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ABSTRACT

Water and electricity distribution networks are two highly interdependent and critical infrastructures in
the world today. This paper investigates the coupling of water and electricity distribution networks
through the electrical energy demand of water pumps. Further, with additional variable renewable
energy (VRE) sources in the distribution system, utilities face significant challenges stemming from the
VRE stochasticity. In this paper, a coordinated operational model of urban water and electricity distri-
bution networks is proposed. Stochastic VRE generation is handled by using a data-driven probability
efficient point (PEP) method based on historical wind and solar datasets without the need for any
probability distribution function. Case studies are performed on a modified Institute of Electrical and
Electronics Engineers (IEEE) 13-node electricity distribution network coupled with a 10-node water
distribution network, typical of a small-town setting. Results show the impact of coordinating water and
energy networks on the cost of operation and the distribution locational marginal prices (DLMPs). The
inclusion of water tanks as alternative storage devices in the electricity distribution network are shown
to slightly reduce voltage violations, line congestion, and VRE curtailments in a case with high VRE

penetration.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Water and electricity networks are two critical infrastructures in
today's society. Though typically operated independently, these
infrastructures are profoundly interdependent. For example, in
2015, 41% of the water withdrawn in the U.S. was sent to electrical
power plants mainly for cooling purposes, with 3% of this water
being consumed [1]. On the other hand, water pumps require
electrical energy to pump water to water treatment centers and for
use in the agriculture industry [2]. The agriculture sector is
responsible for 43% of the total water withdrawn in North America
[3]. Further, about 80% of municipal water costs are for electricity,
and municipal water networks consume around 3—4% of U.S. en-
ergy and as much as 13% when including residential water energy
usage [4]. Anticipated increases in water scarcity, variability, and
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uncertainty within the water network, particularly during extreme
events, can lead to vulnerabilities in the U.S. energy network [2].

Synergies between water and electricity networks have long been
studied by researchers and governmental entities alike. For example,
authors in Refs. [5,6] present long-term integrated planning prob-
lems for water and electricity systems in the New England region in
the U.S. and China, respectively. On the other hand, optimal opera-
tion of combined water and energy networks are considered in many
works, such as [7,8]. Various other published articles define and
study the water-energy nexus, dating back to the 1990s [9].

Changes over recent years have caused water and electricity
utilities to improve efficiencies through cooperation. With the rise
in water demands [10] and prices, as water prices in the U.S.
increased nearly 40% from 2008 to 2016 [11], water utilities are
forced to look at ways to reduce their operational costs and elec-
tricity usage. Additionally, variable renewable energy (VRE) sour-
ces, such as wind and photovoltaics (PVs), have increased in urban
electrical distribution networks. Such changes produce significant
challenges when matching the generation to the load, for instance,
CAISO's “duck curve” [12].
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Abbreviation list

ADMM  alternating direction method of multipliers

CAISO California independent system operator

Ccco chance-constrained optimization

DER distributed energy resource

DG distributed generator

DLMP distribution locational marginal price

DSO distribution system operator

IEEE Institute of Electrical and Electronics Engineers

10 interval optimization

LMP locational marginal price

MILP mixed-integer linear programming

MINLP mixed-integer nonlinear programming

MIQCP mixed-integer quadratically constrained
programming

PDF probability distribution function

PEP probability efficient point

PV photovoltaic

RO robust optimization

SO stochastic optimization

SoC second-order cone

VRE variable renewable energy

VSP variable speed pump

WWSIS  Western Wind and Solar Integration Study

Nomenclature

§,%,%+,5,%, % Indicates injection, extraction, upper, lower limit,

stochastic, gain, loss
X,V ON/OFF indicator for pumps, valves

7, N, J, P, R Number of timeslots, power buses/lines, water
junctions, pipes, VRE sites
U, v, K, R Set of water pipes with pumps, valves, junctions with
tanks, reservoirs
Q, A u, p DLMP, shadow price of energy, voltage, congestion
A, .7 ,(a,b,c) Tank area, pipe characteristic, pump characteristic
Ce, C, £, s, k, 0 Objective function, bid, value of lost load,
curtailment, reactive to real power ratio, load shed
E, L, V,C Energy, loss, voltage, congestion superscripts
e S Voltage bound, apparent power flow
o & 1, Gy Water density, gravity, pump efficiency, pump
electricity cost
f,d, h, u, » Water flow, demand, junction head, tank volume,
pump speed ratio
G,D,B,R,P,Q,N, U Generation, demand, battery, renewable, real,
reactive, non-pump, pump superscripts

i,j,t,w Index of node, water/electricity link, time, and
segment
M, m Large, small constant number

P, Q, I”, L2 Real, reactive power flow, real, reactive losses
D, q, Vv Real, reactive power injection, voltage
r,x, M Power line resistance, reactance, matrix
tri, T,(«/, #, ¢) Triangle segment, triangle indicator, linear
pump power characteristics
u(+), d{-}, B Immediate upstream electricity node, downstream
subtree, incidence matrix of water network
u, I, m, W Pipe Darcy friction factor, length, diameter, area
v,d,p,{,0,s,S PEP vector data, scenario probability, selector,
probability level, sample, set

Solutions commonly addressed in the literature for mismatches
in power generation and load are demand response techniques and
the use of energy storage resources [13]. Storage options include
battery storage, concentrating solar power combined with thermal
energy storage [14], and utility-scale pumped storage hydro [15,16].
These storage projects can have substantial capital costs [17];
therefore, cheaper energy storage ideas are needed. A less costly
avenue for energy storage could be through gravitational potential
energy storage in existing water tanks.

We aim to address these challenges by providing a framework
for urban water and energy networks to cooperate by reducing
peak electricity loads and VRE curtailments through flexibility in
the water pump power consumption. For example, electric utility
operators can shift pump demand by using water tanks as storage
devices. The water network subsequently provides a service to the
electricity network and must be rewarded as such.

One way to accurately reward active resources in the distribu-
tion system is by buying and selling energy at the true cost of
electricity at a node, namely, the distribution locational marginal
price (DLMP). The DLMP is the marginal cost to serve the next unit
of power at a distribution network node. It is similar to the loca-
tional marginal price (LMP) of the transmission network. The DLMP
mechanism embedded into future distribution energy markets is a
useful tool in integrating various types of distributed energy re-
sources (DERs) into the existing electricity distribution network by
incentivizing ancillary services. Further, DLMPs indicate the health
of the network as they are higher when the distribution system
sees operational issues, e.g., congestion on lines and voltage vio-
lations at nodes. This DLMP increase is due to a cost-causation
pricing mechanism to the node that provokes these operational
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issues. The DLMP mechanism itself serves as a financial incentive.

Several methods for day-ahead scheduling of water pumps
based on electricity prices have been proposed in the literature
[18—24]. Works [18—21,23], and [24] consider drinking water
pumps, while [22] considers both freshwater and wastewater
pumps in their model. Further, authors in Ref. [18] propose a
mixed-integer second-order cone program to solve the water
supply network using a fixed price scheme. Alternating direction
method of multipliers (ADMM) is used to provide suboptimal so-
lutions to the water network's biconvex objective function that
minimizes the cost of electricity used to power the pumps. An
electricity network and the corresponding constraints are not
considered. A second pump scheduling method considers a
coupled water and electricity network with physical constraints for
both in Ref. [19]. The result is a nonconvex, quadratically-
constrained quadratic problem using feasible point pursuit-
successive convex approximation methods to solve. Then, a
distributed ADMM-based algorithm is used to update water and
energy variables in an alternating fashion. Outputs from DERs and
electricity prices are considered as fixed values. These approaches
are not suitable to the present problem because a coupled model
must be considered to capture the impacts one network has on the
other. Also, it is important to consider the variability of renewable
resources because their forecasts do not always match their actual
power output. Finally, fixed energy prices do not reflect the impact
actions in the water network have on the price of electricity.

