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Figure 1: Two examples of our generated long-term 3D motion in the 3D scene. Left: A human walks around the furniture in the room;

Right: A human walks in the hallway and then sits down on the bench.

Abstract

Synthesizing 3D human motion plays an important role
in many graphics applications as well as understanding hu-
man activity. While many efforts have been made on gener-
ating realistic and natural human motion, most approaches
neglect the importance of modeling human-scene interac-
tions and affordance. On the other hand, affordance rea-
soning (e.g., standing on the floor or sitting on the chair)
has mainly been studied with static human pose and ges-
tures, and it has rarely been addressed with human motion.
In this paper, we propose to bridge human motion synthesis
and scene affordance reasoning. We present a hierarchi-
cal generative framework to synthesize long-term 3D hu-
man motion conditioning on the 3D scene structure. Build-
ing on this framework, we further enforce multiple geom-
etry constraints between the human mesh and scene point
clouds via optimization to improve realistic synthesis. Our
experiments show significant improvements over previous
approaches on generating natural and physically plausible
human motion in a scene.'

1. Introduction

Capturing and synthesizing realistic human motion in 3D
scenes has played an essential role in various applications in

Project page: https://jiashunwang.github.io/Long-
term-Motion—-in-3D-Scenes

virtual reality, video game animations and human-robot in-
teractions. As shown in Fig. 1, given the 3D scenes, our
goal is to generate long-term human motion and interaction
in the scene, such as walking around the room avoiding col-
lision with the furniture (left), as well as walking through
the hallway, turning around and then sitting down (right).
To achieve this, there are two main challenges on: (i) gen-
erating realistic motion in long-term; (ii) modeling human-
scene interaction and affordance.

Recent works have made substantial efforts on human
motion synthesis, which generates visually appealing and
natural pose sequences using optimization-based statistical
models [68, 5], or deep neural networks [25, 24, 69]. How-
ever, while focusing on realistic motion, these works rarely
address the interactions between the human and the scene.
On the other hand, a line of researches on 3D scene affor-
dance [65, 36, 71] has studied the “opportunities for inter-
actions” [14] in the scene. For example, Wang et al. [65]
propose to learn to predict human skeletons from an empty
scene by training with a large-scale sitcom dataset. While
focusing on the scene context, these approaches are only
able to generate a single static human pose.

In this paper, we intend to bridge human motion syn-
thesis and affordance learning. We consider a novel prob-
lem setting: Given the start and the end positions far away
in a 3D scene, synthesize the human motion moving in be-
tween. To generate long-term motion in the scene, instead
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of synthesizing a long route of poses at one time, we in-
troduce a 2-level hierarchical framework: (i) we first set
several sub-goal positions between the start and the end lo-
cations. We predict the human pose for each sub-goal, start
and end positions, conditioning on the 3D scene context. (ii)
we synthesize the short-term human motion between every
two sub-goals, using the predicted poses on the sub-goals as
well as the 3D scene as inputs. The short-term motion will
be then connected together for the final long-term motion
synthesis.

We model the interaction between human and the scene
in both stages of our framework. Instead of using human
skeletons, we emphasize that we adopt the differentiable
SMPL-X [47] model for representing both the shape and
the pose of the human, which allows more flexible geom-
etry constraints and more realistic modeling of contacts.
Specifically, in the first stage, given a single sub-goal in
a 3D scene, we utilize a Conditional Variational Autoen-
coder (CVAE) [56] to generate the SMPL-X parameters. In
the second stage for short-term motion generation, we use
a bi-directional LSTM [22] which takes the start-end hu-
man SMPL-X representations and 3D scene representation
as inputs and generates a sequence of human bodies repre-
sented by SMPL-X. Besides training the deep models in a
data-driven manner for motion synthesis, we also perform
explicit geometry reasoning between the human mesh and
3D scene point clouds by optimization. Our optimization
approach considers both the naturalness of motion and the
physical collisions with the environment. By unifying both
learning-based and optimization-based techniques, we are
able to synthesize realistic human motion in long-term.

