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Abstract

Learning a good representation for space-time corre-
spondence is the key for various computer vision tasks,
including tracking object bounding boxes and performing
video object pixel segmentation. To learn generalizable
representation for correspondence in large-scale, a vari-
ety of self-supervised pretext tasks are proposed to explic-
itly perform object-level or patch-level similarity learning.
Instead of following the previous literature, we propose
to learn correspondence using Video Frame-level Similar-
ity (VFS) learning, i.e, simply learning from comparing
video frames. Our work is inspired by the recent success
in image-level contrastive learning and similarity learning
for visual recognition. Our hypothesis is that if the repre-
sentation is good for recognition, it requires the convolu-
tional features to find correspondence between similar ob-
jects or parts. Our experiments show surprising results that
VFS surpasses state-of-the-art self-supervised approaches
for both OTB visual object tracking and DAVIS video ob-
ject segmentation. We perform detailed analysis on what
matters in VFS and reveals new properties on image and
frame level similarity learning. Project page with code:
https://jerryxu.net/VFS.

1. Introduction
Learning visual correspondence across space and time

is one of the most fundamental problems in computer vi-

sion. It is widely applied in 3D reconstruction, scene un-

derstanding, and modeling object dynamics. The research

of learning correspondence in videos can be cast into two

categories: the first one is learning object-level correspon-

dence for visual object tracking [62, 60, 69], relocalizing

the object with bounding boxes along the video; the other

one is learning fine-grained correspondence, which is com-

monly applied in optical flow estimation [31, 21] and video

object segmentation [9, 80]. While both lines of research

have been extensively explored, most approaches acquire

training supervision from simulations or limited human an-

notations, which increases the difficulty for generalization
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Figure 1. Video Frame-level Similarity (VFS) learning. It com-

pares the fully-connected layer embeddings of frames from the

same video for learning. By minimizing the frame-level feature

distance, the fine-grained and object-level correspondence can au-

tomatically emerge in res4 and res5 blocks in the ResNet architec-

ture, without using any explicit tracking-based pretext task.

across different data and tasks.

One way to tackle this problem is to learn representa-

tions for correspondence using free temporal supervision

signals in videos. Recently, a lot of efforts have been made

in self-supervised learning of space-time visual correspon-

dence [70, 74, 33], where different pretext tasks are de-

signed to learn to track pixels or objects in videos. For ex-

ample, Wang et al. [74] propose to use the cycle-consistency

of time (i.e., forward-backward object tracking) as a super-

visory signal for learning. Building on this, Jabri et al. [33]

combine the cycle-consistency of time with patch-level sim-

ilarity learning and achieve a significant improvement in

learning correspondence. Given this encouraging result, we

take a step back and ask the questions: Do we really need

to design self-supervised object (or patch) tracking task ex-

plicitly to learn correspondence? Can image-level similarity

learning alone learn the correspondence?

Recent development in image-level similarity learning

(e.g., contrastive learning) has shown the self-supervised
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representation can be applied to different downstream se-

mantic recognition tasks, and even surpassing the ImageNet

pre-training networks [27, 12, 13, 10, 51, 77, 29, 66, 67].

Our hypothesis is that if the higher-level fully-connected

layer feature encodes the object structure and semantic in-

formation, it needs to be supported by the ability of find-

ing correspondence between similar object instances and

between object parts [83]. This forces the convolutional

representation to implicitly learn visual correspondence.

With this hypothesis, we propose to perform Video

Frame-level Similarity (VFS) learning for space-time corre-

spondence without any explicit tracking-based pretext task.

As illustrated in Figure 1, we forward one pair or multi-

ple pairs of frames from the same video into a siamese

network, and compute the similarity between the frame-

level features (fully-connected layer embeddings) for learn-

ing the network representation. We examine the learning

with negative pairs as [12, 27] and without negative pairs

as [26, 14] under our VFS framework. We build our model

based on the ResNet architecture [28]. During inference,

we use the res4 features for fine-grained correspondence

task (e.g., DAVIS object segmentation [57]) and the res5
features for object-level correspondence task (e.g., OTB ob-

ject tracking [76]). Surprisingly, we find VFS can surpass

state-of-the-art self-supervised correspondence learning ap-

proaches [33, 43]. Based on our experiments, we observe

the following key elements for VFS:

(i) Training with large frame gaps and multiple frame

pairs improves correspondence. When sampling a pair of

frames from the same video for similarity learning, we ob-

serve that increasing the time differences between the two

frames can improve fine-grained correspondence noticeably

on DAVIS (∼ 3%), and object-level correspondence signifi-

cantly on OTB (> 10%). Training with multiple frame pairs

at the same time achieves further improvement.

