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A TRANSCENDENTAL BRAUER-MANIN OBSTRUCTION
TO WEAK APPROXIMATION ON
A CALABI-YAU THREEFOLD

SACHI HASHIMOTO, KATRINA HONIGS, ALICIA LAMARCHE, ISABEL VOGT
(WITH AN APPENDIX BY NICOLAS ADDINGTON)

ABSTRACT. In this paper we investigate the Q-rational points of a
class of simply connected Calabi-Yau threefolds, which were originally
studied by Hosono and Takagi in the context of mirror symmetry. These
varieties are defined as a linear section of a double quintic symmetroid;
their points correspond to rulings on quadric hypersurfaces. They
come equipped with a natural 2-torsion Brauer class. Our main result
shows that under certain conditions, this Brauer class gives rise to a
transcendental Brauer—Manin obstruction to weak approximation.

Hosono and Takagi showed that over C each of these Calabi—Yau
threefolds Y is derived equivalent to a Reye congruence Calabi-Yau
threefold X. We show that these derived equivalences may also be
constructed over Q, and we give sufficient conditions for X to not satisfy
weak approximation. In the appendix, N. Addington exhibits the Brauer
groups of each class of Calabi-Yau variety over C.

1. INTRODUCTION

Let Y be a smooth projective variety defined over a number field
K. The K-rational points of Y embed diagonally in the adelic points
Y(K) CY(Ag) =[], Y(Ky). Suppose Y(Ag) # 0, that is, that Y (K,) is
nonempty for all places v of K. We say that Y satisfies weak approximation if
Y (K) =Y (Ag) in the adelic topology. Let Br(Y) denote the Brauer group
of Y. Given any element o € Br(Y), there is an intermediate set Y (Ax)®
that contains the closure of the K-rational points

Y(K) CY(Ag)* C Y(Ag).

If Y(Ag)® # Y(Ag), we say that a gives a Brauer-Manin obstruction to
weak approximation on Y. Such an obstruction is transcendental if ay, is
nontrivial; otherwise it is algebraic.

In this paper, we construct examples of Calabi-Yau threefolds Y/Q
that naturally come with a 2-torsion class a € Br(Y)[2] providing a
transcendental Brauer—-Manin obstruction to weak approximation.

Transcendental Brauer classes are often more difficult to describe
explicitly than their algebraic counterparts. While the first examples of
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transcendental Brauer—Manin obstructions were constructed using extra
structure such as fibrations [Har96, Wit04, Ier10], Varilly-Alvarado along
with collaborators Hassett—Varilly [HVAV11], Hassett [HVA13], McKinnie—
Sawon—Tanimoto [MSTVA17], and Berg [BVA20] have demonstrated that
a lattice-theoretic framework can be leveraged to exhibit transcendental
Brauer—Manin obstructions on general K3 surfaces.

Our Calabi—Yau threefold examples are of a similar flavor to those in
[HVAV11]; in particular, we also leverage the data of linear spaces in a
family of quadrics and prove that evaluation of our Brauer class has a very
elegant and satisfying geometric description detailed in Sections 2 and 3.
Relatively few examples of transcendental obstructions on threefolds are
known, and to the best of our knowledge, these are the first such examples
on Calabi—Yau threefolds. The Calabi—Yau threefolds we consider are also
of independent interest in string theory. They have been studied over C in a
series of papers of Hosono and Takagi [HT13, HT14, HT16], but the present
paper initiates the study of their arithmetic.

The varieties Y = Yp we consider are double covers of the locus of singular
quadrics in a 4-dimensional linear system P of quadric hypersurfaces in
P* over Q, as we now describe. A singular quadric threefold in P* is the
cone over a quadric surface of the same rank in P3. Since rank 4 quadric
surfaces are doubly ruled by lines, a rank 4 quadric hypersurface in P? is
doubly ruled by 2-planes; furthermore, the 2-planes in a given ruling are
parametrized by a conic. Similarly, a rank 3 quadric in P* has a unique
ruling by 2-planes, and the 2-planes in this ruling are again parametrized by
a conic. Given a suitably generic (we call the precise condition regular, see
Definition 2.1) 4-dimensional linear system P of quadric hypersurfaces in P4,
we may associate to it a variety Yp that parameterizes the singular quadrics
(of ranks 3 and 4) in P along with a ruling of 2-planes on the quadric.
The incidence variety parameterizing singular quadrics in P together with a
choice of 2-plane is then a conic bundle over Yp. This étale P'-bundle over Yp
gives rise to a nontrivial class & = ap in Br(Yp) [HT16, Proposition 3.2.1].
We show that ap can provide a transcendental Brauer—Manin obstruction
to weak approximation on Yp.

It is not a priori clear whether the rational points of such Y should satisfy
weak approximation: some simple obstructions to weak approximation
vanish. The threefolds Y that arise in this way are simply connected
[HT13, Proposition 4.3.4], so the fundamental group does not provide
an obstruction to weak approximation (see [Har04, Theorem 2.4.4] for a
description of this obstruction). Furthermore, there is no algebraic Brauer—
Manin obstruction to weak approximation: Proposition 2.8 shows that the
algebraic part of the Brauer group of Y is trivial. In fact, it is a consequence
of Proposition A.1 by Addington that Br(Yg) is generated by ag.

Our main result shows that with fairly mild restrictions on the choice
of quadrics defining the linear system P, the resulting Brauer class ap
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on the threefold Yp always provides a transcendental obstruction to weak
approximation.

Theorem 1. Suppose that P is a regular 4-dimensional linear sys-
tem of quadrics defined over Q that contains a quadric with signature
(+1,+41,+1,41,0) or (—1,—-1,—1,—1,0) over R. If Yp(Ag) # 0, then we
have the proper containment

0 # Yp(Ag)™ & Yp(Ag).

In particular, the smooth Calabi—Yau threefold Yp does mot satisfy weak
approrimation.

The proper containment Yp(Ag)*? C Yp(Ag) arises in these cases
because the Brauer class ap has nonconstant evaluation at the real points
of Yp: we have chosen P so that Yp(R) contains a point where ap has
nontrivial evaluation and we show that for any choice of P, the set Yp(R)
always contains a point where ap has trivial evaluation.

Linear systems P containing a quadric of the desired signature and giving
rise to locally soluble Yp are common; in the proof of the following corollary,
we produce one such example.

Corollary 2. Let P be a general 4-dimensional linear system of quadrics
defined over Q that contains the quadric z3 + x% + 23 + 23 = 0. Then
Yp(Ag) # 0 and Yp does not satisfy weak approzimation.

The proof of Theorem 1 centers upon controlling the evaluation of ap
at real points of Yp. For other places, we show that for a random choice
of P, the class ap has trivial evaluation at every p-adic point of Yp for all
finite places p with probability at least .73. To make this precise, we must
explain how we generate a random P. We do this by specifying (integral)
basis vectors for the 5-dimensional subspace of A'® corresponding to this
plane. We can then define the density of some condition x as follows:

#{bases satisfying * all of whose coordinates have absolute value at most N}

d(x) = i
() Noo #{bases all of whose coordinates have absolute value at most N}

Theorem 3. Among all 4-dimensional linear systems of quadrics P defined

over Z, those where the Brauer class ap has trivial evaluation at all of the

points in Yp(Qyp) for every prime p occur with density at least .73.
Furthermore, the following five quadrics in P*:

ToT1 + T2x3

3;3 + x2px1 + 3T072 + 295% + z129 + 2123 + 596% + xox3 + x%
3;3 + 2x0x9 + xox3 + ToT4 + 122 + T124 + Toxy + dT374
495(2) + 495% + 3z123 + 221704 + 33:% + Toxy + xﬁ

azg + xpx2 + xox3 + dx0x4 + 32122 + 421204 + 22023 + 2m§ + azi
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generate a reqular linear system P for which we have the containments
0 #Yp(Q) C Yp(Ag)™ S Yr(Ag),
and ap has trivial evaluation at every point of Yp(Qp) for every prime p.