Two recently published papers [20,21] are most relevant to this
work. First, Oikonomou et al. using a mixed-integer linear pro-
gramming (MILP) model, consider optimizing water pump and tank
schedules with respect to a fixed electricity price while maximizing
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the profit to the water network for providing services, such as de-
mand response and frequency regulation, to the electricity trans-
mission network [20]. A sensitivity analysis of the number of tanks
in a water distribution network was also pursued in this work.
Then, Oikonomou and Parvania provided an MILP model of the
coupled water and transmission network and constraints in
Ref. [21], where the impact on the LMP was further investigated. A
case where the transmission system operator optimizes water
network flexibility was considered. However, water valves, VRE
units, and stochasticity in the model are not considered.

In contrast to the transmission system, the electricity distribu-
tion network is characterized by a lower x/r ratio and a radial to-
pology. Smaller than their transmission counterparts, peak loads of
typical distribution network feeders range from 0.6 to 28.5 MW,
and typical lengths range from 1.1 to 32.6 miles [36]. Further, DERs,
voltage limits, power losses, etc., are prominent in the electricity
distribution network and need to be taken into account. Therefore,
Oikonomou and Parvania, in Ref. [22] also considered a coupled
water and energy distribution-level model, where fixed hourly
price tariffs are applied to the water network. In this mixed-integer
quadratically constrained programming (MIQCP) model, the water
treatment facility is also treated as a flexible load. Again, stochas-
ticity and valves are not considered in this model. In a similar paper
that considers the optimal operation of water-energy microgrids,
Moazeni and Khazaei develop an MILP model that is compared
against a mixed-integer nonlinear programming (MINLP) model in
Ref. [23]. Although this work includes DERs and bidding in a dis-
tribution network, stochasticity of the VRE units and valves are
ignored. However, Wang et al. in Ref. [24], propose a robust oper-
ation of the water-energy nexus where uncertainties in wind
generation outputs are considered. The authors consider a
transmission-level multi-energy system.

There has been little work in the literature on combined water
and electricity distribution networks that consider VRE uncertainty
to the best of the authors' knowledge. Furthermore, the impact of
the coordination of the water network on the DLMP is still un-
known. In this paper, we try to fill this gap by studying the optimal
operation of interdependent electricity and water distribution
networks under VRE uncertainty.

First, we propose an MILP model of merged power and water
networks to optimally schedule pumping, tank storage, and DERs,
considering both electricity and water network constraints. The
pumping schedules are coupled with electricity utility demands
and therefore serve as a flexible load. The water pumps respond to
the price of electricity and available VRE generation and can run at
higher capacities than what is necessary for the current water de-
mand. The additional pumped water is stored in tanks for later use
and, in turn, reduces electricity costs and VRE curtailment. In
general, VRE generation curtailment occurs when there is insuffi-
cient ramping down capability in thermal units or when there is
congestion on power lines, inhibiting the use of available wind and
solar energy [25]. Since the proposed electricity distribution model
does not incorporate thermal units with ramping limits, VRE units
are curtailed to avoid congested lines. We optimize this model from
the perspective of the electricity distribution system operator
(DSO) while considering physical constraints of both networks. A
significant operational cost to the water utility is the cost of sup-
plying power to pumps. If the cost of supplying electricity is
minimized, electricity costs to the water utility can also be reduced.

Second, there are multiple noteworthy optimization methods in
the literature that deal with VRE uncertainty, such as chance-
constrained optimization (CCO) [26], robust optimization (RO)
[27], interval optimization (I0) [28], and stochastic optimization
(SO) [29]. A recent review can be found in Ref. [30]. Here, we model
the stochastic generation of VREs as a chance-constrained model, in
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which the minimum amount of VRE generation at a certain confi-
dence level is obtained. To fully leverage a large amount of histor-
ical VRE datasets without assuming an explicit probability
distribution, we adopt a data-driven probability efficient point
(PEP) method to solve the chance-constrained model. The PEP, also
referred to as the p-efficient point or pLEP, was introduced by
Prékopa in the 1990s [31]. This method requires no knowledge of
the underlying probability distribution function (PDF) of the un-
certainty - it depends only on historical VRE data. The PEP method
has been successfully and extensively used to solve chance-
constrained stochastic programming problems in many areas of
study, such as stock market portfolio selection [32], fiber optic
production planning [33], and disaster evacuation modeling [34]. A
similar method to deal with uncertainty while not assuming a
single PDF is described in [35], where a unit commitment model is
optimized based on multiple PDFs, which has been shown to be
distributionally robust.

Case studies are performed on a modified Institute of Electrical
and Electronics Engineers (IEEE) 13-node electricity distribution
network coupled with a 10-node water distribution network. An
investigation into the capability of water tanks to serve as storage
devices of excess renewable energy under the future case of a
distribution market, as summarized in Ref. [37], is undergone. A key
focus of future distribution markets is centered around supplying
energy using marginal operating or social welfare costs. Therefore,
the impact of the water network on the DLMP is investigated. The
main contributions of this paper include:

(1) We propose an MILP model of coordinated water and elec-
tricity distribution networks by using a combined convex
relaxation and 2D piece-wise linearization techniques while
considering VRE stochasticity and DLMP in the model.

(2) Stochastic VRE generation is considered using a data-driven
PEP method which optimally calculates probability efficient
points utilizing historical VRE generation data without
assuming any probability distribution of the data. This
method allows for efficient management of uncertainty in
VRE generation in the coordinated water and electricity
distribution model.

(3) The effect of the water and electricity network coordination
in a future distribution market considering DLMPs is shown.
An exploration into the capability of reducing voltage viola-
tions and line congestion in the electricity distribution
network is conducted.

Table 1 compares recently published work in this area to the
contributions of this paper. Novel to this area of study, we provide
an integrated MILP water and electricity distribution model that
handles uncertainty of VRE resources using the PEP method. We
also consider valves in our water model. More importantly, we
include a study of how actions in the water network impact the
DLMP and the physical condition of the electricity network.

The remainder of this paper is organized as follows. We outline
the mathematical model for the linearized electricity and water
networks in Section 2 and 3, respectively. Case studies utilizing
water tanks as storage devices and their impact on the DLMP are
provided in Section 4. We provide important observations and
conclude the work in Section 5.

2. Electricity distribution model

We consider a balanced electricity distribution network, which
we model using modified DistFlow equations with losses. We index
the root node as 0 and order the rest of the nodes from 1 to W/,
where V is the total number of nodes/lines. As shown in Fig. 1, line i
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Table 1
Reference contribution summary.
Reference Merged Water-Energy Network VRE Uncertainty Distribution Network VRE DLMP
Fooladivanda et al. [18]
Zamzam et al. [19] v/ v v/
Oikonomou et al. [20,21] v
Oikonomou and Parvania [22] v 4
Moazeni and Khazaei [23] 4 v v
Wang et al. [24] v v/ (RO) v
This work v v (PEP) 4 4 v

D,N" DN

~

Q
l]’,t'l‘j,t

Pit »it

D,U DU

Pit +4i¢

Fig. 1. Distribution branch with line i connecting bus u(i) to node i. The total electrical load is comprised of non-pump (p?['N ) and pump (p%u) demands.

is the line connecting the upstream node, u(i), and the set of
downstream nodes, d{i}, to node i. All quantities related to line i are
subscripted by index i, for time t € 7. Though not pursued in this
work, this model, including the DLMP decomposition, can easily be
extended to a three-phase unbalanced system, as we have done in
previous work, Edmonds et al. [38].

2.1. Objective function

Our objective function is defined in (1), where Cp is the least cost
sum of operating the electrical distribution system.

GP G,
Co = 2P+ Ao + Yl Plwe + DG T

i,wt iwt
~BP ~B _BP =B D
+D_Cie *Pie =D _Gii Pie + D _ESi
it it it

Here, %, 2% are the real and reactive LMP prices at the sub-
station node connected to the transmission system, and po, qo are
the real and reactive net power injections at the substation node,
which is assumed to be an infinite source. If these net power in-
jections are negative, the DSO buys real or reactive power from the
distribution system at the respective LMP of the substation node.