(ii) Training with color augmentation is harmful for fine-

grained correspondence, but beneficial for object-level cor-

respondence. With color augmentation, the performance on

the DAVIS dataset is decreased (∼ 3%) while it signifi-

cantly improved performance on the OTB dataset (∼ 10%),

which indicates the feature learns better object invariance.

(iii) Training without negative pairs improves both fine-

grained and object-level correspondences. Recent literature

has shown that similarity learning for visual representation

is achievable even without negative pairs [26, 14]. While

the results are surprising, it was still unclear how it can be

beneficial for performance. In this paper, we show that VFS

without negative training pairs can improve representations

for different levels of correspondence.

(iv) Training with deeper networks gives significant im-

provements. While deeper networks generally improves

recognition performance, it is not the case when training

with self-supervised tracking pretext tasks for correspon-

dence. We observe very small improvement or even worse

correspondence results when using ResNet-50 compared to

ResNet-18 with previous approaches [74, 33, 43]. When

learning correspondence with VFS implicitly, we achieve

much better performance when using a deeper model.

Given our detailed analysis and state-of-the-art perfor-

mance, we hope VFS can serve as a strong baseline for

self-supervised correspondence learning. The study of in-

termediate representations for correspondence also provides

a better understanding on what image-level self-supervised

similarity learning has learned. Finally, VFS also reveals

the new property of similarity learning without negative

pairs: it improves both object-level and fine-grained cor-

respondence.

2. Related Work

Temporal Correspondence. Learning correspondence

from video frames is a long stand problem in computer

vision. We can classify the temporal correspondence into

two categories. The first one is the fine-grained correspon-

dence which has been widely studied in optical flow and

motion estimation [48, 31, 50, 7, 6, 64, 46]. For example,

Brox and Malik [6] proposed a region hierarchy matching

approach to perform dense and long-range flow estimation.

Recently, deep learning based approaches have been

applied to estimate optical flows by training on synthetic

datasets [8, 19, 61, 32, 65]. While largely improving the

efficiency, training on synthetic data largely restricts the

network’s generalization ability to real world scenes. The

second one is finding object-level correspondence which is

meant to offer reliable and long-range visual object track-

ing [62, 60, 79, 75, 54, 37]. While tracking by training a

detector to perform per-frame recognition offers promising

results [60, 2, 38, 72, 4, 42], there is recent rise back to

the classic tracking-by-matching methods [16, 79, 30, 45]

using deep features [5, 69]. For example, Bertinetto et

al. [5] propose a fully-convolutional siamese network and

adopt similarity learning for tracking. However, these

approaches are still heavily relying on human annotations

for training. In this paper, we propose a self-supervised

similarity learning approach which learns both fine-grained

and object-level correspondence.

Self-supervised Learning from Videos. Self-supervised

learning offers a way to learn generalizable visual represen-

tations with different pretext tasks [20, 18, 56, 52, 84, 22].

Beyond static images, temporal information from videos

also offers rich supervision for representation learning [24,

1, 35, 49, 63, 73, 44, 55, 23, 58]. For example, Wang et

al. [73] use off-the-shelf tracker to track objects in videos

to provide supervisory signals. The learned representation

has shown to be useful for multiple downstream recogni-

tion and geometry estimation tasks. Instead of learning a
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general representation, there is a line of recent research on

self-supervised learning specifically for finding correspon-

dence [70, 74, 71, 41, 40, 43, 33, 59]. For example, Von-

drick et al. [70] propose to propagate the current frame color

to predict the future frame color as a pretext task to learn

fine-grained correspondence between the current and future

frame. Other tasks including tracking objects [74, 71] and

patches [33, 59] are also designed to explicitly find different

levels of correspondences. But is explicit tracking task the

only way to learn correspondence? Our work introduces

an alternative perspective to learn correspondence implic-

itly via image-level similarity learning.

Image-level Similarity Learning. The image-level sim-

ilarity learning provides a way for visual representation

learning. It uses a siamese network to enforce two dif-

ferent views or augmentations of the same image to have

similar features. The recent proposed self-supervised con-

trastive learning is a one version of similarity learning [77,

53, 29, 82, 3, 66, 27, 13, 51, 12, 10, 23, 58, 15]. The idea

is to learn representations via attracting the similar (posi-

tive) image pairs and repulsing a large number of dissim-

ilar (negative) image pairs. For example, He et al. [27]

propose to use a momentum network to encode the large

number of negatives for efficient contrastive learning. They

have shown the learned representation achieves state-of-the-

art performance when transferred to multiple downstream

recognition tasks. Purushwalkam and Gupta [58] further

extend contrastive learning in temporal domain and show

using temporal augmentation can improve object viewpoint

invariance. Recently, it has been shown that the negative

pairs are not necessary to learn a good visual representa-

tion [25, 14]. While it provides a better understanding for

similarity learning, it is unclear if learning without nega-

tives gives better representations. In this paper, we extend

image-level similarity learning to video frames. Instead of

performing recognition tasks, our aim is to learn visual cor-

respondence. We also reveals that learning without nega-

tives is beneficial for finding space-time correspondence.

