
Journal of Artificial Intelligence Research 72 (2021) 215-249 Submitted 01/2021; published 10/2021

A Theoretical Perspective on Hyperdimensional Computing

Anthony Thomas ahthomas@eng.ucsd.edu

Sanjoy Dasgupta dasgupta@eng.ucsd.edu

Tajana Rosing tajana@eng.ucsd.edu

Department of Computer Science

University of California, San Diego

San Diego, CA 92093, USA

Abstract

Hyperdimensional (HD) computing is a set of neurally inspired methods for obtaining high-
dimensional, low-precision, distributed representations of data. These representations can
be combined with simple, neurally plausible algorithms to effect a variety of information
processing tasks. HD computing has recently garnered significant interest from the com-
puter hardware community as an energy-efficient, low-latency, and noise-robust tool for
solving learning problems. In this review, we present a unified treatment of the theoretical
foundations of HD computing with a focus on the suitability of representations for learning.

1. Introduction

Hyperdimensional (HD) computing is an emerging area at the intersection of computer
architecture and theoretical neuroscience (Kanerva, 2009). It is based on the observation
that brains are able to perform complex tasks using circuitry that: (1) uses low power, (2)
requires low precision, and (3) is highly robust to data corruption. HD computing aims to
carry over similar design principles to a new generation of digital devices that are highly
energy-efficient, fault tolerant, and well-suited to natural information processing (Rahimi
et al., 2018).

The wealth of recent work on neural networks also draws its inspiration from the brain,
but modern instantiations of these methods have diverged from the desiderata above. The
success of these networks has rested upon choices that are not neurally plausible, most
notably significant depth and training via backpropagation. Moreover, from a practical
perspective, training these models often requires high precision and substantial amounts
of energy. While a large body of literature has sought to ameliorate these issues with
neural networks, these efforts have largely been designed to address specific performance
limitations. By contrast, the properties above emerge naturally from the basic architecture
of HD computing.

Hyperdimensional computing focuses on the very simplest neural architectures. Typi-
cally, there is a single, static, mapping from inputs x to much higher-dimensional “neural”
representations φ(x) living in some space H. All computational tasks are performed in
H-space, using simple, operations like element-wise additions and dot products. The map-
ping φ is often taken to be random, and the embeddings have coordinates that have low
precision; for instance, they might take values −1 and +1. The entire setup is elementary
and lends itself to fast, low-power hardware realizations.

c©2021 AI Access Foundation. All rights reserved.

Thomas, Dasgupta, & Rosing

Indeed, a cottage industry has emerged around developing optimized implementations
of HD computing based algorithms on hardware accelerators (Imani et al., 2017; Rahimi
et al., 2018; Gupta et al., 2018; Schmuck et al., 2019; Salamat et al., 2019; Imani et al.,
2019). Broadly speaking, this line of work touts HD computing as an energy efficient,
low-latency, and noise-resilient alternative to conventional realizations of general purpose
ML algorithms like support vector machines, multilayer perceptrons, and nearest-neighbor
classifiers. While this work has reported impressive performance benefits, there has been
relatively little formal treatment of HD computing as a tool for general purpose learning.

This review has two broad aims. The first, more modest, goal is to introduce the area
of hyperdimensional computing to a machine learning audience. The second is to develop
a particular mathematical framework for understanding and analyzing these models. The
recent literature has suggested a variety of different HD architectures that conform to the
overall blueprint given above, but differ in many important details. We present a unified
treatment of many such architectures that enables their properties to be compared. The
most basic types of questions we wish to answer are:

1. How can individual items, sets of items, and sequences of items, be represented and
stored in H-space, in a manner that permits reliable decoding?

2. What kinds of noise can be tolerated in H-space?

3. What kinds of structure in the input x-space are preserved by the mapping to H-
space?

4. What is the power of linear separators on the φ-representation?

Some of these questions have been introduced in the HD computing literature and studied
in isolation (Plate, 2003; Gallant & Okaywe, 2013; Kleyko et al., 2018; Frady et al., 2018).
In this work we address these questions formally and in greater generality.

2. Introduction to HD Computing

In the following section we provide an introduction to the fundamentals of HD computing
and provide some brief discussion of its antecedents in the neuroscience literature.

2.1 High-Dimensional Representations in Neuroscience

Neuroscience has proven to be a rich source of inspiration for the machine learning com-
munity: from the perceptron (Rosenblatt, 1958), which introduced a simple and general-
purpose learning algorithm for linear classifiers, to neural networks (Rumelhart et al., 1986),
to convolutional architectures inspired by visual cortex (Fukushima, 1980), to sparse cod-
ing (Olshausen & Field, 1996) and independent component analysis (Bell & Sejnowski,
1995). One of the most consequential discoveries from the neuroscience community, under-
lying much research at the intersection of neuroscience and machine learning, has been the
notion of high-dimensional distributed representations as the fundamental data structure
for diverse types of information. In the neuroscience context, these representations are also
typically sparse.

To give a concrete example, the sensory systems of many organisms have a critical
component consisting of a transformation from relatively low dimensional sensory inputs

216

A Theoretical Perspective on Hyperdimensional Computing

Input Data:
x ∈ X

HD Encoding:
φ : X → H

Memory and
Data Structures ∈ H HD Decoding

HD Algorithms:
Learning/Reasoning

Output

Noise/Corruption:
Δ ∈ H

Entirely in H-space

Mixed in H,X -space

Figure 1: The flow of data in HD computing. Data is mapped from the input space to HD-
space under an encoding function φ : X → H. HD representations of data are
stored in data structures and may be corrupted by noise or hardware failures. HD
representations can be used as input for learning algorithms or other information
processing tasks and may be decoded to recover the input data.

to much higher-dimensional sparse representations. These latter representations are then
used for subsequent tasks such as recall and learning. In the olfactory system of the fruit
fly (Masse et al., 2009; Turner et al., 2008; Wilson, 2013; Caron et al., 2013), the mapping
consists of two steps that can be roughly captured as follows:

1. An input x ∈ R
n is collected via a sensory organ and mapped under a random linear

transformation to a point φ(x) ∈ R
d (d � n) in a high-dimensional space.

2. The coordinates of φ(x) are “sparsified” by a thresholding operation which just retains
the locations of the largest k coordinates.

In the fly, the olfactory input is a roughly 50-dimensional vector (n = 50) corresponding
to different types of odor receptor neurons while the sparse representation to which it is
mapped is roughly 2,000-dimensional (d = 2000). A similar “expand-and-sparsify” template
is also found in other species, suggesting that this process somehow exposes the information
present in the input signal in a way that is amenable to learning by the brain (Stettler &
Axel, 2009; Olshausen & Field, 2004; Chacron et al., 2011). The precise mechanisms by
which this occurs are still not fully understood, but may have close connections to some of
the literature on the theory of neural networks and kernel methods (Cybenko, 1989; Barron,
1993; Rahimi & Recht, 2008).

2.2 HD Computing

The notion of high-dimensional, distributed, data representations has engendered a num-
ber of computational models that have collectively come to be known as vector symbolic
architectures (VSA) (Levy & Gayler, 2008). In general, VSAs provide a systematic way to
generate and manipulate high-dimensional representations of symbols so as to implement

217

Thomas, Dasgupta, & Rosing

cognitive operations like association between related concepts. Notable examples of VSAs
include “holographic reduced representations” (Plate, 1995, 2003), “binary spatter codes”
(Kanerva, 1994, 1995), and “matrix binding of additive terms” (Gallant & Okaywe, 2013).
HD computing can be seen as a successor to these early VSA models, with a strong addi-
tional slant towards hardware efficiency. While our treatment focuses primarily on recent
work on HD computing, many of our results apply to these earlier VSA models as well.

An overview of data-flow in HD computing is given in Figure 1. The first step in HD
computing is encoding, which maps a piece of input data to its high-dimensional representa-
tion under some function φ : X → H. The nature of φ depends on the type of input and the
choice of H. In this review, we consider inputs consisting of sets, sequences, and structures
composed from a finite alphabet as well as vectors in a Euclidean space. The space H is
some d-dimensional inner-product space defined over the real numbers or a subset thereof.
Work in the literature on both HD computing and traditional neural networks has also ex-
plored complex-valued embeddings (Weiss et al., 2016; Parcollet et al., 2019; Zhang et al.,
2016). However, we here focus on the more common case of real-valued embeddings. For
computational reasons, it is common to restrict H to be defined over integers in a limited
range [−b, b]. We emphasize that the dimension of H need not, in general, be greater than
that of X . Indeed, in several cases the encoding methods discussed can be used to reduce
the dimension of the data.

The HD representations of data can be manipulated using simple element-wise operators.
Two common and important such operations are “bundling” and “binding.” The bundling
operator is used to compile a set of elements in H and takes the form of a function ⊕ :
H×H → H. The function takes two points in H and returns a third point that is similar to
both operands. The binding operator is used to create ordered tuples of points in H and is
likewise a function ⊗ : H×H → H. The function takes a pair of points in H as input, and
produces a third point dissimilar to both operands. We make these notions more precise in
our subsequent discussion of encoding.

Given the HD representation φ(S) of a set of items S ⊂ X (produced by bundling the
items), we may be interested to query the representation to determine if it contains the
encoding of some x ∈ X . To do so, we compute a metric of similarity ρ(φ(x), φ(S)) and
declare that the item is present in S if the similarity is greater than some critical value. This
process can be used to decode the HD representation so as to recover the original points in
X (Plate, 2003; Frady et al., 2018). We may additionally wish to assert that we can decode
reliably even if φ(S) has been corrupted by some noise process. One of our chief aims in
this paper is to mathematically characterize sufficient conditions for robust decoding under
different noise models and input data types.

Beyond simply storing and recalling specific patterns, HD representations may also be
used for learning. HD computing is most naturally applicable to classification problems.
Suppose we are given some collection of labeled examples S = {(xi, yi)}Ni=1, where xi ∈ X
and yi ∈ {ci}Ki=1 is a categorical variable indicating the class label of a particular xi. One
simple form of HD classification bundles together the data corresponding to a particular
class to generate a “prototypical” example for the class (Kanerva, 2009; Kleyko et al., 2018;

218

A Theoretical Perspective on Hyperdimensional Computing

Rahimi et al., 2018):

φ(ck) =
⊕

i : yi=ck

φ(xi) (1)

The resulting φ(ck) are sometimes quantized to lower precision or sparsified via a thresh-
olding operation. A nice feature of this scheme is that it is extremely simple to implement
in an on-line fashion: that is, on streaming data arriving continuously over time (Rahimi
et al., 2018). It is common to fine-tune the class prototypes using a few rounds of perceptron
training (Imani et al., 2017, 2019b). Given some subsequent piece of query data xq ∈ X
for which we do not know the correct label, we simply return the label of the most similar
prototype:

k� = argmax
k∈1,...,K

ρ(φ(xq), φ(ck)).

The similarity metric ρ is typically taken to be the dot-product, with the operands nor-
malized if necessary. Thus, on the whole, the scheme is quite similar to classical statistical
methods like naive Bayes and Fisher’s linear discriminant. In Section 5.2.1, we consider
properties of the HD encoding that can make linear models more powerful in HD space
than in the original space.

HD computing and closely related techniques have been applied to a wide variety of
practical problems in fields ranging from bio-signal processing (Rahimi et al., 2016; Imani
et al., 2017), to natural language processing (Sahlgren, 2005), and robotics (Mitrokhin
et al., 2019; Neubert et al., 2019). We are here concerned with a more abstract treatment
that focuses on the basic properties of HD computing and will not attempt to survey this
literature. The interested reader is referred to (Rahimi et al., 2016; Kleyko et al., 2018) for
discussions related to practical aspects of HD computing.