We also give an explicit quaternion algebra over Q(Yp) in (2.3) that
represents ap in this case.

Remark 4. In Theorems 1 and 3, the fact that ap always has trivial
evaluation at some real point of Yp allowed us to specify information only
about the real place (i.e., the signature) for one quadric in P. Instead, we
can use a finite place p to obstruct weak approximation if we specify p-adic
data for two quadrics in P. For example, working with the prime p = 3, we
show in Proposition 3.10 that for P a general 4-dimensional linear system
of quadrics over Q containing 623 — 3z% + 223 — 23 = 0 and 2oz + 2923 = 0,
the corresponding Yp does not satisfy weak approximation.

Our examples are also of interest in the study of derived equivalence,
particularly in comparing the rational points of derived equivalent varieties.
For instance, the question posed by Hassett and Tschinkel [HT17] of how
the existence and density of Q-rational points on derived equivalent K3
surfaces over Q compares remains open. It was shown in [AAFH19] that
for hyperkéhler fourfolds and abelian varieties of dimension at least 2, the
existence of a Q-rational point is not a derived invariant. Hence Calabi—Yau
threefolds are a very interesting intermediate type of variety to study with
regard to this question. Hosono and Takagi showed that each of the Calabi—
Yau threefolds Yp we study here is derived equivalent, but not birational,
to another Calabi—Yau threefold Xp also attached to the linear system P.
We prove that these derived equivalences may be constructed over QQ as
well, and show that in many cases the Q-points of these derived equivalent
varieties behave similarly. We believe that this class of examples will open
many questions for future study.

In Section 2 we outline the construction of the Calabi—Yau threefolds
Yp along with the Brauer class ap € Br(Yp)[2] and give some preliminary
results about these objects. In Lemma 2.5 we show that for all (Yp, ap), the
set Yp(R) contains a point at which ap has trivial evaluation. In (2.3) we
give explicit equations for the quaternion algebra in Theorem 3. In Section
3 we review the construction of the intermediate set Yp(Ag)*?, discuss the
evaluation of ap, and give equivalent geometric criteria for this evaluation
to be trivial. We prove Theorem 1 and Corollary 2 in Section 3.3. We
prove that a random P gives an ap with constant trivial evaluation at all
finite primes in Section 3.2 and discuss the explicit example of Theorem 3
in Section 3.4. Finally, we end with a discussion of the derived equivalent
threefolds X p in Section 4. We construct Xp over QQ and show that kernel of
Hosono and Takagi’s equivalence is defined over (. We show in Lemma 4.3
that if the linear system P contains a singular quadric defined over Q, then
Xp does not satisfy weak approximation.
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2. THE CALABI-YAU THREEFOLD Y AND BRAUER CLASS «

We begin by reviewing the construction of the Calabi—Yau threefold Yp
associated to a regular 4-dimensional linear system P of quadrics in P*. This
construction proceeds through the auxiliary incidence variety Zp, which
gives the nontrivial 2-torsion Brauer class ap € Br(Y)[2]. We then give a
quaternion algebra over the function field of Yp that represents it.

When the linear system P is unambiguous, we write Y = Yp, Z = Zp
and a = ap for brevity.

2.1. The variety Y. We now give a detailed description of the Calabi—
Yau threefolds Yp on which we will obstruct weak approximation. These
varieties are constructed from the geometry of linear spaces in a family of
quadrics; see [Rei72, Chapter 1] or [Har92, Lecture 22] for an introduction
to this topic.

Let K be a field not of characteristic 2. Recall that Yp is attached to
a choice of linear system P. Explicitly, let Qo,...,Q4 be five independent

quadrics in IP"}{. These define a linear system P ~ P?to,..., ta) by

P = [toQo + t1Q1 + 12Q2 + t3Q3 + t4Qu| C PHO(P*, Ops(2)) ~ PR

Equivalently, by the correspondence between symmetric bilinear forms
and quadratic forms, we may view P as defining a linear system of
(1,1)-divisors in P* x P*. We will always impose the following genericity
assumption on the linear system.
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Definition 2.1. A linear system P ~ P} of (1,1)-divisors in P4 x P* is
regular if their intersection is smooth and does not intersect the diagonal
in P* x P4

Remark 2.2. We adopt the above perspective of viewing P as a linear
system of (1,1)-divisors in P4 x P* in anticipation of the construction of
the Calabi-Yau threefold X in Section 4.1. Note that there are two distinct
copies of P*, with one being dual to the other. This projective duality arises
in the study of the derived equivalence between X and Y.

By [HT14, Proposition 2.1], this may be equivalently phrased purely in
terms of the incidence geometry of lines in the quadrics: a linear system
is regular if and only if it is base-point free, and any (geometric) line
¢ C Sing(Q) for some @ in P(K) is not contained in a sublinear system
of dimension at least 2 in P. In particular, regularity guarantees that the

singular quadrics in P have rank 3 or 4.

Suppose that P is a regular linear system. Write Q Iy P for the universal
quadric over P. Over a point t = (tg : t1 : to : t3 : t4) € P, we write @ for
the corresponding quadric in P*, with equation Z?:o t;Q; = 0. Let Zp be
the relative Fano scheme of 2-planes contained in the fibers of f

Zp = F(2,Q/P) = {(t[A]) € Px G2 P) : A C Quie, Y tiQila =0},

Then Zp admits two natural projections
(2.1) Zp 5 P, Zp 5 G(2,PY).

Since any 3-dimensional quadric hypersurface containing a 2-dimensional
linear space is necessarily singular, the image of the first projection of Zp
to P is the locus H C P of singular quadrics, that is, cones over quadric
surfaces in P3. As we observed in the introduction, lines on quadric surfaces
come in two rulings, so the map Zp — H does not have connected fibers.
The threefold Yp of interest can be seen in the nontrivial Stein factorization:

r: Zp conic bundle Yp ﬁ) HCP
Hosono and Takagi show that if P is regular, then Yp is smooth
[HT14, Proposition 3.11]. The conic bundle Zp gives us our 2-torsion Brauer
class ap € Br(Y)[2], and (ap)j is nontrivial by [HT16, Proposition 3.2.1].

2.2. Rational points on Y. For any field L/K, an L-rational point on
Yp corresponds to a singular quadric from P along with a choice of ruling
both defined over L. Given a rank 4 (singular) quadric @ in P*(L), we
write Q for the smooth quadric in P? over which Q is a cone. By regularity
of P, the points in Yp are over quadrics in P*(L) of ranks only 3 or 4,
hence the finite morphism Y — H is ramified over the locus of quadrics of
rank 3. The rulings of 2-planes on @ (equivalently, lines on Q) are defined
over L(+/disc(Q)) [Wanl8, Section 2.2, footnote on p. 366]. Therefore, an
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L-point in the (open) rank 4 locus of H lifts to an L-point of Yp if and only
if the corresponding quadric in P? has square discriminant. The one ruling
of 2-planes on a quadric of rank 3 is defined over L, and thus any L-point
in the rank 3 locus of H lifts to an L-point of Yp.

