed. With respect
to the robot, one camera is directly placed in front of the whole
setup (third-person view) with a large field of view covering the
robot and the workspace, and the other camera (egocentric view)
is attached to the robot at its wrist, i.e., right above where the
gripper meets the robot. While the third-person camera is fixed,
the egocentric camera moves along with the robot and provides
a top-down view of the robot workspace. We emphasize that the
cameras are uncalibrated, that the policy operates strictly from
RGB images (84 x 84 pixels) captured by the two cameras, and
that the policy has no access to state information.

IV. METHOD

Inspired by visual fixation in the human eye, we propose to
fuse egocentric and third-person views in a multi-camera robotic
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Architectural overview. Egocentric and third-person views O, O are augmented using stochastic data augmentation, and are encoded using separate

ConvNet encoders to produce spatial feature maps Z1, Zo. We perform cross-view attention between views using a Transformer such that features in Z; are used as
queries for spatial information in Zs, and vice-versa. Features are then aggregated using simple addition (& in the figure), and used as input for a Soft Actor-Critic

(SAC) policy.

manipulation setting, leveraging Transformers for explicit mod-
eling of fixation through its attention mechanism. Our method is
a general framework for multi-view robotic manipulation that is
simple to both implement and deploy in a real-world setting. For
simplicity, we describe our method using SAC [8] as backbone
learning algorithm as used in our experiments, but we emphasize
that our method is agnostic to the particular choice of learning
algorithm. We introduce each component of our method in the
following.

A. Multi-View Robotic Manipulation

We propose to learn vision-based RL policies for robotic
manipulation tasks using raw, uncalibrated RGB inputs from
two complementary camera views: (i) an egocentric view O
from a camera mounted on the wrist of the robot, and (ii) a
fixed third-person view O,. The third-person view provides
global information about the scene and robot-object relative
configurations, while the egocentric view serves to provide
local information for fine-grained manipulation; see Fig. 3 for
samples. Because the egocentric camera is attached to the robot,
it provides the robot with active vision capabilities — control over
one of the two views. Our method learns a joint latent representa-
tion from the two camera views, encouraging the model to relate
global and local information, and actively position itself such
that the egocentric view provides valuable local information for
fine-grained manipulation.

B. Network Architecture

Fig. 4 provides an overview of our method and architecture.
Our proposed architecture takes two raw RGB images O1, Oy €
RE*HXW from the egocentric and third-person cameras, re-
spectively (s.t. the system state s is approximated by {O1, Oz }),
and encodes them separately using ConvNet encoders fy; and
fo2 to produce latent feature maps Z;, Zo € RE*H*W' e
propose to fuse the two feature maps using a Transformer
[19] with a cross-view attention module that takes Z,, Z5 as
input and produces a single feature map H = Ty(Z;, Zs). The
aggregated features H are flattened and fed into the policy
(actor) mp and state-action value function (critic) Qg s.t. a ~
7o (+|To(fo1(01), fo2(O2))) and similarly for the critic. In prac-
tice, we optimize all components end-to-end using the actor and
critic losses of SAC, but only back-propagate gradients from the

critic to encoder components Ty, fo1, fo2, as is common practice
in image-based RL [20], [52]-[54]. In the following section, we
describe our cross-view attention mechanism in more detail.

C. Cross-View Attention

Our Transformer Ty learns to perform cross-view attention
by associating spatial information between intermediate feature
maps Z1, Z» from the egocentric view O and third-person view
O, respectively. Ty takes as input Z1, Z5 and produces a joint
embedding

H:TQ(Z1,Z2) (1)
£ go1 (LN(Z1 + VaA12)) + goa (LN(Z2 + V1 A21)) (2)

where gp1, ggo are Multi-Layer Perceptrons (MLP), LN is a
LayerNorm [55] normalization, and A1, Ao, are normalized
(soft) scaled dot-product attention [19] weights

A12:U(K;Q1/\@),A21:U(KIQ2/\6) (3)

for Q;, K;,V; € RE*HXW" denoted as the queries, keys, and
values, respectively, for the cross-view attention between Z; and
Z;, and o is a Softmax normalization. Q;, K, V; are view-
dependent embeddings

Qi = Vg (LN(Z))), K; = 945(LN(Z;))
V; =y (LN(Z))) .