3. Encoding and Decoding Discrete Data

A central object in HD computing is the mapping from inputs to their high-dimensional
representations. The design of this mapping, typically referred to as “encoding” in the
literature on HD computing, has been the subject of considerable research. There is a
wide range of possible encoding methods. Some of these have been introduced in the HD
computing literature and studied in isolation (Plate, 2003; Gallant & Okaywe, 2013; Kleyko
et al., 2018). In this review, we present a novel unifying framework in which to study these
mappings and to characterize their key properties in a non-asymptotic setting. We first
discuss the encoding and decoding of sets in some detail. Many HD encoding procedures
for more complex data types such as sequences essentially amount to transforming the data
into a set and then applying the standard set-encoding method.

3.1 Finite Sets

Let A = {ai}mi=1 be some finite alphabet of m symbols. Symbols a ∈ A are mapped to H
under an encoding function φ : A → H. Our goal in this section is to consider the encoding
of sets S whose elements are drawn from A. The HD representation of S is constructed
by superimposing the embeddings of the constituent elements using the bundling operator

219

Thomas, Dasgupta, & Rosing

⊕ : H ×H → H. The encoding of S is defined to be φ(S) = ⊕a∈Sφ(a). We first focus on
the intuitive setting in which ⊕ is the element-wise sum and then address other forms of
bundling.

To determine if some a ∈ A is contained in S, we check if the dot product 〈φ(a), φ(S)〉
exceeds some fixed threshold. If the codewords {φ(a) : a ∈ A} are orthogonal and have
a constant length L, then we have 〈φ(a), φ(S)〉 = L2

�(a ∈ S), where � is the indicator
function which evaluates to one if its argument is true and zero otherwise. However, when
the codewords are not perfectly orthogonal, we have 〈φ(a), φ(S)〉 = L�(a ∈ S)+Δ, where Δ
is the “cross-talk” caused by interference between the codewords. In order to decode reliably,
we must ensure the contribution of the cross-talk is small and bounded. We formalize this
using the notion of incoherence popularized in the sparse coding literature. We define
incoherence formally as (Donoho et al., 2005):

Definition 1 Incoherence. For μ ≥ 0, we say φ : A → H is μ-incoherent if for all
distinct a, a′ ∈ A, we have

|〈φ(a), φ(a′)〉| ≤ μL2

where L = mina∈A ‖φ(a)‖.
When d ≥ m, it is possible to have codewords that are mutually orthogonal, whereupon
μ = 0. In general, we will be interested in results that do not require d ≥ m.

3.1.1 Exact Decoding of Sets

In the following section, we show how the cross-talk can be bounded in terms of the inco-
herence of φ, and use this to derive a simple threshold rule for exact decoding.

Theorem 2 Let L = mina∈A ‖φ(a)‖ and let the bundling operator be the element wise sum.
To decode whether an element a lies in set S, we use the rule

〈φ(a), φ(S)〉 ≥ 1

2
L2.

This gives perfect decoding for sets of size ≤ s if φ is 1/(2s)-incoherent.

Proof Consider some symbol a. Then:

〈φ(a), φ(S)〉 = �(a ∈ S)〈φ(a), φ(a)〉+
∑

a′∈S\{a}
〈φ(a), φ(a′)〉

If a ∈ S, then the above is lower bounded by L2 − sL2μ, where μ is the incoherence of
φ. Otherwise, it is upper bounded by sL2μ. So we decode perfectly if sL2μ < L2/2, or
μ < 1/(2s).

3.1.2 Random Codebooks

In practice, each φ(a) is usually generated by sampling from some distribution over H or
a subset of H (Kanerva, 2009; Kleyko et al., 2018; Rahimi et al., 2018). We typically

220

A Theoretical Perspective on Hyperdimensional Computing

require that this distribution is factorized so that coordinates of φ(a) are i.i.d.. Intuitively,
the incoherence condition stipulated in Theorem 2 will hold if dot products between two
different codewords are concentrated around zero. Furthermore, we would like it to be the
case that this concentration occurs quickly as the encoding dimension is increased. It turns
out that a fairly broad family of simple distributions satisfies these properties.

As an example, suppose φ(a) is sampled from the uniform distribution over {±1}d,
which we denote φ(a) ∼ {±1}d. In this case, L =

√
d exactly, and a direct application of

Hoeffding’s inequality and the union bound yields:

P(∃ distinct a, a′ ∈ A s.t. |〈φ(a), φ(a′)〉| ≥ μd) ≤ m2 exp

(
−μ2d

2

)
.

(Recall that m = |A|.) Stated another way, with high probability μ = O(
√

(lnm)/d),
meaning that we can make μ as small as desired by increasing d.

In fact, the same basic approach holds for the much broader class of sub-Gaussian
distributions, which can be characterized as follows (Wainwright, 2019):

Definition 3 Sub-Gaussian Random Variable. A random variable X ∼ PX is said
to be sub-Gaussian if there exists σ ∈ R

+, referred to as the sub-Gaussian parameter, such
that:

E[exp (λ(X − E[X]))] ≤ exp

(
σ2λ2

2

)
for all λ ∈ R.

Intuitively, the tails of a sub-Gaussian random variable decay at least as fast those of a
Gaussian. We say the encoding φ is σ-sub-Gaussian if φ(a) is generated by sampling its d
coordinates independently from the same sub-Gaussian distribution with parameter σ. We
say φ is “centered” if the distribution from which it is sampled is of mean zero. In general,
we assume φ is centered unless stated otherwise.

Codewords drawn from a sub-Gaussian distribution have the useful property that their
lengths concentrate fairly rapidly around their expected value. This concentration is, in
general, worse than sub-Gaussian but well behaved nonetheless. The following result is
well known but we reiterate it here as it is useful for our subsequent discussion. A proof is
available in the appendix.

Theorem 4 Let φ be centered and σ-sub-Gaussian. Then:

P(∃ a ∈ A s.t. |‖φ(a)‖22 − E[‖φ(a)‖22]| ≥ t) ≤ 2m exp

(
−cmin

{
t2

dσ4
,
t

σ2

})

for some positive absolute constant c.

Like the conventional Gaussian distribution, sub-Gaussianity is preserved under linear
transformations. That is, if x = {xi}ni=1 is a sequence of i.i.d. sub-Gaussian random
variables and a is an arbitrary vector in R

n, then 〈a,x〉 is sub-Gaussian with parameter
σ‖a‖2 (Wainwright, 2019). We can obtain a more general version of the previous result
about φ ∼ {±1}d which applies to φ(a) sampled from any sub-Gaussian distribution.

221

Thomas, Dasgupta, & Rosing

Theorem 5 Let φ be σ-sub-Gaussian. Then, for μ > 0,

P(∃ distinct a, a′ ∈ A s.t. |〈φ(a), φ(a′)〉| ≥ μL2) ≤ m2 exp

(
−μ2κL2

2σ2

)

where κ = (mina ‖φ(a)‖2)/(maxa ‖φ(a)‖2).
Proof Fix some a and a′. Treating φ(a) as a fixed vector in R

d and using the fact that
sub-Gaussianity is preserved under linear transformations, we may apply a Chernoff bound
for sub-Gaussian random variables (e.g. Prop 2.1 of (Wainwright, 2019)) to obtain:

P(|〈φ(a), φ(a′)〉| ≥ μL2) ≤ 2 exp

(
− μ2L4

2σ2‖φ(a)‖22

)
≤ 2 exp

(
− μ2L4

2σ2L2
max

)

where Lmax = maxa∈A ‖φ(a)‖2. Therefore, taking κ = L2/L2
max, we have:

P(|〈φ(a), φ(a′)〉| ≥ μL2) ≤ 2 exp

(
−μ2κL2

2σ2

)

and the claim follows by applying the union bound over all
(
m
2

)
< m2/2 pairs of codewords.

We note that, per Theorem 4, κ → 1 as d becomes large.

To be concrete and provide useful practical guidance, we here introduce three running
examples of codeword distributions.

Dense Binary Codewords. In our first example, the most common in practice in our
impression, φ(a) is sampled from the uniform distribution over the d-dimensional unit cube
{−1,+1}d. This approach is advantageous because it leads to efficient hardware implemen-
tations (Imani et al., 2017; Rahimi et al., 2018) and is simple to analyze.

Gaussian Codewords. Our second example consists of codewords sampled from the d-
dimensional Gaussian distribution (Plate, 2003). That is, φ(a) ∼ N (0d, σ

2Id), where 0d is
the d-dimensional zero vector. Here, the codewords will not be of exactly the same length.
However, Theorem 4 ensures that squared codeword lengths are concentrated around their
expected value of σ2d. More formally, for some τ > 0:

P(∃ a ∈ A s.t. |‖φ(a)‖22 − σ2d| ≥ τσ2d) ≤ 2m exp
(−cmin

{
τ2d, τd

})
.

In both cases, we can see that to obtain a μ-incoherent codebook with probability 1− δ,
is it sufficient to choose:

d = O

(
2

μ2
ln

m

δ

)

Or, stated another way, we have μ = O(
√
(lnm)/d) with high probability. The key point

in the two examples above is that the encoding dimension is inversely proportional to μ2.
Per Theorem 2, to decode correctly it is sufficient to have μ = 1/(2s), meaning that the
encoding dimension scales quadratically with the number of elements in the set, but only
logarithmically in the alphabet size and probability of error.

We will also consider a third example in which the codewords are sparse and binary.
However, we defer this for the time being as slightly different encoding methods and analysis
techniques are appropriate.

222

A Theoretical Perspective on Hyperdimensional Computing

3.1.3 Decoding with Small Probability of Error

The analysis above gives strong uniform bounds showing that, with probability at least 1−δ
over random choice of the codebook, every subset of size at most s will be correctly decoded.
However, this guarantee requires us to impose the unappealing restriction that s � √

d
which is a significant practical limitation. We here show that we can obtain s = O(d)
but with a weaker pointwise guarantee: any arbitrarily chosen set of size at most s will be
correctly decoded with probability 1− δ over the random choice of codewords. Rather than
insist on a hard upper bound on the incoherence of the codebook, we can instead require
the milder condition that random sums over dot-products between ≤ s codewords are small
with high-probability. We define this property more formally as follows:

Definition 6 Subset Incoherence. For τ > 0, we say a random mapping φ : A → H
satisfies (s, τ, δ)-subset incoherence if, for any S ⊂ A of size at most s, with probability at
least 1− δ over the choice of φ:

max
a/∈S

∣∣∣∣∣
∑
a′∈S

〈φ(a), φ(a′)〉
∣∣∣∣∣ ≤ τL2

where L = mina∈A ||φ(a)||.

Once again, it turns out that sampling the codewords from a sub-Gaussian distribution can
readily be seen to satisfy a subset-incoherence condition with high-probability:

Theorem 7 Let φ be σ-sub-Gaussian and fix some S ⊂ A of size s. Then

P

(
max
a/∈S

∣∣∣∣∣
∑
a′∈S

〈φ(a), φ(a′)〉
∣∣∣∣∣ ≥ τL2

)
≤ 2m exp

(
−κτ2L2

2sσ2

)

where κ and L are as in Theorem 5.

The proof is similar to Theorem 5 and is available in the appendix. As a concrete example,
in the practically relevant case that φ ∼ {±1}d the above boils down to:

P

(
∃ a /∈ S s.t.

∣∣∣∣∣
∑
a′∈S

〈φ(a), φ(a′)〉
∣∣∣∣∣ ≥ τd

)
≤ 2m exp

(
−τ2d

2s

)
.

Stated another way, we have: τ = O(
√
(s lnm)/d). Following Theorem 2, in order to ensure

correct decoding with high probability, we must simply argue that the codebook satisfies
the subset-incoherence property with τ = 1/2, meaning we should choose the encoding
dimension to be d = O(s lnm).