Distributed generators (DGs) bid at a cost of cf‘;f,’l

ciG‘;‘j . for reactive power, where subscript w indicates the segment

(1)

for real power and

energy and bid block using a piecewise bidding method to
approximate the fuel cost of the DGs. Variables pfw_t and qfwit
indicate the real and reactive segment power the generators sﬁp—
ply. These values must lie within their respective segment con-
straints and sum to their total output pft and qft. The reactive
power output of the DG must lie within a fraction, k©, of the real
power output. The battery energy storage system (BESS) units bid at

a cost of 6?;" for extraction of power from the battery and E:f‘tp for

injection of power into the battery, where 6?#’ > E? ’tp to create a

positive revenue. Variables [75 + and bft indicate the power the BESS
unit consumes or supplies, respectively. The final term in (1) in-
dicates the value of lost load, &, and the sum of the real power

demand curtailment, s?t, to penalize any load not served.

2.2. Power balance

The total system real and reactive power balance is modeled in
(2)-(3), where LE ¢ and L% are the linearized real and reactive power
losses. The real and reactive power net node injection (pis, gir) is
modeled in (4)-(5), where pP; and gf; are the real and reactive
system power demands and fvﬁ and f]ft are the real and reactive
stochastic VRE unit outputs. '

Dot + Z(Pi,t +L€t) =0 @)
i

dot + Z(Qi,t +L§[) =0 3)
i

Dit = Pl{)t - Pft - Pft - f’f,t (4)

Qit = qz?t - qic,t - q?,t - qft )

-D
P?t =Dit— SEt (6)
o =D
0§Si7t§0 ‘Dit (7)
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B _ B B
Dit = Pit — Dit

(9)

R
R = R
Dit = Pit — Sit

—R
0 <si <Di; (10)

D

Equation (6) determines the allocated real demand, p;,, from the

requested demand, p ?t. If any, the difference between these values
is captured in s?t and is penalized in the objective function as lost
load. Equation (7) limits the positive load shedding value to a
fraction, ¢®, of the requested demand. Similarly, the reactive dis-
patched load is held to kP of the real dispatched load to maintain a
constant load power factor.

Equation (8) defines the net real power extraction of the BESS,

pft, which is the difference between the extraction (f)ft) and in-

jection ([75 ) power. The reactive power of the battery, qft, must lie
within zero and «® of the real power BESS extraction. Additional
BESS constraints defining the state of charge, dis/charging rates,
and the minimum number of dis/charging hours can be found in
our previous work [39].

Equation (9) determines the dispatched real VRE generation, [75[,

-R
from the expected stochastic generation, p; ;. (The result of the PEP
method in Section 2.4.) The difference is captured in sft. Equation
(10) limits the positive curtailment value to less than the expected

generation. Reactive VRE generation is held within + «® of the
dispatched real VRE generation.

2.3. Distribution power flow

The real and reactive power flow (P;;, Qi) is defined in (11) and
(12), and voltage, v;, is defined in (13) in reference to the substation
P
i
downstream incidence matrices and line resistance and reactance

voltage vo. Here, M M% are comprised of upstream and

diagonal matrices [40]. The real and reactive power losses (L{? o Ll%)
which are originally quadratic relations of the real and reactive
power flow, line impedance, and nodal voltage, are approximated
using a first-order Taylor series approximation around a feasible
point that is obtained exogenously [41]. More detail on the
approximated loss is presented in our previous work [40]. Equa-

tions (14) and (15) enforce voltage and line limit bounds, respec-

tively. Here, ¢ is some small value, typically 5%, and S ; is the
maximum allowable MVA line limit. Equation (15) is a linear
approximation of the initially convex quadratic apparent power

-2
flow limit, |P,;yf|2+ Qi < S ;. This equation models the outer
approximation of the network power flow and was obtained from
Convex Optimization of Power Systems [42].

Pp=pic+ > (Pre+LEy) (11)
ked{i}
Qe =die+ Y (@e+LY) (12)

ked{i}
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vie=v00— D Mbper e+ 1R — Y ME(@re +LE)  (13)
keN keN

T-e<v<l+e (14)

IPiel +1Qic| < V2-S (15)

Therefore, the DSO's optimization problem formulated in (1)-
(15) integrates a real and reactive, balanced distribution system
model to account for DGs, VRE units, RLs, and BESSs. This approach
is unique, as indicated in Table 1. The accuracy of the electricity
distribution model measurements was validated in our previous
work using commercially available electricity model software,
MATPOWER, and can be investigated in Ref. [40].

2.4. Data-driven probability efficient point (PEP) method

We consider the use of the PEP method to address stochastic
VRE generation in the coordination of electric and water networks

to determine f)ft in equation (9). As previously mentioned, the PEP
method's advantage over other methods (e.g., SO) is that it does not
require the assumption of an underlying (joint) probability distri-
bution function of stochastic parameter(s). This is useful in prob-
lems like the one considered in which a large volume of historical
datasets of the stochastic parameters is available, but it is extremely
difficult to get an explicit joint probability distribution function.
The data-driven PEP method that solves VRE generation efficient
points using historical data at a certain probability level is described
as follows.

For the set of historical realizations denoted by S of the sto-
chastic vector d = (dy, ..., dy, ...,dg) for R VRE sites. The st" sample
of the historical realizations of d, is denoted as ds = (ds1,--rds s,
ds g), where s S. The probability of each scenario, s, is denoted as
ps. The MILP in (16)-(20) solves the PEP, as determined in
Refs. [40,43].

R

minﬁzwﬁ (16)
Viseesy Ve n=1

Subject to:

> sl > (17)
seS

VB >doplon=1,. RseS (18)
¢.€{0,1}/° (19)
vVer,,n=1,...,R (20)

The element-wise sum of the PEP vector, V@, guarantees a
minimal solution (16). The total probability of a set of samples must
at least be equal to the probability level, 6, and is satisfied in
constraint (17). Equation (18) guarantees each element of the so-
lution (wff evf) must be greater than or equal to the corresponding
sample in the historical data set (ds,<ds) of “selected” samples.
This is achieved by using binary variable {, (19), which is one if all

constraints vﬁ > psp,N=1,..., R, are metin the st" sample, and zero
otherwise. The realized solutions must be real, positive values (20).
Constraints (17) and (18) require that v¥ satisfies the requirement of
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a set of scenarios whose aggregate probability is at least equal to
the enforced probability level (.
Once the p-efficient point of the VRE generation at probability

—R
level § is represented by v#, stochastic value Pj. in equation (9) will

be replaced by the deterministic value wﬁ. The PEP model can easily
be extended to address uncertainties in electrical load and water
demand forecasts. However, we assume these components can be
accurately forecasted with a small percent error as opposed to the
VRE generation. Therefore, uncertainties associated with electricity
and water demands are not considered here.

2.5. DLMP decomposition

We leverage our linearized DLMP model, decomposed in
Ref. [40], and extend it to include the flexible demand of the water
distribution network. The DLMP components remain the same for
this case as the pump demand is not directly related to a marginal
increase in electricity demand. Energy, loss, voltage violation, and
congestion components are summed to the total real and reactive

DLMP (Qf, @2) as in (21)-(28).