We perform our experiments on both the PROX [18] and
the MP3D [7] 3D environments. By considering 3D scene
affordance and structural constraints in motion synthesis,
we qualitatively show realistic and physically plausible hu-
man motion generation results. We also show large ad-
vantages quantitatively against state-of-the-art motion and
human pose generation approaches, using multiple metrics
and human evaluation.

Our contributions in this paper include: (i) A hierarchical
learning framework for motion synthesis considering both
the realism of the motion and the affordance of the scene;
(i1) An optimization process to explicitly improve the syn-
thesized human poses; (iii) state-of-the-art motion synthesis
results on various 3D environments.

2. Related work

Affordance learning. Learning scene affordance has
captured a lot attention in recent years [12, 66, 60, 45, 9,
29, 11, 16, 33, 36, 55, 75, 74, 44, 54, 8, 71, 70, 6]. One
paradigm to study the scene affordance is to understand how
to put a human skeleton in a scene [60, 36, 71, 70, 60, 45].
For example, Tan et al. [60] predict where to put a human

in a given image and search for a person that fits the scene
from a database. Li er al. [36] introduce a 3D pose gen-
erative model to predict physically feasible human poses
in a given scene. Recently, due to more refined needs and
the development of 3d human representations [41, 52, 47],
more researches start to study how to place a human body
shape in a 3d scene instead of skeleton. For example, Zhang
et al. [71] use a two-stage CVAE [56] to generate plausi-
ble 3D human bodies that are posed naturally in 3D scene.
However, most studies only focus on the single static body
generation and they have barely addressed the problem of
generating physically plausible motion in the scene.

Human dynamics prediction. Our work is related to
the research in modeling and predicting the human dynam-
ics. Both research in trajectory prediction [20, 61, 32, 2,
23, 15, 53, 3, 42, 58, 6] and pose prediction [63, 72, 64,
28, 26, 35, 13, 21, 43, 48] are raising a lot of attention in
recent years. Instead of isolating the environments from
prediction, researchers have studied on using 3D informa-
tion or bird-eye view image to predict future human dynam-
ics [15, 53, 3, 42, 58]. To study on how the surroundings
would influence the human dynamics, Helbing et al. [20]
use physical forces to model social-scene interaction for
pedestrian dynamics. Cao et al. [6] consider scene context
when predicting the goal, path and poses of human move-
ment given the scene image and past 2D pose histories as
inputs. While these studies make a great contribution to the
human dynamics and skeleton-based pose prediction, they
pay little attention to the physical and geometric interaction
between the human and the scene for realistic generation.
On the contrary, our paper focuses on synthesizing natural
human pose and shape when interacting with the scene. We
also want to emphasize we are not performing future pre-
diction since our goal is given in the task.

Motion synthesis. The main focus of our work is on
motion synthesis, which has been long standing problem in
computer graphics and vision [5, 34, 46, 59, 25, 37, 49, 50,
69]. For example, Kovar et al. [34] introduce a novel data
structure called a registration curve that expands the class
of motions that can be successfully blended without manual
input. Pavllo et al. [49] represent rotations with quaternion
and uses a sequential network and a novel loss function to
perform forward kinematics on a skeleton to penalize abso-
lute position errors instead of angle errors. There are also
studies [62, 67, 17, 40] focusing on synthesizing interme-
diate states between the given key frames. But these works
can only synthesize a transient motion with a small posi-
tion change. Xu et al. [69] proposes a hierarchical way to
generate long-term motion by using a memory bank to re-
trieve short-term motion references and a bi-directional in-
terpolation to connect the short-term motions. Several stud-
ies [57, 19, 10, 39] have considered motion and the environ-
ment. However, these methods either rely on predefined ob-
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Figure 2: Framework of our long-term motion synthesis. We first generate the sub-goal bodies with the given {/3,¢,r} as inputs. Sub-
goal bodies are in gray color. Then we divide it into several short-term start/end pairs and synthesize short-term motion each. Finally we
use an optimization process to connect all these short-term motion to a long-term motion. Generated motion is in white.

jects and primitive motion or use simple hand-crafted envi-
ronments. Our method does not use these assumptions and
can generate motion directly from the realistic scene point
cloud. This allows our model to not only generalize beyond
predefined motion, but also generalize better to unseen 3D
environments. To better model detailed human-scene inter-
actions, we use the representation of human mesh instead
of human skeleton during motion synthesis.

