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• Crop production and water use results 
from the DSSAT model with arid regions 
package. 

• ABM adds renewable-energy, water 
quantity and quality, climate change, 
and farm economics. 

• FEWCalc enables users to relate current 
choices to near- to long-term 
implications. 

• Intuitive GUI makes FEWCalc accessible 
to non-technical stakeholders.  
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A B S T R A C T   

CONTEXT: The larger scale perspective of Integrated Assessment (IA) and smaller scale perspective of Impacts, 
Adaptation, and Vulnerability (IAV) need to be bridged to design long-term solutions to agricultural problems 
that threaten agricultural production, rural economic viability, and global food supplies. FEWCalc (Food-Energy- 
Water Calculator) is a new freeware, agent-based model with the novel ability to project farm incomes based on 
crop selection, irrigation practices, groundwater availability, renewable energy investment, and historical and 
projected environmental conditions. FEWCalc is used to analyze the interrelated food, energy, water, and climate 
systems of Finney County, Kansas to evaluate consequences of choices currently available to farmers and 
resource managers. 
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OBJECTIVE: This article aims to evaluate local farmer choices of crops and renewable energy investment in the 
face of water resource limitations and global climate change. Metrics of the analysis include agricultural and 
renewable-energy production, farm income, and water availability and quality. The intended audience includes 
farmers, resource managers, and scientists focusing on food, energy, and water systems. 
METHODS: Data derived from publicly available sources are used to support user-specified FEWCalc input 
values. DSSAT (Decision Support System for Agrotechnology Transfer) with added arid-region dynamics is used 
to obtain simulated crop production and irrigation water demand for FEWCalc. Here, FEWCalc is used to 
simulate agricultural and energy production and farm income based on continuation of recent ranges of crop 
prices, farm expenses, and crop insurance; continuation of recent renewable-energy economics and government 
incentives; one of four climate scenarios, including General Circulation Model projections for Representative 
Concentration Pathway 8.5; and groundwater-supported irrigation and its limitations. 
RESULTS AND CONCLUSIONS: A 50-year (2018-2067) climate and groundwater availability projection process 
indicates possible trends of future crop yield, water utility, and farm income. The simulation during more wet 
years produces high crop production and slower depletion of groundwater, as expected. However, surprisingly, 
the simulations suggest that only the Drier Future scenario is commercially profitable, and this is because of 
reduced expenses for dryland farming. Although simulated income losses due to low crop production are 
ameliorated by the energy sector income and crop insurance, the simulation under climate change still produces 
the worst annual total income. 
SIGNIFICANCE: FEWCalc addresses scientific, communication, and educational gaps between global- and local- 
scale FEW research communities and local stakeholders, affected by food, energy, water systems and their in
teractions by relating near-term choices to near- and long-term consequences. This analysis is needed to craft a 
more advantageous future.   

1. Introduction 

Small towns and rural (STAR) agricultural communities produce 
much of the food for an increasingly urban world. Yet they face serious 
problems such as declining populations, increasing challenges resulting 
from disadvantageous changes in farm economic conditions, and exac
erbating climatic conditions. Many STAR communities in the USA have 
been diversifying their economies over the past 50 years in efforts to 
sustain their viability (Bureau of Economic Analysis, 2020). Increas
ingly, they are taking advantage of their wide open, low density areas to 
diversify into renewable energy production. Yet the expertise needed to 
consider such alternatives is largely unavailable to many stakeholders. 

FEWCalc (Food-Energy-Water Calculator) makes expertise accessible 
to local stakeholders whose decisions will lead their communities into 
more viable futures by enabling clearer understanding of tradeoffs and 
possibilities. This introduction briefly reviews other attempts to create 
similar models and the systems included in FEWCalc, including climate 
change, water resource degradation and depletion, renewable energy 
opportunities, and public policy priorities. It then briefly outlines how 
FEWCalc fits into two broad approaches to research on food, energy, and 
water system decision-support capabilities. 

The linkage of the FEW system has been studied and conducted 
mostly at the academic level using different approaches and aspects 
(Endo et al., 2017). For example, some FEW studies previously focused 
on land use optimization (Nie et al., 2019), nutrient flow (Yao et al., 
2018), environmental security for livelihood (Biggs et al., 2015), food- 
energy tradeoff (Cuberos Balda and Kawajiri, 2020), and water- 
energy-food production and consumption (Guijun et al., 2017) using 
distinct analytical tools such as MATLAB Simulink, crop models, and 
agent-based models. Most previous works have not connected all three 
FEW components together with other variable factors (e.g., climate 
projection and economics). Some of the more developed efforts at 
simulating all or part of food-energy-water systems are CLEWS (Climate, 
Land, Energy, Water and Soil) (IAEA, 2009; Villamayor-Tomas et al., 
2015; Welsch et al., 2014), WEAP (Water and Energy Assessment Pro
gram) (Stockholm Environment Institute, 2021), and ITEEM (Li et al., 
2021). FEWCalc represents a broader set of options than these alterna
tives and is open-source freeware, readily available on GitHub to serve 
as a foundation for future development. 

Climate change is apparent through surface rising temperatures and 
historically extreme weather conditions that are becoming more 
frequent (Campbell, 2020; Lesk et al., 2016). Climate-change driven 

increases in water and food insecurity pose emerging and long-term 
challenges. Increasing temperatures are already increasing crop water 
requirements and shifting precipitation patterns and may directly affect 
global food supply quantity and quality going forward (Dore, 2005; Li 
et al., 2019; Wheeler and von Braun, 2013; Zhang et al., 2019). More
over, shifting regulations and restrictions on carbon emissions may alter 
the menu of available adaptation options. FEWCalc enables users to 
evaluate the impact on agricultural production of climate change by 
choosing future General Circulation Model (GCM) projections and other 
future climate scenarios. 

Water scarcity is an immediate and enduring challenge in many re
gions, which can in part be addressed with groundwater reserves. Irri
gated areas currently produce 30–40% of the world's food, and 70% of 
global water withdrawals are for agriculture (FAO, 2014; Kovda, 1977; 
WWAP, 2012). Farmers and policy makers in some regions are recog
nizing the need to collaborate to extend the usable lifetime of their local 
water resources by reducing irrigation rates (Hardin, 1968; Kansas 
Department of Agriculture, 2021; California Water Boards, 2020). 
Groundwater is important: for example, in China's dry northern region, 
groundwater accounts for as much as 70% of irrigation in some locations 
(Calow et al., 2009). In India, it accounts for 70–80% of the value of 
irrigated production and supports 90 million rural households (World 
Bank, 1998; Zaveri et al., 2016). Groundwater from the Central Valley 
aquifer of California and the High Plains aquifer (HPA) supply as much 
as 16% and 30% of irrigation water in the entire USA (Dieter et al., 2018; 
Maupin, 2018; Maupin and Barber, 2005). FEWCalc includes irrigation 
derived from groundwater and the generally hidden and delayed effect 
of declining groundwater on agricultural production. 