Qf = Qf + O} + o + (21)
Q E L % C
Q= Q7 + Q8+ Q2 + Q7 (22)
oL oL
L of it ofe it
Qi,t - Qi,t;api’t + Ql,t ]Zapi,t (23)
aLe oLP
Lo _ ofe Jit Ep gt
Qi,t - QL[ ;aqu + Ql’t;aqi,t (24)
: Vs
Qff = 307~ (25)
i )
: aVy
Qre =3 (uin — ey Lt (26)
’ it ’ ’ aqi,t
0S;
Q= > pl it 27)
t L
! ]Gg{l} ! apl.t
aS;
C 2 £
jeutiy it

The shadow prices of (2) and (3) determine the energy

component of the DLMP (Qf’;, QlEf ). Loss sensitivities with respect to
L ol

Qb )

Similarly, voltage sensitivities to nodal power injections determine

Y‘t’ QX?). Here, the shadow prices of (14)
on all nodes i’ that hit a lower or upper voltage limit are captured in
min ,max Finally, apparent power flow sensitivities with respect to

e Vg
Cp
o

nodal power injections determine the loss components (
the voltage components (€2

V.
nodal power injections determine the congestion components (
Q,C‘f) Here, combinations of the four Lagrange multipliers that

come from expanding the absolute values in (15) to a linear form
are captured in p}t, p%t. The combination of real and reactive power
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injections is captured in S;, [40].
3. Water model

The water supply network is modeled as a directed graph
G = (J,P) with junctions, 7, and pipes, P, as nodes and lines of the
system. Pipes with pumps (/) and valves (V) are (disjoint, mutually
exclusive, independent) subsets of all pipes (4, VP), and reser-
voirs (R) and tanks (k) are disjoint subsets of junctions (R, K€ 7).
Again, we consider time t<7. Similar to the electricity network,
indices i and j denote the junctions and pipes for the water
network. Note, we use index j, without the prime notation, when
describing the pipes in the water network in the mathematical
model for simplicity, even though the electricity lines and water
pipes are independently notated (see Fig. 3.).

Additionally, due to multiple nonconvex constraints, the water
model, as is, is NP-hard [18,19]. Therefore, without using solution
techniques, exact solutions for the optimal water flow problem are
hard to compute, even when the network is small. Here, equations
are linearized to reduce the computational burden. Convex relax-
ation and piecewise linear methods are used. Similar water models
can be found in Refs. [18,19].

3.1. Junctions

Water demand, d;;, is considered constant (m3/h) over the 1-h
duration of each time slot. The volumetric flow rate through pipe
jis denoted as fj. Conservation of mass must be followed between
two connecting junctions described by their node-line incidence
matrix, B (29). Here, Be RWV*P) is one if pipe j leaves junction i,
negative one if pipe j enters junction i, and zero otherwise. This
constraint is considered Vie 7, Vt< 7. Each junction i is assigned a

minimum and maximum pressure head, h;, h i» by system opera-
tors. For Vie J, VteT, the head at each junction (h;;) must lie
within these two values (30).

B'ﬁ,t = di,t (29)

hi <hj; < E i (30)

3.2. Reservoirs

Reservoirs serve as infinite sources of water to the network, i.e.
(29) does not hold, where the junction pressure head (in meters) is
zero YieR, VteT as described in (31).

hi; =0 (31)

3.3. Tanks

Tanks are modeled such that the water balance constraint (32)
must hold Yiek, VteT. Denote the volume (m?) in the tank as
ujr and At as the time interval between time slots (h). Note,
uijr—1 = ujo for t = 1, where u; is the initial volume in the tank.
Equation (33) restricts the volume of water in the tank to reside
between the maximum volume of the tank, u ;, and the minimum
reserve volume, u;. The pressure head at the tank, h;;, is defined in
(34), and must be greater than zero (35). The bounds for the
volumetric flow rate entering (fi;) and leaving (f,y:) the tank are
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modeled in (36), where in this instance j represents the upstream
and downstream pipes of tank i. Note, h; ;1 = %" for t = 1, where A;
is the area of the tank.

Ujr = U1 + At[B - fi] (32)

U <ujr < ﬂ,- (33)
At

hiy =hie1 + A (B 'fj,t] (34)
1

hi; >0 (35)

f}'«,t Sﬁlﬂfouf (36)

3.4. Pipes without pumps or valves
Head loss across a pipe without a pump or valve (f:ljrt) can be

modeled using the nonlinear Darcy-Weisbach equation (37)
VjeP/Uuuy, YteT. For simplicity, we assume all water pipes are
smooth and are modeled using a constant friction factor. Here,
_ M
T 2mWig
length (I;), diameter (m;), cross-sectional wetted area (Wj;), Darcy
friction factor (u;), and local gravity (g). For volumetric flows in m3/
h, a conversion factor must be included in .77;. Head loss is also
calculated as the difference between two junctions surrounding a
pipe (38). The flow across a pipe must be positive (39) as we do not
consider bidirectional flow in the water model.

T is a constant related to pipe characteristics such as

hie=73(f)" (37)
hj = BT-hy, (38)
fiez0 (39)

A piecewise linear function further approximates the head loss
in (37). A binary variable is used to indicate the section the
approximation lies within.

3.5. Variable-speed pumps

A variable speed pump (VSP) moves water through a network
[44], by increasing the pressure head across a pipe, Vjeu, VteT.

This increase (in meters) is captured in the head gain variable, ﬁj‘t,
which is modeled by the nonlinear equation (40), where wj is the
actual over nominal pump rotational speed (in rad/s). This value
must remain between the minimum and maximum allowable ra-
tios w;, &j, if the pump is ON, as indicated by binary variable x;,
(41). Also, note that aj, b;, and c; are the coefficients of the hydraulic
characteristics of the pump, where a; < 0; bj, ¢; > 0. For simplicity,
we assume the efficiency of the pump is constant.

e = aj(fi0)® + bificwje + Gi(wj ) (40)

Wj* X ¢ < Wi ¢ < W jXjp (41)

Similar to head loss, the head gain between nodes is approxi-
mated using a piecewise linear approximation. First, nonlinear
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equation (40) is modified to eliminate wj (42), where b}“‘”‘

= bj'a)]
and CJ’."‘”‘ = cj-(f)jz. This convex relaxation technique is adopted
from Ref. [18] to define an upper bound for the pump head gain.
The technique is extended here to enforce a lower bound for the

head gain. The right-hand side (RHS;;) of (42) is linearized using a
piecewise linear approximation. Similarly, to set a lower bound for
the head gain, we use (43), where b]’-"i” gjz.
The approximated head gain must be zero or greater than LHS;,.
Piecewise linear functions are used to approximate the upper and
lower bounds of the head gain, defined in (42) and (43), respec-
tively. The pump rotational speed ratio, wj, can be obtained post-
solve.

— Doy min _ .,
7b]gjandcj =G

2
B < a5(fie) + b fje + ' = RHS;. (42)

2 2 . .
B> a(fie) + b + M = LHS; eox (43)
If the pump is ON, the head gain is also captured in the pressure
head difference between the two junctions on either side of the
pump (44). By use of a binary variable and a large positive constant,
M, the pressure head values on either end of the pump are
uncoupled if the pump is OFF. The head gain must be a positive
value (45), and the water flowing through the pump must be be-
tween m and M if the pump is ON (46).

—M(1 = xj;) < [B" + hy] — ﬁj‘t <M1 —xjy) (44)
hie >0 (45)
m-xj_’t Sfj,t < M'Xj.,t (46)

3.6. Pressure reducing valves

Similar to (44) for pumps, but VjeV, VteT and where binary

variable y;, indicates valve ON/OFF state, the head loss, flj‘[, is
modeled as the difference between the junctions on either end of
the valve if the valve is ON (physically meaning open) (47). If the
valve is OFF (physically meaning closed), the pressure heads at
either end are uncoupled. If the valve is ON, the head loss must be
greater than zero (48), and the flow through the valve must be
positive (49).

—M(1 —yj,) < [B" « hje] — hjy < M(1—vy;y) (47)
hic >0 (48)
meyjr < fir < M-y, (49)

When the valve is ON, i.e., open, the valve acts like a pipe.
Therefore, pressure head loss across the pipe is also modeled using
the approximation in (37), VjeV, VteT.

3.7. Power consumption of pumps

The real power consumed by the pump, denoted by variable
pft*u, Vjeu, VteT is modeled in nonlinear equation (50), where
pw. & and 7; denote the water density, acceleration due to gravity,



L. Edmonds, M. Derby, M. Hill et al.

x10°

0

57.5

5

11
1020 680 340 0 230 1725

Flow (mslh) Head Gain (m)

Fig. 2. Pump power linear approximation using the 2D piecewise linearization
method.

and the efficiency of the pump, respectively. For our purposes, we
assume the reactive power of the pump, qu”, is k" of the real
power.

