Accelerating Key Bioinformatics Tasks 100-fold by Improving
Memory Access

Igor Sfiligoi Daniel Mcdonald Rob Knight
University of California San Diego University of California San Diego University of California San Diego
isfiligoi@sdsc.edu danielmcdonald@ucsd.edu robknight@ucsd.edu
ABSTRACT matrix operations have been developed, with NumPy [2, 14] being

Most experimental sciences now rely on computing, and biolog-
ical sciences are no exception. As datasets get bigger, so do the
computing costs, making proper optimization of the codes used
by scientists increasingly important. Many of the codes developed
in recent years are based on the Python-based NumPy, due to its
ease of use and good performance characteristics. The composable
nature of NumPy, however, does not generally play well with the
multi-tier nature of modern CPUs, making any non-trivial multi-
step algorithm limited by the external memory access speeds, which
are hundreds of times slower than the CPU’s compute capabilities.
In order to fully utilize the CPU compute capabilities, one must
keep the working memory footprint small enough to fit in the CPU
caches, which requires splitting the problem into smaller portions
and fusing together as many steps as possible. In this paper, we
present changes based on these principles to two important func-
tions in the scikit-bio library, principal coordinates analysis and
the Mantel test, that resulted in over 100x speed improvement in
these widely used, general-purpose tools.

CCS CONCEPTS

« Software and its engineering — Software notations and tools;
Software libraries and repositories; « Applied computing — Life
and medical sciences; Bioinformatics.

KEYWORDS
Optimization, Cache awareness, Computational biology, scikit-bio

ACM Reference Format:

Igor Sfiligoi, Daniel Mcdonald, and Rob Knight. 2021. Accelerating Key
Bioinformatics Tasks 100-fold by Improving Memory Access. In Practice
and Experience in Advanced Research Computing (PEARC ’21), July 18-22,
2021, Boston, MA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3437359.3465562

1 INTRODUCTION

The Python language [1] has been adopted by many sciences for
their computational needs, due to its ease of use and readability.
While Python native data structures tend to be relatively slow,
several standard libraries that provide high performance vector and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PEARC °21, July 18-22, 2021, Boston, MA, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8292-2/21/07...$15.00
https://doi.org/10.1145/3437359.3465562

one popular choice. NumPy is both easy to use and very fast for
the operations it implements. Many science problems, however,
need more that a single NumPy operation to get scientific insights,
resulting in several independent incremental steps. As datasets
become bigger, intermediate memory representations can easily
exceed the cache size of the CPU in use, making an algorithm
memory bound, and thus sub-optimal.

One Python-based scientific library in bioinformatics is scikit-
bio [3], which is a core library for popular microbiome analysis
packages such as QIIME [4]. Two of heavily used, yet computation-
ally expensive functions in that library are pcoa, which performs a
principal coordinate analysis [10] of a distance matrix, and mantel,
which computes the correlation between distance matrices using
the Mantel test [10]. These functions became critical bottlenecks
following the upstream optimization of UniFrac distance calcula-
tions [5]. A careful examination of the NumPy-based source code
revealed the memory-bound nature of the implementation, provid-
ing insight in the design of new implementations that are between
30x and 200x faster than the original on any non-trivial input.

The structure of this paper is as follows. Section 2 provides an
overview of modern CPU architectures, with an emphasis on the
multi-tiered memory system. Section 3 provides an overview of the
microbiome science, with an emphasis of how the above-mentioned
functions are being used in the analysis pipeline. And Section 4
provides the analysis of the pcoa and mantel implementation before
and after the memory-aware optimization.

1.1 Related Work

The importance of cache-optimized algorithms has been known for
a very long time [6-7] and is the basis of most high-performance
libraries maintained by computing professionals in lower-level
languages.

In this paper we focus on code that is maintained by science users,
which tends to prioritize ease of programming and readability, and
is often written in higher-level languages, like Python with NumPy.
While there are legitimate reasons to go that route, we aim to show
both the drawbacks of this approach and provide a possible path
forward.

2 THE MULTI-TIER MEMORY SYSTEM

Virtually all modern CPUs can perform arithmetic operations sev-
eral orders of magnitude faster than they can access the main mem-
ory, aka DRAM. As an example, on an Intel Xeon Gold 6242 used
for benchmarking the best-case DRAM latency is about 14 ns [8],
which translates to about 100 compute cycles. This is why CPUs
are equipped with several layers of faster cache memory, balancing
latency with memory size.