This method of analysis is similar to that of (Plate, 2003; Gallant & Okaywe, 2013;
Frady et al., 2018), who reach the same conclusion vis-à-vis linear scaling using the central
limit theorem. However, our formalism is more general and is non-asymptotic.

223

Thomas, Dasgupta, & Rosing

3.1.4 Comparing Set Representations

We can estimate the size of a set by computing the norm of its encoding, where the precision
of the estimate can be bounded in terms of the incoherence of φ. In the following discussion,
we make the simplifying assumption that the codewords are all of a constant length L. Again
appealing to Theorem 4, we can see that this assumption is not onerous since the codeword
lengths concentrate around their expected value.

Theorem 8 Let S be a set of size s. Then:

s(1− sμ) ≤ 1

L2
‖φ(S)‖22 ≤ s(1 + sμ)

Proof The proof is by direct manipulation:

1

L2
‖φ(S)‖22 =

1

L2
〈φ(S), φ(S)〉 = 1

L2

∑
a∈S

〈φ(a), φ(a)〉+ 1

L2

∑
a,a′ �=a∈S

〈φ(a), φ(a′)〉

≤ 1

L2
(sL2 + s2μL2).

The other direction is analogous.

Given a pair of sets S,S ′ over the same alphabet, we can estimate the size of their inter-
section and union directly from their encoded representation.

Theorem 9 Let S and S ′ be sets of size s and s′ drawn from A and denote their encodings
by φ(S) and φ(S ′) respectively.

|S ∩ S ′| − ss′μ ≤ 1

L2
〈φ(S), φ(S ′)〉 ≤ |S ∩ S ′|+ ss′μ

The proof is similar to Theorem 8 and is deferred to the appendix. Noting as well that
|S ∪ S ′| = |S| + |S ′| − |S ∩ S ′|, we see that we can estimate the size of the union using
the previous theorem. In practice, it may be unnecessary to compute these quantities with
a high degree of precision. For instance, it may only be necessary to identify sets with a
large intersection-over-union. Provided the definition of “large” is somewhat loose, we can
accept a higher incoherence among the codewords in exchange for reducing the encoding
dimension.

3.1.5 Sparse and Low-Precision Encodings

In the previous discussion, we assumed the bundling operator was the element-wise sum.
This is a natural choice when the codewords are dense or non-binary. However, the resulting
encodings are of unconstrained precision which may be undesirable from a computational
perspective. For the purposes of representing sets of size ≤ s, we may truncate φ(S) to lie
in the range [−c, c], with negligible loss in accuracy provided c = O(

√
s). In practice, it is

common to quantize the encodings more aggressively to binary precision by thresholding
(Kanerva, 1994; Rahimi et al., 2017; Burrello et al., 2018; Imani et al., 2019a). In other
words, we encode as φ(S) = gt(S), where gt is a thresholding function that is applied
coordinate-wise: gt(x) = 1 if x ≥ t and 0 otherwise.

224

A Theoretical Perspective on Hyperdimensional Computing

As a notable special case of the thresholding rule described above, we here consider
encoding with sparse codewords. In this case, we assume that a coordinate in a codeword is
non-zero with some small probability. In other words, φ(a)i ∼ Bernoulli(p), where p � 1/2.
We may then bundle items by taking an element-wise sum of their codewords with threshold
t = 1, which is equivalent to taking the element-wise maximum over the codewords. That
is, φ(S) = maxa∈S φ(a), where the max operator is applied coordinate-wise. Noting that
the max is upper bounded by the sum in this setting, the notion of incoherence is a relevant
quantity and the analysis of Theorem 2 continues to apply.

This encoding procedure is essentially a standard implementation of the popular “Bloom
filter” data structure for representing sets (Bloom, 1970). The conventional Bloom filter
differs slightly in that the typical decoding rule is to threshold 〈φ(a), φ(S)〉 at ‖φ(a)‖1.
There is a large literature on Bloom filters with applications ranging from networking and
database systems to neural coding, and several schemes for generating good codewords have
been proposed (Broder & Mitzenmacher, 2004; Pagh et al., 2005; Dasgupta et al., 2018).
Using the random coding scheme described here, the optimal value of p can be seen to
be (ln 2)/s and, to ensure the probability of a false positive is at most δ, the encoding
dimension should be chosen on the order of s ln(1/δ) (Broder & Mitzenmacher, 2004). A
practical benefit of Bloom filters is that they have an efficient implementation using hash
functions which does not require materializing a codebook as in methods based on random
sampling. This may be beneficial when the alphabet size is large enough that storing
codewords is not possible. The connections between HD computing and Bloom filters are
examined in greater detail in (Kleyko et al., 2019).

We remark that this method of encoding is related to an interesting procedure known
as “context dependent thinning” (CDT) which can be used to control the density of binary
representations (Rachkovskij, 2001; Kleyko et al., 2018). CDT takes the logical “and” of
φ(S) and some permutation σ(φ(S)) to obtain the thinned representation φ(S)′ = φ(S) ∧
σ(φ(S)). This process can be repeated until the desired density of φ(S) is achieved. A
capacity analysis of CDT representations can be found in (Kleyko et al., 2018).

3.2 Robustness to Noise

In this section we explore the noise robustness properties of the encoding methods discussed
above using the formalism of incoherence. We consider some unspecified noise process which
corrupts the encoding of a set S ⊂ A of size at most s according to φ̃(S) = φ(S) +ΔS . We
say ΔS is ρ-bounded if:

max
a∈A

|〈φ(a),ΔS〉| ≤ ρ.

We are interested in understanding the conditions under which we can still decode reliably.

Theorem 10 Suppose S has size ≤ s and ΔS is ρ-bounded. We can correctly decode S
using the thresholding rule from Theorem 2 if:

ρ

L2
+ sμ <

1

2

where L = mina∈A ‖φ(a)‖2.

225

Thomas, Dasgupta, & Rosing

The proof is a straightforward extension of Theorem 2 and is available in the appendix. The
practical implication is that there is a tradeoff between the incoherence of the codebook
and robustness to noise: a higher incoherence allows for a smaller encoding dimension but
at the cost of a tighter constraint on ρ. We can analyze several practically relevant noise
models by placing additional restrictions on ΔS and by considering worst or typical case
bounds on ρ. We here consider different forms of noise under constraints on H. Our goal is
to understand how the magnitude of noise that can be tolerated scales with the encoding
dimension, size s of the encoded set, and size m of the alphabet. In each setting we consider
a “passive” model in which the noise is sampled randomly from some distribution, and an
“adversarial” model in which the noise is arbitrary and may be designed to maliciously
corrupt the encodings. We again appeal to Theorem 4 to justify a simplifying assumption
that the codewords are of equal length.

Lemma 11 Sub-Gaussian Codewords. Fix a centered and σ-sub-Gaussian codebook φ
whose codewords are of length L. Consider the passive additive white Gaussian noise model
ΔS ∼ N (0, σ2

ΔId); that is, each coordinate is corrupted by Gaussian noise with mean zero
and variance σ2

Δ. Then, we can correctly decode with probability 1 − δ over random draws
of ΔS provided:

σΔ <
L√

2 ln(2m/δ)

(
1

2
− sμ

)

Now consider an adversarial model in which ΔS is arbitrary save for a constraint on the
norm: ‖ΔS‖2 ≤ ωL. Then, we can correctly decode provided:

ω <
1

2
− sμ

Proof Let us first consider the passive case in which ΔS ∼ N (0, σ2
ΔId). Fix some a ∈ A.

Then 〈φ(a),ΔS〉 ∼ N (0, σ2
ΔL

2). By a standard tail bound on the Gaussian distribution
(Wainwright, 2019) and the union bound, we have:

P(∃ a s.t. |〈φ(a),ΔS〉| ≥ ρ) ≤ 2m exp

(
− ρ2

2σ2
ΔL

2

)
.

Therefore, with probability 1− δ, we have that ΔS is ρ-bounded for

ρ ≤ σΔL
√

2 ln(2m/δ).

By Theorem 10 we can decode correctly if:

σΔL
√

2 ln(2m/δ)

L2
+ sμ <

1

2
⇒ σΔ <

L√
2 ln(2m/δ)

(
1

2
− sμ

)
.

Now consider the adversarial case in which ‖ΔS‖2 ≤ ωL. By the Cauchy-Schwarz inequality,
|〈φ(a),ΔS〉| ≤ ωL2. Therefore, by Theorem 10, we can decode correctly if

ωL2

L2
+ sμ <

1

2
⇒ ω <

1

2
− sμ.

226

A Theoretical Perspective on Hyperdimensional Computing

We again emphasize that, per Theorem 5, μ = O(
√

(lnm)/d). Since L = O(
√
d), we can

see that we can tolerate σΔ ≈ √
d/(lnm)− s in the passive case. We next turn to a notable

special case of the above in which the codewords are dense and binary. In this case, we may
assume that H is constrained to be integers in the range [−s, s].

Lemma 12 Dense Binary Codewords. Fix a codebook φ such that φ(a) ∼ {±1}d for
each a ∈ A. Consider a passive noise model in which ΔS ∼ unif({−c, ..., c}d); that is, each
coordinate is shifted by an integer amount chosen uniformly at random between −c and c.
Then, we can correctly decode with probability 1− δ provided:

c <

√
d

2 ln(2m/δ)

(
1

2
− sμ

)

Now consider an adversarial model in which we assume ‖ΔS‖1 ≤ ωsd. Then we can decode
correctly if:

ω <
1

2s
− μ.

A proof is available in the Appendix. We next consider the case of Section 3.1.5 in which the
codewords are sparse and binary and the bundling operator is the element-wise maximum.
We here assume that φ̃(S) = φ(S) + ΔS is truncated so that each coordinate is either 0 or
+1.

Lemma 13 Sparse Binary Codewords. Fix a codebook φ such that φ(a) ∈ {0, 1}d, and
assume some fraction p � 1/2 of coordinates are non-zero for each a ∈ A. Consider a
passive noise model in which:

ΔS ∼

⎧⎪⎨
⎪⎩
−1 w.p. θ

2

0 w.p. 1− θ

+1 w.p. θ
2 .

Then we can decode correctly with probability 1− δ provided:

θ <
1

2
− 2sμ−

√
1

2dp
ln

2m

δ
.

Now consider an adversarial model in which ‖ΔS‖1 ≤ ωd. Then we can decode correctly if
ω < p(12 − sμ).

Proof Consider first the passive noise model. Fix some φ(a). Then:

|〈φ(a),ΔS〉| ≤
d∑

i=1

|φ(a)(i)Δ(i)
S |.

Treating φ(a) as a fixed vector with dp non-zero entries, the sum is concentrated in the
range dp(θ± ε), and so ρ ≤ dp(θ+ ε) with high probability. By Chernoff/Hoeffding and the
union-bound, with probability 1− δ:

ε ≤
√

1

2dp
ln

2m

δ
.

227

Thomas, Dasgupta, & Rosing

The result is obtained by noting that L =
√
pd and applying Theorem 10.

For the adversarial case, the result is obtained by again observing that |〈φ(a),ΔS〉| ≤
‖φ(a)‖∞‖ΔS‖1 ≤ ωd for any a ∈ A and applying Theorem 10.