P =iyl (50)

The power consumed by the pump is approximated using a 2D
piecewise linear method, namely convex combination triangula-
tion, Vjeu, VteT as in (51). Variables ./, %4, and ¢, are
determined by using the results of (50) evaluated at the boundaries,

Sferije and Hm» j.r» of each nonoverlapping triangle. A binary indicator,
Tije is used to determine which triangle approximates the pump
power. Convex combination theory is used to locate the flow and
head gain values into a single triangle. This technique is believed to
be sufficient as the resulting graph of the pump power has no
drastic curves and allows for a straightforward mapping of the
linear convex polytopes, as shown in the linear approximation
mapping in Fig. 2. The red dashed lines indicate the 2D triangular
approximation bounds that intercept the actual, nonlinear pump
power graph within a specific segment of head gain and volumetric
flow rate values.

D,U P _
Py = > Aifuije + Buihuije + Coris Tarije (51)

tri

The linear water flow problem now consists of constraints (29)-
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(36), (38)-(39), (42)-(49), (51), and the additional constraints
associated with the linear approximation of head gain, head loss,
and pump power. Note, the accuracy of the water model will
improve with more piecewise linearization segments or triangles at
the cost of lower computational efficiency. The longer solving times
that arise from a higher number of segments/triangles can be
managed in the day-ahead scheduling timeframe.

3.8. Pump cost calculation

The pump electricity cost calculation (52), captured by Cy, is
found by multiplying the real and reactive power consumed by the

pumps applied to connected node i (p?t’u, q?t'u), and the total real

and reactive DLMP (Qﬁt. QiQt) at the node the pump's load is applied.

Cw =Y p/-Q +> an’-0f (52)
it it

3.9. Merged water and power flow problem

Finally, the merged optimal water and power flow problem is
considered as Py. In this model, we consider the water network as a
demand response system. The water network is not optimized for
the least cost of pumping, but all water constraints must be met.
Here, p?t in (4) is a summation of the non-pump electrical demand

p?t‘N and the calculated pump demand associated with its respec-

tive node i, p?t'u. A similar coupling can be made for reactive power

demand. We define the coupled optimal water and power flow
problem, Py, as:

P;: min (1) subject to: (2)—(15), (29)—(36), (38)—(39),
(42)—(49), (51), and linear approximation constraints.

We acknowledge an MILP model with piecewise linear ap-
proximations requires more time to solve than other methods, such
as a second-order cone (SOC) model, as verified in Ref. [24]. That
said, the MILP model has an advantage over the SOC model pre-
sented in Ref. [18] when used with nodal DLMPs. The objective
function of the SOC model in Ref. [18] must minimize energy losses
in the water network. Therefore, the energy consumed by the
pumps is not minimized using dynamic electricity prices, such as
DLMPs, but is calculated post-solve. Also, the pump power con-
sumption is only modeled post-solve and, thus, is not suitable for

o Geographical Region

e Water Load

-+ Water Pipe

m Water Reservoir

+ Water Tank

¢ Water Pump

> Water Valve
Electricity Load

- Electricity Line

© VRE Site

© BESS Unit

Fig. 3. Integrated IEEE 13-node electricity and 10-node water distribution networks.
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our proposed merged model without modification. Therefore, we
use the MILP model in this work. Furthermore, we assume the DSO
is equipped with the computational capability to handle compu-
tationally intensive problems within a reasonable amount of time.
This assumption holds even if a large number of historical VRE
samples are employed by the PEP method. We believe this is a valid
assumption based on the quality/number of commercially available
MILP solvers today. However, if issues arise from computational
complexities, sample reduction, bundling, or other state-of-the-art
techniques can ease the solver's burden.

4. Case study

To validate our proposed model, we consider a modified IEEE
13-bus distribution system connected to a 10-bus water distribu-
tion network, as Fig. 3 displays. This network mimics a realistic
small-town or urban electrical distribution network, serving a peak
power demand of approximately 1.3 MW with a feeder length of
1.65 miles. VRE generation units are at Nodes 3, 4, 8, and 12, and
BESS units are at Nodes 2 and 6. The energy demands for the pumps
in the water network are included in the electrical demand for
Nodes 1 and 2. A yearlong sample of hourly wind and PV generation
at two sites was obtained from the Western Wind and Solar Inte-
gration Study (WWSIS) historical data sets [46]. These data were
used to obtain the daily VRE generation time series using the PEP
method and then scaled to match our system. Identical sets of data
were used for VRE units located in close proximity to one another.

Of similar topology to Refs. [19,47], the water supply network
consists of two reservoirs, two VSPs, one tank, and two valves. We
assume the elevation of all junctions in the water network to be
zero (m). The minimum head at demand nodes is h; = 5 (m). The
tank area is Ag = 490.87 (m?), and the maximum volume of the tank

is ug = 14,726.1 (m?), i.e., the tank is 30 m tall. The minimum
allowable volume, ug, is 10% of the maximum volume, and the
initial volume in the tank is ugp = 9100 (m?), which is approxi-
mately 18.5 (m) of water. The maximum allowable flow in and out
of the tank is 1100 (m>/h). The pipe and activated valve parameters
are modified versions of the network in Ref. [47], and we consider
the Darcy friction factor of each pipe used in Equation (37) to be
uj = 0.014. From Ref. [44], the parameters of the VSPs are
aj = —1.0941 x 1074 bj = 51516 x 1072, ¢j = 22332, » =1, and
w = 0.2. The pump efficiency is assumed to be constant at all
speeds, n; = 80.75%. The total water demand is depicted in Fig. 5.
We consider the power and water flows to be in steady-state within
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the 1-h timeslots. This time resolution is sufficient for the day-
ahead energy trading market. Further, our model could equiva-
lently serve in the real time market with 5- to 15-min time in-
tervals. GAMS/CPLEX 28.1.0 [45] is used to solve the proposed MILP,
P1. We create the following scenarios:

Scenario 1: PEP Probability Level — Comparison of VRE output at
B = 25%, § = 50%, and § = 75%. Note, we assume probabilities
and probability levels are known to the DSO a priori.

Scenario 2: High VRE — Coupled water and electricity networks
(P7) with high VRE penetration are compared with and without
a water tank.

4.1. Impact of PEP probability level on VRE output

Changing the PEP probability level, as in Scenario 1, has a
considerable impact on the expected VRE generation, as shown in
Fig. 4. Hourly wind and solar generation data are obtained from
WWSIS and used to find the probability efficient point at different
probability levels using the PEP method. The higher the probability
level (B), the higher the expected wind and solar generation. Wind
generation outputs face more substantial differences between
probability levels because the data has a broader range of historical
samples than the relatively narrow band of PV data. The output at a
given PEP is applied to each VRE site, respective of the generation
type. We assume the same result for different sites of the same
technology as the generation units are considered to be in close
proximity to each other and therefore see the same resource.

4.2, Impact of tank as storage device

Considering the parameters of Scenario 2, we investigate the
impact of the tank as an energy storage device. Instead of curtailing
wind and solar energy, the water network utilizes pumps to store
water in tanks to use when non-pump electricity demands are high.
Table 2 outlines the cost and demand comparison of a system with
and without a tank at probability level § = 75%. The costs for each
network are very similar in each case, yet the pump demand is
increased for the case with a tank. The negative electricity cost is
due to the selling of excess VRE to the grid in all timeslots. Though
the difference in the VRE utilization factors (the amount of dis-
patched VRE over the total generated) is small, the case with the
tank recovers 124.3 kWh of VRE that is otherwise curtailed in the
case without a tank.

3 . . . = 0 5& 07 5 95 2
[--Wind data—PV data—vp"> —up™ —up™ ~vpl — v — 0P
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Fig. 4. Historical wind (W) and PV data and the PEP result at 25%, 50%, and 75% probability levels.
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Fig. 5. Summed pump power (ijfiu' where jei/) schedule versus water demand at probability levels 25% and 75%.