3. Method
3.1. Overview

Representation. We denote scene mesh as S =
(v, f¥) where v® represents the vertices and f* repre-
sents the faces. Instead of using skeleton-based repre-
sentation, we use modified sequential SMPL-X parame-
ters [47] to represent human bodies. Concretely, we define
M; = M(t;,ri, B, pi, hi), where t € R? is the translation,
6d continuous rotation r € RS [73] is used to replace the
original global orientation in SMPL-X, 3 € R1? is the body
shape, p € R3? represents the body pose [47] and h € R?*
represents the hand pose.

Problem definition. We design a two-level hierarchi-
cal framework to generate long-term 3D motion in the 3D
scene. Our method takes the inputs of the start, end and
sub-goal positions and orientations. The sub-goals divide
the higher-level long trajectory into lower-level short paths.
We first generate the human bodies on these given positions
with given shape /3, using a Conditional Variational Autoen-
coder (CVAE) [56]. We give 3 to control the body shape of
the motion with more diversity. Given the generated hu-
man bodies on each sub-goal, we aim to generate plausible
motion between every two sub-goals, which will then be
connected together to a long-term motion.

Concretely, we propose a motion synthesis network to
generate short-term motion. Given the start body mesh
My = M(to,70,5,p0,ho), the end body mesh M, =
M(tg, i, B, pr, hi) estimated by the CVAE and the scene
mesh S as inputs, the motion synthesis network will gen-
erate a motion sequence M., between the start and end
bodies. Multiple short-term motion sequence M., will
be connected together to form a long-term motion. We as-

sume the length of each short-term motion is k + 1 steps.
Finally, we adopt a geometric optimization process to fur-
ther enforce realistic and physically plausible synthesis.

The benefits of our two-level generation approach lie in
two folds: (i) First generating the poses on the sub-goals
and then generating the motion in between allows the short-
term motion easier to connect, since the ending pose of one
sequence will be the same as the starting pose of the next
sequence. At the same time, generating a short-term mo-
tion reduces the uncertainty on model prediction; (ii) Using
sub-goals allows diverse long-term motion generation. By
sampling different latent variables in CVAE, we can gener-
ate diverse human poses on the sub-goals, which leads to
diverse motion in the long-term trajectory.

3.2. Static Human Body Synthesis on Sub-Goals

We propose to use a Conditional Variational Autoen-
coder (CVAE) for generating bodies on each sub-goal, given
the inputs of {3,¢,r} presented in the sub-goal and the
scene point cloud v?, as shown in Fig. 3 (a). During training
time, we first extract the feature for the scene point cloud as
F$ = ®(v*®) using a PointNet ® [51]. We concatenate it
with the shape, location and orientation inputs {3, ¢, 7} and
forward them to a fully connected layer to obtain the inte-
grated feature F"*. This feature is the conditional feature
for the CVAE. The CVAE is presented with an encoder and
a decoder as follows.

Encoder. We forward the human body parameters M
to two residual blocks containing two fully connected lay-
ers each. The output is then concatenated with "%, fol-
lowed by two fully connected layers to predict the mean
p € R32 and variance 02 € R32 of a Gaussian distribution
Q(z|u, 0%). We sample the latent code z from this distribu-
tion as one of the decoder inputs.

Decoder. We concatenate the latent code 2z with the con-
ditional feature F"s as the input for the decoder, which is
another two residual blocks containing two fully connected
layers each. The output of the decoder predicts the desired
human body parameters, which is trained computing the re-
construction loss against the ground-truth human mesh M.
Following [31], the training objective also includes maxi-
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Figure 3: Network architectures. (a) shows the architecture of our static human body synthesis network. (b) is the architecture of our

motion synthesis networks. €D means concatenation.

mizing the KL-Divergence between Q(z|u, o) and a stan-
dard Gaussian distribution A/ (0, I?).