4. Encoding Structures

We are often interested in representing more complex data types, such as objects with
multiple attributes or “features.” In general, we suppose that we observe a set of features
F whose values are assumed to lie in some set A. Let ψ : F → H be an embedding of
features, and φ : A → H be an embedding of values. We associate a feature with its
value through use of the binding operator ⊗ : H ×H → H that creates an embedding for
a (feature,value) pair. For a feature f ∈ F taking on a value a ∈ A, its embedding is
constructed as ψ(f) ⊗ φ(a). A data point x = {(fi ∈ F , xi ∈ A)}ni=1 consists of n such
pairs. For simplicity, we assume each x possesses all attributes, although our analysis also
applies to the case that x possesses only some subset of attributes. The entire embedding
for x is constructed as (Plate, 2003):

φ(x) =

n⊕
i=1

ψ(fi)⊗ φ(xi) (2)

As with sets we would typically like φ(x) to be decodable in the sense that we can recover
the value associated with a particular feature, and comparable in the sense that 〈φ(x), φ(x′)〉
is reflective of a reasonable notion of similarity between x and x′.

From a formal perspective, we require the binding operator to satisfy several properties.
First, binding should be associative and commutative. That is, for all a,b, c ∈ H, (a⊗b)⊗
c = a⊗ (b⊗ c), and a⊗ b = b⊗ a. Second, there should exist an identity element I ∈ H
such that I ⊗ a = a for all a ∈ H. Third, for all a ∈ H, there should exist some a−1 ∈ H
such that a⊗ a−1 = I. These properties are equivalent to stipulating that H be an abelian
group under ⊗. Furthermore, binding should distribute over bundling. That is, for any
a,b, c ∈ H, it should be the case that a⊗ (b+c) = a⊗b+a⊗c. We here also require that
the lengths of bound pairs are bounded, that is to say: maxf∈F ,a∈A ‖ψ(f)⊗ φ(a)‖2 ≤ M .

A natural choice of embedding satisfying these properties is to sample ψ(f) randomly
from {±1}d and choose ⊗ to be the element-wise product. In this case ψ(f) is its own
inverse, that is ψ(f) ⊗ ψ(f) = I, and binding preserves lengths of codewords. We focus
on this case here as it is intuitive, but our analysis generalizes in a straightforward way
to any particular implementation satisfying the properties listed above. One can see the
bound pairs satisfy various incoherence properties with high probability. For instance, we
may declare the binding to be μ-incoherent if:

max
a∈A

max
a′∈A,f∈F

〈φ(a), ψ(f)⊗ φ(a′)〉 ≤ μL2

where L = mina∈A ‖φ(a)‖2. We can extend Theorem 5 to see this property is satisfied with
high probability:

228

A Theoretical Perspective on Hyperdimensional Computing

Theorem 14 Fix d, n,m ∈ Z
+ and μ ∈ R

+. Let φ be centered and σ-sub-Gaussian, ⊗ be
the element-wise product, and ψ(f) ∼ {±1}d. Then:

P(∃ a, a′ ∈ A, f ∈ F s.t. |〈φ(a), φ(a′)⊗ ψ(f)〉| ≥ μL2) ≤ nm2 exp

(
−κμ2L2

2σ2

)

where L = mina∈A ‖φ(a)‖2 and κ is as defined in Theorem 5.

The proof is similar to Theorem 5 and is available in the Appendix. This result is appealing
because it means that the incoherence scales only logarithmically with m × n which may
be large in practice. As a corollary to the previous theorem, we also obtain the following
useful incoherence property:

P(∃ a, a′, f �= f ′ s.t. |〈φ(a), (φ(a′)⊗ ψ(f))⊗ ψ−1(f ′)〉| ≥ μL2) ≤ m2n2 exp

(
−κμ2L2

2σ2

)
(3)

where ψ−1(f) is the inverse of ψ(f) with respect to ⊗. This notion of incoherence is useful
for decoding representations. Along similar lines:

P(∃ a, a′, f �= f ′ s.t. |〈φ(a)⊗ ψ(f), φ(a′)⊗ ψ(f ′)〉| ≥ μL2) ≤ m2n2 exp

(
−κμ2L2

2σ2

)
(4)

We note that the previous statement refers to symbols associated with different attributes
and thus does not require any particular incoherence assumption on the φ(a).

4.1 Decoding Structures

This representation can be decoded to recover the value associated with a particular feature.
To recover the value of the i-th feature, we use the following rule:

x̂i = argmax
a∈A

〈φ(a), φ(x)⊗ ψ−1(fi)〉

where ψ−1(f) denotes the group inverse of ψ(f). Since the binding operator is assumed to
distribute over bundling, the dot-product above expands to:

〈φ(a), φ(xi)〉+
∑
j �=i

〈φ(a), (φ(xj)⊗ ψ(fj))⊗ ψ−1(fi)〉
{
≥ L2(1− nμ) if xi = a

≤ nL2μ otherwise

where the incoherence can be bounded as as in Equation 3. Thus μ < 1/(2n) is a sufficient
condition for decodability.

4.2 Comparing Structures

As with sets, we may wish to compare two structures without decoding them. As one would
expect given Theorem 9, this is can be achieved by computing the dot-product between their
encodings:

229

Thomas, Dasgupta, & Rosing

Theorem 15 Let x and x′ be two structures drawn from a common alphabet F×A. Denote
their encodings using Equation 2 by φ(x) and φ(x′). Then, if binding is μ-incoherent:

|x ∩ x′| − n2μ ≤ 1

L2
〈φ(x), φ(x′)〉 ≤ |x ∩ x′|+ n2μ

where x ∩ x′ is defined to be the set {i : xi = x′i}ni=1, that is, the features on which x and
x′ agree.

Proof Expanding:

〈φ(x), φ(x′)〉 = 〈
n∑

i=1

φ(xi)⊗ ψ(fi),

n∑
j=1

φ(x′j)⊗ ψ(fj)〉

=

n∑
i=1

〈φ(xi)⊗ ψ(fi), φ(x
′
i)⊗ ψ(fi)〉+

∑
i �=j

〈φ(xi)⊗ ψ(fi), φ(x
′
j)⊗ ψ(fj)〉

A term in the first sum is L2 if xi = x′i and bounded in ±L2μ otherwise. So the expression
above is bounded as:

≤ L2|x ∩ x′|+ L2n2μ

and the other direction of the inequality is analogous.

As a practical example, in bioinformatics it is common to search for regions of high similarity
between a “reference” and “query” genome. Work in (Imani et al., 2018) and (Kim et al.,
2020) explored the use HD computing to accelerate this process by encoding short segments
of DNA and estimating similarity on the HD representations.

4.3 Encoding Sequences

Sequences are an important form of structured data. In this case, the feature set is simply
the list of positions {1, 2, 3, ...} in the sequence. In practical applications, we are often
interested in streams of data which arrive continuously over time. Typically, real-world
processes do not exhibit infinite memory and we only need to store the n ≥ 1 most recent
observations at any time. In the streaming setting, we would like to avoid needing to fully
re-encode all n data points each time we receive a new sample, as would be the case using the
method described above. This motivates the use of shift based encoding schemes (Kanerva,
2009; Rahimi et al., 2017; Kim et al., 2018). Let ρ(i)(z) denote a cyclic left-shift of the
elements of z by i coordinates, and ρ(−i)(z) denote a cyclic right-shift by i coordinates.
In other words: ρ(1)((z1, z2, . . . , zd−1, zd)) = (z2, z3, . . . , zd, z1). In shift-based encoding a
sequence x = (x1, ..., xn) is represented as:

φ(x) =

n⊕
i=1

ρ(n−i)(φ(xi)),

where we take ⊕ to be the element wise sum. Now suppose we receive symbol n + 1 and
wish to append it to φ(x) while removing φ(x1). Then we may apply the rule:

ρ(1)(φ(x)− ρ(n−1)(φ(x1)))⊕ φ(xn+1) =

n⊕
i=1

ρ(n−i)φ(xi+1)

230

A Theoretical Perspective on Hyperdimensional Computing

where we can additionally note that ρ is a special type of permutation and that permutations
distribute over sums. However, in order to decode correctly, each φ(a) must satisfy an
incoherence condition with the ρ(j)(φ(a′)). We can again use the randomly generated nature
of the codewords to argue this is the case; however, we must here impose the additional
restriction that the φ(a) be bounded, and accordingly restrict attention to the case φ(a) ∼
{±1}d.
Theorem 16 Fix d,m, n < d ∈ Z

+ and μ ∈ R
+ and let φ(a) ∼ {±1}d. Then:

P(∃ a, a′ ∈ A, i �= 0 s.t. |〈φ(a), ρ(i)(φ(a′))〉| ≥ μd) ≤ nm2 exp

(
−μ2d

4

)

Proof Fix some a, a′ and i. In the case that a �= a′, φ(a) and ρ(i)(φ(a)) are mutually
independent. However, when a = a′, φ(a) and ρ(i)(φ(a)) only satisfy pairwise independence
and the techniques of Theorem 5 cannot be applied. To resolve this difficulty, let f(φ(a)) =
〈φ(a), ρ(i)(φ(a))〉, and denote by φ(a)\k the vector formed by replacing the k-th coordinate
in φ(a) with an arbitrary value ∈ {+1,−1}. Then |f(φ(a))− f(φ(a)\k)| ≤ 4 and so by the
bounded-differences inequality (McDiarmid et al., 1989):

P(|〈φ(a), ρ(i)(φ(a′))〉| ≥ μd) ≤ 2 exp

(
−μ2d

4

)
.

The result follows by the union bound.

Several other related methods for encoding sequential information have been proposed in
the literature (Plate, 2003; Gallant & Okaywe, 2013). For an extensive discussion of these
approaches as well as an interesting discussion involving sequences of infinite length, the
reader is referred to (Frady et al., 2018).

4.4 Discussion and Comparison with Prior Work

We conclude our treatment of encoding and decoding discrete data with some brief dis-
cussion of our approach and its relation to antecedents in the literature. A key question
addressed here and by several pieces of prior work is to bound the magnitude of crosstalk
noise in terms of the encoding dimension (d), the number of items to encode (s) and the
alphabet size (m). Early analysis in (Plate, 2003; Gallant & Okaywe, 2013; Kleyko et al.,
2018) recovers the same asymptotic relationship as we do, but only under specific assump-
tions about the method used to generate the codewords and particular instantiations of the
bundling and binding operators.

Work in (Frady et al., 2018) provides a significantly more general treatment which, like
ours, aims to abstract away from the particular choice of distribution from which codewords
are sampled and from the particular implementation of bundling and binding operator.
Their approach assumes the codewords are generated by sampling each component i.i.d.
from some distribution and uses the central limit theorem (CLT) to justify modeling the
crosstalk noise by a Gaussian distribution. Error bounds in the non-asymptotic setting are
then obtained by applying a Chernoff style bound to the resulting Gaussian distribution.
This approach again recovers the same asymptotic relationship between d, s and m as us,
but does not generally yield formal bounds in the non-asymptotic setting. Our approach

231

Thomas, Dasgupta, & Rosing

based on sub-Gaussianity formalizes this analysis in the non-asymptotic setting. Like us,
(Frady et al., 2018) also considers the effect of noise on the HD representations, but their
treatment is limited to additive white noise, whereas we address both arbitrary additive
passive noise and adversarial noise.

In summary, our formalism using the notion of incoherence allows us to decouple the
analysis of decoding and noise-robustness from any particular method for generating code-
words and readily yields rigorous bounds in the non-asymptotic setting. Our approach is
applicable to a large swath of HD computing and enables us to offer more general condi-
tions under which thresholding based decoding schemes will succeed and of the effect of
noise than is available in prior work.

5. Encoding Euclidean Data

One option for encoding Euclidean vectors is to treat them as a special case of the “struc-
tured data” considered in the preceding section. As before, we think of our data as a
collection of (feature,value) pairs x = {(fi, xi)}ni=1 with the important caveat that xi ∈ R

n.
This case is more complex because the feature values may now be continuous, and because
the data possesses geometric structure which is typically relevant for downstream tasks and
must be preserved by encoding. We here analyze two of the most widely used methods for
encoding Euclidean data and discuss general properties of structure preserving embeddings
in the context of HD computing.