Table 2
Scenario 2 daily results at § = 75% (*Calculated post-solve using (52)).
Tank No Tank

Ce -$1954.59 -$1953.15
Cw $5.18+ $5.85*
Pump Energy 442.7 kWh 337.3 kWh
Energy Consumed 23.19 MWh 23.08 MWh
VRE Recovery 124.3 kWh -
VRE Utilization 93.4% 93.2%

The differences in pump schedules for cases with and without a
tank in the water network at different PEP probability levels are
depicted in Fig. 5. For the case with a tank, the pump schedule shifts
the peak power consumption so that it no longer aligns with the
peaks and valleys of the water demand, as it must for the case
without a tank. In the cases with probability level § = 25%, the
available VRE is lower, and therefore, the difference in the pump
schedule with and without a tank is minimal compared to § = 75%.
The case with a tank and § = 75%, in general, sees more substantial
pump power demands in the first half of the day. The additional
power supplied to the pumps is an attempt to better utilize the high
VRE generation by storing water in the tank during the daytime and

enables the water network to serve as a demand response mech-
anism. Note, in a standalone water network without considering
VRESs, one can expect the pump power demand to decrease with the
addition of a water tank in the network. However, this is not the
case for this work as the water tank acts as an electricity storage
device and consumes excess VRE power; thus, pump power de-
mand increases with the addition of a water tank in the proposed
merged water and energy problem. This result demonstrates the
necessity of a coordinated operation of water and electricity dis-
tribution networks when VRE generation is in place.

4.3. Impact of PEP probability level

The water storage in the tank at different probability levels is
graphically represented in Fig. 6. As expected, the VRE curtailment
is higher in the cases without a tank. Note, the cases with a tank at
probability levels § = 75% and § = 50% slightly reduce the VRE
curtailment by storing water in the tank. The case with probability
level 8 = 25% does not curtail VRE generation as the VRE output is
entirely used by the system both with and without a tank. The
reduction in VRE curtailment is limited by the maximum inflow
constraint into the tank and potential voltage violations and line
congestion in the electricity network from moving large amounts of
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sl w/ tank, 3=0.50
12 -e-sf w/ tank, 3=0.25 110500
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Fig. 6. VRE curtailment summed over the generation locations (Z,-sft, where i € G) and tank volume at 25%, 50%, and 75% probability levels for cases with and without a tank.
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Table 3

Scenario 2 Results with Changing §

Probability Level

VRE Recovery

8 =0.75 124.3 kWh
8 =050 7.9 kWh
8 =025 0 kWh

power to the nodes with flexible water pumps. Also, the compar-
atively smaller power demands of the pumps limit the impact of
reducing VRE curtailment. The tank fills to aid in the electricity
network's health by reducing line congestion and voltage viola-
tions. The final tank volume for § = 75% is greater than the other
two probability levels because the tank acts as a battery and stores a
greater amount of excess VRE in this case. Table 3 outlines the
amount of VRE generation recovered in the case with a tank versus
the case without a tank at different probability levels. The water
tank allows less VRE generation to be curtailed in a case of excess
VRE generation. As the probability level decreases, and subse-
quently, the VRE generation, the VRE recovery decreases because
the system is able to use more of the VRE generation. Again, the
system completely uses all VRE generation at probability level
6 = 25%, so there is no excess VRE generation to store as potential
energy in the water tank in this case.

4.4. Impact of tank on DLMP

Considering the constraints of Scenario 2 and the PEP proba-
bility level at § = 75%, we observe the impact of the tank on the real
power DLMP, as shown in Fig. 7. Negative real power components
indicate some part of the system, respective of each component,
would benefit from more real power consumption at that node.
However, the total nodal DLMP (red line with asterisks) may still be
positive overall. Also, losses are unavoidable and, therefore, loss
DLMP components occur in every timeslot.

Fig. 7 graphically depicts the differences in the component-wise
DLMP for the case with and without a tank on Node 1. Due to the
selling of excess VRE generation to the grid, congestion occurs on
Lines 1' and 3' in many timeslots. In the case with the tank, the
congestion is completely removed from Line 1' in Timeslots 10 and

[ Voltage
[_ICongestion
L|——Total |

w
o

N
o
L

Node 1 DLMP ($/MWh)

B
3 6 9 12 15 18 21 24
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(a) DLMP with tank
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11. With the freed line capacity in the case with a tank, the VRE
units sell power until the point that the maximum voltage
constraint is met on Nodes 3, 8, and 12, and larger voltage DLMP
components replace the congestion DLMP components in Timeslots
10 and 11. Note, the voltage DLMP components in Timeslots 10 and
11 in the case without a tank are relatively small and are not visible
in the figure. The allowance of curtailing VRE generation is put in
place to avoid voltage violations and congestion.

Adding the tank produces small changes in the VRE curtailment
reduction and DLMPs. This impact could be amplified with addi-
tional or larger tanks in the water network and longer simulated
timeframes. In a potential future case with large amounts of VRE
penetration in the distribution network, storage devices will be
necessary to reduce VRE generation curtailments. Storing water in
existing water tanks may be a low-cost option that can positively
impact, even if in a small way, the electricity network by reducing
voltage violations and line congestion. Utilizing water tanks as
storage devices may not altogether remove the VRE over-
generation, and the system may see more benefits from a diverse
storage profile. That said, the cooperation of the water and elec-
tricity networks can adequately serve as demand response and a
storage technology to improve the health of the electric distribu-
tion network while still meeting water demands.

4.5. Impact of failures

To investigate the impact of failures in the proposed model, we
test the system behavior when a component in the coupled model
fails. A failed component could be caused by damage to the
component in an extreme event, such as a weather-related occur-
rence or even a malicious, targeted attack on the system. We
consider a case where the valve on Pipe 8 (see Fig. 3) faces a failure,
i.e., Valve 8 is forced closed and does not allow water flow over the
pipe. Fig. 8 shows the result of this study. Fig. 8(a) compares the
VRE curtailment and tank volume over the scheduling period for
normal and failed operating conditions. Fig. 8(b) depicts the
resulting DLMP of Node 1 after the failure of Valve 8. Congestion
occurs on Line 1' in Timeslots 9, 10, and 11.

Interestingly, the DLMP looks very similar to the DLMP in
Fig. 7(b). There is a larger congestion DLMP component in Timeslot
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Fig. 7. Node 1 component-wise DLMP at a 75% probability level for cases with and without a tank.
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Fig. 8. VRE curtailment and tank volume for normal operating conditions versus system behavior with Valve 8 failure (a); resulting DLMP of Node 1 with Valve 8 failure (b). Both

subplots consider § = 75% and tank inclusion in the model.

9 in the system with Valve 8 failure than in the case without a tank.
This congestion is caused by the desire to sell excess VRE genera-
tion to the grid at LMP (of the substation node) rather than fill the
tank to use for water demand at later hours in the day. In the system
with a failed Valve 8, the tank can only serve the water demands at
Junctions 12 and 13. Note, in Timeslots 11—24, the water tank
completely fulfills the water demands at Junctions 12 and 13, i.e,,
Pump 1 is not operating and Valve 3 is open.

Furthermore, the tank can no longer reach the water demands at
Junctions 5, 10, and 11, whose additional water demands were a
great motivator in filling the tank in a case with excess VRE. This
observation is further illustrated in Fig. 8(a) as we do not see the
tank store as much water as it would under normal operating
conditions. With a failure at Valve 8, Pump 2 runs in every timeslot
to meet the water demands of Junctions 10, 11, and 5. Even though
Pump 2 is on in all timeslots, the total daily energy consumed by
both pumps is still less than the fully operational case with a tank.
Therefore, the system with Valve 8 failure also sees slightly more
VRE curtailment than its fully operational counterpart. This study
shows failures in the water network can impact the DLMP and
overall health of the electricity distribution network.

5. Conclusion

Numerical results show the advantages of combining these two
networks and utilizing water pumps and tanks as jointly flexible
loads. For the first time, the following observations can be made.

e The water network can positively impact the DLMP by mini-
mally reducing voltage violation and congestion penalties when
VRE penetration is high. By optimally scheduling the water tank,
the congestion on certain electricity distribution lines can be
eliminated. In many cases, the water tank storage prevents line
congestion and binding nodal voltage constraints. As a result, it
can ease the operational challenges in the electricity distribu-
tion network.