PEARC °21, July 18-22, 2021, Boston, MA, USA

Due to both cost and manufacturing complexity, cache memories
must balance latency with capacity. In the tested 16 core Intel Xeon
CPU, the fastest L1 cache provides a 4 cycle latency, but has the
capacity of only 32 KiB per core [9]. The most useful L2 cache is
1 MiB per core, but already incurs a latency penalty of 14 cycles.
There is also a shared 22.5 MiB L3 cache, with a latency of 50+ cycles.
Other CPUs, e.g. the AMD EPYC series, have slightly different size
and latency characteristics, but are still in the same ballpark. Cache
size wise, the tested 8 core AMD EPYC 7252 CPU has 96 KiB of L1
cache per core, 512 KiB L2 cache per core and a shared 64 MiB L3
cache.

Any algorithm that wants to minimize the time to solution must
thus keep access to DRAM as low as possible. This implies that
any multi-step application must utilize buffers that fit in the CPU
caches, ideally in the fastest but small L1 cache.

One further complication is the fact that caches replace their
content not in single bytes, but rather much longer contiguous
buffers, known as cache lines; in the case of the Intel Xeon CPU, the
cache line is 64 bytes, i.e. 512 bits, across all cache levels. Algorithms
accessing non-contiguous memory areas must thus take that into
account when estimating memory use.

3 THE MICROBIOME SCIENCE COMPUTE
CHALLENGE

A microbiome study may be composed of a large number of samples
from the real world. In the Earth Microbiome Project (EMP) [15],
for example, tens of thousands of samples were collected from
many different environments (e.g., marine sediment, animal feces,
plant surfaces, glaciers, hot springs, etc) by over 100 research labs
from all over the world. Microbiome studies, including the EMP,
typically utilize DNA sequencing technology in order to observe
what microorganisms are present in a given sample. From these
observations, one of first questions researchers ask is how similar
the samples are to each other, and can these similarities be explained
by study variables (e.g., salinity, pH, host or not host associated,
etc).

The computation of sample similarity is performed pairwise
producing a distance matrix of size N x N where N is the number
of samples being evaluated. Following construction of a distance
matrix, researchers often apply principal coordinates analysis, a di-
mensionality reduction technique similar to principal components
analysis, for visualization and statistical purposes. In addition, re-
searchers also frequently wish to ask whether one distance matrix
is correlated to another through the use of a non-parametric Mantel
test; there are many ways to construct a distance matrix, and many
ways to assess the composition of a microbiome sample.

Recently, the authors optimized a common distance metric,
UniFrac [5], to scale to datasets with hundreds of thousands of
samples. However, the types of operations that could be success-
fully applied to these distance matrices were limited, motivating
investigation into the optimization of downstream methods.

4 OPTIMIZING SCIKIT-BIO DISTANCE
MATRIX OPERATIONS

The scikit-bio library is widely used in the bioinformatics commu-
nity and contains many useful classes and functions. It is written

Igor Sfiligoi et al.

mostly in Python and relies heavily on NumPy for the most compute
intensive parts.

For the purpose of this document, we will focus on only two
specific functions operating on distance matrix objects, namely
pcoa and mantel. Each will be described separately, with an anal-
ysis of the implementation before and after the memory-focused
optimization.

4.1 Principal Coordinates Analysis

The pcoa function is used to perform a Principal Coordinates Anal-
ysis of a distance matrix. The function is composed roughly of two
parts: centering of the matrix [10], and compute of approximate
eigenvalues [11]. Unexpectedly, the original implementation spent
most of the time in the first step, i.e. centering the matrix.

The used implementation of the centering the matrix is summa-
rized in Algorithm 1. The implemented algorithm is simple and
elegant but makes no attempt at being memory efficient. Each arith-
metic operation traverses the whole NumPy matrix, which for most
problems is larger than any CPU cache. Moreover, it traverses the
matrix multiple times to get the various needed mean values, which
will again be memory bound. In total, the algorithm will read 8 and
write 5 matrix-sized buffers into the off-chip memory, alongside 2
much smaller one-dimensional arrays containing the mean values.