3. Method
We propose Video Frame-level Similarity (VFS) learn-

ing for different levels of space-time correspondence. In

this section, we will first introduce two common practices

for image-level similarity learning for visual representa-

tions. Then we will unify these two paradigms under VFS.

3.1. Background: Image-level Similarity Learning

The image-level similarity learning [77, 27, 25, 12, 14]

provides a way to learn visual representations in a self-

supervised manner. It learns the representation by minimiz-

ing the distance between two different augmented views of

the same image in feature space. We classify the similar-

ity learning into two types based on whether it is using the

negative examples during training.

Similarity Learning with Negatives. Contrastive learn-

ing [77, 27, 12] is similarity learning with negative sample

pairs. In image-level contrastive learning, the positive pairs

are different augmented views of the same image, and the

negative pairs are from different images. The training ob-

jective is to push the representations of the positive (similar)

pairs to be close to each other, while keep the representa-

tions of the negative (dissimilar) pairs to be far.

Formally, we denote x and x′ as two different augmented

views of an input image. The contrastive learning utilizes

a siamese network architecture with a predictor encoder P
and a target encoder T . We use these two networks to ex-

tract features for both inputs respectively, and normalize

the outputs with l2-normalization. The output embeddings

for x and x′ can be represented as p � P(x)/‖P(x)‖2
and z � T (x′)/‖T (x′)‖2. Let U = {u1, u2, . . . , uK} be

the negative bank that stores the features of negative sam-

ples. The optimization objective is minimizing InfoNCE

loss [53], defined as

Lp,z,U = − log
exp(p·z/τ)

exp(p·z/τ) +∑K
k=1 exp(p·uk/τ)

(1)

where τ is a temperature hyper-parameter [77].

There are multiple ways to construct the negative sam-

ple bank including directly storing all the features [77] or

sampling the negatives online [12]. In this paper, we adopt

a recent practice proposed by He et al. [27], which uses a

momentum updated queue as the negative bank. To achieve

this, the target encoder network T is updated as a moving

average of the predictor encoder P as,

ξ ← mξ + (1−m)θ, m ∈ [0, 1), (2)

where θ, ξ are parameters of P and T . Thus the encoders P
and T share the same network architecture in [27].

Similarity Learning without Negatives. Recently, re-

searchers discover that similarity learning without negative

sample pairs can achieve comparable performance as con-

trastive learning in visual representation learning [25, 14].

Without the negative samples, the optimization objective

can be simplified as the minimizing the cosine feature dis-

tance between two views

Lp,z = ‖p− z‖22 = 2− 2·p·z. (3)

However, optimizing this objecitve will easily lead to

degenerated solution and yields a collapsed representa-

tion [25, 14]. To resolve this issue, Chen et al. [14] propose

two techniques: (i) Share most of the parameters between

the predictor encoder P and the target encoder T , except

adding one additional MLP for the predictor encoder; (ii)
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Figure 2. Video Frame-level Similarity Pipeline. The affinity

matrix is the pairwise feature similarity between predictor features

and target features. The dash rectangle areas indicate the with neg-
ative pairs case. The features of negative samples are stored in the

negative bank and concatenated with target features. The encoder

is trained to maximize the affinity of positive pairs and minimize

the affinity of negative ones.

Stop the gradients back-propagated from the loss to the tar-

get network. In this paper, we adopt this approach for sim-

ilarity learning without negative data. Please refer to [14]

for more details.

3.2. Video Frame-level Similarity Learning

Building on image-level similarity learning, we propose

to perform similarity learning between video frames, i.e.,

Video Frame-level Similarity learning (VFS). Our approach

considers frames at different timestamps as different views

for similarity learning. In a video clip with length L, there

are L2

2 possible positive sample pairs for learning. In VFS,

each video frame is pulled towards a global video feature,

resulting in a representation invariant to natural object de-

formation and viewpoint changes over time. In our experi-

ments, we show that this learning objective can enforce the

emergence of visual correspondence from the convolutional

layers. Our hypothesis is that, like applying other augmen-

tations in image-level similarity learning, sampling differ-

ent temporal views also help the representation to learn ob-

ject structure and even semantic information. This implic-

itly requires the convolutional features to learn about object

and fine-grained correspondence. We will introduce our ap-

proach in details as follows.