During inference, only the decoder is adopted. We sam-
ple the latent code from N(0, I?) and concatenate it with
F"s as inputs. By sampling different z, we can generate
different human bodies in the same sub-goal position.

Implementation details for PointNet. We modify the
PointNet architecture for affordance prediction. We remove
the transformation architecture to better fit our task of gen-
erating a body mesh in a specified location, since applying
the transformation to the scene may cause the mismatch of
human and scene coordinates. We pretrain the PointNet us-
ing the S3DIS [4] dataset with a segmentation task. We
then take the encoder of the PointNet as ¢ and the output is
a 256-dimension feature for point cloud representation.

To train the CVAE for static human body synthesis, we
adopt the standard reconstruction loss and the KL diver-
gence loss proposed in [56], followed by the contact and
collision constraints proposed in [71].

3.3. Motion Synthesis Framework

We propose two sequentially connected networks in the
motion synthesis framework: A RouteNet R for predicting
the locations and orientations of the route between two sub-
goals, and a PoseNet P for predicting the human body pose
on each locations of the route.

As shown in the top row of Fig. 3 (b), the RouteNet R
takes the start {to, 7o} and the end {¢;, 71} locations and
orientations, as well as the scene point cloud v, as inputs,
and generates the route in between as,

(1

tik—1, Tik—1 = R(to, 70, th, T, 0°)

where {tAl k—1,T1.x—1} represents the route locations and
orientations from step 1 to & — 1. Concretely, to extract the
feature for of the scene, we utilize a PointNet given v, as in-
puts. Note that the PointNet feature extractor is not shared
with the CVAE in the previous section. We denote the point
cloud feature as F'"%. To connect the start and end locations,
we utilize a bi-directional LSTM [22] which takes the start
{to, 70} and the end {tj, 7} as inputs and outputs the fea-
tures for each time step in between. We concatenate the

features from all time steps as well as the point cloud fea-
ture F'"° together. The output is then forwarded to two fully
connected layers for predicting the route {tAl ke1sT1:k—1 )

We illustrate the PoseNet P as the bottom row of Fig. 3
(b). It takes the start pose {pg, ho}, the end pose {px, hi},
point cloud v* and the predicted route {?1: k—1,T1:x—1} from
the RouteNet as inputs. The outputs of the PoseNet are the
pose parameters for the input route as,

ﬁl:kfla hl:kfl = P(pO, hO,pk; hk:a/t\l:kfla ?l:kfla Us) (2)

where {]31;1@71,31;1@71} are the body pose and hand pose
parameters from step 1 to £ — 1. Similar to the RouteNet,
we use another PointNet to extract the feature for v as FP°.
The start and end pose parameters {po, ho} and {p, h}
are also forwarded to another bi-directional LSTM, which
predicts the pose features between the two locations. We
concatenate the pose features from step 1 to k£ — 1 and
EP5 together. We then forward the feature to two fully
connected layers for generating the a sequence of pose pa-
rameters {ﬁl:k—l,/ﬁl:k—l}- Finally, we combine the pre-
dicted SMPL-X [47] parameters {t1., 71k, P1:k, P1:k } and
the given (3 to generate the mesh sequence M;..

We compute the training losses for both the RouteNet
and the PoseNet with the ¢; distance between the predic-
tions and the ground-truth location and pose parameters.
Specifically, we define the RouteNet loss L.t and the
PoseNet loss L, as,

k—1 k—1
Eroute:)\tZ|?i_ti|+)\rZ|?i_Ti‘ (3)
=1 i=1

k—1 k—1
Lpose =XAp Y P —pil + M0 D> Thi —hil (4
=1 i=1

where A\;, A, A, and \j, are constant coefficients to balance
the loss. During training, we train the RouteNet first and
then fix its weight for training the PoseNet.

