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Fig. 1. Top left: Our multi-resolution neural material representing Twisted Wool, rendered seamlessly among standard materials using Monte Carlo path
tracing. The neural representation is trained using hundreds of reflectance queries per texel, across multiple resolutions, and is independent of the underlying
input, which could be based on displaced geometry (in this example), fiber geometry, measured data, or others. Top right: The stages of our pipeline:
computing a kernel size based on pixel coverage, evaluating a neural offset module for improved handling of parallax effects, evaluating a neural texture
pyramid to obtain a local feature vector, and applying a small fully-connected neural network to obtain a reflectance value usable in a standard renderer.
Bottom left: Comparison of our result to previous techniques and to a reference path-traced from the ground-truth geometry. Bottom right: Our results
match the reference across resolutions. One additional lighting / camera angle shown.

We propose NeuMIP, a neural method for representing and rendering a
variety of material appearances at different scales. Classical prefiltering
(mipmapping) methods work well on simple material properties such as
diffuse color, but fail to generalize to normals, self-shadowing, fibers or
more complex microstructures and reflectances. In this work, we generalize
traditional mipmap pyramids to pyramids of neural textures, combined with
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a fully connected network. We also introduce neural offsets, a novel method
which enables rendering materials with intricate parallax effects without
any tessellation. This generalizes classical parallax mapping, but is trained
without supervision by any explicit heightfield. Neural materials within our
system support a 7-dimensional query, including position, incoming and
outgoing direction, and the desired filter kernel size. The materials have small
storage (on the order of standard mipmapping except with more texture
channels), and can be integrated within common Monte-Carlo path tracing
systems. We demonstrate our method on a variety of materials, resulting
in complex appearance across levels of detail, with accurate parallax, self-
shadowing, and other effects.

CCS Concepts: « Computing methodologies — Rendering; Ray tracing;
Neural networks; Image processing.

Additional Key Words and Phrases: materials, BTF, neural, mipmap, multi-
resolution
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1 INTRODUCTION

The world is full of materials with interesting small-scale structure:
a green pasture consisting of millions of individual blades of grass,
a scratched and partially rusted metallic paint on a car, a knitted
sweater or a velvet dress. The underlying mesostructure and mi-
crostructure phenomena are wildly variable: complex surface height
profiles, fibers and yarns, self-shadowing, multiple reflections and
refractions, and subsurface scattering. Many of these effects vary at
different levels of detail: for example, we can see individual fibers of
a fabric when we zoom in, but they morph into yarns and eventually
disappear when we zoom out.

While computer graphics has made great strides in modeling
these phenomena, this is usually at the cost of large computational
expense and/or loss of generality. Many previous approaches were
designed for a specific material at a particular level of detail, and
evaluating those methods over a large patch becomes either slow or
results in artifacts. In essence, when we zoom out, we integrate over
a given patch. Theoretically, this can be achieved using Monte Carlo
integration techniques by evaluating a large number of samples of
the patch. However, the variance of such an estimator grows with
the size of the patch, and the method quickly becomes impractical,
requiring large effort to compute a function that typically becomes
simpler under zoomed-out viewing conditions. Traditional mipmap
techniques [Williams 1983] can erroneously average parameters
such as normals that influence the final appearance non-linearly.
A universal method for prefiltering a material (that is, finding the
integral of the patch of material microstructure covered by a pixel)
has remained a challenge, despite some methods that address this
problem for specific kinds of specular surfaces [Dupuy et al. 2013;
Jakob et al. 2014] and fabrics [Zhao et al. 2016].

Our goal is to develop a neural method to accurately represent a
variety of complex materials at different scales, train such a method
on synthetic and real data, and integrate it into a standard path-
tracing system. Our neural architecture learns a continuous variant
of a bidirectional texture function (BTF) [Dana et al. 1999], which we
term multi-scale BTF (MBTF). This is a 7-dimensional function, with
two dimensions each for the query location, incoming and outgoing
direction, and one extra dimension for the filter kernel size. This
framework can represent a complex material (with self-shadowing,
inter-reflections, displacements, fibers or other structure) at very
different scales and can smoothly transition between them.

Inspired by the mipmapping technique, we propose NeuMIP, a
method that uses a set of learned power-of-2 feature textures to
represent the material at different levels, combined with a fixed
per-material fully connected neural network. The network takes as
input the trilinearly interpolated feature vector queried from the
texture pyramid, along with incoming and outgoing directions, and
outputs a reflectance value.

We also introduce a neural offset system, which allows us to
efficiently represent materials with prominent non-flat geometric
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features. This is achieved by adjusting the texture query location
through a learned offset, resulting in a parallax effect. This allows
the rendering of intricate geometry without any tessellation. We
obtain the appearance of a non-flat material without the cost of
constructing, storing and intersecting the displaced geometry of the
material.