“4)
®)

where 1/19Qi, 1/1§§7 w;/j are 1 x 1 convolutional layers.

Intuitively, each of the two cross-view attention mechanisms
between feature maps Z;, Z; can be interpreted as a differential
(spatial) lookup operation, where Z; is used as query to retrieve
information in Z;. By performing cross-view attention bidirec-
tionally as shown in (2), Ty enables flow of spatial information
both from the egocentric view to the third-person view and vice-
versa. With spatial attention, the policy can learn to associate
concepts present in both views, e.g. objects or the gripper as
shown in Fig. 5, and enhance both object-centric features as well
as the overall 3D geometry of the scene. We note that, while we
consider two views in this work, our method can trivially be
extended to n views by letting Ty compute cross-view attention
bidirectionally between all pairs of views.
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Fig. 5. Attention maps. Visualization of attention maps learned by our policy

for (i), (ii) Hammer task, and (iii), (iv) Push task. For samples (i), (iii) a
spatial location in egocentric view (red highlight; top) is used as query and
its corresponding attention map for the third-person image (green highlight;
bottom) is shown. For samples (ii), (iv) the third-person view is used as query
and attention maps for the egocentric view are shown.

D. Data Augmentation

To aid both learning in simulation and transfer to the real
world, we apply data augmentation to image observations, both
in our method and across all baselines. During training, we
sequentially apply stochastic image shifts of 0-4 pixels as in
Kostrikov er al. [20], as well as the color jitter augmenta-
tion from Hansen et al. [45]. Augmentations are applied in-
dependently to each view, i.e., O7"® = aug(Oy, (1), 03" =
aug (02, (a), 1, ~ Q where (1, (2 parameterize the augmen-
tations and (2 is a uniform distribution over the joint augmenta-
tion space.

V. EXPERIMENTS

We investigate the effects of our proposed multi-view setting
as well as our Transformer’s cross-view attention mechanism on
a set of precision-based robotic manipulation tasks from visual
feedback. Both our method and baselines are trained entirely in
simulation using dense rewards and randomized initial configu-
rations of the robot, goal, and objects across the workspace. We
evaluate methods both in the simulation used for training, and a
real robot setup as described in Section III. For consistent results,
we report success rate over a set of pre-defined goal and object
locations both in simulation and the real world. Goal locations
vary between tasks, and the robot is reset after each trial.

Tasks: Fig. 1 provides samples for each task and view con-
sidered. Using the simulation setup as described in Section III,
we consider the following tasks: (1) Reach, a task in which the
robot reaches for a goal marked by a red disc placed on the table.
Success is considered when the robot gripper reaches within
5 cm of the goal. (2) Push, a task in which the robot pushes a
cube to a goal marked by a red disc, both placed on the table.
Success is considered when the cube reaches within 10 cm of the
goal. (3) Peg in Box, a task in which the objective is to insert a
peg tied to the robot’s end-effector into a box placed on the table.
Success is considered when the peg reaches within 5 cm of the
goal and as aresult gets inserted into the box. (4) Hammer, a task
in which the objective is to hammer in an out-of-position peg. At
each episode, one peg is randomly selected from 4 differently
colored pegs. Success is considered when the out-of-position
peg is hammered back within 1 cm of the box. Both the Reach
and Push tasks use an XY action space, with movement along Z
constrained. Peg in Box and Hammer use an XYZ action space.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Episodes are terminated when the policy succeeds, collides with
the table, or a maximum number of time steps is reached. An
episode is counted as a success if the success criteria defined
above is met for any time step in the episode.