3.4. Optimization

We perform optimization with geometric and physics
constraints to improve the generation results from the mo-
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Figure 4: An example of human motion before and after optimiza-
tion in two views. The green box shows that after optimization,
the motion sequence is contacting with the floor. The red arrow
points at the pivot foot. White human bodies are from the first
sub-sequence, gray bodies are from the second, it can be seen that
in each sub-sequence, the pivot foot is more stable after optimiza-
tion. Yellow boxes show the effectiveness of vertices smoothing.

tion synthesis networks and help connect the short-term mo-
tions to a long-term motion at the same time. We will in-
troduce three types of constraints in the following, includ-
ing the constraint on the foot, contact constraints and the
smoothness of the motion. For simplicity, we will take the
generated mesh M., as an example for explaining our
approach. While in our experiments, we apply the optimiza-
tion approach to the whole long-term sequence.

Inputs and variables. The scene point cloud is provided
to calculate the contact and we have the signed distance
field [18] of the scene mesh surface to calculate the colli-
sion. All the SMPL-X parameters are given and our goal is
to optimize the translation ¢, global orientation 7, body pose
p and also hand pose h.

Foot location constraints.  While most previous
works [38, 69, 1] assume the floor is flat and also have in-
formation on which foot should be fixed on the floor at each
time step, our approach does not make any of such assump-
tions. This allows the generated motion to be more diverse
and natural e.g. sitting down or jumping. However, we still
need to constrain the stableness of the foot motion.

As the human is moving, in each moment, we assume
one foot is stable and the other is moving. Thus we aim
to separate the motion into multiple sub-sequences, where
each sub-sequence has the same foot stable and this foot
switches between the sub-sequences. We get the sub-
sequences utilizing the nearer foot between two frames
from networks’ outputs: nearer one should be the stable
one. We compute the average location of the stable foot in
each sub-sequences, and we encourage the foot to be close
to this average location since it should stand still. We use

the ¢, distance for computing this error as E,,,; for adjust-
ing the foot location.

Environment constraints. We also consider the phys-
ical plausibility between the human and the environment
during optimization. The constraint design here is moti-
vated by [71, 18]. On one hand, we constrain the human
mesh to avoid collision with the scene; On the other hand,
we also encourage the human mesh to get close to the scene
for physical support.

For collision constraint, we utilize the negative signed
distance field of the scene W (-), where we constrain the
human mesh from intersecting with the scene 3D surfaces,
we can represent the collision error as,

Beot = ZE U5 (M), (5)

where | ¥ (M;)| computes the negative signed distance val-
ues of the body vertices, [E represents an average function.
The goal is to minimize the loss so that the body stays on
the positive level-set of the signed distance field.

We also encourage the human body to contact the scene.
Our goal is to minimize E.,,; as below,

(’om‘ Z Z vI’I’lenl}sp |U 71} |) (6)

=1 v’ evy

where v{ denotes a set of the predefined [18] body vertices
which are encouraged to contact with the scene vertices.
The Geman-McClure error function p(-) is used to down-
weight the scene vertices which are far from the human.

Motion smoothness. We encourage the human mesh
nearby in time to be smooth. To achieve this, we define
the smoothness constraint to be minimizing the /5 distance
between the mesh vertices as,

k—2
Esmooth = Z ||'UM1 - U]wi+1 ||2 (7)

1=
where vMi is the vertices of body M;, and we perform this

constraint between every two consecutive steps.

During optimization, we combine all the three error
terms tOgethef as )\footEfoot + )\colEcol + )\contEcont +
)\smoothEsmooth- )\foot’ )\col’ )\cont and Asmooth are
constant coefficients. We perform gradient descent with
Adam [30] to optimize the predicted mesh parameters di-
rectly. We show the effects of our optimization in Fig. 4.