Because our method can represent a wide variety of materials
using the same architecture, adding support for a new material
becomes a simple matter of creating a dataset of random material
queries and optimizing the feature textures and network weights.
This typically takes only about 45 minutes on a single GPU for 5122
resolution of the bottom pyramid level, which is easily more efficient
than explicitly generating or acquiring a full high-resolution BTF.
As opposed to an explicit BTF, our representation only requires
storage on the order of traditional mipmapped texture pyramids
(typically with 7 instead of 3 channels per texel), while enabling
easy prefiltering and multiscale appearance.

Recent related works [Rainer et al. 2020, 2019] also use a neural
network to efficiently compress BTFs, and we build upon these
methods. However, they do not support prefiltering with arbitrary
kernel sizes. They also do not have an equivalent of our neural offset
technique, limiting the methods to mostly flat materials. Finally, an
advantage of our method is that no encoder needs to be trained,
and as a result we do not need high-resolution BTF slices as inputs,
instead only requiring about 200-400 random BTF queries per texel
to train a material model; our decoder network is small and fast.

The major contributions of this work are as follows:

o A neural method which can represent a wide variety of geo-
metrically complex materials at different scales, trained from
random queries of the continuous 7-dimensional multiscale
BTF. These queries can come from real or synthetic data.

o A neural offset technique for rendering complex geometric
appearance including parallax effects without tessellation,
trained in an unsupervised manner.

o Ability to learn appearance from a small number of queries
per texel (200-400), due to an encoder-less architecture.

NeuMIP can be integrated into a Monte Carlo rendering engine,
since each material query can be evaluated independently, allowing
for light transport between regular and neural materials as shown
in Figure 1.

2 RELATED WORK

In this section, we will briefly review previous work related to
material representation and the use of deep learning in rendering.

Prefiltering and mipmapping. Efficiently rendering objects at dif-
ferent scales is one of the fundamental problems of computer graph-
ics. A key challenge is efficiently finding an integral of a patch of
the surface of the material, which is covered by a pixel. An overview
of prefiltering methods was presented by Bruneton [2011]. Williams
[1983] proposed the mipmap technique to create a pyramid of pre-
filtered textures; this is a standard method found in most rendering
engines. However, the prefiltering problem becomes challenging
if we drop the assumption of flat and rough materials. Many tech-
niques were proposed over the years to address these shortcomings;



however, the solutions tend to be approximate and/or focus on spe-
cial cases or specific materials. Becker and Max [1993] introduced a
method to smoothly blend between a BRDF, bump mapping, and dis-
placement mapping. Han et al. [2007] use spherical harmonics and
spherical vMFs to prefilter normal maps. Olano and Baker [2010]
introduced LEAN mapping for filtering bump maps and normal
maps. Dupuy et al. [2013] improve upon LEAN mapping to prefilter
displacement mapped surfaces. Kaplanyan et al. [2016] propose a
real-time method for prefiltering of normal distribution functions.
Wu et al. [2019] make further improvements in multi-resolution
rendering of heightfield surfaces, taking into account shadowing
and inter-reflection.

Parallax mapping [Kaneko et al. 2001] is a classic technique for
improving bump and normal mapping by adding an approximate
parallax effect. The method works by computing a texture space
offset based on the local height and normal value. Other parallax-
aware methods [Oliveira and Policarpo 2005; Wang et al. 2005] can
also enhance the geometry details in rendering. Our neural offset
technique is inspired by these methods, but is learned unsupervised;
that is, we do not feed any heightfields or normals into either the
training or rendering, and in fact support materials where such
heightfields/normals are not precisely defined.

Bidirectional texture functions. Dana et al. [1999] introduced the
notion of the bidirectional texture function (BTF), a 6D function de-
scribing arbitrary reflective surface appearance. Given 2D location
coordinates, incoming and outgoing directions, the BTF outputs a
reflectance value. While prefiltering BTFs by mipmapping is theo-
retically simple, storing a discretized 6D function requires a large
amount of memory. Therefore, many methods were developed to
minimize storage requirements. A common solution [Koudelka et al.
2003; Miiller et al. 2003] is to use PCA or clustered PCA to compress
the function. A comprehensive overview of different techniques
was published by Filip and Haindl [2008].