Over the generic point of H, the corresponding quadric Qg() has rank
exactly 4; as such it is the cone over a smooth rank 4 quadric Q@( o) in P3.
Therefore the function field Q(Y") is the discriminant quadratic extension

(2.2) Q) = Q(H) (/dise(Qqqm)) )

of Q(H) over which the rulings of QQ( ) are defined. We make this explicit
in Lemma 2.4. Moreover, Y is determined by its function field: since
Y is a Stein factorization it is normal and therefore by [Gro63, 1.1 §10
Proposition 10.1] it is the normalization of H inside the field extension Q(Y).

Definition 2.3. Given a quadratic form @, we call Bg(z,y) = Q(x +
y) — Q(z) — Q(y) the associated symmetric bilinear form. Write B for the
universal symmetric bilinear form corresponding to the universal quadric O.

Note that 2Q(z) = Bg(z, ), and hence if char(K) # 2, the quadratic
form @Q(x) can be recovered from the bilinear form Bg(x,x).

Given a symmetric 5 x 5 matrix B and subsets I, J C {0,...,4}, we define
Br,; to be the minor of B obtained by deleting the ith rows and jth columns
fori e I,j € J (i.e. Br s is the the determinant of the resulting submatrix).

Lemma 2.4. For any index 1, if B;; is not identically O on H, then

Q) = Q(H) ( (B@(Hﬁi,i) '

Proof. Fix an i such that 0 <17 < 4. On the open locus in H where B; ; # 0,
the matrix B has rank exactly 4, and therefore has a 1-dimensional kernel
V' not contained in the hyperplane x; = 0. Let W be any codimension
1 subspace that does not contain V. The restriction Bly is therefore a
nondegenerate bilinear form. Up to isomorphism, this bilinear form is
independent of the choice of W. Therefore, for any W, the discriminant
of Blw is equal (modulo squares) to disc(Qgpy). The result follows by
applying this to W = (z; = 0). O

Geometrically, this argument shows that if B;; and Bj; are nonzero,
then the intersections of Qqy) with the hyperplanes z; = 0 and z; = 0,
respectively, are isomorphic smooth rank 4 quadrics in P? over which Qo)
is a cone.

The other projection mp : Zp — G(2,P*) is also illuminating when
studying points on Yp. Containing a fixed 2-plane Ag C P?* is a linear
condition on the quadrics in P, so the fibers of my over each point [Ag] €
G(2,P*) are projective spaces. Let ¥p C G(2,P*) denote the image m5(Zp)
and let S be the tautological subbundle on G(2,P*). Then the subvariety
Yp can be viewed as a degeneracy locus, as we now explain. The quadrics
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Q; give rise to sections s; of the rank 6 vector bundle Sym?SY on G(2,P*)
by restriction of Q; to each [A] € G(2,P*). If [A] € G(2,P*) is in Xp, then
there exists some point (tg : ---: t4) € P such that

4
> tiQila =0.
i=0

Therefore, we may equivalently define ¥p as the locus in G(2,P*) where
S0, - - -, 84 fail to be linearly independent, and hence it is a degeneracy locus.
By [EH16, Theorem 5.3(b)], the class of ¥ p in CH*(G(2,P*)) is co(Sym? SV).

Lemma 2.5. Let P be any 4-plane in 1%4 and let Yp and Zp be as defined
in Section 2.1. Then Zp(R) # 0; in particular, Yp(R) # 0.

Proof. We prove this lemma using topological arguments involving char-
acteristic classes of real vector bundles; see [Hatl7, Section 3.3] for more
details. Given a choice of five quadrics Q, ..., Qs (defined over Q) that
span P, we may consider the construction described above over R. Anal-
ogous to the second Chern class, the class of (Xp)r C G(2,P%) =: Gg in
the cohomology H*(Gr,Z/2Z) is given by the second Stiefel-Whitney class
ws(Sym? SY) [Hat17, Proposition 3.21].
A standard computation using the splitting principle shows

wy(Sym? SY) = w1 (Sy)? + wa(Sy).

Finally, we observe that H?(Gg,Z/27) is freely generated over Z/2Z by
wi (SY)? and wy(Sy) [MS74, Problem 6-B, Theorem 7.1]. Therefore, [(Xp)g]
is a nontrivial class in H?(Gg, Z/27), and hence (Xp)r(R) cannot be empty.
Since the fibers of 79 over each real point of (¥ p)gr are projective spaces,
this implies that Y (R) is nonempty as well. O

2.3. The Brauer class a. In this section, we begin by explicitly describing
a quaternion algebra over the function field of Y = Yp that is the image of
a = ap in Br(Q(Yp)). Recall that the conic bundle Z = Zp over Y provides
the nontrivial Brauer class a € Br(Y'). We continue to fix a field K not of
characteristic 2.

Lemma 2.6. Let Q C ]P’ﬁ( be a smooth quadric with square discriminant
(i.e., whose rulings are defined over K ). Let [I'] in (P3)V(K) be a hyperplane
transverse to Q. Then the wvariety of lines on @ in a given ruling is
isomorphic to the conic I'N Q.

Proof. Each line on @ intersects I' N @) in a unique point. Conversely, the
tangent hyperplane section of ) at any point of I' N @) is the union of a
unique line from each ruling. O

In particular, applying Lemma 2.6 to the generic quadric, we have that
the generic fiber Z|g(y) of the conic bundle defining « is isomorphic to a
transverse hyperplane section of QQ(y). We now make this more explicit in
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the generic situation, which will include our example in Theorem 3. Recall
that we write B = Bp for the universal symmetric bilinear form over P.

Lemma 2.7. Suppose that the principal minors B1234,1234, B234,234, B34 34,
and By are not identically zero on H. Then the quaternion algebra

< B234,234 B34,34
)
(B1234,1234)? " B23a,234B1234,1234

) € Br (Q(V) 2

represents the restriction of a.

Proof. To show this result, we will use our hypotheses on the minors of B
to make a nice choice of basis with which to diagonalize Qg (g, yielding the
quaternion algebra above.

Recall that B has rank 4 over Q(H). Because of our hypotheses on the
minors of B, the matrix in the linear system below is invertible, allowing
us to use Cramer’s rule to solve the system. The vector v satisfying the
linear system is in the kernel of the generic bilinear form Blggy. Applying
Cramer’s rule gives us the entries of v shown on the right.

0 0
Bao

0 0 5
B of v 0 4.1

= s v = 842

0 0 ’
1 * —Bus

B

00 0 0 1 0/ \x By 4,4

By hypothesis, the last entry of v is nonzero, and so Bgy) is non-
degenerate when restricted to the subspace generated by eq,eq,es,es.
We may therefore carry out Gram—Schmidt orthonormalization on this
subspace to diagonalize Qg(m)- Since Gram—Schmidt orthonormal-
ization only involves adding multiples of the previous columns, the
diagonalized matrix must have the same leading principal minors:
Bi234,1234, Ba34.234 / B1234,1234, B34,34/B234.234, Ba,a/B3a 34, 0.
Over Q(Y'), the conic Z|g(y is isomorphic to

B B

2 234,234 2 34,34 2

(Bi234,1234) x5 + <7 5+ 23 =0,
B1234,1234 B234,234

which corresponds (see for instance [KKS11, Section 8.2]) to the desired
quaternion algebra. O
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For the choice of five quadrics in Theorem 3, we have that « is therefore

represented by the quaternion algebra (Z—;, Z—;), where

2.3
(a1 ): — 3 — 2tgty + Tt3 4 Styty + 48t1t3 + 16tats + 64t + 8tity + 16t3ty,
ag =413 + Stity + 4t + 32t1t3 + 32tats 4 6415 + Stity + Stoty
+ 32t3ty + 413,
by = — 106311 — 14tot? + 38t + 10ttt + 3613ty + 4tgts — 18t1t5 — 6tits
— 12tott3 + 442t2t5 + 96t tots — 40t5ts + 928t113 + 96tot3 + 384t5
+ 20tot ity + 62ty + 14tgtaty — 30t taty — 1483ty + 112t 3ty
— 80tatsty 4+ 96t3t, + 6tots — 28t1t2 — 30tot? — 80tsts — 18t3,
by = — 203ty — Atot? + 1483 — 2ty — Atgtito + 30t3ty + 161,15 — Stits
— 16tttz + 152t3t3 + 192t totz + 32t3t3 + 512t113 + 256t9t3 + 512t3
— 22ty — dtotity + 30t3ty + 32t taty + 192t t3t, + 6dtotsty
+ 25613t + 16t113 + 32t3t3.