Learning Objectives. Given a video with L frames

{f1, f2, . . . , fL}, we sample two random frames fi, fj and

apply data augmentation on them. We then forward both

frames to the predictor encoder P and target encoder T
to extract their features as pi � P(fi)/‖P(fi)‖2, zj �
T (fj)/‖T (fj)‖2. We provide two options for VFS learn-

ing with and without the negative pairs. Following Eq. 1,

method Ii E(Ii − Ii−1)

Continuous Sampling I1 + (i− 1)δ δ

Distant Sampling L
n
(i− 1) + unif(0, L

n
) L

n

Table 1. Video Frame Sampling. Ii is the i-th sampled frame

index. δ is the frame interval of continuous sampling. n is the

number of segments (frames) of distant sampling.

Continous Sampling

Distant Sampling

Video Length L

Figure 3. Video Frame Sampling. Dash areas are selected seg-

ments for sampling. Solid blocks indicate sampled frames. Con-
tinuous sampling yields temporally continuous frames, while dis-
tant sampling samples frames with the larger displacement as well

as randomness.

the objective for VFS with negative pairs is represented as,

Lpi,zj ,U = − log
exp(pi·zj/τ)

exp(pi·zj/τ) +
∑K

k=1 exp(pi·uk/τ)
.

(4)

On the other hand, VFS can also be trained without negative
pairs by following Eq. 3, and the objective is,

Lpi,zj = ‖pi − zj‖22 = 2− 2·pi·zj . (5)

While we unify learning with and without negatives under

VFS, we adopt the implementation details in [13, 14] to ad-

just the architectures and training schemes accordingly as

introduced in Section 3.1.

We illustrate our learning pipeline as Figure 2. Beyond

sampling one pair of data, learning from videos allows to

sample multi-paired positive samples. To be more specific,

we can sample n frames from the videos, and divide them

into two splits for predictor and target encoders. We then

compute the feature similarity between n
2 predictor features

and n
2 target features which yields a affinity matrix is of

shape n
2 × n

2 . When training without negatives, we can

apply Eq. 5 to maximize each element in the affinity matrix,

i.e., minimize the distance between each video frame pair.

When training with K negative examples, the shape of the

affinity matrix becomes n
2 × (n2 +K). We apply Eq. 4 for

learning, where the negative bank U = {u1, u2, . . . , uK}
are sampled from other videos. We illustrate the sampling

method for the n frames as follows.

Temporal Sampling. Given a video with L frames, sam-

pling n frames yields a set of indices {I1, I2, . . . , In},

where Ii ∈ [1, L]. In this paper, we investigate two

strategies for temporal sampling: (i) Continuous sampling,

which first selects a starting frame index and then con-

tinuously samples with a fixed frame interval δ; (ii) Dis-
tant sampling, which splits the video into n disjoint seg-

ments, then randomly selects 1 frame from each segment as
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Ii =
L
n (i− 1)+unif(0, L

n ). We illustrate the two sampling

strategies in both Table 1 and Figure 3. The continuous

sampling strategy is widely applied in architectures that ex-

ploits 3D Convolution [68, 11] for locally consistent feature

map [78]. On the other hand, the distant sampling provides

a larger coverage of the entire video and a more aggressive

augmentation effect. We will ablate how the sampling strat-

egy affects correspondence learning in our experiments.

Data Augmentation. Besides using temporal signals to

provide different views of training data, we also adopt the

common data augmentation practices in image-level simi-

larity learning [77, 13, 12]. We apply the spatial augmenta-

tion (e.g., random cropping and flipping) and color augmen-

tation (e.g., grayscale and color jitter) in our experiments.

Specifically, we observe the color augmentation plays an

important role in correspondence learning and we will re-

port our findings in the experiment section.

4. Experiments
We perform experiments on representation learned by

VFS for fine-grained correspondence tasks [57, 36, 85] and

object-level correspondence task [76]. We will first in-

troduce our training details and evaluation metrics, then

we will perform extensive ablations on different elements

for VFS and provides a better understanding on how VFS

learns correspondence. Based on these observations, we

finally report VFS surpasses all previous self-supervised

learning approaches on both correspondence tasks.

4.1. Self-Supervised Pre-Training

Architectures. We use standard ResNet [28] as the back-

bone network. We introduce the architecture for training

without negative pairs (following [14]) and the architecture

for training with negative pairs (following [13]) as below.