Neural reflectance. Recently, Rainer et al. [2019] proposed to use
an autoencoder framework to compress BTF slices per texel (also
termed apparent BRDFs or ABRDFs); the decoder takes incom-
ing/outgoing directions as input in addition to the latent vector,
and the autoencoder is trained per BTF. Later, they extended the
work by unifying different materials into a shared latent space, so
only a single autoencoder needs to be trained [2020]. Other works
[Maximov et al. 2019; Rematas et al. 2016] have applied CNNs to
regress 2D or 4D maps that express the appearance of real objects.
Within the context of complex specular appearance, [Kuznetsov et al.
2019] used Generative Adversarial Networks (GANSs) to generate
reflectance functions perceptually similar to synthetic or measured
input data, and rendered them using partial evaluation of the gen-
erator network. Inspired by these methods, we extend the neural
textures to multi-resolution materials, and introduce the neural off-
set module, which greatly improves the quality of non-flat materials;
we also find that neither an encoder nor a discriminator is needed
in our case, and direct optimization of the feature textures works
well.

Other neural material methods. Yan et al. [2017] use a neural
network as a mapping function to convert fur parameters into a
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Table 1. Notation used in the paper.

Symbol | Domain Definition

H Hemisphere

wj H Incoming direction

wo H Outgoing direction

u R? Surface position

o R* Radius of query kernel

I R Level of detail (log. of o)

s R Discrete level of detail

v R Feature vector

7 R¢ Feature v. for neural offset
¢, Cco R Feature vec. channel num.
Ts R? > R€ Neural texture lookup

M R% R*,H,H — RGB | Multiscale BTF

P R2 R* - RC Neural Texture Pyramid
F R™, H,H — RGB Fully connected module
(0] RZ H — R? Neural offset module

Toff R? — R® Neural offset texture

Foi RYLH - R Neural offset MLP

H H,R — R? Ray depth to offset

participating media, simplifying the simulation. A neural network
can also be used to accelerate the rendering in an unbiased way.
Mueller et al. [2019; 2020] presented path-guiding methods which
learn a sampling distribution function for rendering using normal-
izing flow networks. Nalbach et al. [2017] proposed deep shading,
a technique which uses a CNN to achieve screen-space effects like
ambient occlusion, subsurface scattering etc, from simple feature
buffers. Thies et al. [2019] introduced the idea of a neural texture
and using it inside deferred rendering.

Recently, Mildenhall at el. [2020] introduced neural radiance fields
(NeRFs), a view synthesis framework based on differentiable volume
rendering, which can fit the geometry and outgoing radiance of 3D
objects or entire scenes from a number of training views, encoding
the entire appearance in a fully-connected network (MLP). This
work has stimulated a large number of follow-up efforts, including
one [Bi et al. 2020] that uses a parametric reflectance model to rep-
resent volumetric appearance with an MLP. Our problem is simpler
in that we only focus on material rather than geometric shape; how-
ever, it is more complex in other ways, as we support relighting
and multi-resolution viewing, and require much faster queries to
integrate in a full rendering system. We do not encode the entire
reflectance in a single large MLP, and instead use more structure: a
feature texture pyramid and a neural offset module combined with
a much smaller MLP.

3 NEURAL MBTF REPRESENTATION

In this section we define the multi-resolution BTF (Sec. 3.1), and
discuss our neural architecture (Sec. 3.2 and 3.3). We introduce a
baseline version of our neural MBTF in Sec. 3.2 and then present
our full model in Sec. 3.3 with a neural offset technique. In later
sections, we will describe how to train our models and how to use
them for rendering. Our notation is summarized in Table 1.
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Fig. 2. Overview of our neural architecture. Left: The neural offset module
(more detail in Fig. 4) takes a uv-space location and incoming direction, and
predicts a new (offset) uv-space location to simulate parallax effects. Middle:
The neural texture pyramid is queried using trilinear interpolation to obtain
a 7-channel feature vector. Right: The feature vector, with incoming and
outgoing directions, is fed to a material-specific multi-layer perceptron,
which predicts the RGB reflectance value.

3.1 Multi-resolution BTF

Accurately computing the reflected radiance on a material surface
with complex microgeometry — usually modeled by displaced ge-
ometry, fibers, volumetric scattering, etc. — is highly expensive and
requires tracing complex geometry at a microscopic scale. Our ap-
proach is to precompute the reflectance of the material for a given
location u, radius of the footprint kernel o, incoming direction w;,
and outgoing direction w,. We denote this function M (u, 0, @i, @),
and call it a multi-resolution bidirectional texture function (MBTF).
Below we define the MBTF more precisely.

Let G(y, 0;x) be a normalized 2D Gaussian with mean p and
standard deviation o, as a function of x. Our MBTF is defined as
follows:

M(u, 0,wi, wo) =/ G(u,0;x)B(X, Wi, wo) dXx, (1)
RZ

where B(u, w;j, o) can be seen as a traditional BTF at the finest ma-
terial level. In other words, the MBTF value is the weighted average
over the Gaussian kernel centered at u of the exitant radiance in
direction w,, assuming the material is lit by distant light of unit
irradiance from direction w;.