Setup: We implement our method and baselines using Soft
Actor-Critic (SAC) [8] as learning algorithm and, whenever
applicable, we use the same network architecture and hyper-
parameters as in previous work on image-based RL [45], [54],
i.e., fo consists of 11 convolutional layers. Observations are
RGB images of size 84 x 84 from either one or two cameras
depending on the method. Although related works commonly
approximate the system state s using a stack of frames, we
empirically find a single frame sufficient for both learning and
transfer. All methods are trained for 500 k frames and evaluated
for 30 trials across 5 object locations, both in simulation and
on the real robot. However, for the Hammer task, we conduct
24 trials: 2 trials for each of the 4 pegs, repeated across 3
object locations, 2 x 4 x 3 = 24. In simulation, all results are
averaged over 3 model seeds; in real world experiments, we
report transfer results for the best seed of each method due to
real world constraints.

Baselines: We compare our method to a set of strong base-
lines, all using Soft Actor-Critic (SAC) as learning algorithm
and the same choice of network architecture, hyperparameters,
and data augmentations as our method. Specifically, we compare
our method to the following baselines: (1) Third-Person View
(3 rd) using visual feedback from a fixed third-person camera,
(2) Egocentric View (Ego) using only the egocentric camera
mounted on the robot’s wrist, (3) Multi-View (Multi) that uses
both views as input, encodes each view using separate encoders,
and aggregates extracted features using addition. We emphasize
that all baselines are implemented using the same image aug-
mentations (image shift and color jitter) as our method, which
makes them largely equivalent to DrQ [20], a state-of-the-art al-
gorithm for image-based RL that builds on SAC. Lastly, we note
that (3) implements our method without cross-view attention and
is therefore analogous to the method proposed by Akinola et al.
[29] but for a combination of third-person and egocentric views,
without state information from the gripper, and including recent
advances in image-based RL such as augmentations. In addition
to these baselines, we also ablate our design choices.

A. Robotic Manipulation in Simulation

Before discussing our real robot experiments, we first consider
methods in simulation. Training performances are shown in
Fig. 6. Our method using both multi-view inputs and a Trans-
former performs on par or better than baselines on all tasks, and
we particularly observe improvements in sample efficiency on
the Peg in Box task that requires 3D geometric understanding.
All methods except the egocentric-only baselines trivially solve
the Reach task, but we include it to better ground our results.
We conjecture that the egocentric baseline performs significantly
worse than other methods due to its lack of global scene infor-
mation.

The corresponding success rates for each task and method
after training for 500 k frames are shown in Table I. Interestingly,
while a third-person view is sufficient for learning to solve 3 out
of 4 tasks, we observe substantial improvements in success rate
in both our method (+56%) and multi-view (+20%), which is
not immediately obvious from the episode returns. Qualitatively,

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 26,2022 at 21:27:15 UTC from IEEE Xplore. Restrictions apply.



JANGIR et al.:

Reach Push

e

-35
—40

Episode return
Episode return

0

0 100 200 300 400

Number of frames (x103)

500 100 200 300 400

Number of frames (x103)

500

—— Third-Person Only

Fig. 6.
Our method consistently performs on par or better than all baselines considered.

TABLE I
SIMULATION EXPERIMENTS. SUCCESS RATE OF OUR METHOD AND BASELINES
‘WHEN TRAINED AND EVALUATED IN SIMULATION. AVERAGED ACROSS 3
SEEDS AND 30 TRIALS (24 FOR HAMMER). OUR METHOD IS SIGNIFICANTLY
MORE SUCCESS IN HAMMER

Simulation 3rd Ego  Multi Ours

Reach 1.00 0.15 1.00 1.00

Push 0.75 0.50 0.80 0.80

Peg in Box 0.80 0.20 0.80 0.80

Hammer 0.30 0.04 050 0.86
TABLE I1

REAL ROBOT EXPERIMENTS. SUCCESS RATE OF OUR METHODS WHEN
TRAINED IN SIMULATION AND TRANSFERRED TO A REAL ROBOT. AVERAGED
ACROSS 30 TRIALS (24 FOR HAMMER)

