
Accelerating Key Bioinformatics Tasks 100-fold by Improving
Memory Access

Igor Sfiligoi
University of California San Diego

isfiligoi@sdsc.edu

Daniel Mcdonald
University of California San Diego

danielmcdonald@ucsd.edu

Rob Knight
University of California San Diego

robknight@ucsd.edu

ABSTRACT

Most experimental sciences now rely on computing, and biolog-

ical sciences are no exception. As datasets get bigger, so do the

computing costs, making proper optimization of the codes used

by scientists increasingly important. Many of the codes developed

in recent years are based on the Python-based NumPy, due to its

ease of use and good performance characteristics. The composable

nature of NumPy, however, does not generally play well with the

multi-tier nature of modern CPUs, making any non-trivial multi-

step algorithm limited by the external memory access speeds, which

are hundreds of times slower than the CPU’s compute capabilities.

In order to fully utilize the CPU compute capabilities, one must

keep the working memory footprint small enough to fit in the CPU

caches, which requires splitting the problem into smaller portions

and fusing together as many steps as possible. In this paper, we

present changes based on these principles to two important func-

tions in the scikit-bio library, principal coordinates analysis and

the Mantel test, that resulted in over 100x speed improvement in

these widely used, general-purpose tools.

CCS CONCEPTS

• Software and its engineering→ Software notations and tools;

Software libraries and repositories; • Applied computing → Life

and medical sciences; Bioinformatics.

KEYWORDS

Optimization, Cache awareness, Computational biology, scikit-bio

ACM Reference Format:

Igor Sfiligoi, Daniel Mcdonald, and Rob Knight. 2021. Accelerating Key

Bioinformatics Tasks 100-fold by Improving Memory Access. In Practice

and Experience in Advanced Research Computing (PEARC ’21), July 18–22,

2021, Boston, MA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/

10.1145/3437359.3465562

1 INTRODUCTION

The Python language [1] has been adopted by many sciences for

their computational needs, due to its ease of use and readability.

While Python native data structures tend to be relatively slow,

several standard libraries that provide high performance vector and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PEARC ’21, July 18–22, 2021, Boston, MA, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8292-2/21/07. . . $15.00
https://doi.org/10.1145/3437359.3465562

matrix operations have been developed, with NumPy [2, 14] being

one popular choice. NumPy is both easy to use and very fast for

the operations it implements. Many science problems, however,

need more that a single NumPy operation to get scientific insights,

resulting in several independent incremental steps. As datasets

become bigger, intermediate memory representations can easily

exceed the cache size of the CPU in use, making an algorithm

memory bound, and thus sub-optimal.

One Python-based scientific library in bioinformatics is scikit-

bio [3], which is a core library for popular microbiome analysis

packages such as QIIME [4]. Two of heavily used, yet computation-

ally expensive functions in that library are pcoa, which performs a

principal coordinate analysis [10] of a distance matrix, and mantel,

which computes the correlation between distance matrices using

the Mantel test [10]. These functions became critical bottlenecks

following the upstream optimization of UniFrac distance calcula-

tions [5]. A careful examination of the NumPy-based source code

revealed the memory-bound nature of the implementation, provid-

ing insight in the design of new implementations that are between

30x and 200x faster than the original on any non-trivial input.

The structure of this paper is as follows. Section 2 provides an

overview of modern CPU architectures, with an emphasis on the

multi-tiered memory system. Section 3 provides an overview of the

microbiome science, with an emphasis of how the above-mentioned

functions are being used in the analysis pipeline. And Section 4

provides the analysis of the pcoa and mantel implementation before

and after the memory-aware optimization.

1.1 Related Work

The importance of cache-optimized algorithms has been known for

a very long time [6-7] and is the basis of most high-performance

libraries maintained by computing professionals in lower-level

languages.

In this paper we focus on code that is maintained by science users,

which tends to prioritize ease of programming and readability, and

is often written in higher-level languages, like Python with NumPy.

While there are legitimate reasons to go that route, we aim to show

both the drawbacks of this approach and provide a possible path

forward.

2 THE MULTI-TIER MEMORY SYSTEM

Virtually all modern CPUs can perform arithmetic operations sev-

eral orders of magnitude faster than they can access the main mem-

ory, aka DRAM. As an example, on an Intel Xeon Gold 6242 used

for benchmarking the best-case DRAM latency is about 14 ns [8],

which translates to about 100 compute cycles. This is why CPUs

are equipped with several layers of faster cache memory, balancing

latency with memory size.