Algorithm 1 Original center_distance_matrix implementation

import numpy as np
def e_matrix(distance_matrix):
return distance_matrix * distance_matrix / -2
def f_matrix(E_matrix):
row_means = E_matrix.mean(axis=1, keepdims=True);
col_means = E_matrix.mean(axis=0, keepdims=True)
matrix_mean = E_matrix.mean()
return E_matrix - row_means - col_means + matrix_mean
def center_distance_matrix(distance_matrix):
distance_matrix must be of type np.ndarray and
be a 2D floating point matrix
return f_matrix(e_matrix(distance_matrix))

Unfortunately, one cannot do much better by simply concate-
nating NumPy operations. We thus re-implemented the algorithm
using Cython [12], which allows for efficient inner-loop concatena-
tion of arithmetic operations on NumPy matrix data. We also take
advantage of the fact that the matrix is symmetric and compute the
mean values only in one dimension.

The cache-optimized implementation is presented in Algorithm
2. The code is longer and a little less easy to read, but it only reads
and writes 2 times the matrix-sized buffer from off-chip memory,
alongside the single one-dimensional array.

With the reduced off-chip memory traffic, the new algorithm is
significantly faster than the original. As can be seen from Table 1,
the speedup ranges from about 10x on modest matrix sizes to 30x
on really large matrix sizes. Note that the original, NumPy-based
version barely benefitted from using multiple cores.

Accelerating Key Bioinformatics Tasks 100-fold by Improving Memory Access

Algorithm 2 Cache-optimized center_distance_matrix implemen-
tation
import numpy as np
from cython.parallel import prange
def e_matrix_means_cy(float[:, :] mat,
float[:, :] centered, float[:] row_means):
n_samples = mat.shape[0]
global_sum = 0.0
for row in prange(n_samples, nogil=True):
row_sum = 0.0
for col in range(n_samples):
val = mat[row,col];
val2 = -0.5"val*val
centered[row,col] = val2
row_sum = row_sum + val2
global_sum += row_sum
row_means[row] = row_sum/n_samples
return (global_sum/n_samples)/n_samples
def f_matrix_inplace_cy(float[:] row_means,
float global_mean, float[:, :] centered):
n_samples = centered.shape[0]
use a tiled pattern to maximize locality of row_means,
#since they are also column means
for trow in prange(0, n_samples, 16, nogil=True):
trow_max = min(trow+16 n_samples)
for tcol in range(0, n_samples, 16):
tcol_max = min(tcol+16, n_samples)
for row in range(trow, trow_max, 1):
gr_mean = global_mean - row_means[row]
for col in range(tcol, tcol_max, 1):
centered[row,col] = centered[row,col] +
(gr_mean - row_means[col])
def center_distance_matrix(mat, centered):
mat and centered must be of type np.ndarray and
be 2D floating point matrices
row_means = np.empty(mat.shape[0])
global_mean = e_matrix_means_cy(mat, centered, row_means)
f matrix_inplace_cy(row_means, global_mean, centered)

Table 1: Runtimes for center_distance_matrix, in seconds

CPU, number of used cores, matrix size Original Latest

AMD EPYC 7252 1 core - 25k x 25k 4.1 2.1
AMD EPYC 7252 8 cores - 25k x 25k 4.0 0.3
Intel Xeon Gold 6242 1 core - 25k x 25k 7.7 2.3
Intel Xeon Gold 6242 16 cores - 25k x 25k 7.2 0.3
AMD EPYC 7252 1 core - 70k x 70k 100 30
AMD EPYC 7252 8 cores - 70k x 70k 125 4.2
Intel Xeon Gold 6242 1 core - 100k x 100k 255 78
Intel Xeon Gold 6242 16 cores - 100k x 100k 254 9.1

4.2 Mantel Test

The mantel function is used to compute the correlation between two
distance matrices using the Mantel test. As such, it takes two matri-
ces as input parameters. The statistical significance of a Mantel test

PEARC °21, July 18-22, 2021, Boston, MA, USA

is derived from a Monte-Carlo procedure, where the input matrices
are permuted K times, followed by a correlation assessment of the
elements in each permutation to obtain a null distribution. The most
used correlation function is the Pearson correlation coefficient [13],
so we will concentrate on it in this paper. The default value for K is
999.

The original implementation of the algorithm was straightfor-
ward and is summarized in Algorithm 3. Because the correlation
function, namely SciPy’s pearsonr [16], is used as a black box, the
input matrices must be read from main memory at least 1000 times
each, along the matrix-sized intermediate buffers, which made this
algorithm extremely slow.