Producing wind and solar energy could contribute to the diversifi
cation and viability of STAR communities' economy in three principal 
ways. (1) Renewable energy exported to existing load centers has been 
profitable for farmers participating in land-lease programs with power 
producers (Weise, 2020). (2) FEWCalc is designed to investigate how the 
direct investment by rural landowners in renewable energy production 
changes their economic situation (Epley, 2016; Hill et al., 2017; Phe
theet et al., 2019). Although in the area used to demonstrate FEWCalc 
wind turbines tend to be more profitable than solar panels (Fu et al., 
2017), both technologies are included in FEWCalc to generalize its 
utility. (3) More affordable local renewable energy could be used to 
attract and retain businesses to create and grow jobs (Hill et al., 2019). 
FEWCalc addresses option 2 and provides a foundation for option 3. 

Effective policies supporting current and evolving local, regional, 
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national initiatives in the food, energy, and water nexus are imperative 
to ensure the sustainable viability of STAR communities. These will be 
influenced by institutional, economic and socio-cultural attitudes, and 
subjective perceptions (Cash et al., 2006). Farm income, as a major in
come in STAR communities, can be affected by these policies. To this 
end, FEWCalc simulates the effects of crop insurance and selected 
renewable energy incentive programs on farm incomes. 

As a tool focused on how decision-makers perceive the viability of 
their communities or businesses, FEWCalc bridges the gap between two 
dominant research themes — Integrated Assessment (IA), and Impacts, 
Adaptation, and Vulnerability (IAV) (Table 1). The themes have been 
converging as the value of integrated, multi-scale approaches to climate 
research has become apparent (Absar and Preston, 2015; de Bremond 
et al., 2014; Huber et al., 2014; Kraucunas et al., 2015; Rosenzweig 
et al., 2014). The standardized, multi-scale Shared Socioeconomic 
Pathways (SSPs) scenario framework (O'Neill et al., 2014) relates eco
nomic and technological choices to carbon emissions, and is thus closely 
related to Representative Concentration Pathways (RCPs) levels used in 
FEWCalc. FEWCalc supports carbon emission mitigation through 
developing greater local familiarity with renewable energy production 
and greater research-level familiarity with the challenges of local 
stakeholders. Fig. 1 shows how the major components of the FEW system 
form a natural and human system of concern to IA and IAV, showing 
how they can be thought of as a collection of heterogeneous and 
autonomous individuals interacting cooperatively and competitively 
with one another and the environment (Bert et al., 2015; Hu et al., 
2018). 

Unresolved scale and human connection issues still limit the utility 
and relevance of IA and IAV models (Ericksen, 2008; Ericksen et al., 
2009; Vervoort et al., 2014). For example, national policies could be 
rendered ineffective for want of local-level adaptation and mitigation 
options, and local-level efforts could be stymied by national policy or 
global market conditions. Climate, weather, hydrology, politics, energy, 
and economics are all important and interact across multiple societal 
scales, including jurisdictional, institutional, and managerial ones (Cash 
et al., 2006; Allan et al., 2015; Endo et al., 2017), so that FEWCalc exists 
within the context of national- and global-scale dynamics (Ericksen 
et al., 2009). Proper support and coordinated action are required for 
successful outcomes such as those achieved by Sustainable Groundwater 
Management Act (SGMA) in California and the LEMAs in Kansas. The 
FEWCalc model can be thought of as addressing three key needs iden
tified by Vervoort et al. (2014): (1) engage diverse stakeholders across 
multiple levels; (2) move beyond analysis of single interventions toward 
system-wide measures that act across multiple spatial, temporal, and 

geographic scales; and (3) develop long-term capacity for collaborative 
decision making. 

FEWCalc is an agent-based model (ABM) constructed using NetLogo 
(Hu et al., 2018; Tisue and Wilensky, 2004; Wilensky, 1999), designed to 
integrate complex real-world systems and evaluate future policy de
cisions (Anderson and Dragićević, 2018; Guijun et al., 2017). ABMs have 
been used in business (Forrester, 1971; Morecroft, 2015), urban prob
lems (Sterman, 2000), and environmental evaluations (Meadows, 2008) 
and recently for the FEW nexus (Al-Saidi and Elagib, 2017; Memarzadeh 
et al., 2019; Schulterbrandt Gragg et al., 2018). Most of this recent 
research has been conceptual or focused on regional applications. Focus 
on individual stakeholders is rare (Ravar et al., 2020; Shannak et al., 
2018) and mostly limited to urban systems (Bieber et al., 2018; Guijun 
et al., 2017). FEWCalc is novel and contributes to the emerging ABM 
literature using the NetLogo platform. 

The purpose of this study is to develop a scientific tool able to 
represent a real-world complex system composed of agriculture, energy 
production, and water use under complicated climate and economic 
conditions, and use it to reveal unexpected interactions within this 
system of systems that are important to stakeholders. The rest of this 
article, along with online appendices A-D, describes the methods and 
data using in FEWCalc and its utility in a scientific investigation of the 
roles played by water scarcity and climate change in the productivity 
and economics future of a typical STAR community. 

2. Methods 

In this section, the FEWCalc workflow is briefly introduced, and 
FEWCalc components and related equations are described using a Fin
ney County, Kansas test case to provide motivation and examples. The 
Decision Support System for Agrotechnology Transfer (DSSAT) model 
(Araya et al., 2019; Jones et al., 2003; Jones et al., 2017a, 2017b; Sharda 
et al., 2019) was chosen for the agrosystems simulations based on its 
capabilities, availability, and feasibility. Selected DSSAT and FEWCalc 
inputs, outputs, and equations are listed here; more detail is provided in 
appendices A, B, and C. Default values for user-controlled FEWCalc 
variables are provided in Table D.1. As programmed, all costs are in US 
dollars. 

2.1. Workflow and case study from the high plains aquifer, USA 

The workflow of FEWCalc with inputs from DSSAT is shown in 
Fig. A.1, including components representing agriculture, energy, and 

Table 1 
Summary IA and IAV approaches to technology and policy analysis.  

Description IA (Integrated 
Assessment) 

IAV (Impacts, Adaptation, 
and Vulnerability) 

Typical topic Climate policy 
impacts1 

Climate change effects and 
responses2 

Geographic Scale Regional (U.S. State) – 
Global 

Local (town, farm, 
ecosystem) 

Temporal Scale Long-term up to ~100 
years 

Few years or less 

Scenario (assumptions 
about the future) and 
Policy (adaptations) 
Development 

Global scale, cross- 
cutting, generalized, 
little inclusion of 
stakeholder values. 

Narrower focus, more 
detailed, often has explicit 
representations of 
stakeholder values. 