PEARC ’21, July 18–22, 2021, Boston, MA, USA Igor Sfiligoi et al.

Due to both cost and manufacturing complexity, cache memories

must balance latency with capacity. In the tested 16 core Intel Xeon

CPU, the fastest L1 cache provides a 4 cycle latency, but has the

capacity of only 32 KiB per core [9]. The most useful L2 cache is

1 MiB per core, but already incurs a latency penalty of 14 cycles.

There is also a shared 22.5MiB L3 cache, with a latency of 50+ cycles.

Other CPUs, e.g. the AMD EPYC series, have slightly different size

and latency characteristics, but are still in the same ballpark. Cache

size wise, the tested 8 core AMD EPYC 7252 CPU has 96 KiB of L1

cache per core, 512 KiB L2 cache per core and a shared 64 MiB L3

cache.

Any algorithm that wants to minimize the time to solution must

thus keep access to DRAM as low as possible. This implies that

any multi-step application must utilize buffers that fit in the CPU

caches, ideally in the fastest but small L1 cache.

One further complication is the fact that caches replace their

content not in single bytes, but rather much longer contiguous

buffers, known as cache lines; in the case of the Intel Xeon CPU, the

cache line is 64 bytes, i.e. 512 bits, across all cache levels. Algorithms

accessing non-contiguous memory areas must thus take that into

account when estimating memory use.

3 THE MICROBIOME SCIENCE COMPUTE

CHALLENGE

Amicrobiome study may be composed of a large number of samples

from the real world. In the Earth Microbiome Project (EMP) [15],

for example, tens of thousands of samples were collected from

many different environments (e.g., marine sediment, animal feces,

plant surfaces, glaciers, hot springs, etc) by over 100 research labs

from all over the world. Microbiome studies, including the EMP,

typically utilize DNA sequencing technology in order to observe

what microorganisms are present in a given sample. From these

observations, one of first questions researchers ask is how similar

the samples are to each other, and can these similarities be explained

by study variables (e.g., salinity, pH, host or not host associated,

etc).

The computation of sample similarity is performed pairwise

producing a distance matrix of size N x N where N is the number

of samples being evaluated. Following construction of a distance

matrix, researchers often apply principal coordinates analysis, a di-

mensionality reduction technique similar to principal components

analysis, for visualization and statistical purposes. In addition, re-

searchers also frequently wish to ask whether one distance matrix

is correlated to another through the use of a non-parametric Mantel

test; there are many ways to construct a distance matrix, and many

ways to assess the composition of a microbiome sample.

Recently, the authors optimized a common distance metric,

UniFrac [5], to scale to datasets with hundreds of thousands of

samples. However, the types of operations that could be success-

fully applied to these distance matrices were limited, motivating

investigation into the optimization of downstream methods.

4 OPTIMIZING SCIKIT-BIO DISTANCE

MATRIX OPERATIONS

The scikit-bio library is widely used in the bioinformatics commu-

nity and contains many useful classes and functions. It is written

mostly in Python and relies heavily onNumPy for themost compute

intensive parts.

For the purpose of this document, we will focus on only two

specific functions operating on distance matrix objects, namely

pcoa and mantel. Each will be described separately, with an anal-

ysis of the implementation before and after the memory-focused

optimization.

4.1 Principal Coordinates Analysis

The pcoa function is used to perform a Principal Coordinates Anal-

ysis of a distance matrix. The function is composed roughly of two

parts: centering of the matrix [10], and compute of approximate

eigenvalues [11]. Unexpectedly, the original implementation spent

most of the time in the first step, i.e. centering the matrix.

The used implementation of the centering the matrix is summa-

rized in Algorithm 1. The implemented algorithm is simple and

elegant but makes no attempt at being memory efficient. Each arith-

metic operation traverses the whole NumPy matrix, which for most

problems is larger than any CPU cache. Moreover, it traverses the

matrix multiple times to get the various needed mean values, which

will again be memory bound. In total, the algorithm will read 8 and

write 5 matrix-sized buffers into the off-chip memory, alongside 2

much smaller one-dimensional arrays containing the mean values.