• Architecture without negative pairs. The predictor en-

coder consists of a backbone network and a projector fol-

lowed by a predictor. The target encoder is composed of

the backbone and the projector. The parameters of the

backbone and the projector are shared between the two

encoders. The projector is a 3-layer MLP and the pre-

dictor is a 2-layer MLP as [14]. All batch normalization

layers in the backbone, the projector and the predictor are

synchronized across devices (SyncBN) as in [12, 25, 14].

• Architecture with negative pairs. The predictor encoder

and target encoder share the same architecture, includ-

ing a backbone followed by a 2-layer projector MLP. The

parameters of the target encoder are updated with mo-

mentum m = 0.999 with Eq. 2. We set the temperature

τ = 0.2 and the negative bank size K = 65536.

Pre-training. We adopt the Kinetics[39] dataset for self-

supervised training. It consists of ∼240k training videos.

The batch size is 256. The learning rate is initialized to

0.05, and decays in the cosine schedule [12, 47, 13]. We

use SGD optimizer with momentum 0.9 and weight decay

0.0001. We found that training for 200 epochs is suffi-

cient for ResNet-18 models, and ResNet-50 models need

500 epochs to converge (roughly the same number of itera-

tions as 100 epochs training [14] on ImageNet).

4.2. Evaluation

We evaluate the pre-trained representation on both fine-

grained and object-level correspondence downstream tasks.

Fine-grained Correspondence. To evaluate the quality

of fine-grained correspondence, we follow the same test-

ing protocol and downstream tasks in [33, 74]. We re-

implement the inference approach based on [34]. Without

any fine-tuning, we directly use unsupervised pre-trained

model as the feature extractor. The fine-grained similarity

is measured on the res4 feature map, with its stride reduced

to 1 during inference. As in [74, 33, 43], the recurrent in-

ference strategy is applied: The first frame ground truth la-

bels as well the prediction results in the latest 20 frames

are propagated to the current frame. We evaluate the fine-

grained correspondence over three downstream tasks and

datasets: video object segmentation in DAVIS-2017 [57],

human pose tracking in JHMDB [36] and human part track-

ing in VIP [85]. We perform most of our ablations with

DAVIS-2017 and report the comparisons with state-of-the-

art approaches in all datasets.

Object-level Correspondence. We evaluate object-level

correspondence with visual object tracking in the OTB-

100 [76] dataset. We adopt the SiamFC [5] tracking al-

gorithm with our representation from the res5 block. We

follow the same evaluation protocol and hyperparamters in

VINCE [23] and SeCo [81]: Given a pre-trained ResNet,

the strides in res4 and res5 layers are removed, and the di-

lation rate of 3x3 convolution blocks in res4 and res5 layers

are set to 2 and 4 respectively. This commonly used modifi-

cation makes the res5 block resolution compatible with the

original setting in SiamFC. The network modification does

not affect the pre-trained weights. We perform most of our

analysis and ablation for VFS using the frozen representa-

tion after pre-training. We compare to the state-of-the-art

results using fine-tuning in the end following [23, 81].

4.3. Results and Ablative Analysis

We first perform analysis on different elements of VFS.

The experiments are under the without negative pairs set-

ting with ResNet-18 backbone unless specified otherwise.

Augmentation. Out first discovery is that color augmenta-

tion plays an important role in VFS and affect fine-grained

and object-level correspondence in an opposite way. We re-

port our results on augmentations in Table 2. With color
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DAVIS OTB
different

frame
color
aug

spatial
aug

J&Fm Jm Fm Precision Success

38.6 37.3 39.9 5.4 4.7

� 50.9 49.3 52.6 0.4 0.3

� 62.2 60.8 63.6 30.6 26.1

� � 61.2 59.3 63.1 53.0 39.3

� 63.4 61.1 65.7 37.4 28.8

� � 58.4 56.4 60.4 46.2 34.6

� � 65.0 62.6 67.4 48.1 37.9

� � � 61.9 59.5 64.3 57.3 43.0

Table 2. Ablation on different augmentations. Color augmenta-

tions are random color jitter, grayscale conversion, gaussian blur.

Spatial augmentations are random resized crop and horizontal flip.

“different frame” indicates whether the inputs for predictor and

target encoder are different.

DAVIS OTB
frame

interval
J&Fm Jm Fm Precision Success

0 62.2 60.8 63.6 30.6 26.1

2 63.5 61.7 65.4 38.1 31.2

4 62.9 61.4 64.3 35.5 29.5

8 63.5 61.7 65.3 38.5 31.8

16 63.9 61.9 65.8 44.1 33.9

32 64.5 62.4 66.7 46.9 36.1

D 65.0 62.6 67.4 48.1 37.9

Table 3. Ablation on frame interval. 0 means sample two iden-

tical frames. D stands for the distant sampling. Others use contin-
uous sampling with fixed frame sampling interval.

augmentation, the performance on DAVIS decrease by >
3% and the OTB precision improves over 10%. We con-

jecture that while color augmentation helps learning invari-

ance to object appearance changes, the per-pixel distortion

confuses the lower-level convolution features to find fine-

grained correspondence. From Table 2, we also observe

sampling different frames in a video (with distant sampling)

indeed help learning both object-level and fine-grained cor-

respondence, and adding spatial augmentations (random

crop and flip) can further improve the results. In the fol-

lowing experiments, we adopt different frame inputs and

spatial augmentation by default. We will report results with

and without color augmentations in the different ablations.