Such an MBTF can be captured from real data, which we also
support; however, in most of our results, we use Monte Carlo path
tracing to define it using synthetic microstructure modeled on a
reference plane. We compute the value B(u, w;i, w,) by tracing a
standard path estimator from direction —w, towards u, assuming
lighting from a distant light from direction w; with unit irradiance
onto the reference plane. We use a distant light with a finite smooth-
ing kernel in directions, to improve convergence of the path tracer
and make multiple importance sampling applicable.

Note that our definition generalizes the standard radiometric
definition of a BRDF, which is defined as outgoing radiance per
unit incoming irradiance. Therefore, if the synthetic microstructure
consists of a simple plane with a homogeneous BRDF, our BTF and
MBTF will be equal to that BRDF for any position and kernel size.
Also note that the BTF and MBTF will in general not be reciprocal
due to occlusions and multiple light bounces.

3.2 Neural MBTF baseline

The 7-dimensional MBTF is too prohibitive to store directly. Never-
theless, this function (depending on the material) has redundancies,
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which can be captured by a well-chosen neural network architecture.
We propose a baseline neural architecture that can already model
many complex materials. In particular, our baseline architecture
consists of a neural texture pyramid P that encodes complex multi-
scale spatially-varying material appearance and a material decoder
network F that computes directional reflectance from the pyramid.
This neural MBTF is expressed by

M(u, 0, wi, wo) = F(P(u,0), w;, wo), (2)

where P(u, 0) represents a neural feature lookup from the neural
pyramid P and the decoder network F evaluates the final reflectance
from the neural feature given input directions (w; and wy).

Neural texture pyramid. Instead of having one single neural tex-
ture of dimension 2K x 2k x ¢ (where k is some positive integer and
¢ the number of channels), we leverage a neural texture pyramid
P = {Ts}, consisting of a set of neural textures T;. Each T has a
size 25 X 2% X ¢, where each texel contains a c-channel latent neural
feature, s denotes the discrete level of details, and we let 0 < s < k.
Such a pyramid structure enables encoding complex material ap-
pearance at multiple scales. This is similar to standard mipmapping
for color (or BRDF) textures; however, our neural pyramid models
challenging appearance effects caused by complex microgeometry.
In addition, unlike traditional mipmaps, our per-level neural textures
are independent from one another: there is no simple operation that
produces all texture levels from the finest one. Each neural texture
in the set is independently optimized, which ensures that the MBTF
can represent appearance for the material at all levels.

We utilize trilinear interpolation to fetch a neural feature P(u, o)
atlocation u and (continuous) level . Much like in classical mipmap-
ping, we use standard bilinear interpolation to get features for the
spatial dimensions of the location coordinate u, followed by linear
interpolation in the logarithmic space for the scale dimension, since
the scales express powers of 2. Specifically, a neural feature v at
(u, o) is computed by:

v =P(u,0) = wiT|;)(0) + w2T (w), ®3)

where [ =log,(0), w1 = ([I1-1), wo = (I-1]) and | ], [I] are floor
and ceiling operations. Ts(u) is the bilinearly-interpolated neural
texture lookup from the level s with resolution 2° x 2% with infinite
tiling (wrap-around).

Material decoder. We design our material decoder F as a multi-
layer perceptron (MLP) network to regress the final reflectance
from the neural feature queried from the neural pyramid. The input
of this network contains ¢ + 4 values, consisting of ¢ values from
neural textures and 4 values from the directions (encoded as 2D
points on the projected hemisphere). One of the design goals of our
architecture is fast evaluation. Therefore, our multi-layer perceptron
consists of only 4 layers. Each intermediate layer has 25 output
channels. The final 3-channel output is used as the RGB reflectance
value of the material, with an additional log(x + 1) compression
applied to better learn high dynamic range. We use ReLU as the
activation function for all layers, including the final layer where
it clamps the final output to be non-negative. Note that, unlike
[Thies et al. 2019] that uses a CNN to process neural textures for
global context reasoning in scene rendering, our goal is modeling
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Fig. 3. An intuition for the fixed function stage of the neural offset module.
Instead of predicting the uv-space offset directly, we predict the depth under
the intersection with the reference plane, and convert it to the offset by
assuming a locally flat surface. Note however that no actual heightfield is
used to supervise the method, and for some materials (e.g. volumetric or
made from fibers) such a heightfield is not even precisely defined.
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Fig. 4. Details of the neural offset module, which is shown in blue in Fig. 2.
A bilinear query of the neural offset texture results in a feature vector, which
(together with incoming direction) is fed into a multi-layer perceptron. The
resulting scalar value is interpreted as a ray offset, which is converted into
a 2D offset in texture space by the fixed function stage.

realistic material with locally complex microgeometry. Therefore,
we enforce that our neural textures express the spatial information,
encoding complex microgeometry effects; thus a light-weight MLP
is able to efficiently decode the texture for our task and is also fast
to evaluate.