We conclude this section with the computation of the Brauer group of Y.

Proposition 2.8. Assume that P is reqular and write Y = Yp. Then we
have that

(i) Pic(Yg) ~ Z.

(i) Bri(Y)/ Br(Q) ~ H'(Gal(@/Q), Pic(Yy)) = 0.
(iii) Br(Yg) = (ag) ~ Z/2Z.

Proof.

(i) By [HT13, Proposition 4.2.4], Y/C has Picard rank 1 and Pic?(Y¢) is
trivial. The natural map H 1(OYQ) ® C — H'(Oy,) is an isomorphism

by cohomology and base change, hence PicO(YQ) is also trivial. Thus
the statement follows from the fact that the Néron-Severi group of
a smooth proper variety over an algebraically closed field remains
the same after base change to another algebraically closed field
[MP12, Proposition 3.1].

(i) The identification Bry(Y)/Br(Q) ~ H'(Gal(Q/Q),Pic(Yg)) follows
from the low degree exact sequence of the Hochschild-Serre spectral
sequence [Pool7, Corollary 6.7.8] since H?(Q,G,,) = 0 [Pool7,
Remark 6.7.9]. Since Pic(Yy) = Z and H'(Gal(Q/Q),Z) = 0, the
result follows.

(iii) The natural map of Brauer groups Br(Yg) — Br(Y¢) is an isomorphism
by [CTS, Propositions 5.2.2 and 5.2.3]. By Proposition A.l1 in
Appendix A, Br(Y/C) ~ Z /27 and is generated by the base change of
a to C, so the result follows. O
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3. AN OBSTRUCTION TO WEAK APPROXIMATION

3.1. Background. Recall that a smooth projective variety Y over Q
satisfies weak approximation if the Q-rational points are dense inside of the
adelic points in the adelic topology. We recall how elements of the Brauer
group of Y may obstruct weak approximation.

Let L D Q be a field. A point y € Y(L) gives a map y: SpecL — Y.
By functoriality of Brauer groups, we can pull back an Azumaya algebra A
under y to obtain

A(y) == y* A € Br(Spec L) = Br(L).

We call this pullback evaluation of A at y. When L = Q, is the completion
of Q at a place v, we may further compose with the invariant map

inv,: Br(Q,) — Q/Z.

If v is a finite place, then inv, is an isomorphism onto Q/Z. For oo the real

infinite place of Q, we have invy,: Br(R) =» (32)/Z C Q/Z. Recall that the
fundamental exact sequence of global class field theory [Mil03, Chapter VIII,
Theorem 4.2]

0 — Br(Q) — EBBr(Qv) PILLLN Q/Z—0

says that the tuples of local Brauer classes that come from Br(Q) are exactly
those whose invariants sum to 0. For any subset S C Br(Y') we can produce
an intermediate set of adelic points containing the closure of the Q-rational
points

(3.1) Y(Q) CY(Ag)® CY(Ag),
defined by

Y (Ag)S = {(PU) €Y(Ag): Y inv, A(P,) =0, forall A€ s}.

For more details on these inclusions, which arise from class field theory, see
[SkoO1].

We will produce obstructions to weak approximation by means of the
following standard argument.

Lemma 3.1. Let A € Br(Y)[2] and let v be a place of Q. Suppose that
Y (Ag) # 0 and that there exist two Q, points Qy, Q. € Y (Q,) for which

inv, (A(Qv)) = 0 € Br(Q,) and inv, (A(Q,)) = 3 € Br(Q,).

Then Y (Ag)? is not equal to Y (Ag). In particular, A obstructs weak
approximation on 'Y .
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Proof. Since Y (Aqg) # 0, there exist local points Py € Y (Qy) for all places
¢ # v. Since A € Br(Y)[2],

1
Zian(.A(Pg)) € §Z/Z.
220}
We use these local points to define an adelic point (P;) € Y(Ag) where
P, € Y(Q,) is defined by

P Q, i Yy, inve(A
Qv if Y2, inve(A

By construction, (P;) € Y(Ag) N\ Y (Ag)*4, so Y(Q) C Y (Ag)* C Y(Ag),
and Y fails to satisfy weak approximation. O

3.2. Evaluation of the Brauer class a. We now specialize to the setup
of our Calabi—Yau threefold Y = Yp and 2-torsion Brauer class a« = ap €
Br(Y)[2] that are associated to a choice of linear system P of five quadrics
in Pé. We will always assume that we are working with a regular P so that
Yp is smooth.

For any extension L O Q, we begin by geometrically describing the
evaluation of a at a point y € Y(L). By slight abuse of notation, we will
write @y for the quadric corresponding to the image of y in H. Since « is
the Brauer class associated to an étale P'-bundle Z, the evaluation a(y) is
the class of the conic Z|, over Spec L in Br(L)[2]. Therefore

a(y) =0€ Br(L)2] & Z|, has an L-point
& @y contains an L-rational plane A ~ ]P’QL in ruling y.

Thus for y € Y(Q,),

0 if @, contains a QQ,-rational 2-plane in ruling y,

(3.2) invy(a(y)) = {

% otherwise.
We give an equivalent criterion for inv,(a(y)) to be trivial.

Lemma 3.2. Let y € Y (L) be such that Q, is of rank at least 3. Then @,
contains an L-rational 2-plane in ruling y if and only if Q, has a smooth
L-point.

Proof. To see the forward direction, we note that if (), contains an L-rational
plane A ~ P? | then as the dimension of the singular locus of @y is at most 1,
A is generically contained in the smooth locus of @,, which hence has a
smooth L-point.

In the other direction, first assume that @), has rank 3. Then it is a cone
(with “vertex” a line ¢ defined over L) over a smooth conic in P%. If Q,
has a smooth L-point, then this conic has an L-point, and hence the span
of that point and the line ¢ is an L-rational plane A in @, (which has only
one ruling).
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Similarly, if @, has rank 4, then it is a cone (with vertex a point z € P4(L))
over a smooth quadric Q in ]P’:z. If @, has a smooth L-point, then this quadric
Q has a L-point p. The tangent plane section TPQ N (Q consists of two lines,
one from each ruling. As y was an L-point of Y, these lines are individually
defined over L, and hence the span of the one in ruling y and = gives the
desired plane A in @, in ruling y. O

Say that a pair (Yp, ap) has trivial evaluation at all finite places if
() for all p and all y € Yp(Q,), we have ap(y) = 0.