Temporal Sampling. Does sampling with larger frame in-

terval improve correspondence learning? To answer this

question, we study the temporal sampling strategy and re-

port our results in Table 3. We perform the study without

using the color augmentation. Recall we have two temporal

sampling strategies in VFS (Section 3.2). With continuous
sampling, we elaborate the frame interval δ from 0 to 32.

We observe as δ increases, both fine-grained and object-

level correspondence improves consistently. With distant
sampling using n = 2 frame inputs (labeled as “D” in Ta-

ble 3), we achieve the best results. We conjecture increasing

the frame intervals offers better augmentation effect which

leads to better correspondence. We will adopt the distant

sampling in the following subsections.

DAVIS OTB
color
aug

frame
num

J&Fm Jm Fm Precision Success

n=2 65.0 62.6 67.4 48.1 37.9

n=4 65.8 63.2 68.4 51.5 38.4

n=8 66.7 64.0 69.4 53.0 39.6

� n=2 61.9 59.5 64.3 57.3 43.0

� n=4 62.9 60.5 65.3 58.4 43.8

� n=8 62.5 59.8 65.1 59.0 43.8

Table 4. Ablation on multiple frames. “frame num” is the num-

ber of sampled frame.

DAVIS OTB ImageNet
negative

pairs
color
aug

J&Fm Jm Fm Precision Success Acc@1

65.0 62.6 67.4 48.1 37.9 22.0

� 64.7 62.2 67.3 39.0 31.7 24.2

� 61.9 59.5 64.3 57.3 43.0 31.8

� � 61.5 59.3 63.7 53.7 40.8 33.8

Table 5. Ablation on negative pairs. For with negative pairs
setting, the learning objective is Eq 4.

DAVIS OTB
negative

pairs
color
aug

Backbone J&Fm Jm Fm Precision Success

ResNet-18 65.0 62.6 67.4 48.1 37.9

ResNet-50 68.9 66.5 71.3 47.4 34.6

� ResNet-18 64.7 62.2 67.3 39.0 31.7

� ResNet-50 68.3 65.8 70.8 46.4 34.4

� ResNet-18 61.9 59.5 64.3 57.3 43.0

� ResNet-50 67.1 64.6 69.6 59.5 43.4

� � ResNet-18 61.5 59.3 63.7 53.7 40.8

� � ResNet-50 67.2 64.7 69.7 56.5 40.7

Table 6. Ablation on deeper models. ResNet-18 and ResNet-50

are compared.

Multiple Frames. We investigate the effect of training

with multiple pairs of frames from a video. With distant

sampling, we ablate the number of segments n = 2, 4, 8,

which indicates using 1, 2, 4 pairs of frames from one video

during training. We report our results in Table 4. With

or without using color augmentation, we observe training

with more pairs of frames generally improves the corre-

spondence representation. Note the first row in Table 4 cor-

responds to the last row in Table 3.

Negative Pairs. So far we conduct our experiments under

the without negative pairs setting. But will adding the neg-

ative pairs (i.e., contrastive learning) help correspondence

learning? To our surprise, adding negative pairs in training

hurts learning both fine-grained and object-level correspon-

dence. We report the comparisons in Table 5. While the

fine-grained correspondence result on DAVIS drops slightly

with negative pairs, the performance of object tracking in

OTB degenerates significantly. When training without color

augmentations, the object tracking precision drops ∼ 9%.

What is the reason causing this performance drop when

training with negatives? Our hypothesis is that training

with negative pairs may sacrifice the performance on mod-
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Figure 5. J&Fm on DAVIS at different epochs with ResNet-50.

eling intra-instance invariance for learning better features

for cross instance discrimination. To prove this hypothesis,

we perform linear classification on top of the frozen fea-

tures on the ImageNet-1k dataset [17] and report the results

on the right column of Table 5. We observe that the model

trained with negatives indeed leads to better semantic clas-

sification with around 2% improvement, which supports our

hypothesis. Note that these results are not directly compa-

rable to state-of-the-art results on ImageNet-1k [12, 13, 14],

since we train our model (ResNet-18 backbone) with video

frames (with large domain gap) and optimize for corre-

spondence learning instead of semantic classification. With

these observations, we conjecture training without negatives

can learn better correspondence representation, which has

not been shown in previous literature to our knowledge.