Algorithm 1 Original center_distance_matrix implementation

import numpy as np

def e_matrix(distance_matrix):

return distance_matrix * distance_matrix / -2

def f_matrix(E_matrix):

row_means = E_matrix.mean(axis=1, keepdims=True);

col_means = E_matrix.mean(axis=0, keepdims=True)

matrix_mean = E_matrix.mean()

return E_matrix - row_means - col_means + matrix_mean

def center_distance_matrix(distance_matrix):

distance_matrix must be of type np.ndarray and

be a 2D floating point matrix

return f_matrix(e_matrix(distance_matrix))

Unfortunately, one cannot do much better by simply concate-

nating NumPy operations. We thus re-implemented the algorithm

using Cython [12], which allows for efficient inner-loop concatena-

tion of arithmetic operations on NumPy matrix data. We also take

advantage of the fact that the matrix is symmetric and compute the

mean values only in one dimension.

The cache-optimized implementation is presented in Algorithm

2. The code is longer and a little less easy to read, but it only reads

and writes 2 times the matrix-sized buffer from off-chip memory,

alongside the single one-dimensional array.

With the reduced off-chip memory traffic, the new algorithm is

significantly faster than the original. As can be seen from Table 1,

the speedup ranges from about 10x on modest matrix sizes to 30x

on really large matrix sizes. Note that the original, NumPy-based

version barely benefitted from using multiple cores.

Accelerating Key Bioinformatics Tasks 100-fold by Improving Memory Access PEARC ’21, July 18–22, 2021, Boston, MA, USA

Algorithm 2 Cache-optimized center_distance_matrix implemen-

tation
import numpy as np

from cython.parallel import prange

def e_matrix_means_cy(float[:, :] mat,

float[:, :] centered, float[:] row_means):

n_samples = mat.shape[0]

global_sum = 0.0

for row in prange(n_samples, nogil=True):

row_sum = 0.0

for col in range(n_samples):

val = mat[row,col];

val2 = -0.5*val*val

centered[row,col] = val2

row_sum = row_sum + val2

global_sum += row_sum

row_means[row] = row_sum/n_samples

return (global_sum/n_samples)/n_samples

def f_matrix_inplace_cy(float[:] row_means,

float global_mean, float[:, :] centered):

n_samples = centered.shape[0]

use a tiled pattern to maximize locality of row_means,

#since they are also column means

for trow in prange(0, n_samples, 16, nogil=True):

trow_max = min(trow+16 n_samples)

for tcol in range(0, n_samples, 16):

tcol_max = min(tcol+16, n_samples)

for row in range(trow, trow_max, 1):

gr_mean = global_mean - row_means[row]

for col in range(tcol, tcol_max, 1):

centered[row,col] = centered[row,col] +

(gr_mean - row_means[col])

def center_distance_matrix(mat, centered):

mat and centered must be of type np.ndarray and

be 2D floating point matrices

row_means = np.empty(mat.shape[0])

global_mean = e_matrix_means_cy(mat, centered, row_means)

f_matrix_inplace_cy(row_means, global_mean, centered)

Table 1: Runtimes for center_distance_matrix, in seconds

CPU, number of used cores, matrix size Original Latest

AMD EPYC 7252 1 core - 25k x 25k 4.1 2.1

AMD EPYC 7252 8 cores - 25k x 25k 4.0 0.3

Intel Xeon Gold 6242 1 core - 25k x 25k 7.7 2.3

Intel Xeon Gold 6242 16 cores - 25k x 25k 7.2 0.3

AMD EPYC 7252 1 core - 70k x 70k 100 30

AMD EPYC 7252 8 cores - 70k x 70k 125 4.2

Intel Xeon Gold 6242 1 core - 100k x 100k 255 78

Intel Xeon Gold 6242 16 cores - 100k x 100k 254 9.1

4.2 Mantel Test

Themantel function is used to compute the correlation between two

distance matrices using the Mantel test. As such, it takes two matri-

ces as input parameters. The statistical significance of a Mantel test

is derived from a Monte-Carlo procedure, where the input matrices

are permuted K times, followed by a correlation assessment of the

elements in each permutation to obtain a null distribution. The most

used correlation function is the Pearson correlation coefficient [13],

so we will concentrate on it in this paper. The default value for K is

999.

The original implementation of the algorithm was straightfor-

ward and is summarized in Algorithm 3. Because the correlation

function, namely SciPy’s pearsonr [16], is used as a black box, the

input matrices must be read from main memory at least 1000 times

each, along the matrix-sized intermediate buffers, which made this

algorithm extremely slow.