In a high VRE scenario, the tank aids in lowering the curtailment
of VREs by filling over time to absorb excess VRE generation in
the system, though typically by a small amount due to relatively
small pump demands and limited tank capacity.
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o The use of the water tank allows the peak pump demand to shift
away from the non-pump peak electricity demand, reducing the
total peak electricity demand. From the perspective of the
electricity DSO, an advantage of combining the two networks
comes in the form of congestion relief in the electricity distri-
bution network.

When combined with VRE generation, the coordinated water
and electricity network offers a unique storage solution of
excess VRE generation through the use of the water tank. Similar
to a battery, the tank will store water to use later when there is
more VRE generation in the system than there is demand.

The data-driven PEP method with different probability levels
can impact the coordinated operation of the water and elec-
tricity networks and the VRE curtailment, which provides a
means to manage the VRE uncertainty.

Failed components in one network are capable of changing
system behavior in the other network.

In this paper, a novel coordinated water and energy model was
formulated and validated on a coupled IEEE 13-node electrical dis-
tribution network and 10-node water network. The proposed
method can impact policies regarding interdependent water and
energy networks, especially those seeing significant increases in VRE
generation. Under the consideration of VRE uncertainty, the impact
of the coupling of the water and electricity networks on the DLMP
was shown for the first time. Further, it was shown how the coupling
of the water and electricity distribution networks could supplement
future distribution markets that consider DLMP. Note, the cost of
storing energy in water tanks is not considered in this work. Inter-
esting further work includes quantifying a financial incentive
beyond the benefits from DLMP that can be allocated to water util-
ities for providing demand response services to the electricity DSO.
The financial incentive should include compensation for accelerated
aging of the pumps, increased energy prices, etc. This financial
incentive can be easily added to the proposed model. This cooper-
ation could help water utilities reduce operational costs.

The proposed model and method can offer utilities a new tool in
managing the coordinated operation of water and electricity dis-
tribution networks under uncertain VRE generation. With the
recent call for more energy-efficient systems, the approach
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provided in this work can serve as an energy-saving solution to
water and electric utility operators. As longer solving times in day-
ahead optimization problems are not a pressing issue, this model
should scale with ease. If the larger system is unable to solve in a
reasonable time, authors in Ref. [48] have proposed a clustering
technique to combat this issue. While we consider energy storage
and demand response through drinking water storage tanks in this
work, this study can be extended to various types of flexible loads
that can act as an energy storage medium, each with its own set of
benefits, challenges, and limitations to consider. For example,
staying within the subject of the water-energy nexus, water puri-
fication through reverse osmosis could serve as a demand-
responsive load. Our future work includes extending the model to
a three-phase unbalanced electrical distribution system and opti-
mizing the water network based on electricity price signals through
a bi-level optimization problem using DLMPs. Cyberattacks and
their impact on the interdependent networks will also be
considered.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] C.A. Dieter, et al., Estimated use of water in the United States in 2015: U.S,
Geol. Surv. Circular 1441 (2018).

[2] The Water-Energy Nexus: Challenges and Opportunities, U.S. Department of
Energy, Washington, DC, USA, Jun. 2014, p. 262. DOE/EPSA-0002.

[3] Food and Agriculture Organization of the United Nations, The State of the

World's Land and Water Resources for Food and Agriculture: Managing Sys-

tems at Risk, first ed., Routledge, 2013.

National Water Program 2012 Strategy: Response to Climate Change, United

States Environmental Protection Agency, Dec. 2012, p. 132.

S.0. Muhanji, C. Barrows, J. Macknick, AM. Farid, An enterprise control

assessment case study of the energy—water nexus for the ISO new England

system, Renew. Sustain. Energy Rev. 141 (May 2021) 110766.

J. Lv, Y.P. Li, G.H. Huang, C. Suo, H. Mei, Y. Li, Quantifying the impact of water

availability on China’s energy system under uncertainties: a perceptive of

energy-water nexus, Renew. Sustain. Energy Rev. 134 (Dec. 2020) 110321.

W. Hickman, A. Muzhikyan, A.M. Farid, The synergistic role of renewable

energy integration into the unit commitment of the energy water nexus,

Renew. Energy 108 (Aug. 2017) 220—229.

E. Ahmadi, B. McLellan, T. Tezuka, The economic synergies of modelling the

renewable energy-water nexus towards sustainability, Renew. Energy 162

(Dec. 2020) 1347—1366.

P.H. Gleick, Water and energy, Annu. Rev. Energy Environ. 19 (1) (1994)

267—-299.

S.W.D. Turner, M. Hejazi, K. Calvin, P. Kyle, S. Kim, A pathway of global food

supply adaptation in a world with increasingly constrained groundwater, Sci.

Total Environ. 673 (Jul. 2019) 165—176.

Water and Wastewater Annual Price Escalation Rates for Selected Cities across

the United States, DOE Office of Energy Efficiency and Renewable Energy,

DOE/EE-1670, Sep. 2017, p. 1413878.

Flexible Resources Help Renewables Fast Facts, California ISO, Folsom, CA,

USA, 2016.

T. Edmunds, et al., The Value of Energy Storage and Demand Response for

Renewable Integration in California, California Energy Commission, Feb. 2017,

p. 241.

P. Denholm, Y.H. Wan, M. Hummon, M. Mehos, “Analysis of Concentrating

Solar Power with Thermal Energy Storage in a California 33% Renewable

Scenario,” Nat. Renewable Energy Lab., Golden, CO, USA, Tech. Rep., NREL/TP-

6A20-58186, 1072790, Mar. 2013.

A. Botterud, T. Levin, V. Koritarov, “Pumped Storage Hydropower: Benefits for

Grid Reliability and Integration of Variable Renewable Energy,” Argonne Nat.

Lab. Report ANL/DIS-14/10, Argonne, IL, USA, Aug. 2014.

E. Ela, “Role of Pumped Storage Hydro Resources in Electricity Markets and

System Operation: Preprint,” NREL Conference Paper, May 2013, p. 12.

K. Mongird, et al., “Energy Storage Technology and Cost Characterization

Report,” PNNL-28866, vol. 1573487, Jul. 2019.

D. Fooladivanda, J.A. Taylor, Energy-optimal pump scheduling and water flow,

IEEE Trans. Control Netw. Syst. 5 (3) (Sep. 2018) 1016—1026.

A.S. Zamzam, E. Dall'Anese, C. Zhao, J.A. Taylor, N. Sidiropoulos, Optimal

water-power flow problem: formulation and distributed optimal solution,

[4

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

1450

Renewable Energy 177 (2021) 1438—1450

IEEE Trans. Control Netw. Syst. 6 (1) (Jan. 2018) 37—47.

K. Oikonomou, M. Parvania, R. Khatami, Optimal demand response scheduling
for water distribution systems, [EEE Trans. Ind. Inform. 14 (11) (Nov. 2018)
5112-5122.

K. Oikonomou, M. Parvania, Optimal coordination of water distribution en-
ergy flexibility with power systems operation, IEEE Trans. Smart Grid 14 (11)
(Apr. 2018) 1101—-1110.

K. Oikonomou, M. Parvania, Optimal coordinated operation of interdependent
power and water distribution systems, IEEE Trans. Smart Grid 11 (6) (Nov.
2020) 4784—4794.

F. Moazeni, J. Khazaei, Optimal operation of water-energy microgrids; A
mixed integer linear programming formulation, J. Clean. Prod. 275 (Dec. 2020)
122776.

C. Wang, N. Gao, ]. Wang, N. Jia, T. Bi, K. Martin, Robust operation of a water-
energy nexus: a multi-energy perspective, IEEE Trans. Sustain. Energy 11 (4)
(Oct. 2020) 2698—2712.

M. Shahidehpour, H. Wu, “Hourly Demand Response as an Alternative to
Flexible Ramping of Thermal Units in Stochastic Operation of Electric Power
Systems with Non-dispatchable Energy Sources,” in Handbook Of Clean Energy
Systems, Jun. 2015.