Deeper Models. We so far mainly perform analysis with

ResNet-18. We observe the performance does not change

or even degrades in previous self-supervised learning ap-

proaches [33, 43, 40, 74] with ResNet-50. So can VFS

be scaled up to deeper models? To answer this, we train

VFS with ResNet-50 backbone and report the results in

Table 6. We observe deeper networks can significantly

improve both fine-grained and object-level correspondence

with VFS. Under without negative pairs setting, ResNet-50

backbone improves DAVIS J&Fm by 3.9%, OTB preci-

sion by 2.2% over ResNet-18. More interestingly, while the

ResNet-18 performance on DAVIS decrease by 3.1% with

color augmentation, the gap has been closed to 1.8% under

the ResNet-50 setting. We conjecture stacking more con-

volution blocks helps adapt to appearance distortion. More

ResNet-50 comparison could be found in Table 7 and 8.

Different Blocks of Layers. We plot the VFS model per-

formance on DAVIS throughout different epochs of similar-

ity learning with ResNet-18 (Figure 4) and ResNet-50 (Fig-

ure 5). We investigate how each feature block in res4 and

res5 layers performs. For example, res4,b1 indicates the fea-

ture from the first block in res4. In Figure 4, all blocks begin

with ∼ 60% on DAVIS in early stages of training. However,

the gap between res4 and res5 becomes larger as the model

is trained longer. The blocks in res5 ends up with simi-

larly scores as beginning, while the results of res4 continu-

ously improve. This supports our previous results that res4
learns fine-grained correspondence over time and res5 fo-

cuses more on object-level features. Similarly for ResNet-

50 in Figure 5, res4 also outperforms res5 by a noticeable

margin for finding fine-grained correspondence.

4.4. Comparison with State-Of-The-Art

We compare fine-grained correspondence results of VFS

against previous self-supervised methods in Table 7. The

results are all reported with the last block in res4 across

all methods. Our method achieves state-of-the-art perfor-

mance using ResNet-50. With ResNet-50, we observes

UVC [43] does not benefit from using a deeper networks.

For CRW [33] we could not make it work on ResNet-50.

Note we try to adjust the hyper-parameters for CRW train-

ing (e.g., learning rate, learning schedule, warm up for train-

ing, temperature adjustment for softmax layer) for multiple

times, but we cannot achieve better features than random

initialization. Learning with VFS, the deeper network with

ResNet-50 improves 2.2% on DAVIS and 3.3% on VIP over

ResNet-18, which is significant. We observe consistent re-

sults across the JHMDB [36] human pose and VIP [85] hu-

man part tracking tasks. With ResNet-18, VFS achieves

comparable performance with CRW [33]. As shown in Fig-

ure 4 and 5, the last block in res4 may not achieve the opti-

mal performance, thus we also report the result of the best

block with gray color for reference.

The comparison on learning object-level correspondence

is reported in Table 8. We report the fine-tuning perfor-

mance of our best setting, namely distant sampling with

n = 8, with color augmentation and without negative pairs.

VFS with ResNet-50 backbone brings 5% precision gain

over ResNet-18, yields 73.9% precision and 52.5% success

score. Our simple VFS surpasses ImageNet supervised pre-

training as well as previous self-supervised state-of-the-art

SeCo [81], which involves joint training of 3 pretext tasks.
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DAVIS VIP JHMDB
Method Backbone Stride Dataset J&Fm Jm Fm mIoU PCK@0.1 PCK@0.2

Supervised [28] ResNet-18 32 ImageNet 62.9 60.6 65.2 31.9 53.8 74.6

SimSiam [14] ResNet-18 32 ImageNet 62.0 60.0 64.0 30.3 55.2 74.0

MoCo [27] ResNet-18 32 ImageNet 60.8 58.6 63.1 29.2 55.0 72.7

VINCE [23] ResNet-18 32 Kinetics 60.4 57.9 62.8 30.5 55.6 73.4

CorrFlow [41]∗ ResNet-18‡ 4 OxUvA 50.3 48.4 52.2 - 58.5 78.8

MAST [40]∗ ResNet-18‡ 4 OxUvA 63.7 61.2 66.3 - - -

MAST [40]∗ ResNet-18‡ 4 YT-VOS 65.5 63.3 67.6 - - -

Vid. Color. [70] ResNet-18† 8 Kinetics 34.0 34.6 32.7 - 45.2 69.6

TimeCycle [74] ResNet-18† 8 VLOG 39.2 40.1 38.3 28.9 57.3 78.1

UVC [43] ResNet-18† 8 Kinetics 57.8 56.3 59.2 34.1 58.6 79.6

UVC+track [43]∗ ResNet-18† 8 Kinetics 59.5 57.7 61.3 - - -

CRW [33] ResNet-18† 8 Kinetics 67.6 64.8 70.2 38.6 59.3 80.3
VFS ResNet-18 32 Kinetics 66.7 64.0 69.4 39.9 60.5 79.5