Algorithm 3 Original mantel implementation

import numpy as np
from scipy.stats import pearsonr
def _mantel_stats_pearson(x, y, permutations=999):
pearsonr operates on the flat representation
of the upper triangle of the symmetric matrix
x_flat = x.condensed_form()
y_flat = y.condensed_form()
orig_stat = pearsonr(x_flat, y_flat)
perm_gen = (pearsonr(x.permute(condensed=True), y_{flat)
for _ in range(permutations))
permuted_stats = np.fromiter(perm_gen, np.float,
count=permutations)
return [orig_stat, permuted_stats]
def mantel(x, y, permutations=999):
orig_stat, permuted_stats = _mantel_stats_pearson(x, y,
permutations)
count_better = (np.absolute(permuted_stats)
>= np.absolute(orig_stat)).sum()
p_value = (count_better + 1) / (permutations + 1)
return orig_stat, p_value

As before, the key to speeding up memory-bound algorithms
is to move as much computation as possible in the inner loop. In
order to do that, one has to look into the implementation of the
correlation function itself and re-implement it in a multi-matrix
fashion, alongside the inlining of the permutation logic.

The implementation of pearsonr from the SciPy library is sum-
marized in Algorithm 4, and is very simple.

Algorithm 4 Scipy implementation of the Pearson correlation co-

efficient

import numpy as np

from linalg import norm

def pearsonr(x_flat, y_flat):
xm = x_flat — x_flat.mean()
ym = y_{flat — y_flat.mean()
normxm = norm(xm)
normym = norm(ym)
XNorm = Xm/normxm
ynorm = ym/normym
return np.dot(xnorm, ynorm)

PEARC °21, July 18-22, 2021, Boston, MA, USA

Knowing how personr is being invoked, two optimizations that
cut the compute needs in half become apparent:

e Since the 224 parameter, aka y_flat, is always the same, one

can pre-compute the transformation once, and just pass the
result, aka ynorm, to the function.

e The mean and norm of a matrix do not change when the
matrix is permuted, so we can pre-compute those on the
original matrix, and re-use them for all successive calls.

With the above optimizations in mind, the task becomes sim-
ply the implementation of a permuted multi-matrix dot operation,
keeping memory locality in mind. We will not provide the detailed
implementation of the original permutation function but do point
out that it uses the NumPy provided random permutation function
to select the permutation indexes, which we use in the new imple-
mentation, too, as summarized in Algorithm 5. As before, Cython
is used to implement the expanded loop.

Algorithm 5 Cache-optimized mantel implementation

import numpy as np
from linalg import norm
def mantel_perm_cy(float[:, :] x_data, float[:, :] perm_order,
float xmean, float normxm,
float[:] ym_normalized,
float[:] permuted_stats):
perms_n = perm_order.shape[0]
out_n = perm_order.shape[1]
for p in prange(perms_n, nogil=True):
my_ps = 0.0
for row in range(out_n-1):
vrow = perm_order[p, row]
idx = row*(out_n-1) - ((row-1)*row)/2
for icol in range(out_n-row-1):
col = icol+row+1
yval = ym_normalized[idx+icol]
xval = x_data[vrow, perm_order[p, col]]*mul + add
my_ps = yval*xval + my_ps
permuted_stats[p] = my_ps
def _mantel(x, y, permutations):
x_flat = x.condensed_formy()
y_{flat = y.condensed_form()
xm = x_flat — x_flat.mean()
ym = y_{flat — y_flat.mean()
normxm = norm(xm)
normym = norm(ym)
XNnorm = xm/normxm
ynorm = ym/normym
orig_stat = np.dot(xnorm, ynorm)
mat_n = x._data.shape[0]
perm_order = np.empty([permutations, mat_n], dtype=np.int)
for row in range(permutations):
perm_order[row, :] = np.random.permutation(mat_n)
permuted_stats = np.empty([permutations])
mantel_perm_pearsonr_cy(x, perm_order, xmean, normxm,
ynorm, permuted_stats)
return [orig_stat, permuted_stats]

Igor Sfiligoi et al.