4. Experiments
4.1. Implementation details

We use Adam [30] as the optimizer for our networks and
also the optimization process. To train our CVAE genera-
tion network, we use 0.001 as the learning rate (Ir) with a
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(a) Route+CVAE (b) HSNMS

(c) Ours (d) Pseudo-ground truth

Figure 5: Comparisons on generating 2-second motion given the same inputs: (a) the result of Route+CVAE [71]; (b) the result of
HSNMS [69]; (c) our result; (d) the pseudo-ground truth. We show that our results have more natural motions and a more consistent sitting
down motion. (b) and (d) have shown cases of foot inside the ground. The poses in (a) are not natural.

r

(a) Route+CVAE (b) HSNMS

batch size of 16 and training epochs of 40. For RouteNet
the Ir is 0.001. We train 20 epochs with a batch size of 32.
We train PoseNet with 0.001 Ir and a batch size of 16 with
20 epochs. We set Ay = A, = A, = 1 and )\, is chosen
as 0.1. Our short-term motion lasts for 2 seconds (30 fps),
which means £ = 61 in our experiments.

4.2. Datasets

We use PROX dataset [ 18] for training where the ground-
truth SMPL-X[47] parameters are generated by a fitting al-
gorithm, which we denote as pseudo-ground truth (p-gt).
For training CVAE body synthesis network, we sample 4.3k
bodies from 8 scenes as the training data. For training mo-
tion synthesis networks, we sample 10k two-second frames
whose distance between start and end are larger than 0.5
meters in 8 scenes as the training data. For evaluation, we
first test our short-term motion synthesis networks using 3k
sequences in 4 unseen scenes using standard metrics intro-
duced in the next section. We then perform human evalua-
tion for which we generate 50 motion sequences each last
for 2s, 4s and 6s. We also investigate the generalization abil-

(d) Pseudo-ground truth

Figure 6: Comparisons on generating 4-second motion given the same inputs over different methods: While our method shows natural and
physically plausible motions, (b) has the problem in generating suitable poses in the first row, and the motion in (a) does not look natural.

(c) Ours

ity of the models trained with the PROX dataset by directly
testing them on the MP3D dataset [7].

4.3. Evaluation Metrics

Reconstruction error metrics. We introduce the stan-
dard metrics for evaluating the short-term motion: given the
p-gt start and end human bodies, we aim to generate motion
in between close to the p-gt. We first compare the recon-
struction error by computing the ¢; distance (reported in
% 100) on translation ¢, orientation r, pose parameters p be-
tween the predictions and the p-gt. We also use MPJPE [27]
and Mean Per Vertices Position Error (MPVPE) both in mil-
limeters to measure the mean distance between the predic-
tions and the p-gt. In addition, start/end sides of the gener-
ated short-term motion sequence should be close to the in-
put start/end bodies: We calculate the /o distance between
the input and generated start/end bodies. We refer this met-
ric as neighbour v2v distance. Reducing this error pushes
the end of one short motion sequence close to the start of
the next short motion, which leads to better connections be-
tween two short motions for long-term motion synthesis.
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hod non-collision contact
method scene | transl orientation pose | MPJPE MPVPE metho PROX MP3D | PROX MP3D
RouteNet(t)+PoseNet X 7.54 11.65 46.45 | 212.5 201.5 Route+CVAE 98.57 95.19 | 88.68 91.36
RouteNet(t)+PoseNet v 7.31 11.82 46.73 | 213.1 202.1 HSNMS [69] 96.88 95.29 | 99.33 90.12
RouteNet(t+r)+PoseNet X 7.58 9.38 44.16 | 201.6 190.5 Ours w/o opt 97.53 9533 | 99.32 92.59
RouteNet(t+r)+PoseNet v 6.91 9.71 4489 | 195.8 184.9 Route+CVAE [71] w/opt | 99.88  99.51 | 99.17  95.06
BaseNet X 9.33 10.61 44.09 | 2358 227.1 HSNMS [69] w/ opt 99.88 99.57 | 99.22 95.53
BaseNet v 9.02 10.68 43.69 | 226.2 217.6 Ours 9991 99.30 | 99.35 97.53
Route+CVAE [71] v 8.47 10.03 59.16 | 294.2 278.2 p-gt 98.08 - 99.98 -
HSNMS [69] X 10.01 13.72 63.41 | 293.5 275.2
Ours w/o opt v 691 9.71 4117 | 191.6  180.9  Table 2: Results of the in-environment evaluation. We
Route+CVAE [71] w/opt | v 9.60 9.97 61.65 | 311.8 29338 use the non-collision score and modified contact score to
gigMS [69] w/ opt j 112 6369 194: j5332 gzgé ifgf %22 evaluate how reasonable the generated motion is in the