VFS (best block) ResNet-18 32 Kinetics 67.9 65.0 70.8 - - -

Supervised [28] ResNet-50 32 ImageNet 66.0 63.7 68.4 39.5 59.2 78.3

SimSiam [14] ResNet-50 32 ImageNet 66.3 64.5 68.2 35.0 58.4 77.5

MoCo [27] ResNet-50 32 ImageNet 65.4 63.2 67.6 36.1 60.4 79.3

VINCE [23] ResNet-50 32 Kinetics 65.6 63.4 67.8 36.0 58.2 76.3

RegionTracker [58] ResNet-50 32 TrackingNet 63.4 61.5 65.4 33.9 57.5 74.6

TimeCycle [74] ResNet-50† 8 VLOG 40.7 41.9 39.4 28.9 57.7 78.5

UVC [43] ResNet-50† 8 Kinetics 56.3 54.5 58.1 34.2 56.0 76.6

VFS ResNet-50 32 Kinetics 68.9 66.5 71.3 43.2 60.9 80.7
VFS (best block) ResNet-50 32 Kinetics 69.4 66.7 72.0 - - -

Table 7. Comparison with state-of-the-art on fine-grained correspondence. ∗ indicates localization is involved during label propaga-

tion. † denotes strides of last two layers are removed. ‡ denotes max pooling of stem layer is also removed. Stride is the output stride

(downsample ratio) of ResNet during training.
OTB

Method Backbone Dataset Precision Success

Supervised [28] ResNet-18 ImageNet 61.4 43.0

SimSiam [14] ResNet-18 ImageNet 58.8 42.9

MoCo [27] ResNet-18 ImageNet 62.0 47.0

VINCE [23] ResNet-18 Kinetics 62.9 46.5

CRW [33] ResNet-18† Kinetics 52.6 40.1

VFS ResNet-18 Kinetics 68.9 52.2

Supervised [28] ResNet-50 ImageNet 65.8 45.5

SimSiam [14] ResNet-50 ImageNet 61.0 43.2

MoCo [27] ResNet-50 ImageNet 63.7 46.5

VINCE [23] ResNet-50 Kinetics 66.0 47.6

RegionTracker [58] ResNet-50 TrackingNet 57.4 43.4

SeCo [81] ResNet-50 Kinetics 71.9 51.8

VFS ResNet-50 Kinetics 73.9 52.5

Table 8. Comparison with state-of-the-art on object-level cor-
respondence. † denotes strides of last two layers are removed.

5. Discussion and Conclusion

We propose a simple yet effective approach for self-

supervised correspondence learning. We demonstrate

that both fine-grained and object-level correspondence can

emerge in different layers of the ConvNets with video

frame-level similarity learning. In addition to the state-of-

the-art performance, we provide the following insights.

Is designing a tracking-based pretext task a necessity
for self-supervised correspondence learning? It might not

be necessary. While tracking-based pretext tasks still have

potentials, it is limited by small backbone models and is

now surpassed by our simple frame-level similarity learn-

ing. To make the tracking-based pretext tasks useful, we

need to first make its learning scalable and generalizable in

model size and network architectures.

Does color augmentation improve the correspondence?
Yes and no. We show that color augmentation is beneficial

for correspondence in object-level but jeopardizes the fine-

grained correspondence. While color augmentation brings

object appearance invariance, it also confuses the lower-

layer convolution features.

How to sample video frames? Sample multiple frames

and sample with a large gap. The large temporal gap pro-

vides more aggressive temporal transform, which boosts

correspondence significantly. Comparing multiple pairs of

frame further improves the results.

Is negative pairs helpful? No. We observe inferior per-

formance when training with negative samples, specifically

for object-level correspondence. We also shed light on the

reason why without negative pairs is more helpful, which

has not been studied before.

In conclusion, we hope VFS can serve as a strong base-

line for self-supervised correspondence learning. We pro-

vide a new perspective on studying similarity learning for

visual representations beyond recognition tasks.
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[49] Michaël Mathieu, Camille Couprie, and Yann LeCun. Deep

multi-scale video prediction beyond mean square error.

arXiv, 2015. 2
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