Interdisciplinary Focus Broad Narrow 
Perspective General impacts and 

adaptation 
possibilities. 
Projection/qualitative 
results. 

Specific impacts and 
adaptation measures. 
Prediction and quantitative 
results.  

1 Weyant (2017). 
2 Absar and Preston (2015) and van Ruijven et al. (2014). 

Fig. 1. The linkages between natural and human systems relevant to FEWCalc 
(modified from K. Rogers, East Carolina University, personal communication, 
2017; NSF [National Science Foundation], 2018). LEMA (Local Enhanced 
Management Area) is a governance structure used in the state of Kansas, USA, 
to limit water use from a depleted aquifer. 
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water. Climate data and crop choices are entered using the weather data 
DSSAT input or WeatherMan (Pickering et al., 1994). DSSAT is then 
executed to provide input needed for FEWCalc via files in a comma- 
separated values format (CSV files). The final results are presented in 
graphs as shown in Fig. A.1. Selected graphs are presented in the Results 
section of this article. The time discretization of DSSAT is one day. 
FEWCalc time is incremented annually and simulation length is defined 
by the user, with simulations of 60 to 90 years being common. 

FEWCalc is developed and tested using data from Finney County, 
Kansas, USA (Fig. 2). The High Plains aquifer (HPA) consists of the 
Ogallala aquifer and its overlying aquifer units. The area's water prob
lems are typical of arid agricultural regions around the world: Large- 
scale irrigation over many decades has depleted groundwater re
sources and produced now dry irrigation wells (Buchanan et al., 2015). 
The region's potential to develop renewable energy, its declining water 
resources, and its rich, 70-year-long time series of historical data makes 
it an ideal candidate for exploring opportunities to sustain farmers' 
economic well-being under alternative agricultural and energy pro
duction choices using FEWCalc. 

DSSAT is tested by comparing calculated values for crop production 
and irrigation to observed field data (see Appendix A) obtained from the 
United States Department of Agriculture's (USDA) National Agricultural 
Statistics Service (NASS), Kansas State University's Department of 
Agronomy, and the Kansas Department of Agriculture (KDA). FEWCalc 
is tested through comparisons with values obtained through the litera
ture and expert elicitation. 

2.2. Weather, climate, and projections 

Daily weather data for air temperature, precipitation, and solar ra
diation are used as input to DSSAT (Tsuji et al., 1994) and acquired as 
described in Appendix A. 

A 10-year period from 2008 to 2017 is used as the historical base 
period for this work. This 10-year period is presented in the context of 
data since 1950 in Fig. 3, in which wet and dry periods are identified 
using the Palmer Drought Severity Index (PDSI) (Palmer, 1965). The 
base period was chosen because a generally complete set of weather and 
agricultural data is available, and because wet, moderate, and dry years 
are included in that period of time (see Fig. 3). This variability is used to 
create future climate scenarios. 

The four 60-year long scenarios used to demonstrate FEWCalc are 

listed in Table 2. All scenarios have the same 10-year (2008 to 2017) 
temperature, precipitation, solar radiation, and agricultural price con
ditions, and differ for the following 50 years. Scenario 1, Repeat His
torical tests the time progression in FEWCalc, and allows users to focus 
on the impact of groundwater declines and energy production. Sce
narios 2 and 3 are dominated by wetter or drier years to create wetter 
and drier “futures”. The weather data are chosen from the 10-year base 
set of years. So, for example, if those 10 years are numbered 1, 2, …, 10, 
years 8, 9, and 10 are wet (Fig. 3). Going forward, 7 of each 10 years will 
be selected from the three wet years. The other 3 of each 10 years are 
chosen from the 4 moderate base years (years 1, 2, 3, and 7). The 
random sequence of moderate to wet years results in increased crop 
production with no significant loss of yield. Scenario 4 is based on 20 
General Circulation Model projections out to 2098 (Fig. A.5), though 
only the values through 2067 are used in the FEWCalc demonstration 
provided in this work. Projected crop prices are described in Section 
2.3.2. 

Scenario 4 uses DSSAT results in which runs use projected air tem
perature, precipitation, and solar radiation from 20 downscaled GCMs to 
represent years 2008 to 2067 (Taylor et al., 2009, 2012). Results from 
the 20 DSSAT runs are averaged and used in FEWCalc. RCP 4.5 and 8.5 
results are available in FEWCalc — see Appendix B for a discussion of 
RCP. FEWCalc results using the RCP 4.5 and 8.5 scenarios are compared 
in Phetheet et al. (2021). Results from the more severe RCP 8.5 are 
presented in this article. 

2.3. Calculations for agriculture 

FEWCalc starts with the assumption that the decision maker is 
already in business as a farmer and, for the demonstration provided 
here, produces crops in the Garden City area of Finney County, Kansas. 
FEWCalc envisions a farmer considering investments in renewable en
ergy as a diversification strategy to improve farm incomes, which have 
been extremely variable in the last decade. The environmental condi
tions and resources are as described in Sections 2.2 and 2.5. Therefore, 
FEWCalc's focus is on farm operations and renewable-energy investment 
decisions. Methods for simulating crop production, crop net income, and 
crop insurance are presented below. To communicate results to stake
holders, this article presents both English and metric units. DSSAT uses 
metric units. In this section, metric units or appropriate conversion 
factors are listed to facilitate cross-referencing to DSSAT results. 

Fig. 2. (a) Average annual wind speed map for the Continental USA (modified from NREL, 2011). Finney County has very high average wind speeds (shown here) 
and moderate solar energy supplies (not shown). (b) High Plains aquifer water-level changes (modified from McGuire, 2014). 
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2.3.1. Crop production 
The crops commonly produced in Kansas are corn, winter wheat, 

soybeans, and grain sorghum, all of which FEWCalc incorporates into 
the simulations (Table A.2). Fig. A.3 shows Kansas crop production, 
planted acres, crop prices, and, to represent expenses, gasoline prices in 
the USA from 1866 to 2019. The increase in productivity per acre is 
apparent by comparing Fig. 4a and b. Although soybeans are generally 
not produced in Finney County due to unfavorable soil and heat con
ditions, they are retained in the software because it is a common crop 
throughout the USA Midwest, and hence allow for other locations to use 
FEWCalc without major changes. 

DSSAT simulations are conducted using a one-day time step. Results 
are accumulated to produce annual results for FEWCalc. Datasets are 
prepared using DSSAT built-in software programs XBuild and SBuild 
(Fig. A.1). XBuild allows users to specify management options such as 
cultivars, planting date, and plant population. SBuild assembles physical 
and chemical soil data. The soil database available in DSSAT was 
developed by the International Soil Reference and Information Centre 
for the project “World Inventory of Soil Emission Potentials (WISE)”. 
The WISE database is one of the most comprehensive soil databases, 
with samples well distributed globally (Gijsman et al., 2007). 