3.3 Neural MBTF with Neural Offset

Our baseline neural MBTF can already model many real materials;
however, it is very challenging for this network to handle highly
non-flat materials that have significant parallax and occlusion ef-
fects. Although, by increasing its capacity, a big enough neural
network can potentially approximate any function, this is not ideal,
as bigger networks lead to longer rendering times; they also result in
a slower training rate as the neural texture needs to learn correlated
information across multiple pixels for different camera directions.
We have also observed poor angular stability when learning non-flat
materials in a generic way.

To improve results on complex non-flat materials, we introduce a
neural offset module: a network that predicts a coordinate offset for
the feature texture lookup. Instead of directly using the intersection
location u € R2, we use the network module O(u, wo) to calculate
a new lookup location:

Upew = U+ O(u, wo) (4)
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This is shown in Fig. 3. With the help of neural offsets, we can
slightly adjust the lookup location of the texture depending on the
viewing direction, achieving effects such as parallax.

Neural offset. Instead of directly regressing a 2D offset, we train a
network to regress a 1D scalar value r representing the ray depth at
the intersection which can be easily turned into the final 2D offset
given the view direction w, (see Fig. 3). This makes our model
more geometric-aware, easing the neural offset regression task. In
particular, the neural offset module consists of 3 components: a
neural offset texture Tog, an MLP Fg that regresses the ray depth
r from Ty, and a final step H (a fixed function) that outputs the
offset (See Fig. 4). The design of using a neural texture and an MLP
is similar to our baseline MBTF network described above, except
the texture look-up is just bilinear (no pyramid). Specifically, the
ray depth r is computed by

r= Foff(‘/’s o) = Fop(Tog(u), o), (5

where ¢ = Tg(u) is the latent feature vector lookup in Ty on the
initial location u. The MLP Fg takes the latent vector ¢ and the
viewing direction w, as input; it again consists of 4 layers, and
each layer outputs 25 channels (except for the last one), with ReLU
activation functions in between. Given the estimated ray depth r,
the offset is computed by

H(r’ (1)0) = ((l’xs {‘)y)s (6)

max(wy, .6)

where wy, y, @, are the components of w,. Therefore, the final
form of the neural offset query is:

Upew = U+ H(r,wo) =u+ (wx, wy). (7)

max(wy, .6)

The new lookup location upey can now be used in place of u to
lookup a latent vector in the neural texture pyramid in eq. 2. Note
that the network can also learn the 2D offset function O(u, w,)
directly, but in our experiments the result was worse without the
constraint of a hard-coded function H(r, ). Figure 5 visualizes the
predicted offset learned by the module on a highly non-flat material.

Full neural MBTF representation. Our full neural representation is
modeled by prepending the the neural offset module to our baseline
neural MBTF network. Basically, we use a neural offset module to
get a new location upew (Eq. 7) by translating the original input u.
Then we use that upew to query a feature vector from the neural
texture pyramid P (eq. 3). Finally, we use an MLP material decoder
F, in conjunction with incoming/outgoing directions, to get the final
reflectance value. Our full neural MBTF can be described as follows:

M(u, 0,0, wo) = F(P(u+ O(u,wy), 0), wi, wo). (8)

This whole framework is fully differentiable, enabling end-to-end
training that simultaneously optimizes the neural offset, the multi-
scale pyramid, and the decoder. We train the neural offset module in
an unsupervised way. We do not provide any ground truth offsets;
in fact, for some materials (e.g. volumetric or fiber-based) there may
be no clear surface and therefore no well-defined correct offset. The
end-to-end training allows our full model to jointly auto-adjust the
multiple neural components and leads to the best visual quality it
can achieve. Please refer to section 4 for the training procedure.
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(d) (e)

Fig. 5. Neural offset visualization on the turtle shell material (which is shown in Section 7 and the supplementary video). (a) The learned neural offset feature
texture (3 out of 7 channels shown as RGB colors). (b-e) The computed 2D offset, color-coded using red/green for the two components. The blue circle shows

the incoming ray direction on a projected hemisphere.

4 DATA GENERATION AND TRAINING

Synthetic data preparation. We generate synthetic MBTF data
by first constructing the microgeometry, and using a CPU-based
standard path tracer with a custom camera ray generator to render
the required queries; we use smoothed directional lighting with
unit irradiance on the reference plane, to ensure valid radiometric
properties. In most cases, the microgeometry is constructed by
meshing and displacing a high-resolution heightfield texture, and
driving other reflectance properties (albedo, roughness, metallicity,
micro-scale normal) from additional textures. The synthetic MBTF
data is generated in about 30 minutes on a 32-core CPU, using 64
samples per query in a commercial rendering engine. In the basket
weave example in Fig. 12, we use a fiber-level representation without
any meshed surface, applying the fiber shading model of Chiang
et al. [2016]; this material is precomputed using the PBRT renderer
[Pharr et al. 2018].