Table 1: Results of reconstruction error. This table shows the comparison
in reconstruction with baselines. The best results are shown in boldface. v/
in scene means this method has scene information and X means not. w/ opt

given scene. The best results are shown in boldface. It can
be seen our method performs nearly the best in different
scenes and our optimization process can help to improve
the environmental adaptability of the baselines.

means this method includes the optimization process and w/o means not.

Naturalness metrics. We perform naturalness evalua-
tion for both short and long-term motion in two aspects:
in-environment evaluation and human evaluation. For in-
environment evaluation, we use the non-collision score [71]
and contact score. We use Amazon Mechanical Turk(AMT)
for human evaluation. For each task in AMT, we give a
group of comparisons given the same inputs and ask users
to score from 1 to 5 and a higher score means more natural.

4.4. Baselines

We compare our approach with state-of-the-art baselines
as well as the ablative variants of our method. Note previous
motion synthesis works lack environment information and
contact insensitive representation. For affordance predic-
tion, previous approaches focus more on static/one-frame
body generation. Thus, instead of directly comparing with
previous approaches, we improve them to create stronger
baselines. All baselines use the same modified SMPL-X
representation. We introduce each baseline as following.

Route+CVAE. Zhang et al. [71] propose to use a CVAE
to synthesize a single body. However, this approach does
not consider the motion information. Thus we provide
the route using our RouteNet for CVAE to generate a se-
quence of human bodies. Specifically, we provide {t,r}
from RouteNet and adding conditions of vy, 3, t and 7 to
CVAE. We call this baseline Route+CVAE. We apply opti-
mization to it to improve the continuity.

HSNMS [69] is a state-of-the-art motion synthesis
method combining both advantages of data-driven and neu-
ral network. For short-term motion, it searches the most
similar motion sequence from a memory bank. Since this
method lacks consideration of the environment, we also ap-
ply our optimization process to improve this approach.

Ablative baselines. We compare with ablative base-
lines focusing on reconstruction error. We try to prove that
PoseNet would perform better when having the predicted
route as input so we design RouteNet+PoseNet which
means the PoseNet separately generates the pose without

given predicted route. We want to explore whether the ro-
tation should be predicted in the route or pose network.
RouteNet(t) means it only predicts ¢ and RouteNet(t+r)
means it predicts ¢ and r; other parameters are generated in
PoseNet. We also try an end-to-end neural network to pre-
dict route and pose jointly at one time and we name this net-
work BaseNet. We also explore the effectiveness of scene
information, thus for each ablative baseline, there is a ver-
sion without scene information as inputs.

4.5. Evaluation on reconstruction error

Comparison with baselines. As shown in Tab. 1, our
method performs better in the accuracy of synthesis both
in locations and poses than the baselines. Though the opti-
mization process would slightly increase the error, it would
largely improve the naturalness performance (Fig. 4). It can
be seen our method has the lowest neighbour v2v distance
from Tab. 4, which is easier to connect to long-term motion.

Comparison with ablative baselines. As shown in
Tab. 1, we prove that predicted route as inputs would im-
prove the performance of PoseNet and it is more accurate if
we use RouteNet to predict ¢ and r. According to the results
of BaseNet, directly using one network is not as good as our
architecture. Finally, all the results with scene information
would improve the accuracy of synthesis.