In this work, the DSSAT Seasonal Analysis is used and simulations 
represent individual growing seasons. In this mode, by default, DSSAT 
starts each spring with soil water content at field capacity (SDUL). 
However, for this area, drier conditions are likely. As such, for this study, 
DSSAT is started each year with soil water content equal to (SDUL +
SLLL)/2, where SLLL is the water content at the wilting point. The 
simulations are started one week before planting to allow the precipi
tation record to affect soil moisture at planting. 

The long periods of interest in this work were simulated using the 

DSSAT Biophysical Analysis part of the Seasonal Analysis option. Out
puts such as harvest yield, applied irrigation, and applied fertilizer are 
calculated based on parameters defined in Table A.2; the values were 
chosen based on the cited references. 

2.3.2. Crop income after variable costs 
Revenue from crop production is the product of crop output and 

price per acre, and acres planted. Because farmers often produce more 
than one crop per year, production costs may be shared across more than 
one crop. Therefore, net farm income from crop production is the dif
ference between gross revenue from crop production less total variable 
costs. Future crop yield, crop prices, and input costs are all uncertain 
(Fig. 4a and c). While production variability may be attributed to 
weather and other production vicissitudes, price variability is driven by 
global market conditions and trade and other policies (USDA, 2020). No 
attempt to project this process is made in FEWCalc since no individual 
farmer or group of farmers influence prices. However, the Midwest USA 
is a large enough producer of global corn and sorghum to affect global 
prices (USDA, 2020). This means higher supplies during good weather 
years often depress prices and vice versa. Although western Kansas is a 
major wheat production area in the USA, it is not large enough to in
fluence global prices. These conditions define how prices are treated in 
FEWCalc. 

The FEWCalc base period (2008–2017), has three wet, three dry, and 
four average years, and is used to create projected climate conditions as 
described in Section 2.2. For corn and grain sorghum, the following 
procedure is used. In Scenario 1, the base period prices along with the 
climate data (temperature and precipitation) are repeated in sequence 
five times to create the 50-year projections. For Scenarios 2 and 3, the 
base period is used to define 10 sets of annual climate and crop-price 
data and selections are made from this 10-member set (with replace
ment) to create wetter and drier futures. For Scenario 4, prices are 
assigned based on precipitation: Less than 17 in. of precipitation is 
considered a dry year and price is selected randomly from one of the 
three dry years; 20 in. or more is treated as a wet year and price is 
selected randomly from one of the three wet years. 

For wheat, local conditions do not dominate world crop prices, so 
prices do not remain associated with the local climate data. The 10 
annual prices from 2008 to 2017 are assigned to each year for the period 
2018–2067 randomly and independently of the climate data. 

Total annual crop income after variable expenses is computed as: 

IncomeC t =
∑

i

[(
pi t × qi t

)
− wi t

]
, i = 1, 2, …, N (1) 

Where IncomeC_t is crop income after variable expenses earned for 
each year t in US dollars per acre, and i identifies an acre; pi_t is the 
market price per bushel, qi_t is the yield (bushels/acre from DSSAT) and 
wi_t is the variable production costs per acre for the crop planted on acre 

Fig. 3. Annual average PDSI, monthly cumulative precipitation deviation, and quarterly temperature deviation data from January 1950 to September 2019. Monthly 
and quarterly base values are listed in Table A.13. The 2008–2017 base period used in this work is highlighted. The axes for precipitation and temperature deviation 
are scaled so that conditions producing drought (high temperature and low precipitation) produce downward pointing bars of temperature deviation and downward 
sloping trend of cumulative precipitation deviation. 

Table 2 
Simulation scenarios used to represent climate conditions in DSSAT for the 50- 
year projection period (2018-2067) that follows the 2008–2017 historical base 
period in the FEWCalc simulations.  

Name DSSAT Temporal Progression of T, P, and S1 

Scenario 1. Repeat Historical Repeat conditions from 2008 to 2017 for all 50 
years of the projection period. 

Scenarios 2 & 3. Wetter/Drier 
Future 

Use more wet or dry years from 2008 to 2017, 
respectively to create a correlated random 50- 
year projection. The Wetter Future is similar to 
this area in the 1990s; the Drier Future is similar 
to this area in the 1950s. 

Scenario 4. GCM-simulated 
RCP8.5 T, P, and S Changes2 

Apply GCM-simulated climate for the 50-year 
projection period  

1 T, temperature, in degrees Celsius; P, precipitation, in inches per year; S, 
solar radiation, in watts per square meter. 

2 GCM, General Circulation Model. 
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i. The items making up the variable production costs are irrigation, 
fertilizer, herbicide, pesticide, labor, rent, and crop insurance; details 
are listed in Tables A.5 to A.8. As noted in Table A.7, six of the included 
costs are not strictly variable costs. They are included to reflect what is 
thought to be a fair representation of operating costs for irrigated and 
unirrigated farming. 

2.3.3. Crop insurance 
Agricultural farm income support takes many forms which may or 

may not improve financial stability (Mishra and Cooper, 2017). FEW
Calc includes the option of insurance for crop yield. General charac
teristics of crop-yield insurance are described by Edwards (2011) and 
RMA (2020). Crop-yield insurance is purchased to protect against po
tential losses of crop yield from natural disasters, and especially 
droughts. In practice, insurance companies will increase premiums if 
indemnities are high, so over the long term, farm incomes will not be 
increased by crop insurance. However, the insurance does mitigate in
come declines in exceptionally bad years. In FEWCalc, the crop prices 
and premiums from the 2008–2017 base period are maintained, and 
years and values of indemnities are noted. How crop insurance is rep
resented in FEWCalc is described in Appendix C, Eqs. C.1 to C.4. 

2.4. Calculations for renewable energy 

Renewable energy calculations for wind turbines and solar panels are 
calculated in FEWCalc. Users control the number and installed capacity 
of wind turbines and solar panels, and their degradation rates, lifespan, 
capital costs, and tax credits. 

The version of FEWCalc presented here considers farmer-owned 
energy production facilities that serve both local electric loads and 
electricity sale to the grid. These are not represented explicitly, the 
FEWCalc input is simply the resulting average value obtained from the 

electricity produced. Section 2.4.1 describes this process. 

2.4.1. Energy net income 
Energy net income for year t, IncomeE_t, is the sum of total net income 

from wind production (Eq. C.11) and total net income from solar pro
duction (Eq. C.21): 

IncomeE t = IncomeW t + IncomeS t = Energy valuet × (Mw t + Ms t) (2) 

Calculating IncomeW_t and IncomeS_t (income from wind and solar 
energy for year t) requires Energy_valuet, the monetary value of all 
megawatt-hours (MWh) of electricity produced, and used in Eqs. C.13 
and C.23. the Mw_t + Ms_t term is the power output in MWh from wind 
and solar for year t. Users can control the average value obtained for that 
electricity. Usually, this value should be greater than the wholesale price 
of electricity, which in Kansas and surrounding states is presently (2020) 
US$20 to US$40/MWh. Higher values would be expected because some 
of the electricity is worth retail because it allows the generator to avoid 
retail purchase of energy to, for example, run electric water pumps, or 
qualify for net-metering. In the Kansas region, retail is presently US$100 
to US$130/MWh. In addition, with some restrictions, farmers can enter 
into Power Purchase Agreements (PPAs) to sell electricity at prices that 
tend to be between wholesale and retail prices. While electricity prices 
tend to be less volatile than crop prices, they are still difficult to predict. 
FEWCalc uses a default Energy_valuet of US$38/MWh. 