We next show that (1) is the “expected” behavior as we vary the defining
linear system P. We will guarantee this, using Lemma 3.2 and Hensel’s
Lemma, by spreading out our family of quadrics to SpecZ and showing that
over [, all quadrics have smooth F,-points. Extra care is necessary when
p = 2 since quadrics and bilinear forms do not coincide in characteristic 2.

Let # be the universal 5 x 5 symmetric matrix with even diagonal entries
over A%. We say an ideal I of a ring R is saturated with respect to s € R
if for all n > 1, the equation s"x € I implies x € I. Given an ideal I of a
ring R we can produce a new ideal I’ that is saturated with respect to s in
R through the process of saturation: I’ := {z € R: s"x € I for all n > 1}.
We consider the ideal of 3 x 3 minors of % and saturate with respect to
the element s = 2. Define Z3 to be the resulting ideal of 3 x 3 minors of
A that is saturated with respect to 2. Since this is independent of scaling,
it descends to the projective space P'* of quadric hypersurfaces in P*. Let
V3 = V(Z3) be the associated subscheme of P11

We can also describe the process of saturation geometrically. Let V35 C
P%‘fl /9] be the subscheme of quadrics of rank at most 2; the ideal of V5 is
given by the 3 x 3 minors of 4. Then the saturation of this ideal at 2 is the
ideal of the closure V3 = V_§ in IP’%.

Lemma 3.3. Suppose that () C P%q is a quadric whose associated bilinear
form Bg does not lie in V3(Fy). Then Q has a smooth Fy-point.

Proof. 1If ¢ is not a power of 2, then we may assume that QQ = ax(z) + bx? +
cx3 + dr3 + ex? is diagonal. Since [Bg] ¢ V3(F,), we may assume that a,
b, and ¢ are nonzero. The 2-plane section x3 = x4 = 0 of @ is therefore
a smooth conic, which has smooth F,-points by the Chevalley-Warning
Theorem. These points are smooth points of Q).

Now, we let ¢ = 2". By [Alb38, Theorem 16], every quadric in IP’%Q is
equivalent to one of the form

Qo = ax? 4+ bx? + cal + dal + ex? + frory + grors.

This defines a map from the parameter space A'® of quadrics (or
symmetric bilinear forms with even diagonal entries) to A” with variables
a,b,c,d,e, f,g. Let I denote the image of the ideal Z3 under this

specialization. (Since pullback and Zariski closure do not commute, this
is not the same as the ideal of 3 x 3 minors of Bg, saturated at 2.)
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Write I = I mod 2. Then on can compute that explicitly that I has
generators

I = (f%, f*d, f*e, *9,9%a,g°b, g°¢, g° f).
It therefore suffices to show that if a,b,...,g9 € F, is a specialization such

that one of the above generators of I is nonzero in F,, then that associated
quadric has a smooth [F,-point. We consider the generators in turn below.

Case 1. Generators guaranteeing both f,g € F (i.e., generators 29, ¢*f).
In this case, the hyperplane section x4 = 0 is a smooth quadric
surface, and hence by Chevalley-Warning, has smooth F,-points.

Case 2. Generators guaranteeing both e, f € Fx or both e,g € FS (ie.,
generators f2e, g%e). In this case, the 2-plane section x5 = z3 = 0
(resp. zp = x1 = 0) is a smooth conic, and hence by Chevalley-
Warning, has smooth Fg-points.

Case 3. Generators guaranteeing both f and c or d € F; or both g and a
or b € FS (i.e., generators f?c, f2d, g*a, ¢g*b). In this case, the
2-plane section x3 = x4 = 0 or 9 = x4 = 0 (resp. x1 = 4 = 0 or
xg = x4 = 0) is a smooth conic, and hence by Chevalley-Warning,
has smooth Fy-points. O

The key technical ingredient in understanding the density of planes
satisfying (f) is the Ekedahl seive. Recall that the height of an integral
point on A" is the maximum of the absolute value of the coordinates:

h((p1,...,pn)) = max |pil.

For compactness of notation we will write A™(Z)<n for the set of integral
points on A™ of height at most N.

Lemma 3.4 (The Ekedahl sieve). Let Z C A" be a subscheme of
codimension at least 2. Then we have

im lim #{P € A"(Z)<n :3p> M s.t. (P modp)e Z(F,)}

M—00 N—o0 #A"(Z)SN =0

Proof. Since any subscheme of codimension at least 2 is contained in a
complete intersection subscheme of codimension 2, the result follows from
[Po099, Lemma 21]. See also [Eke91, Theorem 1.2]. O

This result allows one to compute the global density of points that satisfy
“codimension at least 2” local conditions at all primes as a product of local
densities.

As above, let Z C A™ be a subscheme of codimension at least 2. Let
Sy, C Z(Fp) be a subset of the F,, points of Z. Write S = (Sp)p prime. Define
im #{P € A"(Z)<n :¥p (P mod p) € S,}

A05) = i, EANZ)<n
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Proposition 3.5. With the notation and assumptions as above,
#Sp )
d(1s) = <1 - .
L

Remark 3.6. The Lang-Weil estimates guarantee that the infinite product
on the right converges.

Proof. Let M be an integer. We have bounds
#{P € A"(Z)<n :Vp< M (P mod p) &Sy}

#A™(Z)<n
#{P € A"(Z)<y : Ip> M s.t. (P modp) € Sp}
#A™M(Z)<n
< #{P € A"(Z)<n :Vp (P mod p) € Sp}
B #AM(Z) <N
< #{P c A"(Z)<n :Yp< M (P mod p) & Sy}

- #A™(Z)<n
Taking the limit as N — oo (each term of which exists) we obtain:
. #HPeA"(Z)<n :Vp< M (P modp)¢&S,}

N, HAZ) <N
_ lim #{P c A"(Z)<n :Ip> M st. (P mod p) € Sy}
N—s00 #AMZ)<N
< d(1S)
< lim #{P € A"(Z)<n :Vp< M (P modp) & Sp}.

T N—oo #A”(Z)SN
Since S, C Z(F,), by Lemma 3.4, we have

ol PP EA"@)<y :3p> M st (P mod p) € Sp)}

M50 N—ro0 #A"(Z)<n =0

Therefore
. . #H{PeA™(Z)<n,Vp < M (P mod p) € Sp}
1§} — <
dt§) = Jim  Hm #A(Z) <y '
By the Chinese Remainder Theorem we have that
iy TP EANZ)<n,¥p < M (P mod p) & Sp} _ 11 <1 __#5 )
N—o00 #An(Z)SN #An(Fp) ’

The result follows by taking the limit as M — oc. O

p<M

Proposition 3.5 formally implies the same result where we replace A" by
an open locus in A"™ whose complement has codimension at least 2 (divide
the density coming from the local conditions S in all of A™ by the density
coming from the local conditions of being in the complement of the open
locus).
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We now apply this to our situation. To obtain an affine space and
a codimension at least 2 subscheme, we will consider the frame space
Fr(k,n) parameterizing bases of (k+ 1)-dimensional subspaces of an (n+1)-
dimensional vector space. Explicitly, Fr(k,n) is the complement of the
vanishing of the (k + 1)-minors in space of (k+ 1) x (n + 1)-matrices, which
is itself AR+ If & < n then the subscheme where all (k + 1)-minors
vanish is codimension at least 2.