Real robot 3rd Ego  Multi Ours
Reach 0.83 0.17 0.83 1.00
Push 0.10 0.17 0.23 0.80
Peg in Box 0.23 027 0.50 0.80
Hammer 0.13 0.00 0.38 0.75

we find that the third-person baseline often approaches the peg
but fails to hit it, whereas our method is comparably better at
precise manipulation.

B. Sim2Real Transfer

We now consider deployment of the learned policies in a
Sim2Real setting, i.e., the policies trained in simulation are
transferred to a real robot setup as shown in Fig. 3. Success
rates on the real robot are shown in Table II.

We find that success of the single-view baselines drops consid-
erably when transferring to the real world. For example, third-
person baseline (3rd) achieves success rates of 75% and 80%
for the Push and Peg in Box tasks, respectively, in simulation,
while merely 10% and 23% in the real world. We conjecture
that this drop in performance is due to the reality gap — and the
lack of camera calibration in particular. With the addition of an
egocentric view, the multi-view baseline improves transfer to
23% and 50% on the two tasks. Finally, we observe no drop
in success for our method on the same two tasks, achieving a
success rate of 80% in both tasks, and only a small drop in
success rate on the challenging Hammer task that requires 3D
understanding and a high level of precision. Specifically, our
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Fig. 7. Qualitative results. Sample trajectories from the Hammer task for
our method, the multi-view baseline using both camera views, as well as the
baseline using only a third-person view. Episodes are terminated when the policy
succeeds, collides with the table, or a maximum number of time steps is reached.
Our method succeeds in 75% of trials.

method succeeds in 75% of trials in the Hammer task versus
only 38% and 13% for the multi-view and single-view baselines,
respectively.

We also study the qualitative behavior of policies when
transferring to the real world. Fig. 7 shows sample trajectories
for our method, the multi-view baseline, and the third-person
baseline on the Hammer task. In the Hammer task, we observe
that the multi-view baseline frequently misses its target by a
small margin (presumably due to the reality gap), and the third-
person baseline systematically fails to reach the peg, which we
conjecture is due to error in 3D perception from the uncalibrated
camera. Using our method, we observe that the robot frequently
positions its gripper above the peg, such that it is visible from
the egocentric view during the hammering motion. Finally, we
also evaluate the qualitative behavior of the cross-view attention
module. Attention maps for a set of spatial queries are shown in
Fig. 5. We find that the agent often attends to regions of interest,
such as objects or the gripper. Transformer-based policies could
therefore also be a promising technique for explainability in RL.

C. Ablations

Attention mechanism: Our experiments discussed in Sec-
tion V-A and V-B ablate the choice of camera views. Our
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TABLE III
ABLATIONS. SUCCESS RATE OF OUR METHOD AND ABLATIONS WHEN
TRAINED IN SIMULATION AND EVALUATED IN (LEFT) THE SIMULATED
ENVIRONMENT, AND (RIGHT) OUR REAL ROBOT SETUP. A12 ABLATES OUR
METHOD BY ONLY PERFORMING CROSS-ATTENTION FROM THE EGOCENTRIC
VIEW TO THE THIRD-PERSON VIEW, AND A51 CORRESPONDS TO THE
OPPOSITE DIRECTION. AVERAGED ACROSS 3 SEEDS AND 30 TRIALS (24
TRIALS FOR HAMMER)

Simulation Real robot
A12 A21 Ours ‘ A12 A21 Ours
Reach 1.00 1.00 1.00 \ 0.63 0.73 1.00
Push 0.63 0.65 0.80 \ 0.26 0.37 0.80
Peg in Box  0.70 0.70 0.80 \ 0.23 0.53 0.80
Hammer 0.60 0.50 0.86 \ 0.42 0.50 0.75
TABLE IV