The effects of equipment depreciation on net income are simulated 
using a CSV file that is read by FEWCalc and defines the percent of 
installed cost to be depreciated, the depreciation taken each year, and 
the tax rate of 20% to be applied (see Appendix A). This deduction may 
require a third-party financial partner. This tax savings can be used to 
increase farmer income or reduce the loan to cover the renewable energy 
costs. 

In Eqs. C.5 and C.15, installed costs for energy production are 

Fig. 4. Comparison of the DSSAT results (solid lines) and historical data (dashed lines) between 2008 and 2017 for corn, wheat, and grain sorghum. (a) Irrigated crop 
yields, (b) Irrigation water demand, (c) Non-irrigated crop yields. (Crop yield data from the Department of Agronomy, Kansas State University, irrigation data from 
KDA, and simulated results are in Tables A.4, A.11, B.1 and B.2). Conversion: 1 bu./ac corn or grain sorghum = 62.77 kg/ha, 1 bu./ac wheat = 67.25 kg/ha, and 1 in 
= 2.54 cm. Moisture adjustments have been applied (see Table A.10). 
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financed over a period defined by the user as a fraction of the life of the 
equipment (NyearsW or NyearsS) and an interest rate (APR) that is also 
defined by the user. 

2.4.2. An overview of energy production and regulatory environment 
The regulatory environment of renewable energy, including wind 

and solar, are complex and evolving. Here, we provide a few comments 
to establish some context for the range of solar and wind energy re
sources that FEWCalc supports. 

Regulation of solar production can depend on capacity, and policy is 
not well established. Commercial size installed solar capacity is about 1 
MW in Kansas (KCC Kansas Corporation Commission, 2019); capacities 
under 3 MW are commonly classified as small (Green Coast, 2019). 
States with less total solar capacity tend to have smaller installations: in 
the three lowest ranked states (including Kansas) solar installations for 
agricultural use average around 0.0004 MW (Xiarchos and Vick, 2011). 
In 2019, Kansas had 47 MW of installed solar (SEIA, 2020a). In contrast, 
neighboring Missouri, with less solar potential but more solar-friendly 
policies, had 258 MW of installed solar capacity (SEIA, 2020b). 

FEWCalc supports the installation of up to 2.4 MW of solar installed 
capacity, which would require 8000 solar panels with a combined area 
of 16.6 acres (6.7 ha) (Ong et al., 2013). In southwest Kansas, where an 
average peak sun hour (PSH) is 5.6 h per day, Eq. C.21 suggests that 
these solar panels would produce about 4906 MWh of electricity per 
year. Eq. C.11 indicates that it would require about 0.7 2-MW wind 
towers and 0.9 acres of land (0.4 ha) to produce the same output per year 
(Denholm et al., 2009). The net revenue gained by this land use would 
need to be compared with crop revenues as part of deciding whether to 
make the renewable energy investment. FEWCalc provides the results 
needed for the user to produce such a comparison. 

2.4.3. Financial assumptions — Energy equipment tax incentives and 
depreciation 

Tax incentives and equipment depreciation can produce large tax 
deductions that exceed what some owners can deduct from their taxes. It 
can thus be advantageous to contract with a third-party financial part
ner, called a Tax Equity Investor, who can claim the credit and return 
much of the value to the owner, depending on the agreement made; 
typical cost is 6–7% (M. Gilhousen, personal communication, 2020). In 
FEWCalc, use of the tax incentives (ITC or PTC; see Eqs. C.13, C.15 and 
C.23) and depreciation often imply that such third-party arrangements 
are involved. The transaction fee is not included, and the entire value of 
any tax credit and deduction is applied to the owner as income in the 
year it is incurred. It could be accumulated to defray the cost of updating 
equipment, but FEWCalc does not provide for this. 

The applicability of ITC and PTC has changed over time and differs 
with installed capacity and whether wind or solar equipment is installed. 
FEWCalc includes an adjustable range of options. 

2.5. Calculations for water 

The only water use represented in FEWCalc is irrigation to support 
the farm production simulated using DSSAT. The current version of 
FEWCalc satisfies all water demands using groundwater, and it is 
assumed that dryland farming is the default production method when 
groundwater levels are too low. Simulation of crop production and 
irrigation demand in the arid region considered in this work required 
modification of the distributed version of DSSAT, and this modification 
is described below. This is followed by a description of how DSSAT re
sults are used in DSSAT to simulate impacts on groundwater levels and 
surface-water quality. 

2.5.1. DSSAT irrigation calculation for arid regions 
Irrigation requirements and frequency of application vary as a 

function of crop type, crop management, soil properties, and weather 
conditions (Salazar et al., 2012). In DSSAT, the default irrigation 

calculations provided too much water and restrictions were needed to 
match measured water-use data. This was addressed by using the fixed 
amount automatic mode in DSSAT, as described by I. Kisekka (personal 
communication, 2019) and as used by Sharda et al. (2019). The 
approach is described in Appendix C. 

2.5.2. Calculating groundwater levels based on water use 
In FEWCalc, it is assumed that all irrigation water comes from 

groundwater. The simplest way to relate the irrigation use per crop area 
produced from DSSAT to groundwater level change is to divide by 
specific yield. However, this neglects spatial changes in specific yield, 
groundwater recharge, and other hydrologic processes, and was found 
to produce unrealistically fast dewatering of the aquifer. When avail
able, historical data can provide an alternative. Butler et al. (2016) and 
Whittemore et al. (2016) show that in parts of Kansas, groundwater 
declines are linearly related to total groundwater pumpage and discuss 
the circumstances under which this would occur. 

For FEWCalc, a two-step process was developed using two linear 
regressions and reported Finney County data from B. Wilson (personal 
communication, 2019). The process is described in Appendix A using 
Fig. A.5. 

2.5.3. Nitrogen concentrations in surface water 
When nitrogen is applied to fields, a percentage of it remains in the 

soil until it is moved into surface-water bodies by large storms (USGS, 
1999). In the study area, about 10% of the applied nitrogen is thought to 
be retained for silt loam soil and typical soil temperatures during fer
tilizer application (Kansas Mesonet, 2017; Sawyer, 2011). Individual 
storm data are not available, so nitrogen is moved to surface water in 
wet and extremely wet years as defined using PDSI. For Scenario 4, PDSI 
data are not available, and nitrogen is moved when annual rainfall ex
ceeds or equals 20 in.. The equations used are presented in Appendix C. 