On the other hand, the natural map

mw: Fr(k,n) — Gr(k,n)

sending a basis to its span exhibits Fr(k,n) as a GLg1-torsor over Gr(k,n).
For this reason, for any subscheme W C Gr(k,n), we have

#W(F,) _ #n 'W(EF,)
# Gr(k,n)(Fp)  #Fr(k,n)(Fp)

The 4-planes that meet V3 form a Zariski-closed subscheme W of Gz(4, 14)
of codimension 2. Since 7~V has codimension 2 in Fr(4,14), we can use
Proposition 3.5 to compute the density of planes [P] € Gr(4, 14)(Q) that give
rise to pairs (Yp, ap) that satisfy (). Recall from the introduction that we
define the density by sampling integral points on Fr(4, 14) of bounded height
going to infinity. This notion of density, therefore, agrees with the one used
in Proposition 3.5 for subschemes of affine space.

We will write & to indicate the linear system P over Z. Let S, C
G(4,14)(F,) denote the subset of planes P, € G(4,14)(FF,) such that there
exists a point in P,(F,) for which the corresponding quadric does not have a
smooth F,-point. By Lemma 3.3, we have that S, C W(F,). (In particular,
if the 4-plane & and V3 do not meet in ]P’%, then for every prime p, we have
that [ mod p] is not in S),. Since it is easy to compute with the ideal Z3,
in practice we will use this criterion to rule out membership in S, for all p
simultaneously.)

Proposition 3.7. The set of integral points of Fr(4,14) whose reductions
are not contained in 7T_1(Sp) for any p have density

£5,
a05) =1 (1~ iy sy ) 2

p

Proof. The left equality follows from Proposition 3.5. It suffices now to
compute a lower bound on this infinite product. Let B, C P*(F,) denote the
set of quadrics over ), that do not have a smooth IF,-point. This is exactly
the union of the set of double planes and the set of quadratic conjugate
planes (when p > 2 these are the quadrics of rank 1 and non-split quadrics
of rank 2) . The set of double planes has cardinality #G(3,4)(FF,). Similarly,
a pair of quadratic conjugate planes is a cone with vertex a codimension 2
plane over a nonsplit quadric in P'. Fixing the vertex, we may assume that
it is of the form a3 — bxox1 + cx? for some b, c € F,,. If p = 2, such a quadric
is nonsplit if and only if b = ¢ = 1. If p > 2, such a quadric is nonsplit if
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and only if A = b? — 4c is not a square in F). There are therefore (p? —p)/2
such choices of b and c. In total, we have

#B), = #G(3,4)(Fp) + #G(2,4)(Fy) - (0* — p)/2.

Finally, the number of 4-planes over [F,, that contain an F,-point in B, is
at most #G(3,13)#B,. Therefore the fraction of 4-planes in G(4,14)(F,)
that contain an [F,-point in B, is at most

b(p) = FCG B E)#By 4 2p" 40’ £ 2" p 2
' #G(4,14)(Fp) 2p10 + 2p° + 2 '
The function p?b(p) is monotonically decreasing for p > 2 and has an

asymptote at 1/2. Its value on the interval of p > N is therefore bounded
by

(3.3) max(N?b(N),1/2)
We have
d(1S) = [ (1 —b(p)
> JT a-v)]-[1- > b
p<100 p>100

One can compute (e.g., using the functions in the file probability.sage)
that the first factor is at least .737. Combining this with (3.3),

50005
> ()| 1= ) =5
p>100 p
>*1
EC%UG—(W%M/ 3@>
100 P
> 73, 0

Proposition 3.8. Suppose that (Yp,ap) is defined by a regular 4-
dimensional linear system [P] € G(4,14)(Q) = G(4,14)(Z) that is not
contained in the set S, C G(4,14)(F,) for any p. Then for any Q,-point
y € Yp(Qp), the associated quadric Qy has a smooth Qp-point.

Proof. We spread out P ~ Pfé to P ~ IP’%. By slight abuse of notation, we
also write y € P(Q)) for the image of y € Y(Q,). This spreads out to a
map Spec(Z,) — & by properness of & over Spec(Z), and therefore gives a
quadric 2 over Spec(Z,) with generic fiber @, and special fiber Q a quadric
over F,,. Since [P] € S, this quadric @ has a smooth F,-point. Therefore,
the smooth locus of 2 — Spec(Z,) has Fj-points, and hence by Hensel’s
Lemma [Pool7, Theorem 3.5.63] it has Z,-points. Therefore @, has smooth
Q,-points. O
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Corollary 3.9. A randomly generated integral basis yields a span P for
which the associated pair (Yp,ap) satisfies trivial evaluation at all finite
places (1) with probability at least .73.

Proof. Since regularity is an open condition, a random linear system P will
be regular with probability 1. Hence with probability at least .73, it is a
regular linear system with [P mod p| ¢ S, for all p. By Proposition 3.8,
for every y € Yp(Q,), the corresponding quadric @, has a smooth Q,-point.
Since regularity implies that P avoids the locus of quadrics of rank 2 or
less, it now follows by Equation (3.2) and Lemma 3.2 that ap(y) = 0, as
desired. O

3.3. Proofs of the main theorems. In this section, we prove the main
theorems guaranteeing that Yp has a Brauer—Manin obstruction to weak
approximation.

Proof of Theorem 1. Let Y = Yp be the Calabi-Yau threefold with class
a = ap € Br(Yp)[2] that is associated to the choice of a regular 4-
plane P in IP’(1@4. By assumption, there exists a real point h € H(R)
so that the corresponding quadric @, has signature (+1,+1,+1,+1,0) or
(—1,—1,—1,—1,0). As such, @y, is the cone over a smooth quadric Qy, in ]P’%
and the discriminant of Qy, is a square in R. Therefore the preimage of h in
Y is two points y; and y, in Y (R). However, the quadric @5, has no smooth
R-points, since Q;(R) = (). Therefore, by Lemma 3.2 in combination with
(3.2), we have that

a(y1) = a(y2) = 3 € Br(R).

However, by Lemma 2.5, there must exist a point yo € Y (R) such that
Z|4(R) # 0. Again by (3.2), we have

ayg) = 0 € Br(R).

By Lemma 3.1, this implies that Y fails to satisfy weak approximation. [

Proof of Corollary 2. The quadric Qg := :173 + 2?4+ 22+ :17% = 0 defined over
Q is the cone over a smooth quadric surface of discriminant 1. Therefore,
it gives rise to a Q-point on Yp for any linear system P containing [Qo].
Furthermore, over R, this quadric has signature (+1,41,+1,+1,0). Finally,
the condition of regularity (Definition 2.1) is open; therefore, it suffices to
show that one such 4-plane through [Qq] is regular.

We verified the regularity of the 4-plane P given by the following
additional generating quadrics with Magma, using code in the ancillary
file yexample.magma, located in the repository [HHLV20] and in the
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supplementary files.
Tox1 + ToTg + T1T3 — T1T4 + X223 + T324,
x% — 0Ty — XoT4 + X1T9 — X1T3 — T1T4 — a:% — X9XLg4 — X3T4 — xi,
Tox1 + XoT2 + ToTyg + x% —T1x4 + :17% + xox3 — T2y + :17%,
:173 + Tox1 + ToTo — ToT4 — :17% — T1T9 + T1T3 — T1T4 — T2L3 — ToX4 + :Ei. I

3.4. Explicit example. In this section we prove Theorem 3, explicitly
exhibiting a choice of quadrics P for which the associated Brauer class ap
on the associated Calabi—Yau threefold Yp obstructs weak approximation.
Recall that Qg, @1, @2, @3, and Q4 are given by the equations

ToT1 + T2T3

:173 + xox1 + 3T0T2 + 2x% + 120 + 2123 + 5:17% + xox3 + x?),

:173 + 2xox9 + xox3 + ToTs + X122 + T1T4 + XXy + dT324

4x(2) + 4x% + 3z123 + 220124 + 3x% + xoxg + :172

:173 + xoxo + xox3 + 4rox4 + 31272 + 4T124 + 22023 + 2x§ + :1:2.