ROBOT STATE AS ADDITIONAL INPUT. SUCCESS RATE COMPARISON WHEN
TRAINED IN SIMULATION AND EVALUATED ON THE REAL ROBOT, ALONG WITH
THE %-CHANGE IN PERFORMANCE AS COMPARED TO IMAGE-ONLY

OBSERVATIONS
Real robot 3rd Multi Ours
Peg in Box 0.30 0.77 0.87
Hammer 0.16 0.43 0.76

method learns cross-view attention between the egocentric view
and the third-person view and models each of the directions
individually, i.e., an attention map A5 is computed for egocen-
tric — third-person direction, and As; is likewise computed for
the opposite direction. We ablate each of these two modules such
that cross-view attention is only learned unidirectionally; results
are shown in Table III. Our ablations indicate that unidirectional
cross-view attention achieves similar success rates to that of the
multi-view baselines in simulation, only improving marginally
in the Hammer task. In our real robot experiments, we observe
performance gains in both of our unidirectional ablations over
the multi-view baseline, but not consistently. We observe the
biggest improvements in Push and Hammer, where global-local
coordination is especially important. However, we find that our
proposed formulation succeeds more often than either ablation
and produces more consistent gains across tasks. We conjecture
that letting both views attend to each other improves flow of
information, which in turn improves the expressiveness of the
learned joint representation.

Robot state utilization: We study the effect of including robot
state along with visual inputs in Table IV. Robot state includes
end-effector position and gripper state, and is readily available
both in simulation and the real robot. Following the architecture
as described in [29] for fusing state and visual inputs, we train
the top 3 performing methods in simulation and test on the
real robot on our two most difficult tasks. Adding robot state
information brings performance gains across all methods, while
3rd and Multi benefit comparably more from the added states.
However, our method still outperforms all in this setting. We
hypothesize that the baselines have difficulty extracting state
information from visual inputs, whereas our proposed fusion
mechanism alleviates this issue and is therefore less dependent
on the provided state information. The remaining gap in perfor-
mances can be attributed to the ability of each method to extract
object state information from visual inputs.
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TABLE V
CAMERA RANDOMIZATION. SUCCESS RATES WHEN TRAINED IN SIMULATION
AND EVALUATED IN A CAMERA-RANDOMIZED SIMULATION, ALONG WITH
%-CHANGE IN PERFORMANCE

Simulation Multi Ours
Reach 0.85 (—15.0%) 0.98 (—2.0%)
Push 0.46 (—42.5%) 0.72 (—10.0%)
Peg in Box 0.24 (—70.0%) 0.55 (—31.3%)
Hammer 0.18 (—64.0%) 0.47 (—45.3%)

Robustness analysis: Camera calibration can be a time con-
suming process, and typically needs to be repeated every time
the camera or environment changes. Therefore, it is desirable
to develop methods that can operate directly from uncalibrated
cameras, and we hypothesize that our proposed method increases
robustness to such settings. To test this hypothesis, we further
evaluate methods in simulation under random camera pertur-
bations, simulating deployment with a variety of uncalibrated
cameras. Perturbations include camera properties such as cam-
era pose and FOV. Results are shown in Table V. We find that
our proposed cross-view attention mechanism is more robust
to camera perturbations than the multi-view baseline across all
tasks, presumably due to better information fusing across views.

VI. CONCLUSION

Precise robotic manipulation from visual feedback is chal-
lenging. Through experiments in both simulation and the real
world, we observe that both our multi-view setting as well as
our proposed cross-view attention mechanism improves learning
and in particular improves transfer to the real world, even in the
challenging setting of Sim2Real with uncalibrated cameras, no
state information, and a high degree of task variability. There-
fore, we believe our proposed problem setting and method is a
promising direction for future research in robotic manipulation
from visual feedback.
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