2.6. FEWCalc interface 

FEWCalc's NetLogo interface (Fig. D.5) is divided into three main 
areas. From left to right, the areas include (1) sliders, input boxes, and 
dropdown menus that allow users to vary model parameters and control 
the simulation (see Fig. D.6). All inputs are at default values (Table D.1) 
except ITCS is set to 30%. (2) In the center, a NetLogo World area shows 
circular cultivated areas, solar panel and wind turbine installations, and 
groundwater (GW) quantity and surface-water (SW) quality impacts, 
and a fraction of energy produced from solar and wind (see Fig. D.8). (3) 
Eight output plots on the right show FEWCalc results evolving over time. 

In years that production conditions trigger an insurance claim, the 
text “Ins. Claim” appears next to the related crop in the World. The in
demnity is shown in the lower right graph. The rust-colored dots are 
used to represent nitrogen accumulation on fields and its concentrations 
in surface water (see Section 2.5.3). Each particle represents 10,000 lb. 
(4500 kg) of nitrogen. Groundwater levels vary as irrigation is applied 
each year as described in Section 2.5. 

3. Results 

For the results presented here, the input values are those shown in 
Fig. D.5, except that the future process is modified for Scenarios 2 
through 4. The solar panels occupy about 5.2 acres (2.1 ha), and a 
similar area is occupied by the wind turbines (Denholm et al., 2009). 

Results comparing the DSSAT simulation with historical results are 
presented in Section 3.1. The four subsequent sections show results from 
the four climate scenarios listed in Table 2 and support an analysis of 
climate impacts on crop income in the context of potential farm energy 
capacity development. Finally, Section 3.6 focuses on financial results 
from all simulations. 
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3.1. Comparison with historical data 

Crop production and irrigation water use simulated by DSSAT for 
2008 to 2017 are compared to historical data in Fig. 4. As in Fig. 3, 
colors based on PDSI are used to identify dry and wet years. Fig. 4 
suggests crop yields and water use are reasonably well represented using 
DSSAT, though in some years the differences are substantial (for 
example, non-irrigated grain sorghum yield in 2010). 

For non-irrigated corn, the simulated yield was unrealistically large 
during some wet years, and it was suspected that the plant population 
per acre was too high. Fig. 4c (top figure) shows the effects of accounting 
for the plant population at seeding for corn under dryland farming. In 
this work, a plant population of 13,000 plants/acre (3 plants/m2) was 
used. 

3.2. Scenario 1: Repeat 10 historical years to create the 60-year 
simulation 

Six ten-year long base periods of precipitation, temperature, and 
crop prices are repeated consecutively to create the 60-year FEWCalc 
simulation. The repetition allows analysis for a repeated known histor
ical period; the duplication of results every 10 years indicates that 
FEWCalc progresses through time correctly. The only change is when 
groundwater is depleted toward the end of the simulation when dryland 
farming begins. 

Energy solutions are the same for all scenarios and are presented 
with the Scenario 1 results. Income for wind is high in the first year of 
operation when tax policy allows 50% of capital costs to be depreciated, 
though the loan payments continue. Solar income becomes positive after 
the loan is paid. 

3.3. Scenario 2: Wetter future 

For the wetter future, FEWCalc randomly chooses a greater per
centage (70% instead of the original 30%) of wet years. 

3.4. Scenario 3: Drier future 

For the drier future, FEWCalc randomly chooses a higher percentage 
of dry years (70% instead of the original 30%). As compared to the wet 
scenario (Fig. 5b), Fig. 5c shows that crop production simulated for a dry 
climate scenario drops in many simulation years. 

3.5. Scenario 4: RCP 8.5 temperature, precipitation, and solar radiation 
changes to create the 50-year future 

In Fig. 5d, the first 10 years of crop production reflect historical 
(2008–2017) climate variability, while years 11 to 60 (2018 to 2067) 
show GCM results that tend to be smoother because results from 20 
GCMs are averaged (Figs. B.1 and B.3). 

3.6. Total net income and crop insurance for all four scenarios 

Total farm net annual income is shown in Fig. 6a; income from crop 
insurance (the indemnity) is shown in Fig. 6b. Selected metrics for the 
four runs are shown in Table 3. Time series shown for the four scenarios 
in Fig. 5 are discussed in Section 4 of this article. 

Scenario 1, for which 2008–2017 weather continues into the future, 
results in a depleted aquifer and dryland farming. The wetter scenario 2 
results in irrigation water lasting more than 60 years. The drier scenario 
3 results in irrigation lasting only 45 years. The RCP 8.5 scenario 4 
shows marked potential for decreased crop production: With elevated 
greenhouse gases and temperature conditions crop incomes are reduced. 
Renewable energy development is important to continued viability and, 
hopefully, would allow new approaches and technologies to buffer the 
impacts of climate change. 

4. Discussion 

FEWCalc is designed to produce the same net income for all scenarios 
in the base period. Income differences determined by scenario condi
tions and parameters begin after the base period (Fig. 6a). 

In Scenario 1, simulated crop yields for corn and sorghum decline 
during dry periods (Fig. 4). However, wheat yield remains stable for 
most simulation years. Wheat and grain sorghum are rarely profitable, 
and corn is the most profitable crop under the Repeat Historical scenario 
(Fig. 5a). Repeated historical irrigation water use results in continuous 
groundwater level decline. This continues well known current trends 
and in the simulation dryland farming in this area starts in 2065 or, year 
58 of the simulation. Crop yields decline after switching from irrigated 
to dryland cultivation. However, average non-irrigated crop net incomes 
are higher than irrigated net incomes because dryland farming expenses 
for all three crops are low enough to make up for lost crop sales. For corn 
and grain sorghum, the tendency of prices to increase globally when the 
local yields decline (see Section 2.3.2) could prove even more advan
tageous than indicated. 

For Scenario 2, the 50 years following the base simulation, Fig. 5b 
shows that crop production improves and groundwater levels drop more 
slowly, though they continue to drop. Dryland farming is not reached, 
and FEWCalc maintains irrigation operations for the entire 60-year 
simulation. However, the downward trend makes it clear that a time 
will come when dryland farming will be necessary in some years, even 
with this wetter future simulation. 

In Scenario 3, the Drier Future, irrigated corn performed better than 
other crops, whereas wheat production is low and remains stable during 
irrigated periods. Corn net income is high because of high crop prices 
during dry years. The increased irrigation required in drier years ac
celerates the decline in groundwater levels, and FEWCalc resorts to 
dryland DSSAT simulations in year 46 (2053), which is 12 and ≥ 14 
years ahead of Scenarios 1 and 2, respectively. 