Furthermore, this example will exhibit the “expected” behavior of Corol-
lary 3.9: the pair (Yp, ap) has constant trivial evaluation at all finite primes

()-

Proof of Theorem 3. Corollary 3.9 proves the first part of the Theorem.
Let Qq,...,Q4 be the explicit choice of linearly independent quadrics
given above. The quadrics Qo,...,Qs define a regular system P, which
can be verified using using Magma code included in the ancillary file
yexample.magma. Write (Y, ) = (Yp,ap). We first show the containments

0 #Yp(Q) CYp(AQ)*” C Yr(Ag).

The quadric @ is rank 4, and is a cone with vertex [0: 0:0: 0 : 1] over the
smooth quadric
Qo = o1 + T273

in IP’%. Since disc(Qp) = 1 is a square, the two rulings of lines on Qq are
defined over Q. Therefore the fiber over [Q] € H(Q) in Y consists of two Q-
points, and so Y(Q) # () (and, in particular, Y is everywhere locally soluble).
Furthermore, Q1 := x% + xox1 + 3x0T2 + 2:17% +x129 + 2123+ 5:17% + xox3+ :17%
has signature (+1,4+1,+1,+1,0); therefore this choice of P satisfies the
conditions of Theorem 1, and « obstructs weak approximation on Y.

Finally, we show that (Yp,ap) has constant trivial evaluation at all finite
primes (f). Let @ be the universal quadric @ = tgQo + -+ + t4Q4 over
the projective space P ~ IP’%. Let J3 be the ideal of Zl[to,...,t4] given by
specializing 73 to () and then saturating with respect to the ideal (tg, ..., t4).
A Groebner basis calculation over Z shows that 1 is in J3, and therefore for
the choice of quadrics above, we have P N V3 = (). Therefore the reduction
of every quadric in P (and hence Y') modulo every prime p has a smooth F),
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point by Lemma 3.3. Hence [P mod p| is not contained in the set S, for
any prime p. Thus, by Proposition 3.8, for every Q,-point y € Y (Q,), the
associated quadric @), has a smooth Q,-point. Hence by Lemma 3.2 and
equation (3.2), y*a = al, = 0 € Br(Q))[2].

O

3.5. Obstructions from finite primes.

Proposition 3.10. Let P C PHO (P}, Opa(2)) be a general 4-plane through
the points [Qo: 63 —3z3+2x3—132 = 0] and [Q1: wow1+273 = 0] in P4(Q).

Then O # Yp(Q) € Yp(Ag) and so Yp does not satisfy weak approzimation.

Proof. The condition of regularity (Definition 2.1) is open.

The quadric @)y does not contain any smooth Q3-points, as we now show.
We may rewrite the equation for Qg as 3(22% — 23) + (223 — 2%) = 0, and
directly check modulo 3 we only have the non-smooth point (0: 0:0:0:1).
Consider solutions to Qg mod 3™ for n € N; the valuation of x; in the solution
must increase as n does, for i =0,...,3.

However, Qg is the cone over a smooth quadric surface with discrimi-
nant 36, so Yp has at least one Q3-point over [Qo] € H(Q3).

The quadric 1 contains Q-points and, over Q, is the cone over a smooth
quadric surface of discriminant 1. Therefore, it also contains smooth Q3-
points and gives rise to a Qs-point on Yp. Thus, by Lemma 3.1, for
such a choice of regular 4-plane P, the Brauer class ap will obstruct weak
approximation.

To finish, it suffices to produce a regular 4-plane P containing [Q]
and [Q1]. The regularity of the 4-plane given by the following additional
generating quadrics was verified with Magma, using code in the ancillary
file yexample .magma.

2 2 2 2 2
TH — ToX2 — XoT3 — T + T1X2 — Ty — ToX4 + X3 — X3T4 — Ty,

2 2
Ty + Tox1 + TpT2 — Tox3 + TpTq — T + T1T2 — T1T3 + TaX3 — T2y,

2
— X3 — T34,
2 2 2 2 0
Ty — Toxz + ] + T1T2 + x1x3 + T3 + T3T4 — Xy
Remark 3.11.

(a) It is possible that the example produced in the proof of Proposition 3.10
satisfies the hypotheses of Theorem 1. It has been chosen so that none of
its generators, considered over R, have signature (+1,+1,+1,+1,0) or
(=1,—1,—1,—1,0), but some element of P may correspond to a quadric
which does.

(b) One can also ask if there are examples of linear systems P where
ap obstructs the Hasse principle on Yp, i.e., where ap has constant
evaluation at all Q,-points for each place v, but the sum of the invariants
over all places is nontrivial. It appears that P would have to be
incredibly special in order for this to occur. First, by Lemma 2.5,
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there always exists a real point of Yp where ap evaluates to 0, and
so evaluation at real points would need to be trivial. Therefore, there
must exist an odd number of finite places p for which the evaluation at
all Q,-points is constant and nontrivial. However, by Lemmas 3.2 and
3.8, this only occurs if every such quadric over Q, (which is necessarily
of rank at least 3) reduces to a quadric with rank at most 2 over F).

4. THE DERIVED EQUIVALENT THREEFOLD X

Hosono and Takagi show in [HT'14] that a choice of regular linear system P
as in Definition 2.1 can also be used to construct another Calabi—Yau variety
they call X = Xp. Hosono and Takagi proved in [HT16, Theorem 8.0.2]
that, for any fixed choice of regular linear system P over C, the complex
varieties Xp and Yp are derived equivalent but non-birational over C. That
is, there is a C-linear equivalence between their bounded derived categories
of coherent sheaves. See [Huy06] or [Cal00] for an introduction to these
categories.

In many cases, derived equivalence is a strong relationship. For example,
a smooth curve is determined uniquely by its associated derived category.
Examples of varieties where some invariant is not preserved under such an
equivalence is considered very interesting. Hosono and Takagi’s Calabi—
Yau threefolds are one of very few known examples of derived equivalent
varieties that do not have the same fundamental group [HT16] or Brauer
group [Add17].

There has been recent interest in comparing the rational points of derived
equivalent varieties; see [HT17]. Work of Addington, Antieau, Frei and
Honigs [AAFH19] gives the first examples of derived equivalent varieties
where one variety has a Q-point and the other does not. The varieties in
these examples are all either hyperkéhler fourfolds or abelian varieties of
dimension at least 2. Because Hosono and Takagi’s Calabi—Yau threefolds
are already known to not share some invariants, particularly the Brauer
group, they seem a likely place to look for such behavior occuring in a
different class of varieties. However, to the extent that we are able to
compare them, we find the same behavior in both X and Y with regard
to Q-rational points. This raises several questions: Is there some special
case in which these examples do not share the same behavior with regard
to Q-points? If not, is derived equivalence a more restrictive condition on
Calabi—Yau threefolds with regard to Q-rational points than it is on the types
of varieties in the examples of [AAFH19]? If so, what is the mechanism?

In this section we give the construction of Xp and show that if Xp and
Yp are defined over Q, then Hosono and Takagi’s derived equivalence is also
defined over Q. Then, in order to compare Xp with Yp, we show that for
any regular P, if Xp(Q) # () then Xp does not satisfy weak approximation.
Although Xp and Yp do not have equal Brauer groups or fundamental
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groups, in all examples we have analyzed, Xp and Yp both have Q-points
and do not satisfy weak approximation.