Training. Our neural module is fully differentiable and can be
trained end-to-end. As the input to the module we provide 7D
queries consisting of the light direction, camera direction, uv-location
and kernel radius. The network produces RGB colors for the given
queries in a forward pass, and back-propagation updates the net-
work weights and neural textures. One training batch consists of
around a million queries (22°); this number is much larger than the
number of input MBTF queries per texel, so one batch updates many
texels. We train the network until convergence (typically 30000 iter-
ations). The training time is about 45 minutes for a 5122 maximum
resolution, and about 90 minutes for a 10242 maximum resolution,
using a single NVIDIA RTX 2080 Ti GPU.

If we optimize neural feature vectors individually, this can result
in noisy neural textures. As a result, objects rendered with such
materials will have a noisy appearance, reminiscent of Monte Carlo
noise. This is especially true for the neural offset texture. We have
developed a technique to avoid those problems. During training,
we apply a Gaussian blur with initial standard deviation of o; = 8
texels to the neural textures. As the training progresses, we relax o

exponentially over time with a half life h = 3333 iterations: o(t) =
~t/h
oj -2 t/h
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5 RENDERING

Our neural materials can be integrated into Monte Carlo rendering
engines, so that light can seamlessly interact across regular objects
and objects with neural materials. The results shown in the paper use
an implementation on top of the Mitsuba rendering engine [Jakob
2010]. If a surface with our neural material is hit, we need to evaluate
the neural module. We also need to sample an outgoing direction
for indirect illumination. For simplicity, we sample indirect rays
according to the cosine-weighted hemisphere, which is sufficient
for our current examples. Note that for each shading point, we need
to evaluate the material up to twice: for the light sample and for the
BRDF sample.

There are multiple choices for implementing our neural module
in a practical rendering system. To integrate with Mitsuba, our
solution is to reuse the PyTorch code to ensure exactly matching
outputs between training and rendering. We use material query
buffers: in our integrator, we trace one bounce at a time. When
encountering an intersection, we put the query in the buffer, and
continue tracing. Finally, we send the whole buffer to PyTorch/GPU
for batch evaluation.

We also implemented our method in an interactive path-tracer
using the Nvidia OptiX framework. We re-implemented our network
inference directly using the CUDA programming language (not
using any external inference libraries). We call the MBTF evaluation
function for each surface shading event directly, with no batching.

6 PERFORMANCE

A single evaluation of our method on a 19201080 image (one query
for every pixel) on an RTX 2080 Ti takes only 5ms (compared to
92ms for Rainer et al. [2019]). The bulk of the time is taken by fully
connected layers. Please refer to Fig. 9 for the timing breakdown of
our method. The method can be divided into 2 stages. During the first
stage, we perform the neural offset module and get the latent vector
v, which we can cache. This is because the first stage requires only
camera direction and is independent of the light direction. During
the second stage, we just evaluate the fully connected network, F
for a given light direction. So, if we want to evaluate the function
on multiple lights, we need to reevaluate only the second stage.
Our OptiX version achieves real-time performance of 60 frames
per second (one path per pixel per frame) at 1920 X 1080 resolution.
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Fig. 6. Comparison. We show a comparison of several different methods: Rainer et al. [2020], Rainer et al. [2019], our baseline method (without neural offset),
our full method, and reference computed by path-tracing of synthetic material microstructure. The materials are mapped to a plane, viewed at an angle and lit
by a single light slightly to the left. Our baseline method already outperforms Rainer et al. Rainer et al. [2020] and [2019]. Our neural offset adds even better
handling of parallax effects. The small insets in “Ours” show the color-coded 2D neural offset. The match with reference is close, with a minor loss in shadow
contrast (the hard shadows form a reflectance discontinuity which is hard to learn perfectly).
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Table 2. Errors for images in Fig. 6. Note that both our per-pixel MSE and perceptual LPIPS scores are consistently better.

MSE x107* LPIPS
Our Rainer19 Rainer20 || OQur Rainer19 Rainer20
w/o /our /our w/o /our /our
n.o. | Our |Rainer19| ratio |Rainer20| ratio n.o. | Our |[Rainer19| ratio |Rainer20| ratio

Wool Twisted || 11.31|3.98| 12.79 3.21 19.03

Wool Straight || 1.04 |0.39 2.30 5.90 1.92
Turtle Shell || 3.35 | 1.31 2.83 2.16 4.84
Cliff Rock || 6.00 |2.00 7.89 3.94 10.26

Insulation Foam || 9.18 [3.90| 10.04 2.57 21.75

Table 3. MSE Errors (scaled x1073) for images rendered across multiple
levels of detail, shown in Fig. 11. Note that the errors are generally becoming
lower for more distant zooms, i.e. larger filter kernels.