Table 2: Runtimes for mantel, in seconds

CPU, num. of used cores, matrix size Original Latest

AMD EPYC 7252 1 core - 10k " 2 2.19k 149
AMD EPYC 7252 8 cores - 10k " 2 2.17k 24
Intel Xeon Gold 6242 1 core - 10k 2 4.2k 170
Intel Xeon Gold 6242 16 cores - 10k " 2 4.2k 20
AMD EPYC 7252 1 core - 20k " 2 8.9k 615
AMD EPYC 7252 8 cores - 20k " 2 8.8k 97
Intel Xeon Gold 6242 1 core - 20k " 2 17.9k 933
Intel Xeon Gold 6242 16 cores - 20k ** 2 17.5k 108
AMD EPYC 7252 8 cores - 70k " 2 - 1.44k
Intel Xeon Gold 6242 16 cores-100k” 2 - 4.2k

The new code is harder to read, mostly due to the inlining of
permutation and flattening logic, but it is also drastically faster.
As can be seen from Table 2, the speedup ranges from about 100x
on the AMD EPYC CPU to over 200x on the Intel Xeon CPU. We
are also now able to compute the Mantel test in reasonable time
on matrices of up to 100k*100k in size, which were previously
considered intractable.

4.3 Validation Costs

Before users can call either pcoa or mantel, they must create an
appropriate object to hold the data buffer; in scikit-bio library this
is implemented as a DistanceMatrix class. As part of the object
creation process it verifies that the buffer is symmetric and hollow.

The used implementation is summarized in Algorithm 6. Once
again, the algorithm used is very simple and elegant but not memory
efficient. The matrix buffer is read several times from main memory
and intermediate buffers are also created in the process.

Algorithm 6 Original distance matrix validation implementation

import numpy as np

def is_symmetric_and_hollow(mat):
mat must be of type np.ndarray
and be a 2D floating point matrix
not_sym = (mat.T != mat).any()
not_hollow = (np.trace(mat) != 0)
return [not no_sym, not not_hollow]

An optimized implementation uses both a tiled approach and
fuses the two operations together. The cache-optimized version
implemented in Cython is presented in Algorithm 7. The code is a
little longer, but not significantly more complex.

As expected, the new algorithm is significantly faster than the
original. As can be seen from Table 3, the speedup ranges from
about 5x on the AMD EPYC CPU to over 20x on the Intel Xeon.

Finally, having realized just how expensive validation really is,
even after optimization, we added additional logic in the Distance-
Matrix class to avoid unnecessary validations. For example, when
making a copy of the object, one should be able to assume that
the source was already validated and avoid re-validating it. This
directly impacted pcoa performance, as it uses one object copy as
part of its internal logic.

Accelerating Key Bioinformatics Tasks 100-fold by Improving Memory Access

Algorithm 7 Cache-optimized distance matrix validation imple-
mentation
import numpy as np
from cython.parallel import prange
def is_symmetric_and_hollow_cy(float[:, :] mat):
in_n = mat.shape[0]
is_sym = True
is_hollow = True
use a tiled approach to maximize memory locality
for trow in prange(0, in_n, 16, nogil=True):
trow_max = min(trow+16, in_n)
for tcol in range(0, in_n, 16):
tcol_max = min(tcol+16, in_n)
for row in range(trow, trow_max, 1):
for col in range(tcol, tcol_max, 1):
is_sym &= (mat[row,col]==mat[col,row])
if (trow==tcol): # diagonal block
for col in range(tcol, tcol_max, 1):
is_hollow &= (mat[col,col]==0)
return [(is_sym==True), (is_hollow==True)]

Table 3: Runtimes for matrix validation, in seconds

CPU, num. of used cores, matrix size Original Latest

AMD EPYC 7252 1 core - 25k 2 1.8 2.6
AMD EPYC 7252 8 cores - 25k " 2 1.8 0.4
Intel Xeon Gold 6242 1 core - 25k * 2 4.4 3.2
Intel Xeon Gold 6242 16 cores - 25k " 2 4.4 0.24
AMD EPYC 7252 1 core - 70k * 2 18 21
AMD EPYC 7252 8 cores - 70k " 2 18 3.2
Intel Xeon Gold 6242 1 core - 100k " 2 219 78
Intel Xeon Gold 6242 16 cores-100k” 2 212 5.4

5 SUMMARY AND CONCLUSION

This paper provides improved principal coordinate analysis and
mantel test algorithms extensively used in the bioinformatics com-
munity. By taking into account the limited sizes of CPU caches
and optimizing for memory locality, the new algorithms complete
approximately 100x faster than their original implementations. The
new algorithms maintain the same scikit-bio interface as the origi-
nal ones, so no change in user code is needed to benefit from the
improvements; the new code has been committed to the master
branch of the library.