4.1. The variety X. Consider a choice of regular linear system P over a
field K generated by quadrics Qo,...,Qs C P4 When the characteristic
of K is not 2, the data of each quadric (); is equivalent to the data of a
projective symmetric bilinear form B;, and hence a (1, 1)-divisor in P4 x P4
that is symmetric under the Z/2Z-action swapping the factors. Let Xp
denote the complete intersection of By, ..., Bs. By the regularity of P, Xp
does not meet the diagonal in P* x P4, and hence the Z/2Z-action induces a
fixed-point-free involution ¢: Xp — Xp. In these terms, Xp is the quotient
by this involution:

Xp= XP/L.

The smoothness of Xp is equivalent to the regularity of P [HT14,
Proposition 2.1].

4.2. The kernel of the equivalence. For smooth projective varieties X
and Y, by a result of Orlov, equivalences between their associated derived
categories are produced by Fourier-Mukai transforms [Huy06, Thm 5.14].
Such a transform is defined via an object in the derived category of X x Y,
which we call a Fourier-Mukai kernel. The interested reader is directed to
[Huy06, Chapter 5] for a precise discussion on the construction of these
functors.

Lemma 4.1. For any choice of reqular system P defined over Q, there is a
Q-linear derived equivalence between the associated varieties Xp and Yp.

Proof. Write X = Xp and Y = Yp. As shown in Section 2.1, there
is a natural projection map from Z — G(2,P*). Since each point in
X corresponds to a pair of distinct points in P?, there is a natural map
X — G(1,P*) that sends each point in X to the line in P* containing the
corresponding two points in P4. Consider the subscheme A C X x Y formed
by pulling back the flag variety F(1,2,V) C G(1,P*) x G(2,P*) to X x Z
and then taking its image in X x Y. In X x Z, points of this subscheme
correspond to the data of a quadric in P, a plane it contains, and two points
in P* which lie on that plane.

Hosono and Takagi show in [HT16, Theorem 8.0.1] that, when working
over C, the ideal sheaf of A is the kernel of a Fourier-Mukai equivalence.
Just as we may define X,Y over Q in a way that is compatible with base
change, we see from our description of A that it may be defined over Q as
well. To finish, we observe that if two smooth, projective varieties and a
kernel of a Fourier-Mukai functor between their bounded derived categories
of coherent sheaves are defined over a field K and the functor is shown to
give a derived equivalence after base change to K, then it is an equivalence
over K [AAFH19, cf. proof of Theorem 4]. O
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4.3. Rational points and weak approximation on X. By the following
lemma, any linear system P satisfying the hypotheses of Theorem 1 or
Proposition 3.10 gives rise to a variety Xp where Xp(Q) # () and therefore
Xp does not satisfy weak approximation.

Lemma 4.2. If Xp(Ag) # 0, then Xp does not satisfy weak approzimation.

Proof. As in [HT13, Proposition 3.5.3], the Lefschetz hyperplane theorem
guarantees that 7 (Xp) = 0, and so the étale double cover m: Xp — Xp
represents the nontrivial element of 71 (Xp) ~ Z/2Z.

By [Har04, Theorem 2.4.4], this shows Xp does not satisfy weak
approximation. O

Recall that H C P is the discriminant locus of singular quadrics in the
linear system P.

Lemma 4.3. Given any choice of reqular linear system P defined over Q,

H(Q) # 0 if and only if Xp(Q) # 0.

Proof. Fix a regular linear system P generated by quadrics defined over Q
corresponding to bilinear forms By, ..., Bj.

Suppose H(Q) # 0. Suppose By has rank less than 5. Then we may
choose a point v € IP’%Q in its kernel. If we pick a representative v’ of v in
Q5, we note Bov' = 0 and {Byv’, B1v', Bov', B3v', Byv'} span a subspace of
Q°® of dimension at most 4. Therefore, we may pick a nonzero vector with
coefficients in @ in the orthogonal complement, giving an element w € ]P’a
so that wB;v = 0 for all i, hence the unordered pair (w,v) determines
a point on Xp. For instance, for the choice of quadrics in Theorem 3,
(0:0:0:0:1],[1:—3:2:4:1]) is a Q-point of the corresponding variety
Xp.

If all of the bilinear forms By,...,B4 have full rank, then by the
assumption that H(Q) is not empty, we may choose a different basis for
our linear system that includes a matrix that does not have full rank.
Hence, Xp(Q) # 0.

Now suppose Xp(Q) # (. Then there exist v, w € ]P’a so that wB;v = 0 for

all i. The five vectors B;v are contained in the 4-dimensional space w* and
are therefore linearly dependent. Thus there exists a linear combination
of the B; where v is contained in its kernel, and so it does not have full
rank. O
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APPENDIX A. THE BRAUER GROUP OF
HoSONO AND TAKAGI’S THREEFOLD
BY NICOLAS ADDINGTON

In [HT'16], Hosono and Takagi constructed a derived equivalence between
a pair of Calabi—Yau threefolds X and Y with 71(X) =Z/2 and m1(Y") =0,
and an explicit Brauer class of order 2 on Y. In [Add17] I showed that this
derived equivalence and a little topological K-theory yield an exact sequence
0—2Z/2— Br(Y) — Br(X) — 0.
The purpose of this appendix is to prove:
Proposition A.1. Br(X) =0, and hence Br(Y') = Z/2.

First recall the construction of X. We choose 5 symmetric bilinear forms
on C?, which determine five divisors of type (1, 1) in P*xP*, symmetric under
the action of G := Z/2 that exchanges the two factors, and let X c P* x P*
be their intersection. For generic choices, X is a smooth threefold that does
not intersect the diagonal, so G acts freely on X. Then X := X /G.

Next recall that Br(X) is isomorphic to the torsion subgroup of H*(X,Z),
because H?(Ox) = 0. We will use the Hochschild-Serre spectral sequence
Ey! = H?(G,H(X,Z)) = H""(X,Z),

which is the Leray spectral sequence for the fibration

X > X xgEG~X

l

BG.

Thus we need to compute the G-action on Hi(X, Z) for i = 0,1,2,3. In fact
we only need a little information about H3, which is lucky because it seems
hard to get complete information.

By the Lefschetz hyperplane theorem we have
H{(X,7) = H\(P* x P*,Z) for i < 3,
and similarly with H;. Thus:
H(X,Z) = Z with the trivial G-action.
HY(X,Z)=0.
H?(X,Z) = 7Z? with the G-action that exchanges the two factors.

H?®(X,7Z) is torsion free: by the universal coefficient theorem, the
torsion in H? is isomorphic to the torsion in Ho.

The cohomology of G with coefficients in the trivial module Z is

H*(G,Z) =17, 0, Z/2, 0, Z/2, 0, Z/2, ... .
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With coefficients in the regular representation Z?2, also known as ZG, it is
H*(G,ZG)=17Z, 0, 0, 0, 0, 0, O, ....
This can be found in many textbooks, for example [DF04, §17.2].

Now the E5 page of the spectral sequence is

gt
H¥X,2)¢ 2 7 7 7 72
Z 0 0 0 0 0
0 00 0 0 0
Z 0 7/2 0 Z/2 0 p—

where H3(X,Z)% denotes the invariant submodule of H3(X,Z). This is the
only term that can contribute to H?(X,Z), and it is torsion-free. On the Fj,
page there may be a non-zero differential H3(X,Z)% — Z/2, but its kernel
is still torsion-free. Thus H3(X,Z) is torsion-free, as desired.
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