4.6. Evaluation on naturalness

We firstly show qualitative naturalness comparison for
2-second motion in Fig. 5, and 4-second motion in Fig. 6.
Our method can produce motions close to the real record,
with less unreasonable motion and better human-scene in-
teraction. We show two pairs of our results in two views in
Fig. 7. We also perform in-environment naturalness eval-
uation between these methods. As shown in Tab. 2, our
method has nearly the best performance in both contact and
avoiding the collision. Not only that, our optimization pro-
cess can largely improve baselines’ performance on gener-
ating physically plausible motion.
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method 2 seconds 4 seconds 6 seconds method neighbour v2v distance
PROX MP3D PROX MP3D PROX MP3D w/ opt w/o opt

Route+CVAE [71] w/ opt | 2.23+1.10 3.06+1.07 | 2.754+0.98 2.9440.99 | 2.83£1.06 3.19£0.95 Route+CVAE [71] | 21.78 10.59

HSNMS [69] w/ opt 2.90+1.09 3.21£0.97 | 3.26£1.02 3.1440.99 | 3.224+1.08 3.13£1.05 HSNMS [69] 21.05 10.84

Ours 3.39+1.11 3.33+0.90 | 3.55+0.88 3.22+£1.05 | 3.65+0.96 3.30+0.96 Ours 8.25 7.31

p-gt 3.60+£1.10 - 3.76£0.97 - 3.92+0.91 - p-gt 3.59 -

Table 3: Results of the human evaluation. We show human evaluation for motions last for 2
seconds, 4 seconds and 6 seconds. We provide the average human evaluated score(1-5) w.r.t.
the average =+ the standard deviation. The best results are shown in boldface.

Figure 7: Two pairs of results in two views in PROX [18] scenes.
Both rows show a human walking and then sitting down.

For human evaluation, we compare our approach with
the other two baselines and the p-gt from PROX [18]
dataset. For a fair comparison, the start, end and sub-goal
bodies are from PROX [18]. Since the p-gt is generated by
fitting, it would also have implausible motion sequences.
As shown in Tab. 3, our method has the highest score com-
pared to the other two baselines for 2s, 4s and 6s motion and
the scores are close to the p-gt, which shows our methods
can generate realistic and natural motions. Through the ex-
periments, we prove that compared to previous affordance
learning method, our method has a better performance in
motion continuity. Previous motion-based method which
heavily relies on existing data may have problems in han-
dling the environment.

Generalization on MP3D [7] dataset. We evaluate nat-
uralness performance with our trained model directly on
MP3D. We randomly sample the input shape, positions and
orientations for the start/end and sub-goals and generate
plausible bodies using our body synthesis model. We apply
our motion synthesis networks to the input bodies and then
optimize the whole motion sequence. The input start/end
and sub-goal bodies for baselines are the same. We show
in-environment evaluation in Tab. 2 and human evaluation
in Tab. 3. Since the positions and orientations are randomly
selected, there would exist some challenging cases, such as
jumping on the sofa. We also provide our results shown in
two views in Fig. 8. Generally, our method can generate the
most realistic results with the best environment adaptability.

Diversity. One advantage of our framework is we can
control the shape, positions and gestures of the sub-goal
bodies (including start/end), which makes the motion more

Table 4: Neighbour v2v distance with
and without optimization. The best re-
sults are shown in boldface.

Figure 8: Two pairs of our results in two views in the scene from
MP3D [7]. The first row shows a human standing up and walking
and the second row shows a human jumping on the sofa.

Figure 9: We show examples of motion with different generated
sub-goal bodies (gray color bodies).

diverse. We show an example in Fig. 9, since we can gen-
erate different sub-goal bodies, the motion sequence would
look differently. This could enhance the interaction between
human and scene and generate diverse motions.

5. Conclusion

In this paper, we propose a novel hierarchical generative
framework to synthesize long-term human motion in the
3D scene. We generate the sub-goal bodies and short-term
motions with two deep models both designed with human-
scene interaction. We further design an optimization-based
method to improve realistic synthesis and connect the short-
term motions to a long-term motion. Compared with other
baselines, our framework can synthesize more natural and
physically plausible long-term motion in the 3D scene.
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