The effort of optimizing the above functions brought to light the
limitations of over-reliance on standard libraries, especially in high-
level languages like Python. The original code was implemented
as a sequence of NumPy and SciPy matrix operations; while every
single step was indeed high performance, the reliance of large
intermediate buffers makes the algorithms completely memory-
bound, and thus sub-optimal. When dealing with large buffers,

PEARC °21, July 18-22, 2021, Boston, MA, USA

focusing on memory locality and fusing as many operations as
possible in the inner loop is the only option for fully exploiting the
compute capabilities of modern CPUs. For Python-based programs,
one way to accomplish this is to implement the double loop in

Cython.
The scikit-bio library explicitly has the dual goals of providing

easy to understand versions of algorithms for educational purposes,
and optimized versions with the same API that run faster but are
more difficult to understand. This work points to the utility of this
strategy, but also to profile and further optimize the functional-
ity that is widely used, as additional order-of-magnitude or more
performance gains may be readily achievable in other areas. This
would have a large impact in what analyses can be run on what
kinds of systems, e.g. moving specific tasks off cluster or cloud en-
vironments and onto desktops or even phones, greatly broadening
access and enabling new field applications that are hard to imagine
today.

ACKNOWLEDGMENTS

This work was partially funded by the US National Research Foun-
dation (NSF) under grants DBI-2038509, OAC-1541349 and OAC-
1826967.

REFERENCES

] Python Home Page, Online. https://www.python.org
] NumPy Home Page. Online. https://numpy.org
[3] Scikit-Bio Home Page. Online. http://scikit-bio.org
] Evan Bolyen et. al. 2019. Reproducible, interactive, scalable and extensible
microbiome data science using QIIME 2. Nature Biotechnology 37: 852-857.
https://doi.org/10.1038/s41587-019-0209-9
[5] Igor Sfiligoi, Daniel McDonald, and Rob Knight. 2020. Porting and Optimizing
UniFrac for GPUs. PEARC °20: Practice and Experience in Advanced Research
Computing. 500-504. https://doi.org/10.1145/3311790.3399614
[6] Karim Esseghir. 1993. Improving Data Locality for Caches. Master’s Thesis, Rice
University. https://hdlhandle.net/1911/17049.
[7] Stephanie Coleman and Kathryn S. McKinley. 1995. Tile Size Selection Using
Cache Organization and Data Layout. Proc. SIGPLAN °95 Conf. Programming
Language Design and Implementation, June 1995. https://doi.org/10.1145/223428.
207162
Chris Mellor, Cascade Lake AP, Optane persistent memory and endurance. 2019.
Blocks And Files. Online. https://blocksandfiles.com/2019/02/18/cascade-lake-
ap-optane-persistent-memory-and-endurance/
Wikichip - Cascade Lakes, https://en.wikichip.org/wiki/intel/microarchitectures/
cascade_lake
Pierre Legendre and Louis Legendre. 1998. Numerical ecology, Developments in
Environmental Modelling. Elsevier Science B.V.: Amsterdam.
Nathan Halko, Per-Gunnar Martinsson, Yoel Shkolnisky, and Mark Tygert.
2011. SIAM J. Sci. Comput., 33(5), 2580-2594. (15 pages) https://doi.org/10.1137/
100804139
Cython Home Page. Online. https://cython.org
"Pearson correlation coefficient", Wikipedia. Online. https://en.wikipedia.org/
wiki/Pearson_correlation_coefficient
Charles R. Harris et al. 2020. Array programming with NumPy. Nature 585,
357-362. https://doi.org/10.1038/541586-020- 2649-2
[15] Luke R. Thompson et al. 2017. A communal catalogue reveals Earth’s multiscale
microbial diversity. Nature 551, 457-463. https://doi.org/10.1038/nature24621
Virtanen, P., Gommers, R., Oliphant, T.E. et al. SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nat Methods 17, 261-272 (2020). https://doi.
org/10.1038/541592-019-0686-2

—_
&

—
)

=
=

—
o

=
.0,

[14

[16