Algorithm 3 Original mantel implementation

import numpy as np

from scipy.stats import pearsonr

def _mantel_stats_pearson(x, y, permutations=999):

pearsonr operates on the flat representation

of the upper triangle of the symmetric matrix

x_flat = x.condensed_form()

y_flat = y.condensed_form()

orig_stat = pearsonr(x_flat, y_flat)

perm_gen = (pearsonr(x.permute(condensed=True), y_flat)

for _ in range(permutations))

permuted_stats = np.fromiter(perm_gen, np.float,

count=permutations)

return [orig_stat, permuted_stats]

def mantel(x, y, permutations=999):

orig_stat, permuted_stats = _mantel_stats_pearson(x, y,

permutations)

count_better = (np.absolute(permuted_stats)

>= np.absolute(orig_stat)).sum()

p_value = (count_better + 1) / (permutations + 1)

return orig_stat, p_value

As before, the key to speeding up memory-bound algorithms

is to move as much computation as possible in the inner loop. In

order to do that, one has to look into the implementation of the

correlation function itself and re-implement it in a multi-matrix

fashion, alongside the inlining of the permutation logic.

The implementation of pearsonr from the SciPy library is sum-

marized in Algorithm 4, and is very simple.

Algorithm 4 Scipy implementation of the Pearson correlation co-

efficient
import numpy as np

from linalg import norm

def pearsonr(x_flat, y_flat):

xm = x_flat – x_flat.mean()

ym = y_flat – y_flat.mean()

normxm = norm(xm)

normym = norm(ym)

xnorm = xm/normxm

ynorm = ym/normym

return np.dot(xnorm, ynorm)

PEARC ’21, July 18–22, 2021, Boston, MA, USA Igor Sfiligoi et al.

Knowing how personr is being invoked, two optimizations that

cut the compute needs in half become apparent:

• Since the 2nd parameter, aka y_flat, is always the same, one

can pre-compute the transformation once, and just pass the

result, aka ynorm, to the function.

• The mean and norm of a matrix do not change when the

matrix is permuted, so we can pre-compute those on the

original matrix, and re-use them for all successive calls.

With the above optimizations in mind, the task becomes sim-

ply the implementation of a permuted multi-matrix dot operation,

keeping memory locality in mind. We will not provide the detailed

implementation of the original permutation function but do point

out that it uses the NumPy provided random permutation function

to select the permutation indexes, which we use in the new imple-

mentation, too, as summarized in Algorithm 5. As before, Cython

is used to implement the expanded loop.

Algorithm 5 Cache-optimized mantel implementation

import numpy as np

from linalg import norm

def mantel_perm_cy(float[:, :] x_data, float[:, :] perm_order,

float xmean, float normxm,

float[:] ym_normalized,

float[:] permuted_stats):

perms_n = perm_order.shape[0]

out_n = perm_order.shape[1]

for p in prange(perms_n, nogil=True):

my_ps = 0.0

for row in range(out_n-1):

vrow = perm_order[p, row]

idx = row*(out_n-1) - ((row-1)*row)/2

for icol in range(out_n-row-1):

col = icol+row+1

yval = ym_normalized[idx+icol]

xval = x_data[vrow, perm_order[p, col]]*mul + add

my_ps = yval*xval + my_ps

permuted_stats[p] = my_ps

def _mantel(x, y, permutations):

x_flat = x.condensed_form()

y_flat = y.condensed_form()

xm = x_flat – x_flat.mean()

ym = y_flat – y_flat.mean()

normxm = norm(xm)

normym = norm(ym)

xnorm = xm/normxm

ynorm = ym/normym

orig_stat = np.dot(xnorm, ynorm)

mat_n = x._data.shape[0]

perm_order = np.empty([permutations, mat_n], dtype=np.int)

for row in range(permutations):

perm_order[row, :] = np.random.permutation(mat_n)

permuted_stats = np.empty([permutations])

mantel_perm_pearsonr_cy(x, perm_order, xmean, normxm,

ynorm, permuted_stats)

return [orig_stat, permuted_stats]