5.1 Position-ID Encoding

A widely-used method in practice is to quantize the raw signal to a suitably low precision and
then apply the structure encoding method discussed in the previous section (Rachkovskiy
et al., 2005a, 2005b; Kleyko et al., 2018; Rahimi et al., 2018).

In this approach, we first quantize the support of each feature f ∈ F into some set of
m bins with centroids a1 < · · · < am and assign each bin a codeword φ(a) ∈ H. However,
instead of requiring the codewords to be incoherent, we now require the correlation between
codewords to reflect the distance between corresponding quantizer bins. In other words
〈φ(a), φ(a′)〉 should be monotonically decreasing in |a− a′|.

A simple method can be used to generate monotonic codebooks when the codewords
are randomly sampled from {±1}d (Rachkovskiy et al., 2005a; Widdows & Cohen, 2015).
Fixing some feature f , the codeword for the minimal quantizer bin, φ(a1), is generated by
sampling randomly from {±1}d. To generate the codeword for the second bin, we simply
flip some set of �b� bits in φ(a1), where:

b =
a2 − a1
am − a1

· d
2

The codeword for the third bin is generated analogously from the second, where we assume
the bits to be flipped are sampled such that a bit is flipped at most once. Thus the codewords
for the minimal and maximal bins are orthogonal and the correlation between codewords for
intermediate bins is monotonically decreasing in the distance between their corresponding
bin centroids.

232

A Theoretical Perspective on Hyperdimensional Computing

In practice, it seems to be typical to use a single codebook for all features and for the
quantizer to be a set of evenly spaced bins over the support of the data. While simple, this
approach is likely to have sub-optimal rate when the features are on different scales or are
far from the uniform distribution. Encoding then proceeds as follows:

φ(x) =

n∑
i=1

φ(xi)⊗ ψ(fi)

where, as before ψ ∈ {±1}d is a vector which encodes the index i of a feature value xi as in
the previous section on encoding sequences; hence the name “position-ID” encoding. There
are several variations on this theme which are compared empirically in (Kleyko et al., 2018).

This general encoding method was analyzed by (Rachkovskiy et al., 2005b), in the
specific case of sparse and binary codewords, who show it preserves the L1 distance between
points in expectation but do not provide distortion bounds. We here provide such bounds
using our formalism of matrix incoherence. We assume that the underlying quantization of
the points is sufficiently fine that it is a low-order term that can be ignored.

Theorem 17 Let x and x′ be points in [0, 1]n with encodings φ(x) and φ(x′) generated
using the rule described above. Assume that φ satisfies 〈φ(a), φ(a′)〉 = d(1− |a− a′|) for all
a, a′ ∈ A, and let ψ ∼ {±1}d. Then, for all x,x′:

2d(‖x− x′‖1 − 2n2μ) ≤ ||φ(x)− φ(x′)||22 ≤ 2d(‖x− x′‖1 + 2n2μ)

The proof is similar to Theorem 15 and is available in the Appendix.
The practical implication of the previous theorem is that the position-ID encoding method
preserves the L1 distance between points up to an additive distortion which can be bounded
by the incoherence of the codebook. Per Equation 4, μ = O(

√
ln(mn)/d). Therefore, to

ensure that 1
d‖φ(x)− φ(x′)‖22 ≈ ‖x− x′‖1 ± ε, the previous result implies we should choose

d = O(n
4

ε2
ln(nm)). This can be relaxed to a quadratic dependence on n in exchange for a

weaker pointwise bound, but in either case means the encoding method may be problematic
when the dimension of the underlying data is high.

Noting that ||φ(x)||22 ∈ nd ± n2dμ, we can see that the encodings of each point are
roughly of equal norm and lie in a ball of radius at most n

√
dμ, where the exact position

depends on the instantiation of the codebook. Thus, we can loosely interpret the encoding
procedure as mapping the data into a thin shell around the surface of a high dimensional
sphere.

5.2 Random Projection Encoding

Another popular family of encoding methods embeds the data into H under some random
linear map followed by a quantization (Rachkovskij, 2015; Imani et al., 2019c). More
formally, for some x ∈ R

n, these embeddings take the form:

φ(s) = g(Φx)

where Φ ∈ R
d×n is a matrix whose rows are sampled uniformly at random from the sur-

face of the n-dimensional unit sphere, and g is a quantizer — typically the sign function

233

Thomas, Dasgupta, & Rosing

— restricting the embedding to H. The embedding matrix Φ may also be quantized to
lower precision. This encoding method has also been studied in the context of kernel ap-
proximation where it is used to approximate the angular kernel (Choromanski et al., 2017),
and to construct low-distortion binary embeddings (Jacques et al., 2013; Plan & Vershynin,
2014). While the following result is well known, we here show this encoding method pre-
serves angular distance up to an additive distortion as this fact is important for subsequent
analysis.

Theorem 18 Let Sn−1 ⊂ R
n denote the n-dimensional unit sphere. Let Φ ∈ R

d×n be a
matrix whose rows are sampled uniformly at random from Sn−1. Let X be a set of points
supported on Sn−1. Denote the embedding of a point by φ(x) = sign(Φx). Then, for any
x,x′ ∈ X , with high probability:

dθ −O(
√
d) ≤ dham(φ(x), φ(x′)) ≤ dθ +O(

√
d)

where dham(a, b) is the Hamming distance between a and b, defined to be the number of
coordinates on which a and b differ, and θ = 1

π cos−1(〈x,x′〉) ∈ [0, 1] is proportional to the
angle between x and x′.

Proof Let Φ(i) denote the ith row of the matrix Φ. Then, the ith coordinate in the
embedding of x can be written as sign(〈Φ(i),x〉). The probability that the embeddings
differ on their ith coordinate, that is (〈Φ(i),x〉)(〈Φ(i),x′〉) < 0, is exactly ∠(x,x′)/π: the
angle (in radians) between x and x′ divided by π.

Therefore, the number of coordinates on which φ(x) and φ(x′) disagree is, concentrated
in the range, d(θ ± ε). By Chernoff/Hoeffding, we have that with probability 1− δ:

dε ≤
√

2d ln
2

δ
.

Noting that 〈φ(x), φ(x′)〉 = d−2dham(φ(x), φ(x′)), we obtain the following simple corollary:

Corollary 19 Let φ and θ be as defined in Theorem 18. Then, with high probability:

d(1− 2θ)−O(
√
d) ≤ 〈φ(x), φ(x′)〉 ≤ d(1− 2θ) +O(

√
d)

To obtain a more explicit relationship with the dot product, we can use the first-order
approximation cos−1(x) ≈ (π/2)− x, to obtain θ ≈ 1

2 − 1
π 〈x,x′〉, from which we obtain:

d(1− 2θ) ≈ 2d

π
〈x,x′〉.

We emphasize that, in comparison to the position-ID method, the distortion in this case
does not depend on the dimension of the underlying data which means this method may be
preferable when the data dimension is large.

234

A Theoretical Perspective on Hyperdimensional Computing

5.2.1 Connection with Kernel Approximation

A natural question is whether the encoding procedure described above, which preserves dot-
products, can be generalized to capture more diverse notions of similarity? We can answer in
the affirmative by noting that the random projection encoding method is closely related to
the notion of random Fourier features which have been widely used for kernel approximation
(Rahimi & Recht, 2008). The basic idea is to construct an embedding φ : Rn → R

d, such
that 〈φ(x), φ(x′)〉 ≈ k(x,x′), where k is a shift-invariant kernel. The construction exploits
the fact that the Fourier transform of a shift-invariant kernel k is a probability measure: a
well known result from harmonic analysis known as Bochner’s Theorem (Rudin, 1962). The
embedding itself is given by φ(x) = 1√

d
cos(Φx+b), where the rows of Φ are sampled from

the distribution induced by k and the coordinates of b are sampled uniformly at random
from [0, 2π].

Subsequent work in (Raginsky & Lazebnik, 2009) gave a simple scheme for quantizing the
embeddings produced from random Fourier features to binary precision. Their construction
yields an embedding ψ : Rn → {0, 1}d such that:

f1(k(x,x
′))−Δ ≤ 1

d
dham(ψ(x), ψ(x′)) ≤ f2(k(x,x

′)) + Δ

where f1, f2 : R → R are independent of the choice of kernel, and Δ is a distortion term. The
embedding itself is constructed by applying a quantizer Qt(x) = sign(x+ t) coordinate wise
over the embeddings constructed from random Fourier features. In other words ψ(x)i =
1
2(1 +Qti(φ(x)i)), where ti ∼ Unif[−1, 1], and φ(x) is a random Fourier feature.

This connection is highly appealing for HD computing. The quantized random Fourier
feature scheme presents a simple recipe for constructing encoding methods meeting the
desiderata of HD computing while preserving a rich variety of structure in data. For in-
stance, shift-invariant kernels preserving the L1 and L2 distance—among many others—can
be approximated using the method discussed above. Furthermore, this observation provides
a natural point of contact between HD computing and the vast literature on kernel methods
which has produced a wealth of algorithmic and theoretical insights.

5.3 Consequences of Distance Preservation

The encoding methods discussed above are both appealing because they preserve reason-
able notions of distance between points in the original data. Distance preservation is a
sufficient condition to establish other desirable properties of encodings, namely preserva-
tion of neighborhood/cluster structure, robustness to various forms of noise, and in some
cases, preservation of linear separability. We address the first two items here and defer
the latter for our discussion of learning on HD representations. We formalize our notion of
distance preservation as follows:

Definition 20 Distance-Preserving Embedding: Let δX be a distance function on X ⊂
R
n and δH be a distance function on H. We say φ preserves δX under δH if, there exist

functions α, β : Z+ → R such that β(d)/α(d) → 0 as d → ∞, and:

α(d)δX (x,x′)− β(d) ≤ δH(φ(x), φ(x′)) ≤ α(d)δX (x,x′) + β(d) (5)

for all x,x′ ∈ X .

235

Thomas, Dasgupta, & Rosing

We typically wish the distance function δH on H to be simple to compute. In practice,
it is often taken to be the Euclidean, Hamming, or angular distance. The position-ID
method preserves the L1 distance with δH the squared Euclidean distance, α(d) = 2d, and
β(d) ≤ n2μd; recall that in the constructions above, μ scales inversely with d and thus
β(d)/α(d) → 0. The signed random-projection method preserves the angular distance with
α(d) = O(d), β(d) = O(

√
d), and δH the Hamming, angular, or Euclidean distance.

5.3.1 Preservation of Cluster Structure

In general, there is no universally applicable definition of cluster structure. Indeed, numer-
ous algorithms have been proposed in the literature to target various reasonable notions
of what constitutes a “cluster” in the data. Preservation of a distance function accords
naturally with K-means like algorithms which, given a set of data X ⊂ R

n compute a set
of centroids C = {ci}ki=1, and define associated clusters as the Voronoi cells associated with
each centroid. We here adopt this notion and state that cluster structure C is preserved if,
for any x ∈ X :

argmin
c∈C

δX (x, c) = argmin
c∈C

δH(φ(x), φ(c))

In other words, that the set of points bound to a particular cluster centroid does not change
under the encoding. We can restate the above as requiring that, for some point x bound to
a cluster centroid c, it is the case that:

δH(φ(x), φ(c)) < δH(φ(x), φ(c′))

for any c′ ∈ C \ {c}. From Definition 20 we have:

δH(φ(x), φ(c′))− δH(φ(x), φ(c)) ≥ α(d)(δX (x, c′)− δX (x, c))− 2β(d)

for any x ∈ X and c, c′ ∈ C. Rearranging the expressions above we can see the desired
property will be satisfied if:

β(d)

α(d)
< min

x∈X
min

c′ �=c(x)

1

2
(δX (x, c′)− δX (x, c(x))),

where c(x) = argminc∈CδX (x, c) denotes the center in C closest to x. A sufficient condition
for the existence of some d satisfying this property is that α(d) is monotone increasing
and that α(d) is faster growing than β(d). This condition is satisfied for both the random
projection and position-ID encoding methods.