Table 3 shows that dry scenario 3 yields an annual average agricul
tural sector profit of US$6818, which is the only commercially suc
cessful scenario for agriculture from the simulations. Potential crop 
price increases caused by reduced production in a drier future are not 
simulated, and could affect farm profitability and food availability. 
Because wind energy production is successful in western Kansas, total 
net income is mostly supported by the energy sector. All scenarios, in 
turn, have projected positive net incomes and post positive net present 
value (NPV) using a discount rate of 3.25% for the total farm investment 
(Table 3). For Scenario 3, farm income with energy sector profit is US 
$116,142, with an NPV of US$3.1 M. Scenario 4, in contrast, produces 
the worst average annual total revenue of US$48,003, with an NPV of US 
$1.6 M. 

In Scenario 4, what is thought to be the most likely future scenario 
results in wheat and grain sorghum are rarely profitable. Irrigated corn's 
net income is projected to decrease over time and is considerably worse 
after simulation year 22 (2029). Dryland farming first occurs in year 55 
(2062), causing large crop production decline. These results show a 
large increase in net income for all three crops after shifting to dryland 
farming as costs decline more than income. The reduced yield would be 
problematic for the global food system. 

The time series in Fig. 5 show the variability in income. For example, 
in Scenarios 1 and 4, Fig. 5a and d show that corn, wheat, and grain 
sorghum lose less money with dryland farming than during the irriga
tion period because of decreased farm expenses and support from crop 
insurance. For Scenario 2, grain sorghum is the most profitable crop, but 
it loses money in some simulation years. 

In FEWCalc, insurance claims (Fig. 6b) start during any period of 
transition to dryland farming when the current yield drops below the 
actual production history. There are other common situations in which 
crop insurance is indemnified, such as hailstorms and floods, but these 
are not represented in FEWCalc. 

Fig. 5d, B.1, and B.3 results suggest that, overall, RCP 8.5 global 
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Fig. 5. FEWCalc annual results showing agricultural crop production and net income, energy production and net income, and crop groundwater irrigation and groundwater level for all four climate scenarios. Dashed 
lines in the charts represent significant values for reference. Abbreviation: bu = bushel, ac = acre, SG = grain sorghum, US$ = US dollar, MWh = megawatt-hour, GW level = groundwater level, Min Aq = minimum 
available aquifer thickness, and Min + 30 = a level of 30 ft above minimum thickness. Conversion: 1 bu/ac corn or grain sorghum = 62.77 kg/ha, 1 bu/ac wheat = 67.25 kg/ha, 1 in = 2.54 cm, and 1 ft = 0.3 m. 
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climate change predictions would need to be met with effective tech
nology changes to address crop production trends that slowly decline for 
the future period. It appears that annual variability would make this 
trend difficult to discern until reductions are substantial, and history 
indicates that such obscured consequences tend to make early remedies 
difficult to implement. While global analyses suggest that delaying ac
tion exacerbates both the cost and feasibility of mitigation, how these 
tradeoffs play out locally requires careful evaluation of how projected 

changes and uncertainty impact individual FEW systems, a challenge 
that FEWCalc enables users to address directly for agricultural systems. 

For all scenarios, installed solar capacity is initially set at about 9% of 
the total renewable energy. Higher capital costs and a shorter lifespan 
make the total cost of solar higher than wind. The slow degradation of 
wind and solar capacity over time is evident in the energy production 
graph. Solar power makes money some years because of the simulated 
tax credit, depreciation, and loan pay off. Wind power production, on 
the other hand, is generally profitable, in part because of a high wind 
capacity factor in the study area and the simulated 30-year capital 
lifespan that makes it easy to cover installation costs. 

Overall, the DSSAT results are expected to be adequate for the 
analysis of renewable energy development and agricultural performance 
given potential future climate scenarios for which FEWCalc was 
developed. 

The scenarios do not include technological, crop management, crop 
price, or energy production changes that would be expected to occur. 
Thus, these results reflect the climate- and market-related pressures to 
which such changes would need to respond to maintain crop production 
and farm incomes. 

5. Conclusions 

This work shows how FEWCalc can provide scientific, engineering, 
and economic analyses required by stakeholders and policy makers 
using data from the semi-arid region around Garden City, Kansas. Here 
we discuss the two points about FEWCalc and provide some final 
comments. 

5.1. FEWCalc utility for individual, community, and policy maker 
decision support 

The FEWCalc results for Finney County, Kansas, illustrate many of 
the general challenges of farming. The main crops are subject to 
considerable price uncertainty, weather conditions can be harsh and 
unpredictable, and selected resources have limited availability. As 

Fig. 6. (a) Total net income and (b) income from crop insurance. The yield- 
based crop insurance tends are indemnified mostly when farming converts 
from irrigated to non-irrigated (e.g., year 58 in Scenario 3). Plots for Scenarios 1 
and 2 are not shown because annual crop insurance indemnifications were less 
than $31,000 for Scenario 1 and not indemnified for Scenario 2. 

Table 3 
Metrics from the four scenarios for 60 years of FEWCalc simulation (2008–2067). All monetary amounts are in US dollars.   

Scenario 1 
(Repeat Historical) 

Scenario 2 
(Wetter Future) 

Scenario 3 
(Drier Future) 

Scenario 44 

(GCMs, RCP 8.5)  

C1 W2 SG3 C1 W2 SG3 C1 W2 SG3 C1 W2 SG3 

Average annual crop yield, bushels/acre4 

with irrigation 207 71 111 223 75 123 190 71 106 149 
(39.8) 

72 
(4.7) 

109 
(12.1) 

without irrigation 133 35 87 – – – 40 23 39 41 
(6.3) 

31 
(5.2) 

33 
(5.9) 

Insurance claims, 
number of years 

3 2 1 0 0 0 8 10 9 7 5 4 

Dryland farming starts, year 2065 – 2053 2062 
Dryland farming length, years 3 0 15 6  

Average annual net income, US dollars 
from agriculture -US$14,197 -US$20,194 US$6818 -US$61,321 

(46,734) 
from energy US$109,324 US$109,324 US$109,324 US$109,324 

(122,970) 
total US$95,127 US$89,130 US$116,142 US$48,003 

(146,563) 
Net Present Value (NPV)5     

from agriculture -US$0.4 M -US$0.5 M US$0.1 M -US$1.3 M 
from energy US$2.9 M US$2.9 M US$2.9 M US$2.9 M 
total US$2.5 M US$2.4 M US$3.1 M US$1.6 M  

1 Corn. 
2 Wheat. 
3 Grain sorghum. 
4 For Scenario 4, the standard deviation of the 20 GCM results are presented in parentheses. 
5 Discount rate is 3.25% (prime rate as of June 2020); FEWCalc agriculture and energy finances are combined; for energy, capital costs are explicitly included for 

energy and depreciated over 10 years assuming a tax rate of 20%, for agriculture, capital costs are applied as listed in Table A.7. 
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presented here, FEWCalc is applicable directly to farmers in arid regions 
of the middle part of the USA interested in alternative income sources. 
The design of FEWCalc has broad applicability for agricultural-energy- 
water system decision support research and education. Applicability to 
other regions requires local data, development of a DSSAT model, and 
adjustment of the FEWCalc input variable values. Little or no pro
gramming would be required. 