Table 2: Runtimes for mantel, in seconds

CPU, num. of used cores, matrix size Original Latest

AMD EPYC 7252 1 core - 10k ∧ 2 2.19k 149

AMD EPYC 7252 8 cores - 10k ∧ 2 2.17k 24

Intel Xeon Gold 6242 1 core - 10k ∧ 2 4.2k 170

Intel Xeon Gold 6242 16 cores - 10k ∧ 2 4.2k 20

AMD EPYC 7252 1 core - 20k ∧ 2 8.9k 615

AMD EPYC 7252 8 cores - 20k ∧ 2 8.8k 97

Intel Xeon Gold 6242 1 core - 20k ∧ 2 17.9k 933

Intel Xeon Gold 6242 16 cores - 20k ∧ 2 17.5k 108

AMD EPYC 7252 8 cores - 70k ∧ 2 - 1.44k

Intel Xeon Gold 6242 16 cores-100k∧ 2 - 4.2k

The new code is harder to read, mostly due to the inlining of

permutation and flattening logic, but it is also drastically faster.

As can be seen from Table 2, the speedup ranges from about 100x

on the AMD EPYC CPU to over 200x on the Intel Xeon CPU. We

are also now able to compute the Mantel test in reasonable time

on matrices of up to 100k*100k in size, which were previously

considered intractable.

4.3 Validation Costs

Before users can call either pcoa or mantel, they must create an

appropriate object to hold the data buffer; in scikit-bio library this

is implemented as a DistanceMatrix class. As part of the object

creation process it verifies that the buffer is symmetric and hollow.

The used implementation is summarized in Algorithm 6. Once

again, the algorithm used is very simple and elegant but notmemory

efficient. The matrix buffer is read several times from main memory

and intermediate buffers are also created in the process.

Algorithm 6 Original distance matrix validation implementation

import numpy as np

def is_symmetric_and_hollow(mat):

mat must be of type np.ndarray

and be a 2D floating point matrix

not_sym = (mat.T != mat).any()

not_hollow = (np.trace(mat) != 0)

return [not no_sym, not not_hollow]

An optimized implementation uses both a tiled approach and

fuses the two operations together. The cache-optimized version

implemented in Cython is presented in Algorithm 7. The code is a

little longer, but not significantly more complex.

As expected, the new algorithm is significantly faster than the

original. As can be seen from Table 3, the speedup ranges from

about 5x on the AMD EPYC CPU to over 20x on the Intel Xeon.

Finally, having realized just how expensive validation really is,

even after optimization, we added additional logic in the Distance-

Matrix class to avoid unnecessary validations. For example, when

making a copy of the object, one should be able to assume that

the source was already validated and avoid re-validating it. This

directly impacted pcoa performance, as it uses one object copy as

part of its internal logic.

Accelerating Key Bioinformatics Tasks 100-fold by Improving Memory Access PEARC ’21, July 18–22, 2021, Boston, MA, USA

Algorithm 7 Cache-optimized distance matrix validation imple-

mentation
import numpy as np

from cython.parallel import prange

def is_symmetric_and_hollow_cy(float[:, :] mat):

in_n = mat.shape[0]

is_sym = True

is_hollow = True

use a tiled approach to maximize memory locality

for trow in prange(0, in_n, 16, nogil=True):

trow_max = min(trow+16, in_n)

for tcol in range(0, in_n, 16):

tcol_max = min(tcol+16, in_n)

for row in range(trow, trow_max, 1):

for col in range(tcol, tcol_max, 1):

is_sym &= (mat[row,col]==mat[col,row])

if (trow==tcol): # diagonal block

for col in range(tcol, tcol_max, 1):

is_hollow &= (mat[col,col]==0)

return [(is_sym==True), (is_hollow==True)]

Table 3: Runtimes for matrix validation, in seconds

CPU, num. of used cores, matrix size Original Latest

AMD EPYC 7252 1 core - 25k ∧ 2 1.8 2.6

AMD EPYC 7252 8 cores - 25k ∧ 2 1.8 0.4

Intel Xeon Gold 6242 1 core - 25k ∧ 2 4.4 3.2

Intel Xeon Gold 6242 16 cores - 25k ∧ 2 4.4 0.24

AMD EPYC 7252 1 core - 70k ∧ 2 18 21

AMD EPYC 7252 8 cores - 70k ∧ 2 18 3.2

Intel Xeon Gold 6242 1 core - 100k ∧ 2 219 78

Intel Xeon Gold 6242 16 cores-100k∧ 2 212 5.4

5 SUMMARY AND CONCLUSION

This paper provides improved principal coordinate analysis and

mantel test algorithms extensively used in the bioinformatics com-

munity. By taking into account the limited sizes of CPU caches

and optimizing for memory locality, the new algorithms complete

approximately 100x faster than their original implementations. The

new algorithms maintain the same scikit-bio interface as the origi-

nal ones, so no change in user code is needed to benefit from the

improvements; the new code has been committed to the master

branch of the library.