5.3.2 Noise Robustness

It is also of interest to consider robustness to noise in the context of encoding Euclidean
data. Suppose we have a set of points, X , in R

n, and a distance function of interest δX (·, ·)
which is preserved à la Definition 20. Given an arbitrary point x ∈ X we consider a noise
model which corrupts φ(x) to φ(x) + Δ, where Δ is some unspecified noise process. Along
the lines of Section 3.2, we say Δ is ρ-bounded if:

max
x∈X

|〈φ(x),Δ〉| ≤ ρ

236

A Theoretical Perspective on Hyperdimensional Computing

Suppose we wish to ensure the encodings can distinguish between all points at a distance
≤ ε1 from x and all points at a distance ≥ ε2. That is:

‖φ(x) + Δ− φ(x′)‖ < ‖φ(x) + Δ− φ(x′′)‖

for all x′ ∈ X such that δX (x,x′) ≤ ε1 and all x′′ ∈ X such that δX (x,x′) ≥ ε2. We say
that such an encoding is (ε1, ε2)-robust.

Theorem 21 Let δX be a distance function on X ⊂ R
n and suppose φ is an embedding

preserving δX under the squared Euclidean distance on H as described in Definition 20.
Suppose Δ is ρ-bounded noise. Then φ is (ε1, ε2) robust if:

ρ <
α(d)

4
(ε2 − ε1)− β(d)

2
.

Proof Fix a point x whose encoding is corrupted as φ(x) + Δ. Then for any x′,x′′ ∈ X
with δX (x,x′) ≤ ε1 and δX (x,x′′) ≥ ε2, we have:

‖φ(x) + Δ− φ(x′′)‖22 − ‖φ(x) + Δ− φ(x′)‖22
= ‖φ(x)− φ(x′′)‖22 − ‖φ(x)− φ(x′)‖22 − 2〈φ(x′′),Δ〉+ 2〈φ(x′),Δ〉
≥ α(d)δX (x,x′′)− β(d)− α(d)δX (x,x′)− β(d)− 4ρ

≥ α(d)(ε2 − ε1)− 2β(d)− 4ρ > 0,

as desired.

As before, we may consider passive and adversarial examples.

Additive White Gaussian Noise. First consider the case that H = R
d and Δ ∼

N (0, σ2
ΔId); that is, each coordinate of Δ has a Gaussian distribution with mean zero and

variance σ2
Δ. Then, as before, we can note that 〈φ(x),Δ〉 ∼ N (0, σ2

Δ‖φ(x)‖22). Then, it is
very likely (four standard deviations in the tail of the normal distribution) that ρ < 4LσΔ,
where L = maxx∈X ‖φ(x)‖2. So then, we have the desired robustness property if:

σΔ <
α(d)

16L
(ε2 − ε1)− β(d)

8L

Assuming that α(d) is faster growing in d than L and β(d), there will exist some encoding
dimension for which we can tolerate any given level of noise. In the case of the random
projection encoding scheme described above α(d) = O(d), β(d) = O(

√
d) and L =

√
d

exactly. And so we can tolerate noise on the order of:

σΔ ≈
√
d (ε2 − ε1)−O(1)

For the position-ID encoding method, α(d) = O(d), L = O(
√
nd) and β(d) = O(n2dμ), and

so we can tolerate noise:

σΔ ≈
√

d

n
((ε2 − ε1)−O(n2μ))

237

Thomas, Dasgupta, & Rosing

Adversarial Noise. We now consider the case thatH = {±1}, as in the random-projection
encoding method, and Δ is noise in which some fraction ω · d of coordinates in φ(x) are
maliciously corrupted by an adversary. Since ‖Δ‖1 ≤ ωd, we have, for any x ∈ X :

|〈φ(x),Δ〉| ≤ ‖φ(x)‖∞‖Δ‖1 ≤ ωd

So then we can tolerate ω on the order of:

ω <
α(d)

4d
(ε2 − ε1)− β(d)

2d

In the case of the random-projection encoding method this boils down to:

ω ≈ (ε2 − ε1)− 1√
d
,

meaning the total number of coordinates that can be corrupted is O(d(ε2 − ε1)).

Robustness to Input Noise. A natural question is whether the HD representations also
confer any robustness to noise in the input space X rather than the HD space H. In general,
preservation of distance does not imply any particular robustness to input noise and the
answer to this question depends on the particulars of the encoding method in question.
Since a general treatment is difficult to give, we will not pursue this matter in depth at
present.

6. Learning on HD Data Representations

We now turn to the question of using HD representations in learning algorithms. Our goal
is to clarify in what precise sense the HD encoding process can make learning easier. We
study two ways in which this can happen: the encoding process can increase the separation
between classes and/or can induce sparsity. Both of these characteristics can be exploited by
neurally plausible algorithms to simplify learning. Throughout this discussion, we assume
access to a set of N labelled examples S = {(xi, yi)}Ni=1, where xi lies in [0, 1]n and yi ∈ C
is a categorical variable indicating the class label. In general, we are interested in the case
that training examples arrive in a streaming, or online, fashion, although our conclusions
apply to fixed and finite data as well.

6.1 Learning by Bundling

The simplest approach to learning with HD representations is to bundle together the train-
ing examples corresponding to each class into a set of exemplars—often referred to as
“prototypes”—which are then used for classification (Kleyko et al., 2018; Rahimi et al.,
2018; Burrello et al., 2018). More formally, as described in Section 2, we construct the
prototype ck for the k-th class as:

ck =
⊕

i s.t. yi=k

φ(xi)

and then assign a class label for some “query” point xq as:

ŷ = argmax
k∈C

〈ck, φ(x)〉
||ck|| (6)

238

A Theoretical Perspective on Hyperdimensional Computing

This approach bears a strong resemblance to naive Bayes and Fisher’s linear discriminant,
which are both classic simple statistical procedures for classification (Bishop, 2007). Like
these methods, the bundling approach is appealing due to its simplicity. However, it also
shares their weaknesses in that it may fail to separate data that is in fact linearly separable.

6.2 Learning Arbitrary Linear Separators

Linear separability is one of the most basic types of structure that can aid learning. The
theory of linear models is well developed and several simple, neurally plausible, algorithms
for learning linear separators are known, for instance, the Perceptron and Winnow (Rosen-
blatt, 1958; Littlestone, 1988). Thus, if our data is linearly separable in low-dimensional
space we would like it to remain so after encoding, so that these methods can be applied.
We now show formally that preservation of distance is sufficient, under some conditions, to
preserve linear separability.

Theorem 22 Let X and X ′ be two disjoint, closed, and convex sets of points in R
n. Let

p ∈ X and q ∈ X ′ be the closest pair of points between the two sets. Suppose φ preserves
L2 distance on X under the L2 distance on H in the sense of Definition 20. Then, the
function f(x) = 〈φ(x), φ(p) − φ(q)〉 − 1

2(||φ(p)||22 − ||φ(q)||22) is positive for all x ∈ X and
negative for all x′ ∈ X ′ provided:

β(d)

α(d)
<

1

2
‖p− q‖22.

Proof We first observe:

〈φ(x), φ(p)− φ(q)〉 − 1

2

(‖φ(p)‖22 − ‖φ(q)‖22
)
=

1

2
‖φ(x)− φ(q)‖22 −

1

2
‖φ(x)− φ(p)‖22.

We may then use Definition 20 to obtain:

f(x) =
1

2
‖φ(x)− φ(q)‖22 −

1

2
‖φ(x)− φ(p)‖22

≥ α(d)

2
‖x− q‖22 −

α(d)

2
‖x− p‖22 − β(d)

= α(d)

(
〈x,p− q〉 − 1

2

(‖p‖22 − ‖q‖22
))− β(d).

By a standard proof of the hyperplane separation theorem (e.g., Section 2.5.1 of (Boyd &
Vandenberghe, 2014)),

〈x,p− q〉 − 1

2
(‖p‖22 − ‖q‖22) ≥

1

2
‖p− q‖22

for any x ∈ X , and thus f(x) > 0 if

β(d)

α(d)
<

1

2
‖p− q‖22.

the proof for x ∈ X ′ is analogous.

239

Thomas, Dasgupta, & Rosing

A natural question is whether a linear separator on the HD representation can capture a
nonlinear decision boundary on the original data? The connection with kernel methods
discussed in Section 5.2.1 presents one avenue for rigorously addressing this question. As
noted there, the encoding function can sometimes be interpreted as approximating the
feature map of a kernel, which in turn can be used to linearize learning problems in some
settings (Shawe-Taylor et al., 2004). However, a thorough examination of this question is
beyond the scope of the present work.

6.2.1 Learning Sparse Classifiers on Random Projection Encodings

The random projection encoding method can be seen to lead to representations that are
sparse in the sense that a subset of just k � d coordinates suffice for determining the
class label. This setting accords naturally with the Winnow algorithm (Littlestone, 1988)
which is known to make on the order of k log d mistakes when the target function class
is a linear function of k ≤ d variables. This can offer substantially faster convergence
than the Perceptron when the margin is small. Curiously, while the Perceptron algorithm
is commonly used in the HD community, we are unaware of any work using Winnow for
learning.

Theorem 23 Let X and X ′ be two sets of points supported on the n-dimensional unit sphere
and separated by a unit-norm hyperplane w with margin γ = minx∈X |〈x,w〉|. Let Φ ∈ R

d×n

be a matrix whose rows are sampled from the uniform distribution over the n-dimensional
unit-sphere. Define the encoding of a point x by φ(x) = Φx. With high probability, X and
X ′ are linearly separable using just k coordinates in the encoded space, provided:

d = Ω

(
k exp

(
n

2kγ2

))
.

To prove the theorem we first use the following simple Lemma:

Lemma 24 Suppose there exists a row Φ(i) of the projection matrix such that 〈Φ(i),w〉 >
1− γ2/2. Then 〈Φ(i),x〉 is positive for any x ∈ X and negative for any x ∈ X ′.

Proof The constraint on the dot product of Φ(i) and w implies ‖Φ(i) −w‖2 = ‖Φ(i)‖2 +
‖w‖2 − 2〈Φ(i),w〉 < γ2. Thus for any x ∈ X ,

〈Φ(i),x〉 = 〈w,x〉+ 〈Φ(i) −w,x〉 ≥ γ + 〈Φ(i) −w,x〉 ≥ γ − ‖Φ(i) −w‖ > 0.

A similar argument shows that 〈Φ(i),x〉 is negative on X ′.

Unfortunately, the probability of randomly sampling such a direction is tiny, on the order
of γn. However, we might instead hope to sample k vectors that are weakly correlated with
w and exploit their cumulative effect on x. We say a vector u ∈ R

n is ρ-correlated with w
if 〈u,w〉 ≥ ρ. We are now in a position to prove the theorem.