H. Wu, M. Shahidehpour, Z. Li, W. Tian, Chance-constrained day-ahead
scheduling in stochastic power system operation, IEEE Trans. Power Syst. 29
(4) (Jul. 2014) 1583—1591.

C. Dai, L. Wu, H. Wu, A multi-band uncertainty set based robust SCUC with
spatial and temporal budget constraints, IEEE Trans. Power Syst. 31 (6) (Nov.
2016) 4988—5000.

C. Wan, Z. Xu, P. Pinson, Z.Y. Dong, K.P. Wong, Optimal prediction intervals of
wind power generation, IEEE Trans. Power Syst. 29 (3) (May 2014)
1166—1174.

H. Wu, et al., Stochastic multi-timescale power system operations with vari-
able wind generation, IEEE Trans. Power Syst. 32 (5) (Sep. 2017) 3325—3337.
A. Zakaria, F.B. Ismail, M.H. Lipu, M.A. Hannan, Uncertainty models for sto-
chastic optimization in renewable energy applications, Renew. Energy 145
(Jan. 2020) 1543—1571.

A. Prékopa, Dual method for the solution of a one-stage stochastic program-
ming problem with random RHS obeying a discrete probability distribution,
Z. Oper. Res. 34 (6) (Nov. 1990) 441—-461.

H. Masri, F.B. Abdelaziz, 1. Meftahi, “A Multiple Objective Stochastic Portfolio
Selection Program with Partial Information on Probability Distribution,” in
2010 Second International Conference on Computer and Network Technology,
Apr. 2010, pp. 536—539.

M.R. Murr, A. Prékopa, Solution of a product substitution problem using sto-
chastic programming, in: S.P. Uryasev (Ed.), In Probabilistic Constrained
Optimization: Methodology and Applications, Springer US, Boston, MA, 2000,
pp. 252—-271.

A. Yazici, K. Ozbay, Evacuation network modeling via dynamic traffic
assignment with probabilistic demand and capacity constraints, Transport.
Res. Rec. 2196 (1) (Jan. 2010) 11-20.

C. Zhao, R. Jiang, Distributionally robust contingency-constrained unit
commitment, [EEE Trans. Power Syst. 33 (1) (Jan. 2018) 94—102.

M. Reno, RJ. Broderick, Statistical Analysis of Feeder and Locational PV
Hosting Capacity for 216 Feeders, IEEE Power and Energy Society General
Meeting (PESGM), Boston, MA, USA, Jul. 2016, pp. 1-5.

E. Ela, et al., Future electricity markets: designing for massive amounts of
zero-variable-cost renewable resources, IEEE Power Energy Mag. 17 (6) (Nov.
2019) 58—66.

L. Edmonds, M.N. Faqiry, H. Wu, A. Palani, Three-Phase Distribution Locational
Marginal Pricing to Manage Unbalanced Variable Renewable Energy, Jan.
2020.

M.N. Faqiry, L. Edmonds, H. Zhang, A. Khodaei, H. Wu, Transactive-market-
based operation of distributed electrical energy storage with grid constraints,
Energies 10 (11) (Nov. 2017) 1891.

M.N. Faqiry, L. Edmonds, H. Wu, A. Pahwa, Distribution locational marginal
price-based transactive day-ahead market with variable renewable genera-
tion, Appl. Energy 259 (Feb. 2020) 114103.

H. Yuan, F. Li, Y. Wei, ]. Zhu, Novel linearized power flow and linearized OPF
models for active distribution networks with application in distribution LMP,
IEEE Trans. Smart Grid 9 (1) (Jan. 2018) 438—448.

[42] J.A. Taylor, Convex Optimization of Power Systems, Cambridge University
Press, 2015.

M. Lejeune, N. Noyan, Mathematical programming approaches for generating
p-efficient points, Eur. ]. Oper. Res. 207 (22) (Dec. 2010) 590—600.

B. Ulanicki, J. Kahler, B. Coulbeck, Modeling the efficiency and power char-
acteristics of a pump group, J. Water Resour. Plann. Manag. 134 (1) (Jan. 2008)
88—-93.

GAMS Development Corporation, General Algebraic Modeling System (GAMS)
Release 28.1.0, GAMS Development Corporation, Washington, DC, USA, 2019.
D. Lew, et al., “The Western Wind and Solar Integration Study Phase 2,” Nat.
Renewable Energy Lab., Golden, CO, USA, Tech. Rep., NREL/TP—5500-55588,
vol. 1220243, Sep. 2013.

D. Cohen, U. Shamir, G. Sinai, Optimal operation of multi-quality water supply
systems-II: the Q-H model, Eng. Optim. 32 (6) (Jan. 2000) 687—719.

W. Wang, R. Jing, Y. Zhao, C. Zhang, X. Wang, A load-complementarity com-
bined flexible clustering approach for large-scale urban energy-water nexus
optimization, Appl. Energy 270 (Jul. 2020) 115163.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

(34]

[35]

(36]

(37]

[38]

(39]

[40]

[41]

[43]

[44

[45]

[46]

[47]

(48]


http://refhub.elsevier.com/S0960-1481(21)00857-0/sref1
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref1
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref2
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref2
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref3
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref3
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref3
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref4
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref4
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref5
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref5
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref5
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref5
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref6
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref6
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref6
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref7
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref7
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref7
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref7
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref8
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref8
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref8
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref8
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref9
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref9
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref9
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref10
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref10
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref10
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref10
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref11
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref11
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref11
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref12
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref12
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref13
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref13
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref13
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref14
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref14
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref14
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref14
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref15
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref15
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref15
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref16
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref16
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref17
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref17
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref18
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref18
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref18
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref19
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref19
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref19
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref19
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref20
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref20
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref20
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref20
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref21
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref21
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref21
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref21
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref22
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref22
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref22
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref22
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref23
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref23
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref23
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref24
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref24
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref24
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref24
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref25
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref25
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref25
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref25
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref26
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref26
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref26
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref26
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref27
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref27
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref27
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref27
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref28
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref28
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref28
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref28
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref29
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref29
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref29
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref30
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref30
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref30
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref30
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref31
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref31
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref31
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref31
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref31
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref32
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref32
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref32
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref32
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref32
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref33
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref33
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref33
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref33
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref33
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref33
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref34
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref34
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref34
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref34
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref35
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref35
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref35
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref36
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref36
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref36
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref36
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref37
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref37
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref37
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref37
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref38
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref38
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref38
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref39
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref39
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref39
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref40
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref40
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref40
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref41
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref41
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref41
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref41
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref42
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref42
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref43
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref43
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref43
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref44
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref44
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref44
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref44
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref45
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref45
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref46
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref46
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref46
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref46
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref47
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref47
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref47
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref48
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref48
http://refhub.elsevier.com/S0960-1481(21)00857-0/sref48

	Coordinated operation of water and electricity distribution networks with variable renewable energy and distribution locati ...
	1. Introduction
	2. Electricity distribution model
	2.1. Objective function
	2.2. Power balance
	2.3. Distribution power flow
	2.4. Data-driven probability efficient point (PEP) method
	2.5. DLMP decomposition

	3. Water model
	3.1. Junctions
	3.2. Reservoirs
	3.3. Tanks
	3.4. Pipes without pumps or valves
	3.5. Variable-speed pumps
	3.6. Pressure reducing valves
	3.7. Power consumption of pumps
	3.8. Pump cost calculation
	3.9. Merged water and power flow problem

	4. Case study
	4.1. Impact of PEP probability level on VRE output
	4.2. Impact of tank as storage device
	4.3. Impact of PEP probability level
	4.4. Impact of tank on DLMP
	4.5. Impact of failures

	5. Conclusion
	Declaration of competing interest
	References