Distributed energy production requires considerable land and rural 
areas can provide important opportunities, depending on local attitudes 
and local to national policies. FEWCalc illustrates major input variables 
relevant to renewable energy development and how local economic 
impact can be evaluated and projected. 

Renewable wind energy development in this area was shown to 
potentially provide economic opportunities profitable enough to bal
ance farming difficulties and enable the persistence of agricultural 
production in the region. In part, this is the consequence of the unusually 
useful wind resources available in this area; other areas will have 
different advantages and disadvantages that can be evaluated using the 
framework provided by FEWCalc. 

FEWCalc results show that in this area, given current cost and elec
tricity pricing, solar is only profitable with tax incentives and depreci
ation. In Kansas, the capital costs of solar energy (Fu et al., 2017) are 
challenging to recover given local solar radiance and electricity prices. 
As noted previously, an advantage of solar is that it is plentiful on hot 
summer days when wind velocities are low and electricity demand in
creases, largely due to increased use of air conditioning. In some cases, 
this makes solar a very useful addition to a given system despite the 
challenges of individual profitability. Solar is included in FEWCalc to 
provide this logistical advantage of solar energy and because tax in
centives and even a slight reduction in the price of solar panels could 
make it a profitable alternative. 

FEWCalc illustrates how complicated and interacting systems, as 
they face new opportunities and challenges — in this case renewable 
energy, water scarcity, evolving technical innovations, can be assembled 
into a reasonably realistic, interesting to manipulate, and educational 
graphical interface. Agent-based modeling using the freeware NetLogo 
is relatively simple yet flexible enough to perform calculations related to 
energy, water, nitrate in soils and surface water, crop insurance, and so 
on, and integrate results from a separate program — in this case DSSAT 
for agricultural production, water demand, and fertilizer application. 
The FEWCalc calculations used for energy are expected to be widely 
applicable. The data-based approach taken for water is expected to be 
adaptable to other locations with sufficient data; otherwise, this work 
suggests that greater errors are likely if aquifer water-level response is 
calculated using estimates of specific yield from pumping wells, a point 
also noted by Butler et al. (2016) and Whittemore et al. (2016). 

The crop production DSSAT model served well when combined with 
local agricultural expertise and comparison to historical data. The need 
to use a new irrigation capability designed for arid regions and the poor 
performance of soybeans in the region were only recognized and 
explained after comparison to historical data and discussions with local 
agricultural experts. Lack of these resources would have resulted in 
substantial errors. 

Potential uses of the program not pursued in this work include 
identifying what thresholds (e.g., crop price, crop production, expenses) 
and public policies (e.g., tax incentives) are needed to produce profit
able opportunities for landowners and agricultural communities. Also, 
adding technology advances, crop and electricity price changes, and 
human decision-making characteristics such as avoidance of risk, 
maximizing profit, and evolution of policies and governmental in
stitutions would improve the human interaction aspects of the 
simulation. 

5.2. FEWCalc impact on IA and IAV gaps 

The gaps between the IA and IAV communities that were 

summarized in Table 1 can be broadly categorized as gaps in the 
geographic and temporal scale, scenario and policy development, 
interdisciplinarity, and research perspective. FEWCalc addresses these 
gaps the following ways:  

1) FEWCalc's interface shows the clear connection between current 
decisions and long-term, interdependent, and interdisciplinary con
sequences for both non-technical stakeholders and disciplinary spe
cialists. This presentation of information can facilitate discussion 
across disciplinary boundaries and between scientists and non- 
technical stakeholders.  

2) Metrics such as crop production, farm income, groundwater-level 
change, and nutrient loading of surface-water bodies, are broadly 
interesting to many stakeholder communities across a range of 
geographic scales and/or topical foci. These metrics can serve as a 
common point of reference for interdisciplinary discussions of their 
underlying discipline-specific drivers such as climate change, agri
cultural practices, and renewable energy policy. For example, Fig. 5, 
depicting the outcomes under Scenarios 1 to 4, could serve as the 
basis for discussions among different stakeholder communities and 
become an important focus of communication for topics as wide- 
ranging as irrigation practices, climate change impacts and adapta
tion strategies, renewable energy, and farm incomes.  

3) Help stakeholders at all levels make better decisions, as follows. 
a) Studies of how local stakeholders use FEWCalc can help re

searchers gain insight into local values, which will give local 
stakeholders an implicit voice in scenario development and by 
implication the national- and global-scale public policy debates 
that are informed by integrated assessment, such as the Inter
governmental Panel on Climate Change (IPCC) assessment re
ports and the Paris Agreement.  

b) Inform local stakeholders, which could lead to better feedback 
and is the only way to achieve more buy-in and support for 
adaptive measures such as agricultural and energy tax credits and 
support of technological innovations in irrigation and wind tur
bine design. Here again, FEWCalc's outputs (Fig. 5) show the 
connection between global changes and local-stakeholder out
comes, while FEWCalc's intuitive interface allows local stake
holders to explore how their options (e.g., choices about 
irrigation, crop planting, and energy investment) and outcomes 
(e.g., farm income) are affected by climate conditions, and local 
and national public policy. 

5.3. Final comments 

FEWCalc integrates information from the fields of agriculture, en
ergy, water supply, water quality, climate change, and economics. It 
uses this information to enable users to explore consequences of interest 
to farming communities, including farm income, water supply, water 
quality, and potential opportunities provided by renewable energy 
development. It also provides a way for anyone interested in their food 
supply to understand the challenges and opportunities faced by farmers 
and farming communities. 

The version of FEWCalc discussed in this work is constructed of 
freely available and open-source software that was chosen to facilitate 
future extensions of FEWCalc. In particular, the use of agent-based 
modeling using NetLogo means that FEWCalc is well-positioned for 
expansion to simulate technology advances, behavioral and policy 
considerations, and the interplay between these important aspects of 
any natural-human system. 

The input to DSSAT is region specific, but DSSAT is used globally and 
data from other regions would likely provide similar performance as 
long as some historical data is available for DSSAT model development. 

Programs like FEWCalc are well suited to address gaps present be
tween current Integrated Assessment (IA) and Impacts, Adaptation, and 
Vulnerability (IAV) communities. Said another way, programs like 
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FEWCalc enable users to envision both near-term impacts and long-term 
implications of choices made today. Thus, FEWCalc can be used by 
farmers considering the futures of their farms and communities, 
laypeople interested in how farms work, and policymakers as they 
consider potential consequences of regulatory and policy decisions. 
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