Proof For w ∈ Sn−1 and ρ ∈ (0, 1), let C = {u ∈ Sn−1 : 〈u,w〉 ≥ ρ} denote the spherical
cap of vectors ρ-correlated with w. Suppose we pick vectors u(1), . . . ,u(k) uniformly at
random from C. Then, with probability at least 1/2:

〈∑j u
(j),w〉

‖∑j u
(j)‖2

≥ 1− 1

2kρ2
(7)

240

A Theoretical Perspective on Hyperdimensional Computing

To see this, note that without loss of generality we may assume w = e1, the first standard
basis vector of Rn, and write any u ∈ R

n as u = (u1,uR): the first coordinate and the

remaining n− 1 coordinates. Now, let N = 〈∑j u
(j),w〉 = ∑

j u
(j)
1 ≥ kρ. Then:

∥∥∥∥∑
j

u(j)

∥∥∥∥
2

2

=

⎛
⎝∑

j

u
(j)
1

⎞
⎠

2

+

∥∥∥∥∑
j

u
(j)
R

∥∥∥∥
2

2

= N2 +
∑
j

‖u(j)
R ‖22 +

∑
i �=j

〈u(i)
R ,u

(j)
R 〉

≤ N2 + k +
∑
i �=j

〈u(i)
R ,u

(j)
R 〉.

The last term has a symmetric distribution around zero over random samplings of the u(j).
Thus, with probability ≥ 1/2, it is ≤ 0, whereupon

〈∑j u
(j),w〉

‖∑j u
(j)‖2

≥ N√
N2 + k

≥ 1− k

2N2
≥ 1− 1

2kρ2
.

To ensure the quantity above is at least 1− γ2/2, we must have:

ρ2 ≥ 1

kγ2
.

It now remains to compute the probability that a vector Φ(i) sampled uniformly from Sn−1

lies in C, or equivalently, that Φ(i)
1 ≥ ρ. Noting that we may simulate a random direction on

Sn−1 by sampling z ∼ N (0, In) and normalizing, we obtain the reasonable approximation:

Φ
(i)
1 ∼ N (0, 1/n). Therefore, the probability that Φ

(i)
1 ≥ ρ is on the order of e−nρ2/2. So

we need:

d = Ω

(
k exp

(
n

2kγ2

))

In summary, the random projection method in tandem with the Winnow algorithm seems
to be well suited to the HD setting, where sparsity can be exploited to simplify learning.

7. Conclusion

To conclude, we lay out several research directions related to HD computing we believe
it would be of particular interest to further explore. There are several interesting open
problems related to encoding. Our analysis established preservation of only the most basic
forms of structure in data. Can encoding procedures satisfying the desiderata of HD com-
puting be designed that capture other forms of structure? The quantized random Fourier
feature construction discussed in Section 5 presents one such option, but is only applicable
to structure that can be captured using a shift-invariant kernel on a Euclidean space. For
instance, can we devise encoding methods that exploit low-dimensional manifold structure
in the data or which are adaptive and can be learned from a particular data set?

241

Thomas, Dasgupta, & Rosing

Several recent works have claimed, based on empirical evidence, that HD computing
evinces one-shot learning (Burrello et al., 2018; Imani et al., 2017; Rahimi et al., 2018) in
which a single labeled example is needed to learn a generalizable classifier (Thrun, 1996;
Lake et al., 2011). However, this work has focused on settings in which specialized hand-
crafted features could be extracted, and it is not clear to us that existing encoding procedures
would lead to one-shot classifiers absent such outside information. We would be interested
to explore whether the HD representation makes one-shot learning easier in any broader
sense. We expect this will necessitate the use of more sophisticated encoding procedures
that can learn salient properties of a given domain. For this latter point we see dictionary
learning (Olshausen & Field, 1996) as a promising avenue for developing adaptive encoding
procedures. Dictionary learning is a well studied problem and can be solved using online
and neurally plausible methods (Arora et al., 2015; Mairal et al., 2010) and would thus
seem to be a promising avenue to address the limitations of existing encoding procedures
without sacrificing the simplicity and neural plausibility of existing HD based methods.

Acknowledgements

This work was supported in part by CRISP, one of six centers in JUMP, an SRC program
sponsored by DARPA, in part by an SRC-Global Research Collaboration grant, GRC TASK
3021.001, GRC TASK 2942.001, DARPA-PA-19-03-03 Agreement HR00112090036, and also
NSF grants 1527034, 1730158, 1826967, 2100237, 2112167, 2052809, 2003279, 1830399,
1911095, 2028040, and 1911095.

Appendix A. Proofs of Selected Theorems

A.1 Proof of Theorem 4

Proof The result is an immediate consequence of the Hanson-Wright inequality (Hanson
& Wright, 1971; Rudelson et al., 2013) which holds that, for x a centered, d-dimensional,
σ-sub-Gaussian random vector, and A ∈ R

d×d an arbitrary square matrix, the quadratic
form xTAx obeys the following concentration bound:

P(|xTAx− E[xTAx]| ≥ t) ≤ 2 exp

(
−cmin

(
t2

σ4‖A‖2F
,

t

σ2‖A‖
))

where c is a positive absolute constant, ‖A‖2F =
∑

i,j |Aij |2 is the Frobenius norm and
‖A‖ = max‖x‖≤1 ‖Ax‖ is the operator norm. The result follows by taking A to be the d×d

identity matrix, in which case xT Idx = ‖x‖22, and union bounding over all m symbols in
the alphabet.

A.2 Proof of Theorem 7

Proof Fix some a /∈ S. As described in Theorem 5, the quantity 〈φ(a), φ(a′)〉 is sub-
Gaussian with parameter at most L2

maxσ
2, where Lmax = maxa ‖φ(a)‖. Then, again using

242

A Theoretical Perspective on Hyperdimensional Computing

the fact that sub-Gaussianity is preserved under sums, by Hoeffding’s inequality we have:

P

(∣∣∣∣∣
∑
a′∈S

〈φ(a), φ(a′)〉
∣∣∣∣∣ ≥ τL2

)
≤ 2 exp

(
− τ2L4

2sL2
maxσ

2

)
≤ 2 exp

(
−κτ2L2

2sσ2

)

where κ = L2/L2
max. The result follows by union bounding over all m possible a.

A.3 Proof of Theorem 9

Proof Expanding the dot product between the two representations:

1

L2
〈φ(S), φ(S ′)〉 = 1

L2

∑
a∈S∩S′

〈φ(a), φ(a)〉+ 1

L2

∑
a∈S

∑
a′∈S′\{a}

〈φ(a), φ(a′)〉

≤ |S ∩ S ′|+ ss′μ.

The other direction is analogous.

A.4 Proof of Theorem 10

Proof Consider some symbol a ∈ A. In the event a ∈ S:

〈φ(a), φ(S) + ΔS〉 = 〈φ(a), φ(S)〉+ 〈φ(a),ΔS〉 ≥ L2 − sL2μ− ρ

and when a /∈ S:
〈φ(a), φ(S) + ΔS〉 ≤ sL2μ+ ρ

Therefore we can decode correctly if:

ρ

L2
+ sμ <

1

2

Proof of Lemma 12

Proof Consider first the case of passive noise. Fix some a ∈ A. Noting that 〈φ(a),ΔS〉
is the sum of d terms bounded in [−c, c], another application of Hoeffding’s inequality and
the union bound will show:

P(∃ a s.t. |〈φ(a),ΔS〉| ≥ ρ) ≤ 2m exp

(
− ρ2

2c2d

)
.

Therefore, with probability 1 − δ, we have that ΔS is ρ-bounded for ρ ≤ c
√
2d ln(2m/δ).

Noting that L =
√
d exactly, the result follows by applying Theorem 10.

243

Thomas, Dasgupta, & Rosing

Now let us consider the adversarial case in which ‖ΔS‖1 ≤ ωsd. We first observe that
|〈φ(a),ΔS〉| ≤ ‖φ(a)‖∞‖ΔS‖1 ≤ ωsd. Then, applying Theorem 10 we obtain:

ωsd

d
+ sμ <

1

2
⇒ ω <

1

2s
− μ

as claimed.

Proof of Theorem 14

Proof Note first that ‖φ(a) ⊗ ψ(f)‖2 = ‖φ(a)‖2. Then, fixing a, a′ and f , by Hoeffding’s
inequality:

P(|〈φ(a), φ(a′)⊗ ψ(f)〉| ≥ μL2) ≤ 2 exp

(
− L4μ2

2σ2||φ(a′)||22

)
≤ 2 exp

(
−kμ2L2

2σ2

)

where we have again defined κ = (mina ‖φ(a)‖22)/(maxa′ ‖φ(a′)‖22). The result follows by
the union bound over all < nm2/2 combinations of a, a′, f .

Proof of Theorem 17

Proof Expanding:

||φ(x)− φ(x′)||22 = ||φ(x)||22 + ||φ(x′)||22 − 2〈φ(x), φ(x′)〉

Note first that ‖φ(x)‖22 = nd + Δ, where Δ is a mean-zero noise term due to cross-talk
between the codewords. Neglecting minor errors from the ceiling function, the dot-product
expands to:

〈φ(x), φ(x′)〉 =
n∑

i=1

〈φ(xi)⊗ ψ(fi), φ(x
′
i)⊗ ψ(fi)〉+

∑
i �=j

〈φ(xi)⊗ ψ(fi), φ(x
′
j)⊗ ψ(fj)〉

=
n∑

i=1

〈φ(xi), φ(x′i)〉+Δ′ =
n∑

i=1

d(1− |a(xi)− a(x′i)|) + Δ′

= d(n− ‖x− x′‖1) + Δ′

where a(xi) is taken to be the centroid corresponding to xi and Δ′ is another noise term
due to crosstalk. Putting both together and noting that Δ,Δ′ ≤ n2dμ we have:

2d(‖x− x′‖1 − 2n2μ) ≤ ‖φ(x)− φ(x′)‖22 ≤ 2d(‖x− x′‖1 + 2n2μ)

where the incoherence can be bounded as in Equation 4.

244

A Theoretical Perspective on Hyperdimensional Computing

References

Arora, S., Ge, R., Ma, T., & Moitra, A. (2015). Simple, efficient, and neural algorithms for
sparse coding. Proceedings of The 28th Conference on Learning Theory, COLT 2015,
40, 113–149.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory, 39 (3), 930–945.

Bell, A., & Sejnowski, T. (1995). An information-maximization approach to blind separation
and blind deconvolution. Neural Computation, 7 (6), 1129–1159.

Bishop, C. M. (2007). Pattern recognition and machine learning, 5th Edition. Information
science and statistics. Springer.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM, 13 (7), 422–426.

Boyd, S. P., & Vandenberghe, L. (2014). Convex Optimization. Cambridge University Press.

Broder, A., & Mitzenmacher, M. (2004). Network applications of bloom filters: A survey.
Internet Mathematics, 1 (4), 485–509.

Burrello, A., Schindler, K., Benini, L., & Rahimi, A. (2018). One-shot learning for ieeg
seizure detection using end-to-end binary operations: Local binary patterns with hy-
perdimensional computing. In 2018 IEEE Biomedical Circuits and Systems Confer-
ence (BioCAS), pp. 1–4. IEEE.

Caron, S. J., Ruta, V., Abbott, L., & Axel, R. (2013). Random convergence of olfactory
inputs in the drosophila mushroom body. Nature, 497 (7447), 113–117.

Chacron, M. J., Longtin, A., & Maler, L. (2011). Efficient computation via sparse coding
in electrosensory neural networks. Current Opinion in Neurobiology, 21 (5), 752–760.

Choromanski, K. M., Rowland, M., & Weller, A. (2017). The unreasonable effectiveness
of structured random orthogonal embeddings. In Advances in Neural Information
Processing Systems, pp. 219–228.

Cybenko, G. (1989). Approximations by superpositions of sigmoidal functions. Mathematics
of Control, Signals, and Systems, 2 (4), 303–314.

Dasgupta, S., Sheehan, T. C., Stevens, C. F., & Navlakha, S. (2018). A neural data structure
for novelty detection. Proceedings of the National Academy of Sciences, 115 (51),
13093–13098.