MaterialLoDHO‘1‘2‘3‘4‘5‘6‘7

Wool Twisted |{3.98(2.10|1.47|1.07{0.74|1.16|1.17 | 1.08
Wool Straight [[0.39{0.16 {0.11{0.080.09|0.05{0.03 |0.10
Turtle Shell [ 1.31]0.92{0.70{0.67|0.88 {0.82{0.55|0.48
Cliff Rock |[2.000.87]0.63]0.51{0.42|0.32|0.24{0.10
Insulation Foam |[3.90{1.64|1.20{0.86(0.76 |0.55]0.57 | 0.49

Table 4. The total number of network parameters. For fair comparison,
we only count the number of weights in decoders for both Rainer et al’s
methods, as encoders are not needed for deployment in a rendering system.
We use 7 channels per texel for both the neural offset texture and the feature
texture pyramid.

H Ours ‘ Rainer19 | Rainer20

# of network weights || 3332 | 35725 38269
Ratio of weights vs ours || N/A | 10.7 11.5
# of texture channels || 14 14 38

We have not used any specialized hardware like Tensor Cores, which
might improve the performance further.

7 RESULTS

In this section, we showcase the abilities of our neural method to
represent and render a range of material appearances, with training
data coming from different input representations: displaced height-
field geometry with varying reflectance properties, fiber geometry,
and measured data.

Comparisons. In Figure 6, we show results rendered on a flat
plane, with camera and directional light at an angle. We compare
several different methods: Rainer et al. [2019], Rainer et al. [2020],
our baseline method (without neural offset), our full method (with
neural offset), and a ground truth computed by path-tracing of
the synthetic material structure. The materials are mapped to a
plane, viewed at an angle and lit by a single light slightly to the left.
Our baseline method already outperforms encoders of Rainer et
al. [2019] and Rainer et al. [2020] methods, despite being trained
with fewer BTF queries. We believe this is due to our decoder-only
architecture, which can adapt to the material and benefits from a
stochastic distribution of the input BTF queries, and our improved
training techniques (especially the progressively decaying spatial
Gaussian blur). The multi-resolution nature of our solution also
helps. On the other hand, Rainer et al. [2020]’s solution has the
benefit of very fast encoding in case the queries are already in the
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4.78 0.33310.151| 0.376 2.49 0.501 3.32
4.93 0.236 {0.112 | 0.350 3.12 0.403 3.59
3.70 0.527 (0.161| 0.427 2.65 0.477 2.96
5.12 0.316(0.142 | 0.389 2.75 0.473 3.35
5.57 0.425(0.196 | 0.472 2.41 0.561 2.87
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Fig. 7. Real BTF data. Our method is trained with a random set of BTF
queries, and these can come from any source. We also observe good results
when applying our method to real BTF data acquired from physical material
samples.



Fig. 8. Examples of our method using real BTF data and rendered on a
non-flat cloth shape. Note that we use the original raw datasets, which are
not tileable.

Neural Offset

Tq(W) F (,0)H(,r) P(u_ 0)

F(vw,w,)
0.3 MS 23 MS 0.3 MS 2.3 MS
I 1 | |
Stage 1 Stage 2

Fig. 9. Timing breakdown of the evaluation of our network on a 1920x1080
image. In total, our network takes 5ms to evaluate. The green color indicates
the neural texture lookup section and the orange color indicates the MLP
evaluation. Our network can be split into two stages. Stage 1 is independent
of the light direction. So, for a different light direction, only Stage 2 needs
to be reevaluated.
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Fig. 10. Ablation studies. Left: the ratio of MSE errors of a given network
and the default network with respect to the number of channels in two
neural textures. We use two 7 channel textures in the rest of the paper. Right:
the ratio of MSE errors of a given network and the default network with
respect to the number of layers in the network. We use 4 layers in the rest
of the paper.

required uniform format, and its performance could likely improve
if the encoder was retrained on a different distribution of materials
that matches our examples more closely.

Our neural offset adds even better handling of parallax effects
on top of our baseline result. The small insets in “Ours” show the
color-coded 2D neural offset. The match with reference is close,
with a minor loss in shadow contrast (the hard shadows form a
reflectance discontinuity which is hard to learn perfectly).