The effort of optimizing the above functions brought to light the

limitations of over-reliance on standard libraries, especially in high-

level languages like Python. The original code was implemented

as a sequence of NumPy and SciPy matrix operations; while every

single step was indeed high performance, the reliance of large

intermediate buffers makes the algorithms completely memory-

bound, and thus sub-optimal. When dealing with large buffers,

focusing on memory locality and fusing as many operations as

possible in the inner loop is the only option for fully exploiting the

compute capabilities of modern CPUs. For Python-based programs,

one way to accomplish this is to implement the double loop in

Cython.
The scikit-bio library explicitly has the dual goals of providing

easy to understand versions of algorithms for educational purposes,

and optimized versions with the same API that run faster but are

more difficult to understand. This work points to the utility of this

strategy, but also to profile and further optimize the functional-

ity that is widely used, as additional order-of-magnitude or more

performance gains may be readily achievable in other areas. This

would have a large impact in what analyses can be run on what

kinds of systems, e.g. moving specific tasks off cluster or cloud en-

vironments and onto desktops or even phones, greatly broadening

access and enabling new field applications that are hard to imagine

today.

ACKNOWLEDGMENTS

This work was partially funded by the US National Research Foun-

dation (NSF) under grants DBI-2038509, OAC-1541349 and OAC-

1826967.

REFERENCES
[1] Python Home Page, Online. https://www.python.org
[2] NumPy Home Page. Online. https://numpy.org
[3] Scikit-Bio Home Page. Online. http://scikit-bio.org
[4] Evan Bolyen et. al. 2019. Reproducible, interactive, scalable and extensible

microbiome data science using QIIME 2. Nature Biotechnology 37: 852–857.
https://doi.org/10.1038/s41587-019-0209-9

[5] Igor Sfiligoi, Daniel McDonald, and Rob Knight. 2020. Porting and Optimizing
UniFrac for GPUs. PEARC ’20: Practice and Experience in Advanced Research
Computing. 500–504. https://doi.org/10.1145/3311790.3399614

[6] Karim Esseghir. 1993. Improving Data Locality for Caches. Master’s Thesis, Rice
University. https://hdl.handle.net/1911/17049.

[7] Stephanie Coleman and Kathryn S. McKinley. 1995. Tile Size Selection Using
Cache Organization and Data Layout. Proc. SIGPLAN ’95 Conf. Programming
Language Design and Implementation, June 1995. https://doi.org/10.1145/223428.
207162

[8] Chris Mellor, Cascade Lake AP, Optane persistent memory and endurance. 2019.
Blocks And Files. Online. https://blocksandfiles.com/2019/02/18/cascade-lake-
ap-optane-persistent-memory-and-endurance/

[9] Wikichip - Cascade Lakes, https://en.wikichip.org/wiki/intel/microarchitectures/
cascade_lake

[10] Pierre Legendre and Louis Legendre. 1998. Numerical ecology, Developments in
Environmental Modelling. Elsevier Science B.V.: Amsterdam.

[11] Nathan Halko, Per-Gunnar Martinsson, Yoel Shkolnisky, and Mark Tygert.
2011. SIAM J. Sci. Comput., 33(5), 2580–2594. (15 pages) https://doi.org/10.1137/
100804139

[12] Cython Home Page. Online. https://cython.org
[13] "Pearson correlation coefficient", Wikipedia. Online. https://en.wikipedia.org/

wiki/Pearson_correlation_coefficient
[14] Charles R. Harris et al. 2020. Array programming with NumPy. Nature 585,

357–362. https://doi.org/10.1038/s41586-020-2649-2
[15] Luke R. Thompson et al. 2017. A communal catalogue reveals Earth’s multiscale

microbial diversity. Nature 551, 457–463. https://doi.org/10.1038/nature24621
[16] Virtanen, P., Gommers, R., Oliphant, T.E. et al. SciPy 1.0: fundamental algorithms

for scientific computing in Python. Nat Methods 17, 261–272 (2020). https://doi.
org/10.1038/s41592-019-0686-2