Donoho, D. L., Elad, M., & Temlyakov, V. N. (2005). Stable recovery of sparse overcomplete
representations in the presence of noise. IEEE Transactions on Information Theory,
52 (1), 6–18.

Frady, E. P., Kleyko, D., & Sommer, F. T. (2018). A theory of sequence indexing and
working memory in recurrent neural networks. Neural Computation, 30 (6), 1449–
1513.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biological Cybernetics,
36 (4), 193–202.

245

Thomas, Dasgupta, & Rosing

Gallant, S. I., & Okaywe, T. W. (2013). Representing objects, relations, and sequences.
Neural Computation, 25 (8), 2038–2078.

Gupta, S., Imani, M., & Rosing, T. (2018). Felix: Fast and energy-efficient logic in memory.
In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 1–7. IEEE.

Hanson, D. L., & Wright, F. T. (1971). A bound on tail probabilities for quadratic forms in
independent random variables. The Annals of Mathematical Statistics, 42 (3), 1079–
1083.

Imani, M., Kong, D., Rahimi, A., & Rosing, T. (2017). Voicehd: Hyperdimensional com-
puting for efficient speech recognition. In 2017 IEEE International Conference on
Rebooting Computing (ICRC), pp. 1–8. IEEE.

Imani, M., Messerly, J., Wu, F., Pi, W., & Rosing, T. (2019a). A binary learning frame-
work for hyperdimensional computing. In 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 126–131. IEEE.

Imani, M., Morris, J., Bosch, S., Shu, H., De Micheli, G., & Rosing, T. (2019b). Adapthd:
Adaptive efficient training for brain-inspired hyperdimensional computing. In 2019
IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4. IEEE.

Imani, M., Morris, J., Messerly, J., Shu, H., Deng, Y., & Rosing, T. (2019c). Bric: Locality-
based encoding for energy-efficient brain-inspired hyperdimensional computing. In
Proceedings of the 56th Annual Design Automation Conference 2019, p. 52. ACM.

Imani, M., Nassar, T., Rahimi, A., & Rosing, T. (2018). Hdna: Energy-efficient dna sequenc-
ing using hyperdimensional computing. In 2018 IEEE EMBS International Conference
on Biomedical & Health Informatics (BHI), pp. 271–274. IEEE.

Imani, M., Rahimi, A., Kong, D., Rosing, T., & Rabaey, J. M. (2017). Exploring hyper-
dimensional associative memory. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 445–456. IEEE.

Imani, M., Salamat, S., Gupta, S., Huang, J., & Rosing, T. (2019). Fach: Fpga-based
acceleration of hyperdimensional computing by reducing computational complexity.
In Proceedings of the 24th Asia and South Pacific Design Automation Conference, pp.
493–498. ACM.

Jacques, L., Laska, J. N., Boufounos, P. T., & Baraniuk, R. G. (2013). Robust 1-bit com-
pressive sensing via binary stable embeddings of sparse vectors. IEEE Transactions
on Information Theory, 59 (4), 2082–2102.

Kanerva, P. (1994). The spatter code for encoding concepts at many levels. In International
Conference on Artificial Neural Networks, pp. 226–229. Springer.

Kanerva, P. (1995). A family of binary spatter codes. In International Conference on
Artificial Neural Networks, Vol. 1, pp. 517–522.

Kanerva, P. (2009). Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors. Cognitive Computa-
tion, 1 (2), 139–159.

246

A Theoretical Perspective on Hyperdimensional Computing

Kim, Y., Imani, M., Moshiri, N., & Rosing, T. (2020). GenieHD: Efficient dna pattern
matching accelerator using hyperdimensional computing. In 2020 Design, Automation
& Test in Europe Conference & Exhibition. IEEE.

Kim, Y., Imani, M., & Rosing, T. S. (2018). Efficient human activity recognition using
hyperdimensional computing. In Janowicz, K., Kuhn, W., Cena, F., Haller, A., &
Vamvoudakis, K. G. (Eds.), Proceedings of the 8th International Conference on the
Internet of Things, IOT 2018, Santa Barbara, CA, USA, October 15-18, 2018, pp.
38:1–38:6. ACM.

Kleyko, D., Rahimi, A., Gayler, R. W., & Osipov, E. (2019). Autoscaling bloom filter: con-
trolling trade-off between true and false positives. Neural Computing and Applications,
32, 1–10.

Kleyko, D., Rahimi, A., Rachkovskij, D. A., Osipov, E., & Rabaey, J. M. (2018). Classifica-
tion and recall with binary hyperdimensional computing: Tradeoffs in choice of density
and mapping characteristics. IEEE Transactions on Neural Networks and Learning
Systems, 29 (12), 5880–5898.

Lake, B., Salakhutdinov, R., Gross, J., & Tenenbaum, J. (2011). One shot learning of
simple visual concepts. In Proceedings of the Annual Meeting of the Cognitive Science
Society, Vol. 33.

Levy, S. D., & Gayler, R. (2008). Vector symbolic architectures: A new building material
for artificial general intelligence. In Conference on Artificial General Intelligence, pp.
414–418. IOS Press.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2 (4), 285–318.

Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization
and sparse coding.. Journal of Machine Learning Research, 11 (1).

Masse, N. Y., Turner, G. C., & Jefferis, G. S. (2009). Olfactory information processing in
drosophila. Current Biology, 19 (16), R700–R713.

McDiarmid, C., et al. (1989). On the method of bounded differences. Surveys in Combina-
torics, 141 (1), 148–188.

Mitrokhin, A., Sutor, P., Fermüller, C., & Aloimonos, Y. (2019). Learning sensorimotor con-
trol with neuromorphic sensors: Toward hyperdimensional active perception. Science
Robotics, 4 (30).

Neubert, P., Schubert, S., & Protzel, P. (2019). An introduction to hyperdimensional com-
puting for robotics. KI-Künstliche Intelligenz, 33 (4), 319–330.

Olshausen, B., & Field, D. (1996). Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381, 607–609.

Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion
in Neurobiology, 14 (4), 481–487.

Pagh, A., Pagh, R., & Rao, S. S. (2005). An optimal bloom filter replacement. In Proceedings
of the sixteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp. 823–829.

247

Thomas, Dasgupta, & Rosing

Parcollet, T., Ravanelli, M., Morchid, M., Linarès, G., Trabelsi, C., Mori, R. D., & Bengio,
Y. (2019). Quaternion recurrent neural networks. In International Conference on
Learning Representations (ICLR).

Plan, Y., & Vershynin, R. (2014). Dimension reduction by random hyperplane tessellations.
Discrete & Computational Geometry, 51 (2), 438–461.

Plate, T. (2003). Holographic Reduced Representation: Distributed Representation for Cog-
nitive Structures. CSLI Lecture Notes (CSLI- CHUP) Series. CSLI Publications.

Plate, T. A. (1995). Holographic reduced representations. IEEE Transactions on Neural
Networks, 6 (3), 623–641.

Rachkovskij, D. (2015). Formation of similarity-reflecting binary vectors with random binary
projections. Cybernetics and Systems Analysis, 51 (2), 313–323.

Rachkovskij, D. A. (2001). Representation and processing of structures with binary sparse
distributed codes. IEEE Transactions on Knowledge and Data Engineering, 13 (2),
261–276.

Rachkovskiy, D. A., Slipchenko, S. V., Kussul, E. M., & Baidyk, T. N. (2005a). Sparse binary
distributed encoding of scalars. Journal of Automation and Information Sciences,
37 (6).

Rachkovskiy, D. A., Slipchenko, S. V., Misuno, I. S., Kussul, E. M., & Baidyk, T. N. (2005b).
Sparse binary distributed encoding of numeric vectors. Journal of Automation and
Information Sciences, 37 (11).

Raginsky, M., & Lazebnik, S. (2009). Locality-sensitive binary codes from shift-invariant
kernels. In Advances in Neural Information Processing Systems, pp. 1509–1517.

Rahimi, A., Benatti, S., Kanerva, P., Benini, L., & Rabaey, J. M. (2016). Hyperdimensional
biosignal processing: A case study for emg-based hand gesture recognition. In 2016
IEEE International Conference on Rebooting Computing (ICRC), pp. 1–8. IEEE.

Rahimi, A., Datta, S., Kleyko, D., Frady, E. P., Olshausen, B., Kanerva, P., & Rabaey, J. M.
(2017). High-dimensional computing as a nanoscalable paradigm. IEEE Transactions
on Circuits and Systems I: Regular Papers, 64 (9), 2508–2521.

Rahimi, A., Kanerva, P., Benini, L., & Rabaey, J. M. (2018). Efficient biosignal processing
using hyperdimensional computing: Network templates for combined learning and
classification of ExG signals. Proceedings of the IEEE, 107 (1), 123–143.

Rahimi, A., Tchouprina, A., Kanerva, P., Millán, J. d. R., & Rabaey, J. M. (2017). Hy-
perdimensional computing for blind and one-shot classification of eeg error-related
potentials. Mobile Networks and Applications, 25, 1–12.

Rahimi, A., & Recht, B. (2008). Random features for large-scale kernel machines. In
Advances in Neural Information Processing systems, pp. 1177–1184.

Rosenblatt, F. (1958). The Perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65 (6), 386–408.

Rudelson, M., Vershynin, R., et al. (2013). Hanson-wright inequality and sub-gaussian
concentration. Electronic Communications in Probability, 18.

248

A Theoretical Perspective on Hyperdimensional Computing

Rudin, W. (1962). Fourier analysis on groups. John Wiley and Sons, Ltd.

Rumelhart, D., McClelland, J., & the PDP Research Group (1986). Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations.
MIT Press.

Sahlgren, M. (2005). An introduction to random indexing. In Methods and applications of
semantic indexing workshop at the 7th international conference on terminology and
knowledge engineering.

Salamat, S., Imani, M., Khaleghi, B., & Rosing, T. (2019). F5-hd: Fast flexible fpga-based
framework for refreshing hyperdimensional computing. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 53–
62.

Schmuck, M., Benini, L., & Rahimi, A. (2019). Hardware optimizations of dense binary
hyperdimensional computing: Rematerialization of hypervectors, binarized bundling,
and combinational associative memory. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 15 (4), 1–25.

Shawe-Taylor, J., Cristianini, N., et al. (2004). Kernel methods for pattern analysis. Cam-
bridge university press.

Stettler, D. D., & Axel, R. (2009). Representations of odor in the piriform cortex. Neuron,
63 (6), 854–864.

Thrun, S. (1996). Is learning the n-th thing any easier than learning the first?. In Advances
in Neural Information Processing Systems, pp. 640–646.

Turner, G. C., Bazhenov, M., & Laurent, G. (2008). Olfactory representations by drosophila
mushroom body neurons. Journal of Neurophysiology, 99 (2), 734–746.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint, Vol. 48.
Cambridge University Press.

Weiss, E., Cheung, B., & Olshausen, B. (2016). A neural architecture for representing
and reasoning about spatial relationships. In International Conference on Learning
Representations (ICLR).

Widdows, D., & Cohen, T. (2015). Reasoning with vectors: A continuous model for fast
robust inference. Logic Journal of the IGPL, 23 (2), 141–173.

Wilson, R. I. (2013). Early olfactory processing in drosophila: mechanisms and principles.
Annual Review of Neuroscience, 36, 217–241.

Zhang, A., Tay, Y., Zhang, S., Chan, A., Luu, A. T., Hui, S. C., & Fu, J. (2016). Beyond
fully-connected layers with quaternions: Parameterization of hypercomplex multiplica-
tions with 1/n parameters. In International Conference on Learning Representations
(ICLR).

249