Real BTF results. Since our method is trained with a random set
of BTF queries, these can come from any source. While we mostly
focus on synthetically generated BTF queries, we also support fitting
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Fig. 11. Materials rendered at the different level of details. Because the
camera is at a 45°, the actual LOD of the image is slightly higher at the tops
of the images and slightly lower at the bottoms of the images.

real BTF data. We show this on the UBO 2014 dataset [Weinmann
et al. 2014] (acquired from physical material samples). We fit the
original raw data, without explicitly extracting a heightfield from it
(which is essentially done implicitly by our neural offset approach).
See Figure 7 for the results and the MSE errors and Figure 8 for
examples of our model applied to non-flat geometry.
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Quantitative evaluation. We also measure the numerical error
for images in Fig. 6 when compared to the reference, both using a
per-pixel MSE (Mean Squared Error) and perceptual LPIPS (Learned
Perceptual Image Patch Similarity) scores. Our scores, shown in
Table 2, are consistently better than both Rainer et al. [2019] and
Rainer et al. [2020] .

Multiresolution results. In Table 3, we also report the MSE scores
for images rendered across multiple levels of detail, shown visually
in Fig. 11. We observed that with higher (coarser) levels in the
multiresolution hierarchy, the errors actually tend to decrease. This
is because materials at a coarse level of detail tend to have fewer high-
frequency details. As a result, it becomes even easier to optimize
corresponding feature vectors from the neural texture pyramid and
the network at those levels of detail.

Network Size. We also compare our neural network sizes to Rainer
etal. [2020;2019]’s in Table 4. Not only does our method have smaller
errors, it has 10-11 times fewer weight parameters compared to the
decoders in Rainer et al. [2020; 2019]. Our method also uses less
than half the number of channels for the neural textures Rainer
[2020]. This is because our decoder does not require universality,
and because we divide our network into two stages via a neural offset
module, increasing the network representative power compared to
a simple MLP architecture.

Ablation Studies. While designing our architecture, we consid-
ered not only the quality of the results but the speed and the storage
requirements of our network. As Fig. 10 demonstrates, the current
design achieves a good trade-off. We use 2 neural textures with 7
channels each throughout the paper. Using fewer channels results
in a much higher error and using more channels results in negligi-
ble improvements. Similarly, we chose to use MLPs with 4 layers.
Using fewer layers results in much higher error. We also evaluated
the importance of the proposed neural offset module as discussed
previously (see Fig. 6).

Additional renderings. In Figure 12, we show several fabric-like
materials rendered at multiple levels of zoom. The top three fabrics
are modeled as heightfields with spatially varying reflectance prop-
erties. The textures driving the height and reflectance are from the
Substance Source library [Adobe 2021], though any textures can
be used. The last Basket Weave example is constructed from yarns
using actual fiber geometry shaded with the model of Chiang et al.
[2016] and does not use a heightfield. We show several camera and
light directions in the right column. In Figure 13, we show a further
selection of materials rendered with our method, showing different
camera views and light directions. Please make sure to view their
animated versions in the supplementary video, which is important
to fully appreciate parallax/occlusion effects.

Limitations. One limitation of our current implementation is sim-
ple importance sampling. For more specular materials, this could be
extended by fitting the parameters of a parametric pdf model (e.g.
a weighted combination of a Lambertian and microfacet lobe of a
given roughness) per texel. The benefit of this solution would be
that no additional neural network is required to sample, and path
continuations can be decided independent of network inference.
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Another limitation is that very specular (e.g. glinty) materials would
be hard to handle without blurring; this could be addressed by in-
serting randomness into our decoder, to synthesize some specular
detail instead of attempting to fit it exactly.

8 CONCLUSION AND FUTURE WORK

We presented a neural architecture that can be trained to accurately
represent a variety of complex materials at different scales. Our
neural architecture learns a multi-scale bidirectional texture func-
tion (MBTF): a 7-dimensional function, with two dimensions each
for the query location, incoming and outgoing direction, and one
dimension for the filter kernel radius. As part of the architecture,
we introduced a neural offset technique for rendering complex geo-
metric appearance including parallax effects without tessellation,
trained in an unsupervised manner. Our encoder-less architecture
can be trained from a small number of random queries per texel
(200-400). These queries can come from real or synthetic data. We
show a number of results, demonstrating high quality appearance
with accurate displacement, parallax, self-shadowing, and other ef-
fects. Due to our compact network architecture, we even achieve
real-time performance in our OptiX implementation. We believe this
approach will stimulate further research on neural representations
of materials that are difficult or expensive to handle with classical
methods.

The most exciting future work avenue, in our opinion, is to fully
explore the set of material structures that can be procedurally gen-
erated as inputs to our method. Other interesting directions include
more advanced importance sampling (e.g. by fitting multi-lobe para-
metric distributions per texel); the parameters of such a distribution
could be stored in small additional textures. A straight-forward ex-
tension would be to support semitransparent materials by predicting
alpha transparency in addition to reflectance. Yet another direction
would be to make the method support glinty specular effects, per-
haps by inserting an additional random vector into the decoder, and
training it with a GAN loss to generate stochastic detail matching
the input data distribution.
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